JP2015216800A - Control system - Google Patents

Control system Download PDF

Info

Publication number
JP2015216800A
JP2015216800A JP2014099210A JP2014099210A JP2015216800A JP 2015216800 A JP2015216800 A JP 2015216800A JP 2014099210 A JP2014099210 A JP 2014099210A JP 2014099210 A JP2014099210 A JP 2014099210A JP 2015216800 A JP2015216800 A JP 2015216800A
Authority
JP
Japan
Prior art keywords
power
control system
temperature
box
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014099210A
Other languages
Japanese (ja)
Inventor
憲樹 岸本
Noriki Kishimoto
憲樹 岸本
貴志 金子
Takashi Kaneko
貴志 金子
優 片桐
Masaru Katagiri
優 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014099210A priority Critical patent/JP2015216800A/en
Publication of JP2015216800A publication Critical patent/JP2015216800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in that, when this system is used in, especially, a cold district, the performances of an electronic circuit and so on may degrade due to low outdoor air temperature, which may lead to operation failure.SOLUTION: A control system for a vehicle comprises: power supply/recovery means; first power conversion means for converting supplied power into AC power; a motor that drives by use of AC power obtained by conversion by the first power conversion means; power storage means that is able to charge/discharge power via second power conversion means; a box having the first power conversion means; and temperature detecting means for the box. In the control system, a circuit in which resister means and first circuit breaker are connected in parallel is connected between the power supply/recovery means and the second power conversion means in series. A second circuit breaker is provided between the resistor means and the power supply/recovery means. When the temperature detecting means detects that the temperature of the box has decreased below a first predetermined value, current is caused to flow between the power supply/recovery means and the power storage means via the resister means.

Description

本発明は制御システムに関し、特に鉄道車両用に搭載される電力変換機器箱の低温下における箱内温度低下抑制制御に関するものである。   The present invention relates to a control system, and more particularly to control for suppressing temperature drop in a box at a low temperature of a power converter box mounted for a railway vehicle.

鉄道車両や電気自動車などの電気車は、電力変換機器を介して、駆動力を有するモータへ電力を供給することで、モータに対し、所望の電圧・周波数の交流電力を供給して制御している。   Electric vehicles such as railway vehicles and electric vehicles supply power to motors having driving power through power conversion equipment, thereby supplying and controlling AC power of desired voltage and frequency to the motors. Yes.

主に寒冷地で電力変換機器を搭載した駆動装置を使用する場合,外気温度が極低温下での長時間停車においては,箱内の周囲温度の低下により,システム制御を担う制御論理部などの電子機器や,蓄電池などの蓄電手段の性能低下が著しく,動作不良を起こす場合が懸念される。   When using a drive unit equipped with power conversion equipment mainly in a cold region, when the outside temperature is extremely low and the vehicle is stopped for a long time, the control logic unit responsible for system control, etc., is responsible for the system control due to a decrease in the ambient temperature inside the box. There is a concern that the performance of electronic devices and power storage means such as storage batteries will deteriorate significantly and cause malfunctions.

例えば本技術分野の背景技術として、特開2012−69280号公報(特許文献1)がある。この公報には、蓄電手段に関しては,低温時はエネルギー授受が可能なシステムと蓄電手段との間で,充放電電流を流し続けることで蓄電池の内部抵抗の発熱を促し蓄電池の温度低下を抑制する蓄電池暖機制御技術が用いられている。   For example, as a background art of this technical field, there is JP 2012-69280 A (Patent Document 1). In this publication, regarding the power storage means, at low temperatures, the charging and discharging current continues to flow between the system capable of transferring energy and the power storage means, thereby promoting the heat generation of the internal resistance of the storage battery and suppressing the temperature drop of the storage battery. Storage battery warm-up control technology is used.

一方でシステム制御用の電子機器に関する極低温下での動作不良対策としては,同箱内にヒーター用の抵抗器を別途設置することで,同箱内の周囲温度低下を抑制し,電子機器の性能低下を防止している。   On the other hand, as countermeasures against malfunctions at extremely low temperatures for electronic equipment for system control, a heater resistor is separately installed in the box to prevent a decrease in ambient temperature in the box, and Prevents performance degradation.

特開2012−69280号公報JP 2012-69280 A

蓄電池については,前述の蓄電池暖機制御技術による昇温対策が実施されている。   For storage batteries, measures to raise the temperature by the above-mentioned storage battery warm-up control technology are implemented.

しかし、システム制御用の電子機器については,電力変換機器箱内の温度を維持する為,ヒーター用の抵抗器を新設し,ヒーター用電源は外部電源から供給する必要があり,設置場所と外部電源の確保が求められることから,設置できる場所が制限される。   However, in order to maintain the temperature inside the power conversion equipment box for the electronic equipment for system control, it is necessary to install a heater resistor, and the heater power supply must be supplied from an external power source. Because it is required to secure the location, the place where it can be installed is limited.

