JP2015215446A - Optical scanner and adjustment method thereof - Google Patents

Optical scanner and adjustment method thereof Download PDF

Info

Publication number
JP2015215446A
JP2015215446A JP2014097632A JP2014097632A JP2015215446A JP 2015215446 A JP2015215446 A JP 2015215446A JP 2014097632 A JP2014097632 A JP 2014097632A JP 2014097632 A JP2014097632 A JP 2014097632A JP 2015215446 A JP2015215446 A JP 2015215446A
Authority
JP
Japan
Prior art keywords
scanning
adjustment member
optical
shaft
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014097632A
Other languages
Japanese (ja)
Inventor
健太 矢野
Kenta Yano
健太 矢野
敦史 佐野
Atsushi Sano
敦史 佐野
光裕 尾原
Mitsuhiro Ohara
光裕 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014097632A priority Critical patent/JP2015215446A/en
Publication of JP2015215446A publication Critical patent/JP2015215446A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical scanner capable of performing axis tilt adjustment of deflection scanning means in a simple configuration.SOLUTION: An optical scanner includes an adjustment member 31 having a hole part 34 in which a stationary shaft 21 of an optical deflection device 17 is inserted, and a cylindrical part 33 held by an optical box 19. In a state where the adjustment member 31 is held by the optical box 19 and the stationary shaft 21 is inserted into the hole part 34, the stationary shaft 21 is tilted with respect to an axial direction 49 perpendicular to a mounting face 26a of a circuit board 26, and a tilt direction of the stationary shaft 21 is adjustable by using the adjustment member 31.

Description

本発明は、レーザビームプリンタやデジタル複写機、デジタルファクシミリ装置等の画像形成装置に設けられる走査光学装置及びその調整方法に関するものである。   The present invention relates to a scanning optical apparatus provided in an image forming apparatus such as a laser beam printer, a digital copying machine, or a digital facsimile apparatus, and an adjustment method thereof.

走査光学装置は、光源と、光源から出射された光ビームを偏向走査するための偏向走査手段と、偏向走査手段で偏向走査された光ビームを収束させるための光学部品を具備した光学箱等によって構成されている。偏向走査手段は光ビームを偏向走査するためのポリゴンミラーと、ポリゴンミラーを回転自在に回転させるための回転体、回転体の回転中心となる回転軸、回転軸を支持する軸受部、偏向走査手段を光学箱に取り付けるための基板等を有している。   The scanning optical device includes a light source, a deflection scanning unit for deflecting and scanning a light beam emitted from the light source, and an optical box having an optical component for converging the light beam deflected and scanned by the deflection scanning unit. It is configured. The deflection scanning means includes a polygon mirror for deflecting and scanning a light beam, a rotating body for rotating the polygon mirror, a rotating shaft serving as a rotation center of the rotating body, a bearing portion for supporting the rotating shaft, and a deflection scanning means. And a substrate for attaching to the optical box.

従来、光学箱に偏向走査手段の軸受部を嵌合させ、基板を光学箱にビス締めして取り付けている。このとき光学箱に基板を取り付けるための各座面の平面度や並行度等のバラつきやビス締め時にビス頭の片当たり等が及ぼす応力によって基板が変形し、偏向走査手段の回転軸が光ビームの偏向走査面に対して傾く(以下、「軸倒れ」という)ことが知られている。   Conventionally, a bearing portion of a deflection scanning unit is fitted into an optical box, and a substrate is attached to the optical box by screwing. At this time, the substrate is deformed due to variations in the flatness and parallelism of each seating surface for mounting the substrate on the optical box, and the stress exerted by the screw head per piece when tightening the screws, and the rotation axis of the deflection scanning means is changed to the light beam. It is known that it is inclined with respect to the deflection scanning plane (hereinafter referred to as “axis collapse”).

また、軸受部もビス締め時の基板の連れ回りによって光学箱に片寄せされて組みつけられる。このため応力が加わり更に軸倒れを悪化させる。軸倒れにより像面上のスポットが歪み画像品質を低下させる。   Further, the bearing portion is also assembled by being shifted to the optical box by the accompanying rotation of the substrate during screw tightening. For this reason, stress is applied and the shaft collapse is further deteriorated. The spot on the image plane is distorted due to the tilting of the axis and the image quality is deteriorated.

