JP2015219308A - Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate - Google Patents

Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate Download PDF

Info

Publication number
JP2015219308A
JP2015219308A JP2014101482A JP2014101482A JP2015219308A JP 2015219308 A JP2015219308 A JP 2015219308A JP 2014101482 A JP2014101482 A JP 2014101482A JP 2014101482 A JP2014101482 A JP 2014101482A JP 2015219308 A JP2015219308 A JP 2015219308A
Authority
JP
Japan
Prior art keywords
conductive
photosensitive
photosensitive resin
resin layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014101482A
Other languages
Japanese (ja)
Inventor
泰洋 瀬里
Yasuhiro Sesato
泰洋 瀬里
謙介 吉原
Kensuke Yoshihara
謙介 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014101482A priority Critical patent/JP2015219308A/en
Publication of JP2015219308A publication Critical patent/JP2015219308A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a photosensitive conductive film that can yield a conductive pattern difficult to be visually recognized.SOLUTION: A photosensitive conductive film 10 includes a support film 1, a conductive layer 2 laminated on the support film 1, and a photosensitive resin layer 3 laminated on the conductive layer 2. The conductive layer 2 contains a conductive fiber. When the conductive layer 2 and the photosensitive resin layer 3 are irradiated with actinic rays after the photosensitive conductive film 10 is laminated on a substrate in such a way that the photosensitive resin layer 3 is in contact with the substrate, a surface resistivity X (Ω/unit square) of a laminate of the conductive layer 2 and the photosensitive resin layer 3, and a haze value Y (%) of the laminate satisfy expression (1): Y≤9.33X.

Description

本発明は、感光性導電フィルム、感光性導電積層体、導電膜の形成方法及び導電積層体に関し、特に、液晶表示素子等のフラットパネルディスプレイ、タッチスクリーン、太陽電池などの装置の電極配線を得るために用いられる感光性導電フィルム及び感光性導電積層体、前記電極配線として用いられる導電膜の形成方法、並びに、導電積層体に関する。   The present invention relates to a photosensitive conductive film, a photosensitive conductive laminate, a method for forming a conductive film, and a conductive laminate, and in particular, obtains electrode wiring for devices such as flat panel displays such as liquid crystal display elements, touch screens, and solar cells. The present invention relates to a photosensitive conductive film and a photosensitive conductive laminate, a method for forming a conductive film used as the electrode wiring, and a conductive laminate.

パソコンやテレビ等の大型電子機器、カーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA・FA機器等の表示機器としては、液晶表示素子やタッチスクリーンが使用されている。これら液晶表示素子やタッチスクリーン、太陽電池等のデバイスでは、配線、画素電極又は端子の一部に透明導電膜が使用されている。   Liquid crystal display elements and touch screens are used as large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones, and electronic dictionaries, and display devices such as OA / FA devices. In these liquid crystal display elements, touch screens, solar cells, and other devices, a transparent conductive film is used for wiring, pixel electrodes, or part of terminals.

透明導電膜の材料としては、従来、可視光に対して高い透過率を示すことから、ITO(Indium−Tin−Oxide)、酸化インジウム及び酸化スズ等が用いられている。液晶表示素子用基板等の電極としては、前記の材料からなる透明導電膜をパターニングしたものが主流になっている。   As a material for the transparent conductive film, ITO (Indium-Tin-Oxide), indium oxide, tin oxide, and the like have been conventionally used because of high transmittance for visible light. As an electrode for a liquid crystal display element substrate or the like, a pattern obtained by patterning a transparent conductive film made of the above-described material has become mainstream.

透明導電膜のパターニング方法としては、透明導電膜を形成後、フォトリソグラフィー法によりレジストパターンを形成し、ウエットエッチングにより導電膜の所定部分を除去して導電パターンを形成する方法が一般的である。透明導電膜がITO膜又は酸化インジウム膜である場合、エッチング液としては、塩酸と塩化第二鉄の2液よりなる混合液が一般に用いられている。   As a method for patterning a transparent conductive film, a method is generally used in which after forming a transparent conductive film, a resist pattern is formed by photolithography, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern. When the transparent conductive film is an ITO film or an indium oxide film, a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is generally used as the etching liquid.

ITO膜や酸化スズ膜は一般にスパッタ法により形成される。この方法では、スパッタ方式の違い、スパッタパワーやガス圧、基板温度、雰囲気ガスの種類等によって透明導電膜の性質(膜質)が変わり易い。スパッタ条件の変動による透明導電膜の性質の違いは、透明導電膜をウエットエッチングする際のエッチング速度のばらつきの原因となり、パターンニング不良による製品の歩留まりの低下を招き易い。また、前記の導電パターンの形成方法は、スパッタ工程、レジスト形成工程及びエッチング工程を経ることから、工程が長く、コスト面でも大きな負担となっている。   The ITO film and the tin oxide film are generally formed by sputtering. In this method, the properties (film quality) of the transparent conductive film are likely to change depending on the difference in sputtering method, sputtering power, gas pressure, substrate temperature, type of atmospheric gas, and the like. Differences in the properties of the transparent conductive film due to fluctuations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects. In addition, since the conductive pattern forming method described above undergoes a sputtering process, a resist forming process, and an etching process, the process is long and has a large cost.

近年、前記の問題を解消するために、ITO、酸化インジウム及び酸化スズ等に替わる材料を用いて透明な導電パターンを形成する試みがなされている。例えば、下記特許文献1には、銀繊維等の導電性繊維を含有する導電層を基板上に形成した後、導電層上に感光性樹脂層を形成し、その上からパターンマスクを介して露光し、現像する導電パターンの形成方法が開示されている。   In recent years, attempts have been made to form a transparent conductive pattern using a material in place of ITO, indium oxide, tin oxide, or the like in order to solve the above problems. For example, in Patent Document 1 below, after a conductive layer containing conductive fibers such as silver fibers is formed on a substrate, a photosensitive resin layer is formed on the conductive layer, and then exposed through a pattern mask. A method of forming a conductive pattern to be developed is disclosed.

しかしながら、特許文献1に記載の方法では、基板と導電パターンとの接着性を確保しつつ導電パターンの表面抵抗率を低減(低抵抗率化)する上では改善の余地がある。また、前記導電パターンを配線、画素電極又は端子として使用する場合には、感光性樹脂層を除去する工程が必要であり、導電パターン形成の工程が煩雑化するという問題がある。   However, in the method described in Patent Document 1, there is room for improvement in reducing the surface resistivity (lower resistivity) of the conductive pattern while ensuring the adhesion between the substrate and the conductive pattern. Moreover, when using the said conductive pattern as wiring, a pixel electrode, or a terminal, the process of removing the photosensitive resin layer is required and there exists a problem that the process of forming a conductive pattern becomes complicated.

前記問題を鑑みて、下記特許文献2には、基板との接着性が充分であり低抵抗な導電パターンを基板上に充分な解像度で簡便に形成するための感光性導電フィルム、当該感光性導電フィルムを用いた導電膜(導電パターン等)の形成方法が開示されている。   In view of the above problems, Patent Document 2 below discloses a photosensitive conductive film for easily forming a low resistance conductive pattern with sufficient resolution on a substrate with sufficient adhesion to the substrate, and the photosensitive conductive film. A method for forming a conductive film (such as a conductive pattern) using a film is disclosed.

米国特許出願公開第2007/0074316号明細書US Patent Application Publication No. 2007/0074316 国際公開第2010/021224号International Publication No. 2010/021224

しかしながら、従来の手法では、導電性繊維分散液の塗布方法によっては基材上に形成した導電パターンが充分に低抵抗化されずタッチパネル等のデバイスを駆動できない場合がある。これに対し、抵抗率を低減するために導電性繊維の配合量を増やすと、ヘーズ値が上昇し、タッチパネル等のデバイス上において、導電パターンに含まれる導電性繊維の存在(導電性繊維の有無のコントラスト)が確認され易くなり、導電パターンが視認され易くなる(骨見え)という課題がある。このように導電パターンが視認されると、タッチパネル等のディスプレイ部の骨見えにより本来見たい画像が阻害されて視認しにくくなる。   However, in the conventional method, depending on the method of applying the conductive fiber dispersion, the conductive pattern formed on the substrate may not be sufficiently lowered in resistance, and a device such as a touch panel may not be driven. On the other hand, increasing the blending amount of the conductive fiber to reduce the resistivity increases the haze value. On the device such as a touch panel, the presence of the conductive fiber contained in the conductive pattern (presence / absence of the conductive fiber) (Contrast) is easily confirmed, and there is a problem that the conductive pattern is easily visually recognized (bone appearance). When the conductive pattern is visually recognized in this manner, an image that is originally desired to be seen is hindered by the bone appearance of the display unit such as a touch panel, and thus it is difficult to visually recognize the conductive pattern.