そこで本発明は,ヒーター用に抵抗器を新設せずに,箱内温度低下を抑制し,低温下での電子機器の性能を確保する制御システムを提供する。   Therefore, the present invention provides a control system that suppresses the temperature drop in the box and ensures the performance of the electronic device at a low temperature without newly installing a resistor for the heater.

上記課題を解決する為に、例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電力を供給可能な電力供給・回収手段と、電力供給・回収手段から供給される電力を交流電力へ変換する第1の電力変換手段と、第1の電力変換手段により変換された交流電力によって駆動するモータと、第2の電力変換手段を介して電力を充放電可能な蓄電手段と、第1の電力変換手段または第2の電力変換手段の少なくともいずれかを備える箱と、箱の内部温度を検知する温度検知手段とを有する車両の制御システムにおいて、抵抗手段と第1の遮断器とが並列に接続された回路が電力供給・回収手段と第2の電力変換手段との間に直列に接続され、抵抗手段と電力供給・回収手段との間に第2の遮断器を有し、温度検知手段が箱の温度が第1の所定値よりも低下したことを検知すると、温度が第2の所定値に達するまで、電力供給・回収手段と蓄電手段との間で抵抗手段を介して電流を流すことを特徴とする。   The present application includes a plurality of means for solving the above problems. To give an example, the power supply / recovery means capable of supplying power and the power supplied from the power supply / recovery means are converted into AC power. A first power conversion means; a motor driven by the AC power converted by the first power conversion means; a power storage means capable of charging / discharging power via the second power conversion means; and the first power conversion. In a vehicle control system having a box including at least one of the means and the second power conversion means and a temperature detection means for detecting the internal temperature of the box, the resistance means and the first circuit breaker are connected in parallel. The circuit is connected in series between the power supply / recovery means and the second power conversion means, has a second circuit breaker between the resistance means and the power supply / recovery means, and the temperature detection means is a box The temperature of the first predetermined value When detecting that the reduced, until the temperature reaches a second predetermined value, characterized in that current flow through the resistance means between the storage means and the power supply and recovery unit.

本発明によれば、ヒーター用の抵抗器,電源を別途設ける必要が無くなり,コスト低減,部品点数削減を図ることが可能となる制御システムを提供することができる。   According to the present invention, it is not necessary to separately provide a heater resistor and a power source, and it is possible to provide a control system capable of reducing costs and reducing the number of parts.

本発明を適用するシステムを示した概略図Schematic showing a system to which the present invention is applied 本発明の抵抗器投入・開放回路構成の具体例1Specific Example 1 of Resistor Input / Open Circuit Configuration of the Present Invention 本発明の抵抗器投入・開放回路構成の具体例2Specific example 2 of resistor input / open circuit configuration of the present invention 本発明を適用したシステムの実施例1Embodiment 1 of a system to which the present invention is applied 本発明を適用したシステムの実施例2Embodiment 2 of the system to which the present invention is applied 本発明に関わる主要部品の位置関係を示した部品配置図Component layout showing the positional relationship of main components related to the present invention 本発明に関わる低温抑制制御開始シーケンスLow temperature suppression control start sequence according to the present invention 本発明に関わる低温抑制制御禁止シーケンスLow temperature suppression control prohibition sequence according to the present invention 本発明に関わる低温抑制制御時の抵抗器投入開放シーケンスResistor on / off sequence during low-temperature suppression control according to the present invention 低温抑制制御時の動作タイミングチャートOperation timing chart for low temperature suppression control

以下に,本発明の実施形態を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図6は箱内における本開発での主要部品の配置例(3面図)を示す。当該箱内温度を検知する手段である箱内温度センサ51は箱内温度を検出する機能を有し、制御論理部である電子機器制御論理部50に隣接設置される。当該部品を有する箱52が車両に備えられる。本実施例では、抵抗器20が発熱手段となるため、低温化において箱52内の温度を上げ、電子機器50の動作不良を防止することができる。図6のように、電子機器50と抵抗器20は隣接配置することで、より効果的となる。   FIG. 6 shows an arrangement example (3-side view) of main components in the development in the box. The in-box temperature sensor 51, which is a means for detecting the in-box temperature, has a function of detecting the in-box temperature, and is installed adjacent to the electronic device control logic unit 50 that is a control logic unit. A box 52 having the parts is provided in the vehicle. In the present embodiment, since the resistor 20 serves as a heat generating means, the temperature in the box 52 can be raised at a low temperature, and malfunction of the electronic device 50 can be prevented. As shown in FIG. 6, the electronic device 50 and the resistor 20 are arranged adjacent to each other, which is more effective.

図1に本発明に関わる適用システムの構成図を示す。   FIG. 1 shows a configuration diagram of an application system according to the present invention.