このような偏向走査手段の軸倒れを修正し、スポットの歪みを低減する方法として特許文献1のような提案がなされている。特許文献1では光学箱に固定された偏向走査手段の軸倒れを光学箱の外部から矯正部材により矯正し、紫外線硬化樹脂等を用いて矯正部材を固定している。   As a method for correcting such an axis tilt of the deflection scanning unit and reducing the distortion of the spot, a proposal as in Patent Document 1 has been proposed. In Patent Document 1, the tilting of the deflection scanning means fixed to the optical box is corrected from the outside of the optical box by a correction member, and the correction member is fixed using an ultraviolet curable resin or the like.

特開2010−286775号公報JP 2010-286775 A

しかしながら、特許文献1では、光学箱に固定された偏向走査手段の軸倒れを矯正するために矯正部材を精度良く少なくとも直交する二方向に移動させる必要がある。このため調整工具が複雑化し、矯正に要する調整時間も長くなり、生産性が悪化しコストアップにつながる。   However, in Patent Document 1, it is necessary to accurately move the correction member in at least two orthogonal directions in order to correct the axis tilt of the deflection scanning unit fixed to the optical box. For this reason, the adjustment tool becomes complicated, the adjustment time required for correction becomes longer, the productivity is deteriorated, and the cost is increased.

本発明は前記課題を解決するものであり、その目的とするところは、簡単な構成で偏向走査手段の軸倒れ調整を行うことができる走査光学装置及びその調整方法を提供するものである。   The present invention solves the above-described problems, and an object of the present invention is to provide a scanning optical apparatus capable of adjusting the tilting of the deflection scanning means with a simple configuration and an adjustment method thereof.

前記目的を達成するための本発明に係る走査光学装置の代表的な構成は、光源と、回転多面鏡を備え、前記光源から出射された光を偏向走査する偏向走査手段と、前記偏向走査手段により偏向走査された光を被走査体に結像させる走査レンズと、前記光源と、前記偏向走査手段と、前記走査レンズと、を収容する光学箱と、を有し、前記偏向走査手段は、前記回転多面鏡と共に回転する回転部と、前記回転部を回転駆動させるための回路基板と、前記回路基板に対して垂直に固定された軸または軸受と、を有し、前記回路基板が前記光学箱に固定された走査光学装置において、前記軸または軸受が挿入される穴部と、前記光学箱に保持される保持部とを有する調整部材を有し、前記調整部材が前記光学箱に保持され、前記穴部に前記軸または軸受が挿入された状態において、前記軸または軸受が前記回路基板の取付面に対して垂直な軸方向に対して傾いており、前記調整部材を用いて前記軸または軸受が傾く方向を調整可能であることを特徴とする。   A typical configuration of the scanning optical device according to the present invention for achieving the above object includes a light source, a rotating polygon mirror, deflection scanning means for deflecting and scanning light emitted from the light source, and the deflection scanning means. A scanning lens that forms an image of light deflected and scanned on a scanned object, the light source, the deflection scanning unit, and an optical box that houses the scanning lens, and the deflection scanning unit includes: A rotating unit that rotates together with the rotary polygon mirror; a circuit board that rotationally drives the rotating unit; and a shaft or a bearing that is fixed perpendicular to the circuit board. In the scanning optical device fixed to the box, the scanning optical device has an adjustment member having a hole portion into which the shaft or the bearing is inserted and a holding portion held by the optical box, and the adjustment member is held by the optical box. , The shaft or In the state in which the support is inserted, the shaft or the bearing is inclined with respect to the axial direction perpendicular to the mounting surface of the circuit board, and the adjusting member can be used to adjust the direction in which the shaft or the bearing is inclined. It is characterized by being.

上記構成によれば、偏向走査手段の軸倒れ方向を調整部材を用いて調整することができる。これにより、簡便な方法でスポットの歪みに最も影響が少ない方向に軸倒れ方向を調整できる。   According to the above configuration, the axis tilt direction of the deflection scanning unit can be adjusted using the adjustment member. Accordingly, the axis tilt direction can be adjusted in a direction that has the least influence on spot distortion by a simple method.