本発明は、前記事情に鑑みてなされたものであり、視認され難い導電パターンを得ることが可能な感光性導電フィルム及び感光性導電積層体を提供することを目的とする。また、本発明は、前記感光性導電フィルム又は前記感光性導電積層体を用いた導電膜の形成方法及び導電積層体を提供することを目的とする。   This invention is made | formed in view of the said situation, and aims at providing the photosensitive conductive film and photosensitive conductive laminated body which can obtain the conductive pattern which is hard to be visually recognized. Another object of the present invention is to provide a method for forming a conductive film using the photosensitive conductive film or the photosensitive conductive laminate, and a conductive laminate.

本発明に係る感光性導電フィルムは、支持フィルムと、当該支持フィルム上に積層された導電層と、当該導電層上に積層された感光性樹脂層と、を備える感光性導電フィルムであって、前記導電層が導電性繊維を含有し、前記感光性樹脂層と基材とが接するように前記感光性導電フィルムを前記基材上に積層した後に前記導電層及び前記感光性樹脂層に活性光線を照射した場合において、前記導電層及び前記感光性樹脂層の積層体の表面抵抗率X(Ω/□)と、前記積層体のヘーズ値Y(%)とが下記式(1)を満たす。
Y≦9.33X−0.568 …(1)
The photosensitive conductive film according to the present invention is a photosensitive conductive film comprising a support film, a conductive layer laminated on the support film, and a photosensitive resin layer laminated on the conductive layer, The conductive layer contains conductive fibers, and the photosensitive conductive film is laminated on the substrate so that the photosensitive resin layer and the substrate are in contact with each other, and then an active ray is applied to the conductive layer and the photosensitive resin layer. , The surface resistivity X (Ω / □) of the laminate of the conductive layer and the photosensitive resin layer and the haze value Y (%) of the laminate satisfy the following formula (1).
Y ≦ 9.33X −0.568 (1)

本発明に係る感光性導電フィルムによれば、視認され難い導電パターンを得ることができる。本発明に係る感光性導電フィルムによれば、視認され難い導電パターンを有する各種デバイスを量産することができる。   According to the photosensitive conductive film of the present invention, a conductive pattern that is difficult to be visually recognized can be obtained. According to the photosensitive conductive film according to the present invention, various devices having a conductive pattern that is difficult to be visually recognized can be mass-produced.

本発明に係る感光性導電フィルムにおいて、前記感光性樹脂層は、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物、及び、光重合開始剤を含有していてもよい。   In the photosensitive conductive film according to the present invention, the photosensitive resin layer may contain a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator.

本発明に係る感光性導電フィルムにおいて、前記導電性繊維は、銀繊維であることが好ましい。   In the photosensitive conductive film according to the present invention, the conductive fibers are preferably silver fibers.

本発明に係る感光性導電積層体は、基材と、当該基材上に積層された感光性樹脂層と、当該感光性樹脂層上に積層された導電層と、を備える感光性導電積層体であって、前記導電層が導電性繊維を含有し、前記感光性導電積層体の前記導電層及び前記感光性樹脂層に活性光線を照射した場合において、前記導電層及び前記感光性樹脂層の積層体の表面抵抗率X(Ω/□)と、前記積層体のヘーズ値Y(%)とが下記式(1)を満たす。
Y≦9.33X−0.568 …(1)
A photosensitive conductive laminate according to the present invention includes a substrate, a photosensitive resin layer laminated on the substrate, and a conductive layer laminated on the photosensitive resin layer. When the conductive layer contains conductive fibers and the conductive layer and the photosensitive resin layer of the photosensitive conductive laminate are irradiated with actinic rays, the conductive layer and the photosensitive resin layer The surface resistivity X (Ω / □) of the laminate and the haze value Y (%) of the laminate satisfy the following formula (1).
Y ≦ 9.33X −0.568 (1)

本発明に係る感光性導電積層体によれば、視認され難い導電パターンを得ることができる。本発明に係る感光性導電積層体によれば、視認され難い導電パターンを有する各種デバイスを量産することができる。   According to the photosensitive conductive laminate of the present invention, a conductive pattern that is difficult to be visually recognized can be obtained. According to the photosensitive conductive laminate of the present invention, various devices having a conductive pattern that is difficult to be visually recognized can be mass-produced.

本発明に係る感光性導電積層体において、前記感光性樹脂層は、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物、及び、光重合開始剤を含有していてもよい。   In the photosensitive conductive laminate according to the present invention, the photosensitive resin layer may contain a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator.

本発明に係る感光性導電積層体において、前記導電性繊維は、銀繊維であることが好ましい。   In the photosensitive conductive laminate according to the present invention, the conductive fibers are preferably silver fibers.

本発明に係る導電膜の形成方法の第1実施形態は、前記感光性樹脂層と基材とが接するように、本発明に係る感光性導電フィルムを前記基材上に積層する積層工程と、前記積層工程の後、前記導電層及び前記感光性樹脂層に活性光線を照射する工程と、を備える。本発明に係る導電膜の形成方法の第2実施形態は、パターニングされた導電膜の形成方法であって、前記感光性樹脂層と基材とが接するように、本発明に係る感光性導電フィルムを前記基材上に積層する積層工程と、前記積層工程の後、前記導電層及び前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、前記露光工程の後、前記所定部分以外の未露光部を現像する工程と、を備える。本発明に係る導電膜の形成方法の第3実施形態は、パターニングされた導電膜の形成方法であって、本発明に係る感光性導電積層体の前記導電層及び前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、前記露光工程の後、前記所定部分以外の未露光部を現像する工程と、を備える。   1st Embodiment of the formation method of the electrically conductive film which concerns on this invention is the lamination process which laminate | stacks the photosensitive conductive film which concerns on this invention on the said base material so that the said photosensitive resin layer and a base material may contact | connect, And a step of irradiating the conductive layer and the photosensitive resin layer with actinic rays after the laminating step. 2nd Embodiment of the formation method of the electrically conductive film which concerns on this invention is a formation method of the electrically conductive film patterned, Comprising: The photosensitive conductive film which concerns on this invention so that the said photosensitive resin layer and a base material may contact | connect Laminating step on the substrate, after the laminating step, an exposure step of irradiating a predetermined portion of the conductive layer and the photosensitive resin layer with actinic rays, after the exposing step, other than the predetermined portion And a step of developing the unexposed portion. 3rd Embodiment of the formation method of the electrically conductive film which concerns on this invention is a formation method of the patterned electrically conductive film, Comprising: The predetermined part of the said conductive layer and the said photosensitive resin layer of the photosensitive conductive laminated body which concerns on this invention And an exposure step of irradiating actinic rays, and a step of developing an unexposed portion other than the predetermined portion after the exposure step.

本発明に係る導電積層体は、本発明に係る導電膜の形成方法により形成された導電膜を備える。   The conductive laminate according to the present invention includes a conductive film formed by the method for forming a conductive film according to the present invention.

本発明によれば、視認され難い導電パターン(例えば透明導電パターン)を得ることができる。本発明によれば、視認され難い導電パターンを有する各種デバイスを量産することができる。   According to the present invention, it is possible to obtain a conductive pattern that is difficult to be visually recognized (for example, a transparent conductive pattern). According to the present invention, various devices having a conductive pattern that is difficult to be visually recognized can be mass-produced.

感光性導電フィルムの一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of a photosensitive conductive film. 導電膜の形成方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating one Embodiment of the formation method of an electrically conductive film.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<感光性導電フィルム>
図1は、本実施形態に係る感光性導電フィルムを示す模式断面図である。図1に示す感光性導電フィルム(例えば転写型感光性導電フィルム)10は、支持フィルム1と、支持フィルム1上に積層された導電層(例えば透明導電層)2と、導電層2上に積層された感光性樹脂層3とを備える。感光性導電フィルム10の製造方法は、導電層2を支持フィルム1上に積層する工程と、感光性樹脂層3を導電層2上に積層する工程とを備える。
<Photosensitive conductive film>
FIG. 1 is a schematic cross-sectional view showing a photosensitive conductive film according to this embodiment. A photosensitive conductive film (for example, transfer-type photosensitive conductive film) 10 shown in FIG. 1 is laminated on a support film 1, a conductive layer (for example, a transparent conductive layer) 2 laminated on the support film 1, and a conductive layer 2. The photosensitive resin layer 3 is provided. The method for producing the photosensitive conductive film 10 includes a step of laminating the conductive layer 2 on the support film 1 and a step of laminating the photosensitive resin layer 3 on the conductive layer 2.

支持フィルム1としては、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムが挙げられる。これらのうち、透明性や耐熱性に優れる観点から、ポリエチレンテレフタレートフィルムが好ましい。なお、これらの重合体フィルムは、導電層2及び感光性樹脂層3の積層体から除去し易い観点から、除去が不可能となるような表面処理が施されていないことや、除去が可能な材質から構成されていることが好ましい。   Examples of the support film 1 include polymer films having heat resistance and solvent resistance, such as polyethylene terephthalate film (PET film), polyethylene film, polypropylene film, and polycarbonate film. Among these, a polyethylene terephthalate film is preferable from the viewpoint of excellent transparency and heat resistance. In addition, from the viewpoint that these polymer films can be easily removed from the laminate of the conductive layer 2 and the photosensitive resin layer 3, the polymer film has not been subjected to a surface treatment that makes removal impossible, or can be removed. It is preferable that it is made of a material.