架線やエンジンなどの電力供給・回収手段1と,インバータなどの電力変換機器A3と、電力変換機器A3の入力段に設けられる平滑用フィルタコンデンサ9と、フィルタコンデンサ9の突入電流抑制の為のコンデンサ充電用抵抗器と抵抗器投入・開放用遮断器からなる抵抗器投入・開放回路A2と,抵抗器投入・開放回路B6と,モータなどの負荷8と,蓄電池などの直流電力蓄電手段4と、直流電力蓄電手段4への供給電力を充電可能な電圧レベルに変換するDC−DCチョッパ等の電力変換機器B5と,交流電力を直流電力へ変換するコンバータ等の電力変換機器C7を有するシステムである。電力供給・回収手段は、例えば架線であれば、架線から電力供給を受け、また回生電力が発生した場合は当該電力を架線へと戻し、回収する機能を有するものである。   Power supply / recovery means 1 such as an overhead line or an engine, power conversion device A3 such as an inverter, a smoothing filter capacitor 9 provided at the input stage of the power conversion device A3, and a capacitor for suppressing inrush current of the filter capacitor 9 A resistor opening / opening circuit A2, a resistor opening / opening circuit B6, a load 8 such as a motor, a DC power storage means 4 such as a storage battery, and the like. This system includes a power conversion device B5 such as a DC-DC chopper that converts supply power to the DC power storage means 4 into a chargeable voltage level, and a power conversion device C7 such as a converter that converts AC power into DC power. . For example, if the power supply / recovery means is an overhead line, it has a function of receiving power supply from the overhead line and returning the power to the overhead line and collecting it when regenerative power is generated.

前記抵抗器投入・開放回路A2,抵抗器投入・開放回路B6の回路構成は様々であり,具体的な例を図2,図3に示す。   There are various circuit configurations of the resistor input / open circuit A2 and the resistor input / open circuit B6, and specific examples are shown in FIGS.

図2は抵抗器投入・開放回路A2の具体例を示す。コンデンサ充電用抵抗器20と,抵抗器投入用遮断器21を直列接続し,前記コンデンサ充電用抵抗器20と抵抗器投入用遮断器21に抵抗器短絡用遮断器22を並列接続した構成を有している。   FIG. 2 shows a specific example of the resistor input / release circuit A2. A capacitor charging resistor 20 and a resistor charging circuit breaker 21 are connected in series, and a resistor shorting circuit breaker 22 is connected in parallel to the capacitor charging resistor 20 and the resistor charging circuit breaker 21. doing.

前記抵抗器21,22が共にOFF(開放)状態から、前記抵抗器投入用遮断器21をON(短絡)することで,前記コンデンサ充電用抵抗器20が主回路に対して直列接続され,フィルタコンデンサ9への充電電流を制限する機能を果たし,フィルタコンデンサ9の電圧が所定値以上となる時間で前記抵抗器短絡用遮断器22をON(短絡)し,前記コンデンサ充電用抵抗器20を短絡し,主回路から切り離す。なお、以降「遮断器がON」は「短絡」、「遮断器がOFF」は「開放」を意味する。   When the resistors 21 and 22 are both turned off (opened), the resistor charging circuit breaker 21 is turned on (short-circuited) so that the capacitor charging resistor 20 is connected in series to the main circuit, and the filter The function of limiting the charging current to the capacitor 9 is achieved, and the resistor short circuit breaker 22 is turned ON (short circuit) and the capacitor charging resistor 20 is short circuited when the voltage of the filter capacitor 9 exceeds a predetermined value. And disconnect from the main circuit. In the following, “breaker is ON” means “short circuit”, and “breaker is OFF” means “open”.

図3は抵抗器投入・開放回路B6の具体例を示す。前記コンデンサ充電用抵抗器20と並列に抵抗器短絡用遮断器22を接続し,更に回路投入用遮断器23を直列接続した構成を有する。   FIG. 3 shows a specific example of the resistor charging / opening circuit B6. A resistor short circuit breaker 22 is connected in parallel with the capacitor charging resistor 20, and a circuit closing circuit breaker 23 is connected in series.

前記抵抗器投入用遮断器22がOFFの状態で,前記回路投入用遮断器23をONすることで前記コンデンサ充電用抵抗器20が主回路に直列接続され,コンデンサへの充電電流を制限する機能を果たし,前述の抵抗器投入・開放回路A2と同様,フィルタコンデンサ9の充電電圧が所定値以上となる時間で前記抵抗器短絡用遮断器22をONし,前記コンデンサ充電用抵抗器20を短絡して,主回路から切り離す。   The function of limiting the charging current to the capacitor by connecting the capacitor charging resistor 20 in series to the main circuit by turning on the circuit closing circuit breaker 23 while the resistor charging circuit breaker 22 is OFF. The resistor short circuit breaker 22 is turned ON and the capacitor charging resistor 20 is short-circuited when the charging voltage of the filter capacitor 9 is equal to or higher than the predetermined value, as in the resistor charging / opening circuit A2. And disconnect from the main circuit.