本発明に係る走査光学装置の構成を示す斜視説明図である。It is a perspective explanatory view showing the configuration of the scanning optical device according to the present invention. 本発明に係る走査光学装置に具備された偏向走査手段の構成を示す断面説明図である。It is a cross-sectional explanatory view showing the configuration of the deflection scanning means provided in the scanning optical apparatus according to the present invention. 本発明に係る走査光学装置の第1実施形態における偏向走査手段の軸倒れ方向を調整する調整部材の構成を示す断面説明図である。FIG. 3 is an explanatory cross-sectional view illustrating a configuration of an adjustment member that adjusts the axis tilt direction of the deflection scanning unit in the first embodiment of the scanning optical apparatus according to the present invention. (a)は第1実施形態の偏向走査手段を光学箱へ組み付ける様子を示す断面説明図である。(b)は第1実施形態において調整部材により偏向走査手段の軸倒れ方向を調整する様子を示す断面説明図である。(A) is sectional explanatory drawing which shows a mode that the deflection | deviation scanning means of 1st Embodiment is assembled | attached to an optical box. (B) is sectional explanatory drawing which shows a mode that the axial fall direction of a deflection | deviation scanning means is adjusted with an adjustment member in 1st Embodiment. (a)は偏向走査手段の軸倒れ方向を調整する調整部材を用いずに偏向走査手段を光学箱に組み付けた場合の偏向走査手段の軸倒れ状態を示す図である。(b)は調整部材を用いて偏向走査手段を光学箱に組み付けた場合の偏向走査手段の軸倒れ状態を示す図である。(c)は調整部材を用いて偏向走査手段の軸倒れ方向を調整した後の偏向走査手段の軸倒れ状態を示す図である。(A) is a figure which shows the axis fall state of the deflection scanning means at the time of attaching a deflection scanning means to an optical box, without using the adjustment member which adjusts the axis fall direction of a deflection scanning means. (B) is a figure which shows the axis | shaft fall state of the deflection scanning means at the time of assembling | attaching a deflection scanning means to an optical box using an adjustment member. (C) is a figure which shows the axis fall state of the deflection scanning means after adjusting the axis fall direction of the deflection scanning means using an adjustment member. 本発明に係る走査光学装置の第2実施形態の構成を示す断面説明図である。It is a section explanatory view showing the composition of a 2nd embodiment of the scanning optical device concerning the present invention. 本発明に係る走査光学装置の第3実施形態の構成を示す断面説明図である。It is a section explanatory view showing the composition of a 3rd embodiment of the scanning optical device concerning the present invention. 本発明に係る走査光学装置の第4実施形態の構成を示す断面説明図である。It is a section explanatory view showing the composition of a 4th embodiment of the scanning optical device concerning the present invention. 本発明に係る走査光学装置に具備することができる他の偏向走査手段の構成を示す断面説明図である。It is a cross-sectional explanatory view showing the configuration of another deflection scanning means that can be included in the scanning optical device according to the present invention.

図により本発明に係る走査光学装置を備えた画像形成装置の一実施形態を具体的に説明する。   An embodiment of an image forming apparatus provided with a scanning optical device according to the present invention will be specifically described with reference to the drawings.

先ず、図1〜図5を用いて本発明に係る走査光学装置を備えた画像形成装置の第1実施形態の構成について説明する。   First, the configuration of a first embodiment of an image forming apparatus provided with a scanning optical device according to the present invention will be described with reference to FIGS.

<走査光学装置>
図1は本実施形態の走査光学装置10の構成を示す斜視説明図である。図2は本実施形態の走査光学装置10に具備された偏向走査手段となる光偏向装置17の構成を示す断面説明図である。図1に示すように、走査光学装置10は、光源となる光源ユニット11を有する。更に、回転多面鏡15を備え、該光源ユニット11から出射されたレーザビーム12(光)を偏向走査する偏向走査手段となる光偏向装置17を有する。
<Scanning optical device>
FIG. 1 is a perspective explanatory view showing the configuration of the scanning optical device 10 of the present embodiment. FIG. 2 is an explanatory cross-sectional view showing the configuration of the optical deflection device 17 serving as the deflection scanning means provided in the scanning optical device 10 of the present embodiment. As shown in FIG. 1, the scanning optical device 10 has a light source unit 11 serving as a light source. Furthermore, it has a rotating polygon mirror 15 and an optical deflecting device 17 serving as a deflection scanning means for deflecting and scanning the laser beam 12 (light) emitted from the light source unit 11.

更に、該光偏向装置17により偏向走査されたレーザビーム12を被走査体となる像担持体としての図示しない感光ドラムの表面に結像させる走査レンズとなるfθレンズ18を有する。更に、光源ユニット11と、光偏向装置17と、fθレンズ18と、を収容する光学箱19とを有する。   Further, an fθ lens 18 serving as a scanning lens for imaging the laser beam 12 deflected and scanned by the optical deflecting device 17 on the surface of a photosensitive drum (not shown) serving as an image carrier to be scanned is provided. Furthermore, the optical box 19 which accommodates the light source unit 11, the light deflection apparatus 17, and the f (theta) lens 18 is provided.