支持フィルム1のヘーズ値は、感度及び解像度が良好である観点から、0.01〜5.0%が好ましく、0.01〜3.0%がより好ましく、0.01〜2.0%が更に好ましく、0.01〜1.1%が特に好ましい。なお、ヘーズ値は、JIS K 7105に準拠して測定することが可能であり、例えば、NDH−5000(日本電色工業株式会社製、商品名)等の市販の濁度計などで測定できる。   From the viewpoint of good sensitivity and resolution, the haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, and 0.01 to 2.0%. Further preferred is 0.01 to 1.1%. The haze value can be measured according to JIS K 7105. For example, it can be measured with a commercially available turbidimeter such as NDH-5000 (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).

導電層2は、導電性繊維を含有している。導電性繊維としては、例えば、金属繊維及び炭素繊維が挙げられる。金属繊維としては、例えば、金繊維、銀繊維及び白金繊維が挙げられる。金属繊維としては、導電性に優れる観点から、金繊維及び/又は銀繊維が好ましく、導電膜の導電性の調整が容易である観点から、銀繊維がより好ましい。前記の金属繊維は、例えば、金属イオンをNaBH等の還元剤で還元する方法、又は、ポリオール法により作製することができる。炭素繊維としては、例えばカーボンナノチューブが挙げられる。カーボンナノチューブは、Unidym社のHipco単層カーボンナノチューブ等の市販品を使用することができる。導電性繊維は、1種を単独で又は2種以上を組み合わせて用いることができる。導電層2は、界面活性剤や分散安定剤等を更に含有していてもよい。 The conductive layer 2 contains conductive fibers. Examples of conductive fibers include metal fibers and carbon fibers. Examples of the metal fiber include gold fiber, silver fiber, and platinum fiber. As the metal fiber, gold fiber and / or silver fiber is preferable from the viewpoint of excellent conductivity, and silver fiber is more preferable from the viewpoint of easy adjustment of the conductivity of the conductive film. The metal fiber can be produced by, for example, a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method. Examples of carbon fibers include carbon nanotubes. Commercially available products such as Unipym's Hipco single-walled carbon nanotubes can be used as the carbon nanotubes. A conductive fiber can be used individually by 1 type or in combination of 2 or more types. The conductive layer 2 may further contain a surfactant, a dispersion stabilizer and the like.

導電性繊維の繊維径(直径)は、ヘーズ値を低減する観点から、1〜50nmが好ましく、2〜20nmがより好ましく、3〜10nmが更に好ましい。また、導電性繊維の繊維長は、導電性に優れる観点から、1〜100μmが好ましく、2〜50μmがより好ましく、3〜40μmが更に好ましく、5〜35μmが特に好ましく、10〜35μmが極めて好ましい。繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。   From the viewpoint of reducing the haze value, the fiber diameter (diameter) of the conductive fiber is preferably 1 to 50 nm, more preferably 2 to 20 nm, and still more preferably 3 to 10 nm. In addition, the fiber length of the conductive fiber is preferably 1 to 100 μm, more preferably 2 to 50 μm, further preferably 3 to 40 μm, particularly preferably 5 to 35 μm, and extremely preferably 10 to 35 μm from the viewpoint of excellent conductivity. . The fiber diameter and fiber length can be measured with a scanning electron microscope.

導電層2の厚み(乾燥後)は、感光性導電フィルムを用いて形成される導電膜(導電パターン等)の用途や、求められる導電性によっても異なるが、1μm以下が好ましく、1nm〜0.5μmがより好ましく、5nm〜0.1μmが更に好ましい。導電層2の厚みが1μm以下であると、450〜650nmの波長域における光透過率が高く、パターン形成性にも優れ、特に透明電極の作製に好適なものとなる。なお、導電層2の厚みは、走査型電子顕微鏡によって測定することができる。   The thickness (after drying) of the conductive layer 2 varies depending on the use of the conductive film (conductive pattern or the like) formed using the photosensitive conductive film and the required conductivity, but is preferably 1 μm or less, and preferably 1 nm to 0. 5 micrometers is more preferable and 5 nm-0.1 micrometer are still more preferable. When the thickness of the conductive layer 2 is 1 μm or less, the light transmittance in the wavelength region of 450 to 650 nm is high, the pattern forming property is excellent, and particularly suitable for the production of a transparent electrode. The thickness of the conductive layer 2 can be measured with a scanning electron microscope.

導電層2は、導電性繊維同士が接触してなる網目構造を有することが好ましい。このような網目構造を有する導電層2は、支持フィルム1と感光性樹脂層3との間(例えば感光性樹脂層3における支持フィルム1側の表面上)に形成されていてもよい。また、支持フィルム1を剥離したときに露出する表面においてその面方向に導電性が得られるのであれば、感光性樹脂層3を構成する感光性樹脂組成物の一部が導電層2に入り込む形態であってもよく、感光性樹脂層3の支持フィルム1側の表層に導電層2が含まれる形態であってもよい。なお、網目構造を有する導電層2の厚みは、走査型電子顕微鏡写真によって測定することができる。   The conductive layer 2 preferably has a network structure in which conductive fibers are in contact with each other. The conductive layer 2 having such a network structure may be formed between the support film 1 and the photosensitive resin layer 3 (for example, on the surface of the photosensitive resin layer 3 on the support film 1 side). Moreover, if conductivity is obtained in the surface direction on the surface exposed when the support film 1 is peeled off, a part of the photosensitive resin composition constituting the photosensitive resin layer 3 enters the conductive layer 2. Alternatively, the conductive layer 2 may be included in the surface layer of the photosensitive resin layer 3 on the support film 1 side. The thickness of the conductive layer 2 having a network structure can be measured by a scanning electron micrograph.

導電層2の形成方法は、例えば、導電性繊維分散液を支持フィルム1上に塗布(塗工等)することにより導電層2を形成する塗布工程を備えている。導電性繊維分散液は、上述した導電性繊維と、水及び/又は有機溶媒等の溶媒と、必要に応じて界面活性剤、分散安定剤等の分散安定剤などを含む。塗布(塗工等)は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。   The method for forming the conductive layer 2 includes, for example, a coating process in which the conductive layer 2 is formed by coating (coating or the like) the conductive fiber dispersion on the support film 1. The conductive fiber dispersion includes the above-described conductive fiber, a solvent such as water and / or an organic solvent, and a dispersion stabilizer such as a surfactant and a dispersion stabilizer as necessary. Application (coating, etc.) can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method.

導電層2の形成方法は、塗布工程の後に導電性繊維分散液の溶媒を揮発させる乾燥工程を備えていてもよい。乾燥後、支持フィルム1上に積層された導電層2は、必要に応じてラミネートされてもよい。   The method for forming the conductive layer 2 may include a drying step of volatilizing the solvent of the conductive fiber dispersion after the coating step. After drying, the conductive layer 2 laminated on the support film 1 may be laminated as necessary.

導電層2を低抵抗化又は低ヘーズ化する観点、及び、後述する式(1)が容易に満たされる観点では、乾燥工程において、均一な膜を形成するために20℃以上65℃未満で溶媒を揮発させることが好ましく、特に、導電性繊維が銀繊維である場合において顕著に低抵抗化又は低ヘーズ化を達成することができる。乾燥温度が65℃以上であると、対流が生じてベナールセルを形成することでムラとなり低抵抗な導電層が形成し難く、20℃未満であると、溶媒が揮発するために時間がかかり工程上問題となる。乾燥温度は、25℃以上65℃未満がより好ましく、35℃以上65℃未満が更に好ましく、40℃以上60℃以下が特に好ましい。   From the viewpoint of reducing the resistance or haze of the conductive layer 2 and easily satisfying formula (1) described later, a solvent is used at a temperature of 20 ° C. or higher and lower than 65 ° C. in order to form a uniform film in the drying step. It is preferable to volatilize, particularly when the conductive fiber is a silver fiber, a remarkable reduction in resistance or haze can be achieved. When the drying temperature is 65 ° C. or higher, convection is generated and a Benard cell is formed, resulting in unevenness and difficulty in forming a low-resistance conductive layer. When the drying temperature is lower than 20 ° C., the solvent evaporates, which takes time. It becomes a problem. The drying temperature is more preferably 25 ° C. or more and less than 65 ° C., further preferably 35 ° C. or more and less than 65 ° C., and particularly preferably 40 ° C. or more and 60 ° C. or less.

感光性樹脂層3は、(a)バインダーポリマー、(b)エチレン性不飽和結合を有する光重合性化合物、及び、(c)光重合開始剤を含有し、これらの(a)成分〜(c)成分を含有する感光性樹脂組成物を用いて形成することができる。これらの(a)成分〜(c)成分としては、従来公知のものを特に制限なく使用可能であり、例えば、特許文献2や国際公開第2013/084886号に記載の感光性樹脂組成物に用いられる成分が挙げられる。   The photosensitive resin layer 3 contains (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator. These components (a) to (c) And a photosensitive resin composition containing the component). As these components (a) to (c), conventionally known ones can be used without particular limitation, and for example, used for the photosensitive resin composition described in Patent Document 2 and International Publication No. 2013/084886. Ingredients to be used are mentioned.