図4に実施例1の構成を示す。   FIG. 4 shows the configuration of the first embodiment.

電力供給・回収手段1として直流架線30,前記抵抗器投入・開放回路A2,前記抵抗器投入・開放回路B6として図2の回路を採用した場合は,コンデンサへの突入電流を制限するコンデンサ充電用抵抗器20a、20b,前記抵抗器を投入する抵抗器投入用遮断器21a、21b,前記抵抗器を短絡して主回路から切り離す抵抗器短絡用遮断器22a、22bを有し,直流電力平滑用のフィルタリアクトル31とフィルタコンデンサ9,前記電力変換機器A3としてインバータ32,前記負荷8として交流誘導電動機であるモータ33,前記電力変換機器B5として蓄電手段が蓄電できる電圧レベルに変換するDC−DCチョッパ34,前記直流電力蓄電手段4として直流電力を充放電可能な蓄電池35から構成されている。   When the circuit shown in FIG. 2 is used as the DC overhead wire 30 as the power supply / recovery means 1, the resistor input / open circuit A2, and the resistor input / open circuit B6, the capacitor charging is performed to limit the inrush current to the capacitor. Resistors 20a and 20b, resistor closing circuit breakers 21a and 21b for loading the resistors, and resistor short circuit breakers 22a and 22b for short-circuiting the resistors and disconnecting them from the main circuit, for DC power smoothing Filter reactor 31 and filter capacitor 9, inverter 32 as power conversion device A 3, motor 33 as an AC induction motor as load 8, and DC-DC chopper for conversion to voltage level that can be stored in power storage means as power conversion device B 5 34, the DC power storage means 4 comprises a storage battery 35 capable of charging and discharging DC power.

本実施例は,電力供給・回収手段1として直流架線30が接続された場合の代表的なシステム構成であり,図1に対して,交流電力を直流電力に変換する電力変換機器C7が省略可能となる。また、蓄電池35への電力を蓄電可能な電圧レベルに変換する為の電力変換機器B5として,DC−DCチョッパ34が接続されている。   This embodiment is a typical system configuration when a DC overhead line 30 is connected as the power supply / recovery means 1, and a power conversion device C7 for converting AC power to DC power can be omitted from FIG. It becomes. Further, a DC-DC chopper 34 is connected as a power conversion device B5 for converting the power to the storage battery 35 into a voltage level that can be stored.

図7は、低温抑制制御開始シーケンスを示す。つまり、モータ33へ電力が供給されていない状態(停車中)であることを条件として,箱内温度センサ51が設定温度以下となり,かつ低温抑制制御禁止指令によるフラグが成立しておらず、また蓄電池SOC(State of Charge:充電率)が、上限及び下限に至っておらず(所定値以内である)場合に、低温抑制制御開始フラグが出力される。   FIG. 7 shows a low temperature suppression control start sequence. That is, on the condition that electric power is not supplied to the motor 33 (stopped), the temperature sensor 51 in the box is equal to or lower than the set temperature, and the flag due to the low temperature suppression control prohibit command is not established, When the storage battery SOC (State of Charge: charging rate) does not reach the upper limit and the lower limit (within a predetermined value), a low temperature suppression control start flag is output.

図8は、上述の低温抑制制御禁止フラグのシーケンスを示す。つまり、低温抑制制御終了温度に達するか、蓄電池SOCが上限または下限に至ったかの、少なくともいずれかが検知された場合に、低温抑制制御禁止フラグが成立、出力される。   FIG. 8 shows a sequence of the low temperature suppression control prohibition flag described above. That is, the low temperature suppression control prohibition flag is established and output when at least one of the low temperature suppression control end temperature and the storage battery SOC reaches the upper limit or the lower limit is detected.

図9は、抵抗器投入開放シーケンスを示す。つまり、図7での低温抑制制御開始フラグが入力され、かつ図8での低温抑制制御禁止フラグが成立していない場合に、抵抗器投入用遮断器にオン指令が出力される。すると、抵抗器投入用遮断器21bがONし,コンデンサ充電用抵抗器20bが投入され,直流架線30からのエネルギーをコンデンサ充電用抵抗器20に流して,DC−DCチョッパ34で電圧レベル変換し,畜電池35へ充電,蓄電池35からのエネルギーを,DC−DCチョッパ34で電圧レベル変換し,コンデンサ充電用抵抗器20を経由して直流架線30へ放電する経路を有する。   FIG. 9 shows a resistor charging and opening sequence. That is, when the low temperature suppression control start flag in FIG. 7 is input and the low temperature suppression control prohibition flag in FIG. 8 is not established, an on command is output to the resistor closing circuit breaker. Then, the resistor charging circuit breaker 21b is turned on, the capacitor charging resistor 20b is turned on, the energy from the DC overhead wire 30 is supplied to the capacitor charging resistor 20, and the voltage level is converted by the DC-DC chopper 34. The battery 35 is charged, and energy from the storage battery 35 is converted into a voltage level by the DC-DC chopper 34 and discharged to the DC overhead line 30 via the capacitor charging resistor 20.