図1に示す光学箱19の上部開口は、樹脂や金属製の図示しない光学蓋によって閉塞される。尚、fθレンズ18はレーザビーム12が角度θで入ってくると、該fθレンズ18の焦点距離fを掛け合わせた大きさ(f×θ)の像を結ぶようなレンズ特性(fθ特性)を有する。   The upper opening of the optical box 19 shown in FIG. 1 is closed by an optical lid (not shown) made of resin or metal. The fθ lens 18 has a lens characteristic (fθ characteristic) that forms an image of a size (f × θ) obtained by multiplying the focal length f of the fθ lens 18 when the laser beam 12 enters at an angle θ. Have.

図2に示すように、偏向走査手段となる光偏向装置17は、回転多面鏡15と共に回転する回転部となるロータ25と、該ロータ25を回転駆動させるための回路基板26と、該回路基板26の基板面に対して垂直に固定された軸となる固定軸21を有する。図4に示すように、回路基板26は固定具となるビス39により光学箱19に固定される。   As shown in FIG. 2, an optical deflecting device 17 serving as a deflection scanning unit includes a rotor 25 serving as a rotating portion that rotates together with the rotary polygon mirror 15, a circuit board 26 for rotating the rotor 25, and the circuit board. The fixed shaft 21 is a shaft fixed perpendicularly to the 26 substrate surfaces. As shown in FIG. 4, the circuit board 26 is fixed to the optical box 19 with screws 39 serving as a fixture.

図1に示すように、画像情報に応じて光源ユニット11から出射されたレーザビーム12は、シリンドリカルレンズ13によって副走査方向のみが集光され、黒色樹脂等から成る光学箱19に形成された光学絞り14によって所定のビーム径に制限される。その後、回転多面鏡15の反射面16に主走査方向に長い線状に集光される。回転多面鏡15は、光偏向装置17によって回転駆動され、反射面16に入射されたレーザビーム12を偏向走査する。   As shown in FIG. 1, the laser beam 12 emitted from the light source unit 11 according to the image information is condensed only in the sub-scanning direction by the cylindrical lens 13, and is formed in an optical box 19 made of black resin or the like. The aperture is limited to a predetermined beam diameter. Thereafter, the light is condensed into a long line in the main scanning direction on the reflecting surface 16 of the rotary polygon mirror 15. The rotating polygon mirror 15 is rotationally driven by the light deflecting device 17 and deflects and scans the laser beam 12 incident on the reflecting surface 16.

回転多面鏡15により偏向されたレーザビーム12は、fθレンズ18を通過した後、光学箱19を貫通して設けられた出射口19bから該光学箱19の外へ出射される。光学箱19の外へ出射されたレーザビーム12は、帯電手段により予め表面が一様に帯電された図示しない感光ドラムの表面上に集光・走査される。これにより感光ドラムの表面に画像情報に応じた静電潜像が形成される。走査光学装置10が設けられる図示しない画像形成装置における画像形成プロセスについては省略する。   The laser beam 12 deflected by the rotary polygon mirror 15 passes through the fθ lens 18 and then exits from the optical box 19 through an exit port 19 b provided through the optical box 19. The laser beam 12 emitted to the outside of the optical box 19 is condensed and scanned on the surface of a photosensitive drum (not shown) whose surface is uniformly charged in advance by a charging unit. As a result, an electrostatic latent image corresponding to the image information is formed on the surface of the photosensitive drum. An image forming process in an image forming apparatus (not shown) provided with the scanning optical device 10 is omitted.

図2に示すように、回転多面鏡15を回転させる駆動源となる駆動モータは、回転部となるロータ25の回転中心となる固定軸21に支承された回転自在な軸受20を有する。また、軸受20にカシメ等により一体的に結合された座面22及びヨーク23及びロータマグネット24を備えたロータ25を具備している。   As shown in FIG. 2, the drive motor serving as a drive source for rotating the rotary polygon mirror 15 includes a rotatable bearing 20 supported on a fixed shaft 21 serving as a rotation center of a rotor 25 serving as a rotating portion. Further, a bearing surface 22 integrally coupled to the bearing 20 by caulking or the like, a yoke 23, and a rotor 25 including a rotor magnet 24 are provided.

また、紙フェノールやガラスエポキシ等のプリント基板と、金属プレートとを組み合わせて回路基板26が構成される。回路基板26に固定されたステータコア27及びステータコイル28を有するステータ29も備えている。回転多面鏡15は、回転部となるロータ25の一部となる座面22に固定されており、軸受20及びロータ25等と一体的に回転する。   The circuit board 26 is configured by combining a printed board such as paper phenol or glass epoxy and a metal plate. A stator 29 having a stator core 27 and a stator coil 28 fixed to the circuit board 26 is also provided. The rotary polygon mirror 15 is fixed to a seating surface 22 that is a part of the rotor 25 that is a rotating portion, and rotates integrally with the bearing 20, the rotor 25, and the like.