感光性樹脂層3は、支持フィルム1に積層された導電層2上に感光性樹脂組成物を塗布、乾燥することにより形成できる。感光性樹脂組成物においては、前記(a)成分〜(c)成分を、必要に応じて、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N−ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶媒又はこれらの混合溶媒に溶解してもよい。感光性樹脂組成物の固形分は、例えば10〜60質量%程度である。但し、乾燥後の感光性樹脂層中の残存有機溶媒量は、後の工程での有機溶媒の拡散を防止するため、2質量%以下が好ましい。   The photosensitive resin layer 3 can be formed by applying and drying a photosensitive resin composition on the conductive layer 2 laminated on the support film 1. In the photosensitive resin composition, the components (a) to (c) are mixed with methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol as necessary. You may melt | dissolve in solvents, such as monomethyl ether, or these mixed solvents. The solid content of the photosensitive resin composition is, for example, about 10 to 60% by mass. However, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.

感光性樹脂組成物の塗布(塗工等)は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。塗工後、有機溶媒等を除去するために乾燥してもよい。乾燥は、70〜150℃で5〜30分間程度、熱風対流式乾燥機等で行うことができる。   Application (coating, etc.) of the photosensitive resin composition can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. it can. After coating, it may be dried to remove the organic solvent and the like. Drying can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.

感光性樹脂層3の厚み(乾燥後)は、用途により異なるが、1〜100μmが好ましく、1〜40μmがより好ましく、1〜15μmが更に好ましく、1〜10μmが特に好ましい。この厚みが1μm未満であると、塗工が困難となる傾向があり、100μmを超えると、光透過率の低下により感度が不充分となり、転写する感光性樹脂層の光硬化性が低下する傾向がある。なお、感光性樹脂層3の厚みは、走査型電子顕微鏡によって測定することができる。   Although the thickness (after drying) of the photosensitive resin layer 3 changes with uses, 1-100 micrometers is preferable, 1-40 micrometers is more preferable, 1-15 micrometers is still more preferable, 1-10 micrometers is especially preferable. If this thickness is less than 1 μm, coating tends to be difficult, and if it exceeds 100 μm, the sensitivity is insufficient due to a decrease in light transmittance, and the photocurability of the photosensitive resin layer to be transferred tends to decrease. There is. In addition, the thickness of the photosensitive resin layer 3 can be measured with a scanning electron microscope.

感光性導電フィルム10において導電層2及び感光性樹脂層3の積層体の厚み(乾燥後の合計厚み)は、下記の範囲であることが好ましい。前記積層体の厚みは、任意の基材上への転写性に優れる観点から、1μm以上が好ましく、2μm以上がより好ましく、4μm以上が更に好ましい。前記積層体の厚みは、タッチパネルを薄層化する観点から、35μm以下が好ましく、25μm以下がより好ましく、10μm以下が更に好ましく、8μm以下が特に好ましく、6μm以下が極めて好ましい。   In the photosensitive conductive film 10, the thickness (total thickness after drying) of the laminate of the conductive layer 2 and the photosensitive resin layer 3 is preferably in the following range. The thickness of the laminate is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 4 μm or more from the viewpoint of excellent transferability onto an arbitrary substrate. From the viewpoint of thinning the touch panel, the thickness of the laminate is preferably 35 μm or less, more preferably 25 μm or less, further preferably 10 μm or less, particularly preferably 8 μm or less, and extremely preferably 6 μm or less.

本実施形態において、感光性樹脂層3と基材(例えば基板)とが接するように感光性導電フィルム10を基材上に積層した後に導電層2及び感光性樹脂層3に活性光線を照射した場合において、導電層2及び感光性樹脂層3の積層体(活性光線を照射して得られる積層体。本実施形態では、導電層2及び感光性樹脂層3からなる積層体)の表面抵抗率X(Ω/□。シート抵抗値)と、前記積層体のヘーズ値Y(%)とは、下記式(1)を満たしている。
Y≦9.33X−0.568 …(1)
In this embodiment, the photosensitive conductive film 10 is laminated on the base material so that the photosensitive resin layer 3 and the base material (for example, a substrate) are in contact with each other, and then the conductive layer 2 and the photosensitive resin layer 3 are irradiated with actinic rays. In some cases, the surface resistivity of a laminate of the conductive layer 2 and the photosensitive resin layer 3 (a laminate obtained by irradiating actinic rays. In this embodiment, a laminate comprising the conductive layer 2 and the photosensitive resin layer 3). X (Ω / □, sheet resistance value) and the haze value Y (%) of the laminate satisfy the following formula (1).
Y ≦ 9.33X −0.568 (1)

感光性導電フィルム10を基材上に積層するに際しては、例えば、感光性樹脂層3と基材とが接するように感光性導電フィルム10を基材上にラミネートする。基材は、例えば、1mm厚のポリカーボネート基板である。積層条件(例えばラミネート条件)は、例えば、110℃、0.4MPaである。前記積層体に活性光線を照射するに際しては、支持フィルム1側から、超高圧水銀ランプを有する露光機(例えば、オーク株式会社製、商品名「HMW−201B」)を用いて、1000mJ/cmの露光量で少なくとも導電層2及び感光性樹脂層3に活性光線を照射して感光性樹脂層3を硬化する。支持フィルム1は、例えば、露光後に剥離される。 When laminating the photosensitive conductive film 10 on the substrate, for example, the photosensitive conductive film 10 is laminated on the substrate so that the photosensitive resin layer 3 and the substrate are in contact with each other. The substrate is, for example, a 1 mm thick polycarbonate substrate. Lamination conditions (for example, lamination conditions) are, for example, 110 ° C. and 0.4 MPa. When irradiating actinic light to the said laminated body, 1000 mJ / cm < 2 > is used from the support film 1 side using the exposure machine (For example, the product name "HMW-201B" by Oak Co., Ltd.) which has an ultrahigh pressure mercury lamp. The photosensitive resin layer 3 is cured by irradiating at least the conductive layer 2 and the photosensitive resin layer 3 with an actinic ray at an exposure amount of 1 nm. The support film 1 is peeled off after exposure, for example.

本発明者は、表面抵抗率Xとヘーズ値Yとが式(1)を満たすことにより、視認され難い導電パターンを得ることができることを見出した。すなわち、所望の表面抵抗率(例えば100Ω/□)を有する導電パターンを作製する際には、スケールが大きくなればなるほど、所望の値どおりに全てを作製することは困難となり、そのばらつきにより導電パターンが視認されやすくなる部分が生じる。これに対し、量産スケールでの表面抵抗率のばらつきとヘーズ値の関係を詳細に検討した結果、導電パターンが視認されにくくなるようなヘーズ値と表面抵抗率の関係式を見いだした。   The inventor has found that when the surface resistivity X and the haze value Y satisfy the formula (1), a conductive pattern that is difficult to be visually recognized can be obtained. That is, when producing a conductive pattern having a desired surface resistivity (for example, 100 Ω / □), the larger the scale, the more difficult it is to produce everything according to the desired value. The part where it becomes easy to be visually recognized arises. On the other hand, as a result of detailed examination of the relationship between the variation in surface resistivity and the haze value on a mass production scale, a relational expression between the haze value and the surface resistivity was found to make it difficult to visually recognize the conductive pattern.

前記表面抵抗率Xは、大型ディスプレイへ対応する観点から、150Ω/□以下が好ましく、125Ω/□以下がより好ましく、100Ω/□以下が更に好ましい。表面抵抗率Xは、導電性繊維分散液の乾燥温度を低くすること、導電性繊維分散液における導電性繊維を増加させること等により低減させることができる。表面抵抗率Xは、例えば、非接触表面抵抗計(ナプソン株式会社社製、EC−80P)により測定できる。   The surface resistivity X is preferably 150Ω / □ or less, more preferably 125Ω / □ or less, and still more preferably 100Ω / □ or less from the viewpoint of adapting to a large display. The surface resistivity X can be reduced by lowering the drying temperature of the conductive fiber dispersion, increasing the conductive fibers in the conductive fiber dispersion, and the like. The surface resistivity X can be measured with, for example, a non-contact surface resistance meter (manufactured by Napson Co., Ltd., EC-80P).

前記ヘーズ値Yは、目的の表面抵抗率によって異なるが、視認性に更に優れる観点から、1.0%以下が好ましく、0.8%以下がより好ましく、0.6%以下が更に好ましい。ヘーズ値Yは、導電性繊維分散液の乾燥温度、感光性樹脂層や導電層の組成等により調整することができる。ヘーズ値Yは、例えば、ヘーズメーター(日本電色工業株式会社製、NDH−5000)を用いて、JIS K 7105に準拠して測定できる。   The haze value Y varies depending on the target surface resistivity, but is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less from the viewpoint of further improving visibility. The haze value Y can be adjusted by the drying temperature of the conductive fiber dispersion, the composition of the photosensitive resin layer or the conductive layer, and the like. The haze value Y can be measured according to JIS K 7105, for example, using a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.).