この経路により直流架線30と蓄電池35間の蓄電池充放電電流を,DC−DCチョッパ34により制御し,コンデンサ充電用抵抗器20に微小電流を流し続け,抵抗器20bから発生する熱エネルギーにより箱内温度の低下を抑制することが可能となる。   The storage battery charging / discharging current between the DC overhead line 30 and the storage battery 35 is controlled by the DC-DC chopper 34 through this path, and a minute current continues to flow through the capacitor charging resistor 20, and the heat energy generated from the resistor 20b causes the inside of the box. It is possible to suppress a decrease in temperature.

箱内温度センサ51が低温抑制制御終了となる所定温度を検知すると,図8の低温抑制制御禁止シーケンスにより,低温抑制制御禁止フラグが成立し,図9の抵抗器投入開放シーケンスにより,抵抗器短絡用遮断器オン指令が成立し,抵抗器短絡用遮断器22がONし,コンデンサ充電用抵抗器20が主回路より切り離され,低温抑制制御を終了する。   When the in-box temperature sensor 51 detects a predetermined temperature at which the low-temperature suppression control ends, the low-temperature suppression control prohibition flag is established by the low-temperature suppression control prohibition sequence in FIG. The circuit breaker on command is established, the resistor short circuit breaker 22 is turned on, the capacitor charging resistor 20 is disconnected from the main circuit, and the low temperature suppression control is terminated.

図10は、低温抑制制御時の動作のタイミングチャートを示す。   FIG. 10 shows a timing chart of the operation during the low temperature suppression control.

t1では、箱内温度が低下し、低温抑制制御開始フラグが出力される。   At t1, the in-box temperature decreases and a low temperature suppression control start flag is output.

t2では、抵抗器投入用遮断器オン指令により、DC−DCチョッパ34が動作し始める。ここで、図示しない蓄電池SOC検知手段により、蓄電池SOCが、上限値と下限値との中間値よりも少ない場合、図10のようにDC−DCチョッパ34は放電制御を開始する。もし、蓄電池SOCが当該中間値以上である場合は、放電制御を行う。なお、当該低温抑制制御開始フラグによる最初の充電または放電のいずれかを行うかを判定するための閾値は、今回は中間値としているが、システムの設計上変更してもよい。更には、当該閾値を設定せず(蓄電池SOCに関係なく)、これまでの充放電履歴蓄積手段(図示しない)により、充電または放電の回数の少ない方を選択してもよい。これにより、蓄電池の寿命をより延ばすことができる。   At t <b> 2, the DC-DC chopper 34 starts to operate in response to the resistor turning-on breaker ON command. Here, when the storage battery SOC is less than the intermediate value between the upper limit value and the lower limit value by the storage battery SOC detection means (not shown), the DC-DC chopper 34 starts the discharge control as shown in FIG. If the storage battery SOC is equal to or higher than the intermediate value, discharge control is performed. Note that the threshold value for determining whether to perform the first charging or discharging by the low temperature suppression control start flag is an intermediate value this time, but may be changed in the design of the system. Further, the threshold value may not be set (regardless of the storage battery SOC), and the charge / discharge history storage unit (not shown) may be selected so that the number of times of charging or discharging is smaller. Thereby, the lifetime of a storage battery can be extended more.

t3〜t7では、蓄電池SOCが上限値または下限値に達する直前に、充放電切り替え手段(図示しない)により、充電と放電とを切り替える制御を行っている。当該切り替えのタイミングは、図10のように蓄電池SOCの上限値と下限値に達する直前とすれば、各充電・放電時間をより長く確保することができ、また、上限値や下限値に達する前に、充放電切り替えのために、当該上限値よりも低い値の切り替え上限値、及び当該下限値よりも高い値の切り替え下限値を定めれば、任意のタイミングで充放電を切り替えることもできる。いずれにしても、箱内温度が低温抑制制御終了フラグが出力されるまで、充放電を繰り返し、抵抗器20に電流を流し続けることで、箱内の温度を上昇制御させることが可能になる。   At t3 to t7, immediately before the storage battery SOC reaches the upper limit value or the lower limit value, control is performed to switch between charge and discharge by charge / discharge switching means (not shown). If the timing of the switching is just before reaching the upper limit value and the lower limit value of the storage battery SOC as shown in FIG. 10, each charging / discharging time can be secured longer, and before the upper limit value or the lower limit value is reached. In addition, for charge / discharge switching, if a switching upper limit value lower than the upper limit value and a switching lower limit value higher than the lower limit value are determined, charging / discharging can be switched at an arbitrary timing. In any case, it is possible to increase and control the temperature in the box by repeating charging and discharging until the low-temperature suppression control end flag is output and the current is continuously supplied to the resistor 20.

t8では、低温抑制制御終了フラグが出力され、図8での低温抑制制御禁止フラグが成立するため、t9で、図9での抵抗器短絡用遮断器オン指令が出力される。   At t8, the low-temperature suppression control end flag is output, and the low-temperature suppression control prohibition flag in FIG. 8 is established. Therefore, at t9, the resistor short-circuit breaker on command in FIG. 9 is output.