回路基板26は、金属プレートのみであっても良い。また、回路基板26には、該回路基板26を貫通して固定された固定軸21が該回路基板26の図2の下方側の取付面26aから突出している。回路基板26を貫通して固定された固定軸21により軸受20を介してロータ25が回転自在に支持されている。   The circuit board 26 may be only a metal plate. Further, on the circuit board 26, a fixed shaft 21 fixed through the circuit board 26 protrudes from a mounting surface 26a on the lower side of the circuit board 26 in FIG. A rotor 25 is rotatably supported via a bearing 20 by a fixed shaft 21 that is fixed through the circuit board 26.

<調整部材>
次に図3を用いて本実施形態における偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31の構成について説明する。図3は本実施形態における光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31の構成を示す断面説明図である。
<Adjustment member>
Next, the configuration of the adjustment member 31 that adjusts the direction in which the fixed shaft 21 of the optical deflector 17 serving as the deflection scanning means in this embodiment is tilted will be described with reference to FIG. FIG. 3 is an explanatory cross-sectional view showing the configuration of the adjustment member 31 that adjusts the direction in which the fixed shaft 21 of the light deflector 17 is tilted in the present embodiment.

図3に示すように、本実施形態の調整部材31は、光偏向装置17の固定軸21が挿入される貫通穴からなる穴部34を有する。更に、光学箱19の底板19aを貫通する穴部30に嵌合される保持部としての円筒部33を有する。更に、該円筒部33の軸方向(図3の上下方向)の一端部に設けられたフランジ部32を有する。更に、該円筒部33の軸方向(図3の上下方向)の他端部の一部に突出して設けられた凸部35とを有して構成される。   As shown in FIG. 3, the adjustment member 31 of the present embodiment has a hole portion 34 formed of a through hole into which the fixed shaft 21 of the light deflection device 17 is inserted. Furthermore, it has a cylindrical portion 33 as a holding portion that is fitted into a hole 30 that penetrates the bottom plate 19a of the optical box 19. Furthermore, it has the flange part 32 provided in the one end part of the axial direction (up-down direction of FIG. 3) of this cylindrical part 33. As shown in FIG. Further, the cylindrical portion 33 includes a convex portion 35 provided so as to protrude from a part of the other end portion in the axial direction (vertical direction in FIG. 3).

調整部材31のフランジ部32の外径は、円筒部33の外径よりも大きく、光学箱19の底板19aを貫通する穴部30の径よりも大きくなるように設定されている。これにより図4に示すように、調整部材31の円筒部33が光学箱19の底板19aを貫通する穴部30内に回転自在に嵌合され、フランジ部32が光学箱19の底板19aの上面に当接して係止される。これにより調整部材31の保持部となる円筒部33が光学箱19の底板19aを貫通する穴部30内に嵌合された状態で保持される。   The outer diameter of the flange portion 32 of the adjusting member 31 is set to be larger than the outer diameter of the cylindrical portion 33 and larger than the diameter of the hole portion 30 penetrating the bottom plate 19 a of the optical box 19. As a result, as shown in FIG. 4, the cylindrical portion 33 of the adjustment member 31 is rotatably fitted in the hole 30 that penetrates the bottom plate 19 a of the optical box 19, and the flange portion 32 is the upper surface of the bottom plate 19 a of the optical box 19. Is abutted and locked. As a result, the cylindrical portion 33 serving as the holding portion of the adjustment member 31 is held in a state of being fitted into the hole portion 30 penetrating the bottom plate 19a of the optical box 19.

次に図3及び図4を用いて本実施形態における特徴的な構成である偏向走査手段となる光偏向装置17の固定軸21の軸倒れ調整方法について説明する。図3に示すように、光学箱19の底板19aを貫通する穴部30に偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する樹脂等からなる調整部材31の円筒部33を挿入して嵌合させる。   Next, a method of adjusting the tilt of the fixed shaft 21 of the optical deflector 17 serving as a deflection scanning unit, which is a characteristic configuration of the present embodiment, will be described with reference to FIGS. As shown in FIG. 3, the cylindrical portion of the adjustment member 31 made of resin or the like that adjusts the tilting direction of the fixed shaft 21 of the optical deflection device 17 serving as the deflection scanning means in the hole 30 that penetrates the bottom plate 19a of the optical box 19. Insert 33 and fit.

偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31は、フランジ部32と円筒部33とを有し、フランジ部32から円筒部33を貫通する穴部34が設けられている。本実施形態の調整部材31の穴部34の軸方向(図3の上下方向)の中心軸48は、回路基板26の取付面26aに対して垂直な軸方向49に対して傾斜角度φ(>0)だけ傾いている。   An adjustment member 31 that adjusts the direction in which the fixed shaft 21 of the optical deflector 17 serving as the deflection scanning means is tilted has a flange portion 32 and a cylindrical portion 33, and a hole 34 that passes through the cylindrical portion 33 from the flange portion 32. Is provided. The central axis 48 in the axial direction (vertical direction in FIG. 3) of the hole 34 of the adjustment member 31 of the present embodiment is inclined with respect to an axial direction 49 perpendicular to the mounting surface 26a of the circuit board 26 (> It is tilted only by 0).

これにより図4(b)に示すように、調整部材31の円筒部33が光学箱19の底板19aを貫通する穴部30内に保持される。そして、該調整部材31の穴部34内に光偏向装置17の固定軸21が挿入される。その状態において、光偏向装置17の固定軸21の軸中心21aが回路基板26の取付面26aに対して垂直な軸方向49に対して傾斜角度φ(>0)だけ傾いている。本実施形態の光偏向装置17の固定軸21の軸中心21aと、回路基板26の取付面26aに対して垂直な軸方向49との傾斜角度φは、0度よりも大きく、且つ1度未満である。   As a result, as shown in FIG. 4B, the cylindrical portion 33 of the adjustment member 31 is held in the hole 30 that penetrates the bottom plate 19 a of the optical box 19. Then, the fixed shaft 21 of the light deflection device 17 is inserted into the hole 34 of the adjustment member 31. In this state, the axis center 21a of the fixed shaft 21 of the light deflector 17 is inclined by an inclination angle φ (> 0) with respect to the axial direction 49 perpendicular to the mounting surface 26a of the circuit board 26. The inclination angle φ between the axial center 21a of the fixed shaft 21 of the optical deflector 17 of this embodiment and the axial direction 49 perpendicular to the mounting surface 26a of the circuit board 26 is greater than 0 degree and less than 1 degree. It is.

そして、光学箱19の底板19aの外側に露出した調整部材31の凸部35を図示しない調整工具等により把持して該調整部材31を穴部30内で図4(b)の矢印c方向に回転させることにより光偏向装置17の固定軸21が傾く方向を調整することが出来る。回路基板26の取付面26aは、光偏向装置17の座面として構成される。   Then, the convex portion 35 of the adjustment member 31 exposed outside the bottom plate 19a of the optical box 19 is gripped by an adjustment tool or the like (not shown), and the adjustment member 31 is moved in the direction of the arrow c in FIG. By rotating, the direction in which the fixed shaft 21 of the light deflecting device 17 is tilted can be adjusted. The mounting surface 26 a of the circuit board 26 is configured as a seating surface of the light deflecting device 17.

次に図4(a)に示すように、偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31の穴部34内に光偏向装置17の回路基板26の裏側から突出している固定軸21を嵌合させる。そして、固定具となるビス39を用いて光偏向装置17を光学箱19に組み付ける。   Next, as shown in FIG. 4A, the circuit board 26 of the optical deflector 17 is placed in the hole 34 of the adjustment member 31 that adjusts the tilting direction of the fixed shaft 21 of the optical deflector 17 serving as the deflection scanning means. The fixed shaft 21 protruding from the back side is fitted. Then, the light deflection device 17 is assembled to the optical box 19 using the screws 39 serving as fixtures.

光偏向装置17は回路基板26の外形と、光学箱19内に設けられた位置決めリブ38とによって位置決めされる。このため光偏向装置17の固定軸21が調整部材31の穴部34に沿って傾く。そして、図4(b)に示すように、光偏向装置17の固定軸21が軸倒れした状態になる。   The optical deflection device 17 is positioned by the outer shape of the circuit board 26 and positioning ribs 38 provided in the optical box 19. For this reason, the fixed shaft 21 of the light deflector 17 is inclined along the hole 34 of the adjustment member 31. Then, as shown in FIG. 4B, the fixed shaft 21 of the light deflecting device 17 is in a tilted state.