感光性導電フィルム10において導電層2及び感光性樹脂層3の積層体(例えば、両層の合計厚みが1〜10μmである積層体)の450〜650nmの波長域における最小光透過率は、80%以上が好ましく、85%以上がより好ましい。導電層及び感光性樹脂層の積層体がこのような条件を満たす場合、ディスプレイパネル等での視認性が更に向上する。   In the photosensitive conductive film 10, the minimum light transmittance in a wavelength region of 450 to 650 nm of a laminate of the conductive layer 2 and the photosensitive resin layer 3 (for example, a laminate in which the total thickness of both layers is 1 to 10 μm) is 80 % Or more is preferable, and 85% or more is more preferable. When the laminate of the conductive layer and the photosensitive resin layer satisfies such a condition, the visibility on a display panel or the like is further improved.

感光性導電フィルム10は、感光性樹脂層3の支持フィルム1側の面と反対側の面に接する保護フィルムを更に備えていてもよい。   The photosensitive conductive film 10 may further include a protective film that contacts the surface of the photosensitive resin layer 3 opposite to the surface on the support film 1 side.

保護フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。また、保護フィルムとして上述の支持フィルムと同様の重合体フィルムを用いてもよい。   As the protective film, for example, a polymer film having heat resistance and solvent resistance such as a polyethylene terephthalate film, a polypropylene film, and a polyethylene film can be used. Moreover, you may use the polymer film similar to the above-mentioned support film as a protective film.

保護フィルムと感光性樹脂層との間の接着力は、保護フィルムを感光性樹脂層から剥離し易くするために、導電層2及び感光性樹脂層3の積層体と支持フィルム1との間の接着力よりも小さいことが好ましい。   The adhesive force between the protective film and the photosensitive resin layer is such that the protective film is easily peeled from the photosensitive resin layer so that the laminate between the conductive layer 2 and the photosensitive resin layer 3 and the support film 1 is used. It is preferable that it is smaller than the adhesive force.

<感光性導電積層体、導電膜の形成方法及び導電積層体>
本実施形態に係る感光性導電積層体は、基材(基板、フィルム等)と、当該基材上に積層された感光性樹脂層と、当該感光性樹脂層上に積層された導電層と、を備える。本実施形態に係る感光性導電積層体は、本実施形態に係る感光性導電フィルムを基材上に積層して作製されてもよく、他の手法によって作製されてもよい。
<Photosensitive conductive laminate, conductive film formation method and conductive laminate>
The photosensitive conductive laminate according to the present embodiment includes a substrate (substrate, film, etc.), a photosensitive resin layer laminated on the substrate, a conductive layer laminated on the photosensitive resin layer, Is provided. The photosensitive conductive laminate according to this embodiment may be produced by laminating the photosensitive conductive film according to this embodiment on a substrate, or may be produced by other methods.

第1実施形態に係る導電膜の形成方法は、感光性樹脂層と基材(基板、フィルム等)とが接するように感光性導電フィルムを前記基材上に積層(例えばラミネート)する積層工程(例えばラミネート工程)と、積層工程の後、導電層及び感光性樹脂層に活性光線を照射して感光性樹脂層を硬化する露光工程と、を備える。第2実施形態に係る導電膜の形成方法は、パターニングされた導電膜(導電パターン等)の形成方法であって、感光性樹脂層と基材(基板、フィルム等)とが接するように感光性導電フィルムを前記基材上に積層(例えばラミネート)する積層工程(例えばラミネート工程)と、積層工程の後、導電層及び感光性樹脂層の所定部分に活性光線を照射して当該所定部分(露光部)を硬化する露光工程と、露光工程の後、前記所定部分以外の未露光部を現像することにより導電膜(導電パターン等)を形成する現像工程と、を備える。第3実施形態に係る導電膜の形成方法は、パターニングされた導電膜(導電パターン)の形成方法であって、感光性導電積層体の導電層及び感光性樹脂層の所定部分に活性光線を照射して当該所定部分(露光部)を硬化する露光工程と、露光工程の後、前記所定部分以外の未露光部を現像することにより導電膜(導電パターン等)を形成する現像工程と、を備える。導電膜は、例えば透明導電膜である。   In the method for forming a conductive film according to the first embodiment, a photosensitive conductive film is laminated (for example, laminated) on the substrate so that the photosensitive resin layer and the substrate (substrate, film, etc.) are in contact with each other (for example, lamination) ( For example, a laminating step) and an exposure step of irradiating the conductive layer and the photosensitive resin layer with actinic rays to cure the photosensitive resin layer after the laminating step are provided. The formation method of the electrically conductive film which concerns on 2nd Embodiment is a formation method of the electrically conductive film (conductive pattern etc.) patterned, Comprising: It is photosensitive so that a photosensitive resin layer and a base material (a board | substrate, a film, etc.) may contact | connect. Laminating process (for example, laminating process) for laminating (for example, laminating) a conductive film on the substrate, and after the laminating process, a predetermined part (exposure) is applied to the conductive layer and the photosensitive resin layer by irradiating active light. Part) and an developing step for forming a conductive film (such as a conductive pattern) by developing an unexposed portion other than the predetermined portion after the exposing step. The method for forming a conductive film according to the third embodiment is a method for forming a patterned conductive film (conductive pattern), and irradiates a predetermined portion of the conductive layer and the photosensitive resin layer of the photosensitive conductive laminate with actinic rays. Then, an exposure step for curing the predetermined portion (exposed portion), and a developing step for forming a conductive film (such as a conductive pattern) by developing an unexposed portion other than the predetermined portion after the exposure step. . The conductive film is, for example, a transparent conductive film.

導電膜(導電パターン等)の形成方法は公知の手法を選択できる。例えば、国際公開第2013/051516号又は特許文献2に記載の手法を参照できる。本実施形態に係る導電積層体(例えば導電膜基板)は、基材(基板、フィルム等)と、前記導電膜の形成方法により前記基材上に形成された導電膜(導電パターン等)とを備える。本実施形態に係る導電積層体の導電膜は、パターニングされていてもよく、パターニングされていなくてもよい。   A known method can be selected as a method for forming the conductive film (conductive pattern or the like). For example, the method described in International Publication No. 2013/051516 or Patent Document 2 can be referred to. The conductive laminate (for example, conductive film substrate) according to the present embodiment includes a base material (substrate, film, etc.) and a conductive film (conductive pattern, etc.) formed on the base material by the method of forming the conductive film. Prepare. The conductive film of the conductive laminate according to the present embodiment may be patterned or may not be patterned.

図2は、導電膜の形成方法として、導電パターンの形成方法の一例を説明するための模式断面図である。導電パターンの形成方法は、例えば、ラミネート工程、露光工程及び現像工程を備える。ラミネート工程では、基板20に感光性樹脂層3が密着するように前記感光性導電フィルム10を基板20上にラミネートして感光性導電積層体を得る(図2(a))。図2(a)の感光性導電積層体は、基板20と、基板20上に積層された感光性樹脂層3と、感光性樹脂層3上に積層された導電層2と、を備える。   FIG. 2 is a schematic cross-sectional view for explaining an example of a conductive pattern forming method as a conductive film forming method. The conductive pattern forming method includes, for example, a laminating process, an exposing process, and a developing process. In the laminating step, the photosensitive conductive film 10 is laminated on the substrate 20 so that the photosensitive resin layer 3 is in close contact with the substrate 20 to obtain a photosensitive conductive laminate (FIG. 2A). 2A includes a substrate 20, a photosensitive resin layer 3 laminated on the substrate 20, and a conductive layer 2 laminated on the photosensitive resin layer 3.

露光工程では、基板20上の導電層2及び感光性樹脂層3の所定部分に活性光線Lを照射して当該所定部分(露光部)を硬化する(図2(b))。現像工程では、支持フィルム1を剥離した後、露光した所定部分以外の未露光部を現像することにより導電パターンを形成する。   In the exposure step, the predetermined portions of the conductive layer 2 and the photosensitive resin layer 3 on the substrate 20 are irradiated with an actinic ray L to cure the predetermined portions (exposed portions) (FIG. 2B). In the development step, after peeling off the support film 1, a conductive pattern is formed by developing an unexposed portion other than the exposed predetermined portion.

現像工程では、例えば、導電層2及び感光性樹脂層3の露光部以外の部分が除去される。具体的には、導電層2上に透明な支持フィルム1が存在している場合には、まず支持フィルム1を除去し、その後、ウェット現像等により導電層2及び感光性樹脂層3の露光部以外の部分を除去する。これにより、所定のパターンを有する樹脂硬化層3a上に導電パターン2aが残る。   In the development process, for example, portions other than the exposed portions of the conductive layer 2 and the photosensitive resin layer 3 are removed. Specifically, when the transparent support film 1 is present on the conductive layer 2, the support film 1 is first removed, and then exposed portions of the conductive layer 2 and the photosensitive resin layer 3 by wet development or the like. Remove other parts. Thereby, the conductive pattern 2a remains on the cured resin layer 3a having a predetermined pattern.