本実施例では、モータ33へ電力が供給されていない状態(停車中)であることを条件としている。つまり、次に期待される動作はモータ出力(始動)であり、その際に蓄電池SOCを使用することが予め分かっている場合には、当該低温抑制制御終了フラグ出力時に、蓄電池SOCがより多い状態にしておくことも考えられる。その場合、箱内温度が低温抑制制御終了フラグが出力される温度に近づいた(所定の閾値を超えた)ことを検知する手段(図示しない)を備えることで、当該温度を超えた場合、上述の切り替え下限値を蓄電池SOCの上限値寄りへと変更することで、低温抑制制御終了フラグ時の蓄電池SOCの下限値を調整することができる。また、低温抑制制御終了フラグの出力時の温度に幅を持たせることができれば、当該低温抑制制御終了フラグが出力された後は、蓄電池SOCは上限値(もしくは所定の値)まで引き続き充電する制御を行い、当該上限値(または所定の値)まで蓄電池SOCが到達するまで、電力変換装置を動作させ続ける制御を行ってもよい。もちろん、逆に切り替え上限値を途中で変更し、低温抑制制御終了の際の蓄電池SOCを低めに調整しておくことも可能である。直後に、回生電力や、架線から他の車両の電力が供給されることが分かっている場合に有効である。   In the present embodiment, the condition is that no electric power is supplied to the motor 33 (stopped). That is, the next expected operation is motor output (start), and when it is known in advance that the storage battery SOC is used, the state where there is more storage battery SOC when the low temperature suppression control end flag is output. It is also possible to keep it. In that case, by providing means (not shown) for detecting that the temperature in the box has approached the temperature at which the low temperature suppression control end flag is output (exceeded a predetermined threshold), The lower limit value of the storage battery SOC at the time of the low temperature suppression control end flag can be adjusted by changing the lower limit value of the switching to the upper limit value of the storage battery SOC. Further, if the temperature at the time of outputting the low temperature suppression control end flag can be widened, after the low temperature suppression control end flag is output, the storage battery SOC is continuously charged to the upper limit value (or a predetermined value). May be performed so that the power conversion device continues to operate until the storage battery SOC reaches the upper limit value (or a predetermined value). Of course, on the contrary, the switching upper limit value can be changed in the middle, and the storage battery SOC at the end of the low temperature suppression control can be adjusted to be lower. It is effective when it is known immediately after that that regenerative power or power from another vehicle is supplied from the overhead line.

なお、本実施例では、モータ33へ電力が供給されていない状態(停車中)であることを条件としているが、もちろんモータ33へ電力が供給されている状態、または停車中でない状態であっても、更に本実施例の制御を行うことで、箱内の温度上昇の効果は得られることは言うまでもない。例えば、停車していない程度の早さで走行している場面において、本実施例を使う効果は得られる。   In this embodiment, it is a condition that power is not supplied to the motor 33 (stopped), but of course, power is supplied to the motor 33 or is not stopped. However, it goes without saying that the effect of temperature rise in the box can be obtained by further controlling the present embodiment. For example, the effect of using the present embodiment can be obtained in a scene where the vehicle is traveling as fast as not stopping.

図5に本開発の適用システムの実施例2の構成を示す。   FIG. 5 shows the configuration of an application system according to the second embodiment of the present development.

蓄電手段または負荷とのエネルギーを授受可能なシステムとして,エンジンや交流架線などの交流電源を想定し,その一例としてエンジン40の場合について示した実施例である。   In this embodiment, an AC power source such as an engine or an AC overhead line is assumed as a system capable of transferring energy to and from the power storage means or a load, and the engine 40 is shown as an example.

図1に対して,前記エネルギー授受可能なシステム1としてエンジン40,発電機41,前記電力変換機器C7としてコンバータ42を接続することでコンバータ42の直流側出力電圧の制御が可能となる為,電圧レベル変換用の電力変換機器B5を省略可能とした構成である。   In contrast to FIG. 1, an engine 40, a generator 41, and a converter 42 as the power conversion device C7 can be connected as the system 1 capable of transferring energy, so that the DC output voltage of the converter 42 can be controlled. The power conversion device B5 for level conversion can be omitted.