この状態で偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31の凸部35を図示しない調整工具により把持する。そして、調整部材31を光学箱19の底板19aを貫通する穴部30内で図4(b)の矢印c方向に回転させる。これにより光偏向装置17の固定軸21の傾く方向が図4(b)の点nを中心に図4(b)の矢印d方向に変化する。   In this state, the convex portion 35 of the adjustment member 31 that adjusts the direction in which the fixed shaft 21 of the light deflector 17 serving as the deflection scanning means is adjusted is gripped by an adjustment tool (not shown). Then, the adjusting member 31 is rotated in the direction of the arrow c in FIG. 4B within the hole 30 that penetrates the bottom plate 19a of the optical box 19. As a result, the direction in which the fixed shaft 21 of the light deflector 17 is inclined changes around the point n in FIG. 4B in the direction of arrow d in FIG. 4B.

このとき、図示しない測定装置により走査光学装置10から出射されるレーザビーム12のスポットを測定し、該スポットの歪みが最も少なくなるように調整部材31を回転調整して光偏向装置17の固定軸21の軸倒れ方向を調整する。   At this time, the spot of the laser beam 12 emitted from the scanning optical device 10 is measured by a measuring device (not shown), and the adjustment member 31 is rotated and adjusted so that the distortion of the spot is minimized, so that the fixed shaft of the light deflector 17 is fixed. Adjust 21 direction of axis fall.

本実施形態では、調整部材31が光学箱19に保持される。そして、光学箱19の底板19aを貫通する穴部30内に光偏向装置17の固定軸21が挿入される。その状態において、該固定軸21が回路基板26の取付面26aに対して垂直な軸方向49に対して所定の傾斜角度φだけ傾いている。そして、調整部材31を用いて光偏向装置17の固定軸21が傾く方向を調整可能とされる。   In the present embodiment, the adjustment member 31 is held by the optical box 19. Then, the fixed shaft 21 of the optical deflector 17 is inserted into the hole 30 that penetrates the bottom plate 19a of the optical box 19. In this state, the fixed shaft 21 is inclined by a predetermined inclination angle φ with respect to an axial direction 49 perpendicular to the mounting surface 26 a of the circuit board 26. The adjustment member 31 can be used to adjust the direction in which the fixed shaft 21 of the light deflector 17 is inclined.

レーザビーム12のスポット測定は、例えば、図示しない感光ドラムの表面に対応する位置に図示しないCCD(Charge Coupled Device;電荷結合デバイス)ラインセンサを配置する。そして、CCDラインセンサの検知結果に基づいて、走査光学装置10から出射されるレーザビーム12のスポット測定を行なうことが出来る。   For spot measurement of the laser beam 12, for example, a CCD (Charge Coupled Device) line sensor (not shown) is arranged at a position corresponding to the surface of a photosensitive drum (not shown). Based on the detection result of the CCD line sensor, spot measurement of the laser beam 12 emitted from the scanning optical device 10 can be performed.

偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31と、光学箱19とは以下のように保持される。光学箱19の底板19aを貫通する穴部30の壁面と、調整部材31の円筒部33の外周面との摩擦により該調整部材31を回転して調整した後の位置が保持される。   The adjustment member 31 that adjusts the axis tilt direction of the fixed shaft 21 of the optical deflecting device 17 serving as the deflection scanning means and the optical box 19 are held as follows. The position after the adjustment member 31 is rotated and adjusted by friction between the wall surface of the hole 30 passing through the bottom plate 19a of the optical box 19 and the outer peripheral surface of the cylindrical portion 33 of the adjustment member 31 is maintained.

調整部材31と光学箱19との位置の保持方法としては、調整部材31の回転調整後に光学箱19に対して接着剤を用いて接着固定することが出来る。また、調整部材31の回転調整後に樹脂部材からなる光学箱19及び調整部材31の一部を溶着して光学箱19に対して調整部材31を固定することも出来る。   As a method for holding the positions of the adjustment member 31 and the optical box 19, the rotation can be fixed to the optical box 19 using an adhesive after the rotation of the adjustment member 31 is adjusted. Further, after adjusting the rotation of the adjusting member 31, the optical box 19 made of a resin member and a part of the adjusting member 31 can be welded to fix the adjusting member 31 to the optical box 19.

尚、偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31は樹脂以外の部材で構成されていても良い。調整部材31に設けられ、光偏向装置17の固定軸21が挿入される穴部34は、該調整部材31の円筒部33を貫通していなくても良い。   The adjusting member 31 that adjusts the direction in which the fixed shaft 21 of the light deflecting device 17 serving as the deflection scanning means is tilted may be composed of a member other than resin. The hole 34 provided in the adjustment member 31 and into which the fixed shaft 21 of the light deflection device 17 is inserted may not penetrate the cylindrical portion 33 of the adjustment member 31.