これらの工程を経ることにより、導電パターン2aと、導電パターン2aを支持する樹脂硬化層3aとを基板20上に備える導電膜基板40が得られる(図2(c))。   Through these steps, a conductive film substrate 40 including the conductive pattern 2a and the cured resin layer 3a that supports the conductive pattern 2a on the substrate 20 is obtained (FIG. 2C).

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to this.

<銀繊維分散液の調製>
下記のとおり、ポリオール法により銀繊維を作製した。まず、2000mlの3口フラスコにエチレングリコール500mlを入れ、窒素雰囲気下、マグネチックスターラーで攪拌しながらオイルバスにより160℃まで加熱した。ここに、別途用意したPtCl2mgを50mlのエチレングリコールに溶解した溶液を滴下した。4〜5分後、AgNO5gをエチレングリコール300mlに溶解した溶液と、重量平均分子量が4万のポリビニルピロリドン(和光純薬株式会社製)5gをエチレングリコール150mlに溶解した溶液とを、それぞれの滴下ロートから1分間で滴下し、その後160℃で60分間攪拌した。
<Preparation of silver fiber dispersion>
Silver fibers were produced by the polyol method as described below. First, 500 ml of ethylene glycol was placed in a 2000 ml three-necked flask and heated to 160 ° C. with an oil bath while stirring with a magnetic stirrer under a nitrogen atmosphere. A solution prepared by dissolving 2 mg of PtCl 2 separately prepared in 50 ml of ethylene glycol was added dropwise thereto. After 4 to 5 minutes, a solution prepared by dissolving 5 g of AgNO 3 in 300 ml of ethylene glycol and a solution prepared by dissolving 5 g of polyvinylpyrrolidone having a weight average molecular weight of 40,000 (manufactured by Wako Pure Chemical Industries, Ltd.) in 150 ml of ethylene glycol were used. The solution was dropped from the dropping funnel in 1 minute, and then stirred at 160 ° C. for 60 minutes.

前記反応溶液が30℃以下になるまで放置してから、アセトンで10倍に希釈し、遠心分離機により2000回転で20分間遠心分離し、上澄み液をデカンテーションした。沈殿物にアセトンを加え、攪拌後に前記と同様の条件で遠心分離し、アセトンをデカンテーションした。その後、蒸留水を用いて同様に2回遠心分離して、銀繊維を得た。得られた銀繊維を走査型電子顕微鏡で観察したところ、繊維径(直径)は約5nmであり、繊維長は約30μmであった。   The reaction solution was allowed to stand at 30 ° C. or lower, diluted 10-fold with acetone, centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted. Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice similarly using distilled water, and obtained the silver fiber. When the obtained silver fiber was observed with a scanning electron microscope, the fiber diameter (diameter) was about 5 nm, and the fiber length was about 30 μm.

純水に、前記で得られた銀繊維を含有量が0.2質量%、及び、ドデシルーペンタエチレングリコールを含有量が0.1質量%となるように分散させて銀繊維分散液を得た。   A silver fiber dispersion is obtained by dispersing the silver fiber obtained above in pure water so that the content is 0.2% by mass and dodecyl-pentaethylene glycol is 0.1% by mass. It was.

<感光性樹脂組成物の溶液の調製>
撹拌機、還流冷却器、温度計、滴下ロート及び窒素ガス導入管を備えたフラスコに、メチルセロソルブとトルエンとの混合液(メチルセロソルブ/トルエン=3/2(質量比)、以下、「溶液s」という)400gを加え、窒素ガスを吹き込みながら撹拌して、80℃まで加熱した。一方、単量体としてメタクリル酸100g、メタクリル酸メチル250g、アクリル酸エチル100g及びスチレン50gと、アゾビスイソブチロニトリル0.8gとを混合した溶液(以下、「溶液a」という)を用意した。次に、80℃に加熱された溶液sに溶液aを4時間かけて滴下した後、80℃で撹拌しながら2時間保温した。さらに、100gの溶液sにアゾビスイソブチロニトリル1.2gを溶解した溶液を10分かけてフラスコ内に滴下した。そして、滴下後の溶液を撹拌しながら80℃で3時間保温した後、30分間かけて90℃に加熱した。90℃で2時間保温した後、冷却してバインダーポリマー溶液を得た。このバインダーポリマー溶液にアセトンを加えて不揮発成分(固形分)を50質量%に調整した。得られたアクリルポリマーの重量平均分子量は80000であった。これをアクリルポリマーAとした。
<Preparation of solution of photosensitive resin composition>
In a flask equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen gas introduction tube, a mixture of methyl cellosolve and toluene (methyl cellosolve / toluene = 3/2 (mass ratio), hereinafter “solution s 400 g) was added, stirred while blowing nitrogen gas, and heated to 80 ° C. On the other hand, a solution (hereinafter referred to as “solution a”) prepared by mixing 100 g of methacrylic acid, 250 g of methyl methacrylate, 100 g of ethyl acrylate and 50 g of styrene as a monomer and 0.8 g of azobisisobutyronitrile was prepared. . Next, the solution a was added dropwise to the solution s heated to 80 ° C. over 4 hours, and then kept at 80 ° C. with stirring for 2 hours. Further, a solution prepared by dissolving 1.2 g of azobisisobutyronitrile in 100 g of the solution s was dropped into the flask over 10 minutes. And the solution after dripping was heat-retained at 80 degreeC for 3 hours, stirring, Then, it heated at 90 degreeC over 30 minutes. The mixture was kept at 90 ° C. for 2 hours and then cooled to obtain a binder polymer solution. Acetone was added to the binder polymer solution to adjust the non-volatile component (solid content) to 50% by mass. The weight average molecular weight of the obtained acrylic polymer was 80000. This was designated as acrylic polymer A.

表1に示す材料を同表に示す配合量(単位:質量部)で配合し、感光性樹脂組成物の溶液を調製した。トリメチロールプロパントリアクリレートとしては、新中村化学工業株式会社製の商品名「TMPTA」を用いた。2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドとしては、BASF製の商品名「LUCIRIN TPO」を用いた。オクタメチルシクロテトラシロキサンとしては、東レ・ダウコーニング株式会社製の商品名「SH−30」を用いた。メチルエチルケトンとしては、東燃化学株式会社製のメチルエチルケトンを用いた。   The materials shown in Table 1 were blended in the blending amounts (unit: parts by mass) shown in the same table to prepare a solution of the photosensitive resin composition. As the trimethylolpropane triacrylate, a trade name “TMPTA” manufactured by Shin-Nakamura Chemical Co., Ltd. was used. As the 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, the trade name “LUCIRIN TPO” manufactured by BASF was used. As the octamethylcyclotetrasiloxane, trade name “SH-30” manufactured by Toray Dow Corning Co., Ltd. was used. As methyl ethyl ketone, methyl ethyl ketone manufactured by Tonen Chemical Co., Ltd. was used.

Figure 2015219308
Figure 2015219308

<感光性導電フィルムの作製>
(実施例1〜5)
前記で得られた銀繊維分散液を、支持フィルムである50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会社製、商品名「G2−50」)上に25g/mで均一に塗布した後、表2に示す乾燥温度40〜60℃の熱風対流式乾燥機で10分間乾燥し水分が揮発したことを確認した。そして、10kg/cmの線圧で加圧することにより、支持フィルム上に導電層を形成した。なお、導電層の乾燥後の厚みは、約0.02μmであった。
<Preparation of photosensitive conductive film>
(Examples 1-5)
After uniformly apply | coating the silver fiber dispersion liquid obtained above at 25 g / m < 2 > on the polyethylene terephthalate film (PET film, the Teijin Ltd. make, brand name "G2-50") of 50 micrometers thickness which is a support film. Then, it was dried for 10 minutes with a hot air convection dryer having a drying temperature of 40 to 60 ° C. shown in Table 2, and it was confirmed that water was volatilized. And the electrically conductive layer was formed on the support film by pressurizing with the linear pressure of 10 kg / cm. The thickness of the conductive layer after drying was about 0.02 μm.

次に、支持フィルムに積層された導電層上に感光性樹脂組成物の溶液を均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層を形成した。その後、感光性樹脂層をポリエチレン製の保護フィルム(タマポリ株式会社製、商品名「NF−13」)で覆い、感光性導電フィルムを得た。なお、感光性樹脂層の乾燥後の厚みは5μmであった。   Next, a solution of the photosensitive resin composition was uniformly applied onto the conductive layer laminated on the support film, and dried for 10 minutes with a hot air convection dryer at 100 ° C. to form a photosensitive resin layer. Thereafter, the photosensitive resin layer was covered with a protective film made of polyethylene (manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain a photosensitive conductive film. In addition, the thickness after drying of the photosensitive resin layer was 5 micrometers.