図4の実施例1と本実施例が異なる点は,エネルギー授受可能なシステム1としてエンジン40が接続された場合の代表的なシステム構成となり,エンジン40の出力を元に発電機41で生成された3相交流電力を,コンバータ42で交流電力から直流電力へ変換し,コンデンサ充電用抵抗器20を経由して,畜電池35へ充電,蓄電池35からの直流電力を,コンデンサ充電用抵抗器20で電流制限し,コンバータ42で直流電力から交流電力へ変換し,エンジン40へ放電する経路を有する点である。   The difference between the first embodiment of FIG. 4 and the present embodiment is a typical system configuration when the engine 40 is connected as the system 1 capable of transferring energy, and is generated by the generator 41 based on the output of the engine 40. The three-phase AC power is converted from AC power to DC power by the converter 42, charged to the live battery 35 via the capacitor charging resistor 20, and the DC power from the storage battery 35 is converted to the capacitor charging resistor 20 The current is limited by the converter 42, and the converter 42 has a path for converting DC power to AC power and discharging the engine 40.

この経路によりエンジン40と蓄電池35間の蓄電池充放電電流を,実施例1と同様にコンバータ42により微小電流に制御し,コンデンサ充電用抵抗器20に微小電流を流し続け,抵抗器から発生する熱エネルギーにより箱内温度の低下を抑制する。   The storage battery charging / discharging current between the engine 40 and the storage battery 35 is controlled to a minute current by the converter 42 in the same way as in the first embodiment, and the minute current is continuously supplied to the capacitor charging resistor 20 to generate heat generated from the resistor. Reduces the temperature in the box with energy.

1 エネルギー授受可能なシステム
2 抵抗器投入・開放回路A
3 電力変換機器A
4 直流電力を蓄電する蓄電手段
5 電力変換機器B
6 抵抗器投入・開放回路B
7 電力変換機器C
8 負荷
9 フィルタコンデンサ
20、20a、20b コンデンサ充電用抵抗器
21、21a、21b 抵抗器投入用遮断器
22、22a、22b 抵抗器短絡用遮断器
23 回路投入用遮断器
30 直流架線
31 フィルタリアクトル
32 インバータ
33 モータ
34 DC−DCチョッパ
35 蓄電池
50 電子機器
51 箱内温度センサ
1 System that can transfer energy 2 Resistor input / open circuit A
3 Power conversion equipment A
4 Power storage means 5 for storing DC power 5 Power conversion device B
6 Resistor input / open circuit B
7 Power conversion equipment C
8 Load 9 Filter capacitor 20, 20a, 20b Capacitor charging resistor 21, 21a, 21b Resistor closing circuit breaker 22, 22a, 22b Resistor short circuit breaker 23 Circuit closing circuit breaker 30 DC overhead wire 31 Filter reactor 32 Inverter 33 Motor 34 DC-DC chopper 35 Storage battery 50 Electronic device 51 Temperature sensor in the box

Claims (5)