(比較例1〜3)
前記で得られた銀繊維分散液を、支持フィルムである50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会社製、商品名「G2−50」)上に25g/mで均一に塗布し、表2に示す乾燥温度65℃、70℃又は100℃の熱風対流式乾燥機で10分間乾燥して水分が揮発したことを確認した。そして、10kg/cmの線圧で加圧することにより、支持フィルム上に導電層を形成した。なお、導電層の乾燥後の厚みは、約0.02μmであった。
(Comparative Examples 1-3)
The silver fiber dispersion obtained above was uniformly applied at 25 g / m 2 on a 50 μm-thick polyethylene terephthalate film (PET film, manufactured by Teijin Ltd., trade name “G2-50”) as a support film, It was confirmed that water was volatilized by drying for 10 minutes with a hot air convection dryer at a drying temperature of 65 ° C., 70 ° C. or 100 ° C. shown in Table 2. And the electrically conductive layer was formed on the support film by pressurizing with the linear pressure of 10 kg / cm. The thickness of the conductive layer after drying was about 0.02 μm.

次に、実施例と同様に感光性樹脂組成物を塗布して、乾燥後の厚みが5μmである感光性樹脂層を形成し、感光性導電フィルムを得た。   Next, the photosensitive resin composition was apply | coated similarly to the Example, the photosensitive resin layer whose thickness after drying is 5 micrometers was formed, and the photosensitive conductive film was obtained.

<導電膜基板Aの作製>
1mm厚のポリカーボネート基板を80℃に加温した。感光性導電フィルムの保護フィルムを剥離した後、感光性樹脂層を基板に対向させて、110℃、0.4MPaの条件で感光性導電フィルムをポリカーボネート基板上にラミネートした。ラミネート後、ポリカーボネート基板を冷却し、ポリカーボネート基板の温度が23℃になった時点で、超高圧水銀ランプを有する露光機(オーク株式会社製、商品名「HMW−201B」)を用いて、1000mJ/cmの露光量で導電層及び感光性樹脂層に対して支持フィルム側から光照射した。露光後、室温(25℃)で15分間放置した後、支持フィルムであるPETフィルムを剥離し、銀繊維を含有する導電層(導電膜)、及び、感光性樹脂層が硬化して得られた樹脂硬化層の積層体をポリカーボネート基板上に備える導電膜基板Aを得た。
<Preparation of conductive film substrate A>
A 1 mm thick polycarbonate substrate was heated to 80 ° C. After peeling off the protective film of the photosensitive conductive film, the photosensitive resin layer was opposed to the substrate, and the photosensitive conductive film was laminated on the polycarbonate substrate under the conditions of 110 ° C. and 0.4 MPa. After the lamination, the polycarbonate substrate is cooled, and when the temperature of the polycarbonate substrate reaches 23 ° C., using an exposure machine having an ultrahigh pressure mercury lamp (trade name “HMW-201B” manufactured by Oak Co., Ltd.), 1000 mJ / The conductive layer and the photosensitive resin layer were irradiated with light from the support film side with an exposure amount of cm 2 . After exposure, after leaving at room temperature (25 ° C.) for 15 minutes, the PET film as the support film was peeled off, and the conductive layer (conductive film) containing the silver fiber and the photosensitive resin layer were cured. The electrically conductive film board | substrate A provided with the laminated body of a resin cured layer on a polycarbonate substrate was obtained.

<導電膜基板Bの作製>
感光性導電フィルムの保護フィルムを剥離した後、感光性樹脂層を基板に対向させて、110℃、0.4MPaの条件で感光性導電フィルムを150μmのPET基板上にラミネートした。ラミネート後、PET基板を冷却し、PET基板の温度が23℃になった時点で、超高圧水銀ランプを有する露光機(オーク株式会社製、商品名「HMW−201B」)を用いて任意のフォトマスクを介し、40mJ/cmの露光量で導電層及び感光性樹脂層に対して支持フィルム側から光照射した。室温(25℃)で15分間放置した後、支持フィルムであるPETフィルムを剥離し、200mJ/cmで導電層及び感光性樹脂層に対して支持フィルム剥離側から光照射した。露光後、室温(25℃)で15分間放置した後、スプレー現像機を用いて30℃、1%の炭酸ナトリウム水溶液で40秒間現像し、任意の透明導電パターンを備える導電膜基板Bを得た。
<Preparation of conductive film substrate B>
After the protective film of the photosensitive conductive film was peeled off, the photosensitive resin layer was opposed to the substrate, and the photosensitive conductive film was laminated on a 150 μm PET substrate under the conditions of 110 ° C. and 0.4 MPa. After laminating, the PET substrate is cooled, and when the temperature of the PET substrate reaches 23 ° C., an arbitrary photo using an exposure machine (trade name “HMW-201B” manufactured by Oak Co., Ltd.) having an ultrahigh pressure mercury lamp is used. Through the mask, the conductive layer and the photosensitive resin layer were irradiated with light from the support film side with an exposure amount of 40 mJ / cm 2 . After leaving at room temperature (25 ° C.) for 15 minutes, the PET film as the support film was peeled off, and the conductive layer and the photosensitive resin layer were irradiated with light from the support film peeling side at 200 mJ / cm 2 . After exposure, the film was left at room temperature (25 ° C.) for 15 minutes, and then developed with a spray developing machine at 30 ° C. and 1% sodium carbonate aqueous solution for 40 seconds to obtain a conductive film substrate B having an arbitrary transparent conductive pattern. .

<評価>
前記で得られた導電膜基板Aにおける前記積層体の表面抵抗率及びヘーズ値、並びに、導電膜基板Bにおける透明導電パターンの視認性を以下の方法で評価した。
<Evaluation>
The surface resistivity and haze value of the laminate in the conductive film substrate A obtained above and the visibility of the transparent conductive pattern in the conductive film substrate B were evaluated by the following methods.

[表面抵抗率の測定]
非接触表面抵抗計(ナプソン株式会社社製、EC−80P)を用いて、導電膜基板Aにおける前記ポリカーボネート基板上に形成した積層体の表面抵抗率を測定した。評価結果を表2に示す。
[Measurement of surface resistivity]
The surface resistivity of the laminate formed on the polycarbonate substrate in the conductive film substrate A was measured using a non-contact surface resistance meter (EC-80P, manufactured by Napson Corporation). The evaluation results are shown in Table 2.

[ヘーズ値の測定]
ヘーズメーター(日本電色工業株式会社製、NDH−5000)を用いて、JIS K 7105に準拠して、導電膜基板Aにおける前記ポリカーボネート基板上に形成した積層体のヘーズ値を測定した。評価結果を表2に示す。
[Measurement of haze value]
Using a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.), the haze value of the laminate formed on the polycarbonate substrate in the conductive film substrate A was measured according to JIS K 7105. The evaluation results are shown in Table 2.

[透明導電パターンの視認性]
黒色基板上にサンプル(導電膜基板B)を置き、目視によりパターン部が視認できるか否かを以下の基準で評価した。
A:パターン部が視認できない。
B:パターン部が僅かに視認できる。
C:パターン部が明確に視認できる。
[Visibility of transparent conductive pattern]
A sample (conductive film substrate B) was placed on a black substrate, and whether or not the pattern portion could be visually recognized was evaluated based on the following criteria.
A: A pattern part cannot be visually recognized.
B: A pattern part can be visually recognized slightly.
C: A pattern part can be visually recognized clearly.

Figure 2015219308
Figure 2015219308

以上の結果より、本発明に係る式(1)を満たす場合に、視認され難い導電パターンを得ることができることが確認される。   From the above results, it is confirmed that when the formula (1) according to the present invention is satisfied, a conductive pattern that is difficult to be visually recognized can be obtained.

1…支持フィルム、2…導電層、2a…導電パターン、3…感光性樹脂層、3a…樹脂硬化層、10…感光性導電フィルム、20…基板、40…導電膜基板、L…活性光線。   DESCRIPTION OF SYMBOLS 1 ... Support film, 2 ... Conductive layer, 2a ... Conductive pattern, 3 ... Photosensitive resin layer, 3a ... Resin hardened layer, 10 ... Photosensitive conductive film, 20 ... Substrate, 40 ... Conductive substrate, L ... Actinic ray.