電力を供給可能な電力供給・回収手段と、
前記電力供給・回収手段から供給される電力を交流電力へ変換する第1の電力変換手段と、
前記第1の電力変換手段により変換された交流電力によって駆動するモータと、
第2の電力変換手段を介して電力を充放電可能な蓄電手段と、
前記第1の電力変換手段または前記第2の電力変換手段の少なくともいずれかを備える箱と、
前記箱の内部温度を検知する温度検知手段と
を有する車両の制御システムにおいて、
抵抗手段と第1の遮断器とが並列に接続された回路が
前記電力供給・回収手段と前記第2の電力変換手段との間に直列に接続され、
前記抵抗手段と前記電力供給・回収手段との間に第2の遮断器を有し、
前記温度検知手段が前記箱の温度が第1の所定値よりも低下したことを検知すると、
前記温度が第2の所定値に達するまで、
前記電力供給・回収手段と前記蓄電手段との間で前記抵抗手段を介して電流を流すこと
を特徴とする制御システム。
Power supply / recovery means capable of supplying power;
First power conversion means for converting power supplied from the power supply / recovery means to AC power;
A motor driven by AC power converted by the first power conversion means;
Power storage means capable of charging and discharging power via the second power conversion means;
A box comprising at least one of the first power conversion means or the second power conversion means;
In a vehicle control system having temperature detecting means for detecting the internal temperature of the box,
A circuit in which a resistance means and a first circuit breaker are connected in parallel is connected in series between the power supply / recovery means and the second power conversion means,
A second circuit breaker between the resistance means and the power supply / recovery means;
When the temperature detecting means detects that the temperature of the box has dropped below a first predetermined value,
Until the temperature reaches a second predetermined value,
A control system characterized in that a current flows between the power supply / recovery means and the power storage means via the resistance means.
請求項1に記載の制御システムにおいて、
前記温度検知手段が前記箱の温度が前記第1の所定値よりも低下したことを検知すると、
前記蓄電手段の充電率が所定の範囲内に収まるように、
前記蓄電手段を充電、または放電、または充電と放電を繰り返すこと
を特徴とする制御システム。
The control system according to claim 1,
When the temperature detecting means detects that the temperature of the box has dropped below the first predetermined value,
In order for the charging rate of the power storage means to be within a predetermined range,
A control system, wherein the power storage means is charged, discharged, or repeatedly charged and discharged.
請求項2に記載の制御システムにおいて、
前記第1の遮断器により、前記抵抗手段へ電流を通すか否かを制御し、
前記第2の遮断器により、前記蓄電池及び前記第2の電流変換手段で構成される回路へ
電流を流すか否かを制御し、
前記モータ停止中で、
かつ前記温度検知手段が前記箱の温度が第1の所定値よりも低下したことを検知し、
かつ前記蓄電手段の蓄電量が前記所定の範囲内である場合に、
前記蓄電手段を充電、または放電、または充電と放電を繰り返すこと
を特徴とする制御システム。
The control system according to claim 2,
Control whether or not to pass current to the resistance means by the first circuit breaker,
The second circuit breaker controls whether or not to pass a current to a circuit constituted by the storage battery and the second current conversion means,
While the motor is stopped,
And the temperature detecting means detects that the temperature of the box has dropped below a first predetermined value,
And when the amount of electricity stored in the electricity storage means is within the predetermined range,
A control system, wherein the power storage means is charged, discharged, or repeatedly charged and discharged.
請求項1ないし請求項3に記載の制御システムにおいて、
前記所定の範囲の上限値よりも低い切り替え上限値と、
前記所定の範囲の下限値よりも高い切り替え下限値とを備え、
前記充電率が前記切り替え上限値、または前記切り替え下限値に達した場合、
前記蓄電手段の充電または放電を切り替えること
を特徴とする制御システム。
The control system according to any one of claims 1 to 3,
A switching upper limit value lower than the upper limit value of the predetermined range;
A switching lower limit value higher than the lower limit value of the predetermined range,
When the charging rate reaches the switching upper limit value, or the switching lower limit value,
A control system characterized by switching charging or discharging of the power storage means.
請求項4に記載の制御システムにおいて、
前記箱の温度が、前記第1の所定値よりも低下した後で、かつ前記第2の所定値に達する間に、
前記切り替え上限値または前記切り替え下限値の値を変更すること
を特徴とする制御システム。
The control system according to claim 4.
After the temperature of the box drops below the first predetermined value and while reaching the second predetermined value,
A control system that changes the value of the switching upper limit value or the switching lower limit value.
JP2014099210A 2014-05-13 2014-05-13 Control system Pending JP2015216800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099210A JP2015216800A (en) 2014-05-13 2014-05-13 Control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099210A JP2015216800A (en) 2014-05-13 2014-05-13 Control system

Publications (1)

Publication Number Publication Date
JP2015216800A true JP2015216800A (en) 2015-12-03

Family

ID=54753184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099210A Pending JP2015216800A (en) 2014-05-13 2014-05-13 Control system

Country Status (1)

Country Link
JP (1) JP2015216800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016113880A1 (en) * 2015-01-15 2017-04-27 三菱電機株式会社 Charge / discharge control device
JPWO2017188057A1 (en) * 2016-04-27 2019-02-28 株式会社日立製作所 Electric railway vehicle drive system and vehicle drive method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016113880A1 (en) * 2015-01-15 2017-04-27 三菱電機株式会社 Charge / discharge control device
JPWO2017188057A1 (en) * 2016-04-27 2019-02-28 株式会社日立製作所 Electric railway vehicle drive system and vehicle drive method

Similar Documents

Publication Publication Date Title
US10164454B2 (en) DC voltage supply system configured to precharge a smoothing capacitor before supplying a load
US20150034406A1 (en) Electric vehicle
WO2013129231A1 (en) Power supply apparatus
JP2013037859A (en) Storage battery device
JP5567040B2 (en) Secondary battery control device
CN109075581B (en) Battery disconnection circuit and method for controlling battery disconnection circuit
JP2013179763A (en) Battery management system of charging system and method thereof
CN102792541A (en) On-board electrical system for a vehicle
JP2014075297A (en) Power storage system
JP2013198195A (en) Electric vehicle control device
KR20150071194A (en) System for balance controlling of battery module temperature
JP2011101568A (en) Power feed system
JP2014030108A (en) Power control device, storage battery and power control system
US11794597B2 (en) On-board vehicle electrical system having an accumulator, an alternating voltage connection and a direct voltage connection
JP2022511854A (en) Power supply network and hybrid vehicles
JP6324631B2 (en) Railway vehicle control system
JP2015216800A (en) Control system
JP6184530B2 (en) Discharge device
KR20170013670A (en) A control apparatus for precharging of high voltage battery for electric vehicle
EP2736139A1 (en) Switching device
JP2015035890A (en) Electric vehicle power converter
WO2012032621A1 (en) Power storage apparatus using capacitor, charging control apparatus therefor, and charging control method therefor
Hoque et al. Voltage equalization for series connected lithium-ion battery cells
JP3175573U (en) Rechargeable battery management device
JP2013511944A (en) Method for equalizing the voltage of an electrical storage unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112