Claims (10)

支持フィルムと、当該支持フィルム上に積層された導電層と、当該導電層上に積層された感光性樹脂層と、を備える感光性導電フィルムであって、
前記導電層が導電性繊維を含有し、
前記感光性樹脂層と基材とが接するように前記感光性導電フィルムを前記基材上に積層した後に前記導電層及び前記感光性樹脂層に活性光線を照射した場合において、前記導電層及び前記感光性樹脂層の積層体の表面抵抗率X(Ω/□)と、前記積層体のヘーズ値Y(%)とが下記式(1)を満たす、感光性導電フィルム。
Y≦9.33X−0.568 …(1)
A photosensitive conductive film comprising a support film, a conductive layer laminated on the support film, and a photosensitive resin layer laminated on the conductive layer,
The conductive layer contains conductive fibers;
In the case where the photosensitive layer and the photosensitive resin layer are irradiated with actinic rays after laminating the photosensitive conductive film on the substrate so that the photosensitive resin layer and the substrate are in contact with each other, the conductive layer and the The photosensitive conductive film with which the surface resistivity X (ohm / square) of the laminated body of the photosensitive resin layer and the haze value Y (%) of the said laminated body satisfy | fill following formula (1).
Y ≦ 9.33X −0.568 (1)
前記感光性樹脂層が、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物、及び、光重合開始剤を含有する、請求項1に記載の感光性導電フィルム。   The photosensitive conductive film according to claim 1, wherein the photosensitive resin layer contains a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator. 前記導電性繊維が銀繊維である、請求項1又は2に記載の感光性導電フィルム。   The photosensitive conductive film of Claim 1 or 2 whose said conductive fiber is silver fiber. 基材と、当該基材上に積層された感光性樹脂層と、当該感光性樹脂層上に積層された導電層と、を備える感光性導電積層体であって、
前記導電層が導電性繊維を含有し、
前記感光性導電積層体の前記導電層及び前記感光性樹脂層に活性光線を照射した場合において、前記導電層及び前記感光性樹脂層の積層体の表面抵抗率X(Ω/□)と、前記積層体のヘーズ値Y(%)とが下記式(1)を満たす、感光性導電積層体。
Y≦9.33X−0.568 …(1)
A photosensitive conductive laminate comprising a substrate, a photosensitive resin layer laminated on the substrate, and a conductive layer laminated on the photosensitive resin layer,
The conductive layer contains conductive fibers;
When the conductive layer and the photosensitive resin layer of the photosensitive conductive laminate are irradiated with actinic rays, the surface resistivity X (Ω / □) of the laminate of the conductive layer and the photosensitive resin layer, and The photosensitive electrically conductive laminated body with which haze value Y (%) of a laminated body satisfy | fills following formula (1).
Y ≦ 9.33X −0.568 (1)
前記感光性樹脂層が、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物、及び、光重合開始剤を含有する、請求項4に記載の感光性導電積層体。   The photosensitive conductive laminate according to claim 4, wherein the photosensitive resin layer contains a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator. 前記導電性繊維が銀繊維である、請求項4又は5に記載の感光性導電積層体。   The photosensitive conductive laminate according to claim 4 or 5, wherein the conductive fibers are silver fibers. 前記感光性樹脂層と基材とが接するように、請求項1〜3のいずれか一項に記載の感光性導電フィルムを前記基材上に積層する積層工程と、
前記積層工程の後、前記導電層及び前記感光性樹脂層に活性光線を照射する工程と、を備える、導電膜の形成方法。
A laminating step of laminating the photosensitive conductive film according to any one of claims 1 to 3 on the substrate so that the photosensitive resin layer and the substrate are in contact with each other,
After the said lamination process, the process of irradiating an active ray to the said conductive layer and the said photosensitive resin layer, The formation method of an electrically conductive film.
パターニングされた導電膜の形成方法であって、
前記感光性樹脂層と基材とが接するように、請求項1〜3のいずれか一項に記載の感光性導電フィルムを前記基材上に積層する積層工程と、
前記積層工程の後、前記導電層及び前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、
前記露光工程の後、前記所定部分以外の未露光部を現像する工程と、を備える、導電膜の形成方法。
A method for forming a patterned conductive film, comprising:
A laminating step of laminating the photosensitive conductive film according to any one of claims 1 to 3 on the substrate so that the photosensitive resin layer and the substrate are in contact with each other,
After the laminating step, an exposure step of irradiating a predetermined portion of the conductive layer and the photosensitive resin layer with actinic rays,
And a step of developing an unexposed portion other than the predetermined portion after the exposing step.
パターニングされた導電膜の形成方法であって、
請求項4〜6のいずれか一項に記載の感光性導電積層体の前記導電層及び前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、
前記露光工程の後、前記所定部分以外の未露光部を現像する工程と、を備える、導電膜の形成方法。
A method for forming a patterned conductive film, comprising:
An exposure step of irradiating a predetermined part of the conductive layer and the photosensitive resin layer of the photosensitive conductive laminate according to any one of claims 4 to 6 with actinic rays,
And a step of developing an unexposed portion other than the predetermined portion after the exposing step.
請求項7〜9のいずれか一項に記載の導電膜の形成方法により形成された導電膜を備える、導電積層体。   A conductive laminate comprising a conductive film formed by the method for forming a conductive film according to claim 7.
JP2014101482A 2014-05-15 2014-05-15 Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate Pending JP2015219308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101482A JP2015219308A (en) 2014-05-15 2014-05-15 Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101482A JP2015219308A (en) 2014-05-15 2014-05-15 Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate

Publications (1)

Publication Number Publication Date
JP2015219308A true JP2015219308A (en) 2015-12-07

Family

ID=54778749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101482A Pending JP2015219308A (en) 2014-05-15 2014-05-15 Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate

Country Status (1)

Country Link
JP (1) JP2015219308A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
WO2012002332A1 (en) * 2010-07-02 2012-01-05 富士フイルム株式会社 Conductive layer transfer material and touch panel
US20120127097A1 (en) * 2010-07-30 2012-05-24 Whitney Gaynor Conductive films
JP2012209232A (en) * 2011-03-30 2012-10-25 Fujifilm Corp Conductive patterning material and touch panel
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP2013211130A (en) * 2012-03-30 2013-10-10 Toray Ind Inc Method for manufacturing conductive laminate, conductive laminate, and display body including the same
EP2720086A1 (en) * 2012-10-12 2014-04-16 Nano And Advanced Materials Institute Limited Methods of fabricating transparent and nanomaterial-based conductive film
JP2014102962A (en) * 2012-11-20 2014-06-05 Toray Ind Inc Conductive laminate, patterned conductive laminate, its manufacturing method and touch panel using them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
WO2012002332A1 (en) * 2010-07-02 2012-01-05 富士フイルム株式会社 Conductive layer transfer material and touch panel
US20120127097A1 (en) * 2010-07-30 2012-05-24 Whitney Gaynor Conductive films
JP2012209232A (en) * 2011-03-30 2012-10-25 Fujifilm Corp Conductive patterning material and touch panel
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP2013211130A (en) * 2012-03-30 2013-10-10 Toray Ind Inc Method for manufacturing conductive laminate, conductive laminate, and display body including the same
EP2720086A1 (en) * 2012-10-12 2014-04-16 Nano And Advanced Materials Institute Limited Methods of fabricating transparent and nanomaterial-based conductive film
JP2014102962A (en) * 2012-11-20 2014-06-05 Toray Ind Inc Conductive laminate, patterned conductive laminate, its manufacturing method and touch panel using them

Similar Documents

Publication Publication Date Title
JP6402791B2 (en) Conductive film substrate and method of using the same
JP6176295B2 (en) Method for forming conductive pattern
JP2016046031A (en) Laminate, method for producing laminate, film set and electronic component
WO2015049939A1 (en) Photosensitive conductive film, conductive pattern formation method using same, and conductive pattern substrate
JP5569144B2 (en) Photosensitive conductive film, method for forming conductive film, and method for forming conductive pattern
JP2016066590A (en) Conductive film, photosensitive conductive film, method of forming conductive film, method of forming conductive pattern and conductive film substrate
JP2015219308A (en) Photosensitive conductive film, photosensitive conductive laminate, method for forming conductive film, and conductive laminate
JP2017207536A (en) Photosensitive conductive film, film set, and method for producing laminate
JP2017068158A (en) Photosensitive conductive film and method for forming conductive pattern using the same
JP2016070973A (en) Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate
WO2021065322A1 (en) Transfer film, method for producing multilayer body, multilayer body, touch panel sensor, and touch panel
JP2017072679A (en) Photosensitive conductive film, and method of forming conductive pattern
JP2017068734A (en) Photosensitive conductive film, forming method for conductive pattern using the same
WO2016006024A1 (en) Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern
JP2019054125A (en) Photosensitive conductive film, and method of forming conductive pattern using the same
JP2017201344A (en) Photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate and touch panel sensor
JP2018004810A (en) Photosensitive conductive film, method for forming conductive pattern, conductive pattern substrate and touch panel sensor
JP2018097576A (en) Wiring for connection and forming method of wiring for connection
JP2018049055A (en) Photosensitive conductive film, method for forming conductive pattern and method for forming conductive pattern substrate
WO2016181496A1 (en) Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel
JP2017072756A (en) Method of forming resin cured film pattern and base material with resin cured film pattern
JP2017049331A (en) Photosensitive conductive film and method for forming conductive film/conductive pattern
JP2019148611A (en) Photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel sensor
JP2017045687A (en) Photosensitive conductive film, photosensitive conductive film roll, and method for forming conductive film or conductive pattern using the same
JP2016031779A (en) Method for producing conductive film, transparent conductive film and photosensitive conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180717