図5(a)〜(c)は本実施形態の調整部材31の回転による調整方法を用いて偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向の調整を行ったときの該光偏向装置17の固定軸21の軸倒れ方向の推移をX−Y座標上に示したグラフである。図5(a)〜(c)に示す横軸Xは、図2に示す固定軸21の軸中心21a(軸受20の回転中心)を通り主走査方向と平行な図1の矢印X方向である。図5(a)〜(c)に示す縦軸Yは、図2に示す固定軸21の軸中心21a(軸受20の回転中心)を通り図1の矢印X方向(横軸X)と直交する図1の矢印Y方向である。   FIGS. 5A to 5C show the adjustment of the tilting direction of the fixed shaft 21 of the optical deflector 17 serving as the deflection scanning means using the adjustment method by the rotation of the adjustment member 31 of the present embodiment. 6 is a graph showing the transition of the axis tilt direction of the fixed shaft 21 of the light deflector 17 on the XY coordinates. The horizontal axis X shown in FIGS. 5A to 5C is the direction of the arrow X in FIG. 1 that passes through the shaft center 21a of the fixed shaft 21 shown in FIG. 2 (the rotation center of the bearing 20) and is parallel to the main scanning direction. . The vertical axis Y shown in FIGS. 5A to 5C passes through the shaft center 21a of the fixed shaft 21 shown in FIG. 2 (the rotation center of the bearing 20) and is orthogonal to the arrow X direction (horizontal axis X) in FIG. It is an arrow Y direction of FIG.

図5(a)では、偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を用いていない。そして、光偏向装置17の固定軸21が光学箱19の底板19aを貫通する図示しない穴部内に直接嵌合して組み付けられた場合である。その場合の光偏向装置17の固定軸21の軸倒れをX−Y座標上に示したグラフである。   In FIG. 5A, the adjusting member 31 that adjusts the direction in which the fixed shaft 21 of the light deflector 17 serving as the deflection scanning means is tilted is not used. In this case, the fixed shaft 21 of the light deflector 17 is assembled by being directly fitted into a hole (not shown) that penetrates the bottom plate 19a of the optical box 19. It is the graph which showed the axis fall of the fixed axis | shaft 21 of the optical deflection | deviation apparatus 17 in that case on the XY coordinate.

図5(b)は図5(a)のX−Y座標上に示される各点が図5(b)のY軸上のマイナス方向(図5(b)の下方向)に移動した様子を示すグラフである。偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を用いて光偏向装置17を光学箱19に組み付けることで、図5(a)のX−Y座標上に示される各点が図5(b)のX−Y座標上に示される各点に移動する。   FIG. 5B shows a state in which each point indicated on the XY coordinate in FIG. 5A has moved in the minus direction on the Y axis in FIG. 5B (downward in FIG. 5B). It is a graph to show. By assembling the light deflecting device 17 to the optical box 19 using the adjusting member 31 for adjusting the axis tilt direction of the fixed shaft 21 of the light deflecting device 17 serving as the deflection scanning means, on the XY coordinates in FIG. Each point shown in FIG. 5 moves to each point shown on the XY coordinates in FIG.

図5(b)に示す状態から偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を回転調整する。そのとき、図5(c)に示すように、レーザビーム12のスポットの歪みが最も少ない位置に偏向走査手段となる光偏向装置17の固定軸21の軸倒れを移動させる。これにより回転多面鏡15へのレーザビーム12の入射角度と、fθレンズ18等の光学部品へのレーザビーム12の回転多面鏡15からの反射角度とからレーザビーム12のスポット径の歪みに対して影響が少ない方向が決まる。   From the state shown in FIG. 5B, the adjustment member 31 that adjusts the direction in which the fixed shaft 21 of the light deflector 17 serving as the deflection scanning means is tilted is adjusted. At that time, as shown in FIG. 5 (c), the tilting of the fixed shaft 21 of the light deflector 17 serving as the deflection scanning means is moved to a position where the distortion of the spot of the laser beam 12 is the smallest. As a result, the incident angle of the laser beam 12 on the rotary polygon mirror 15 and the reflection angle of the laser beam 12 on the optical component such as the fθ lens 18 from the rotary polygon mirror 15 with respect to the distortion of the spot diameter of the laser beam 12 The direction with less influence is determined.

図1及び図5(c)に示す矢印α方向がレーザビーム12のスポット径の歪みに対して影響が少ない。偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を回転させて該固定軸21の軸倒れ方向を調整する。これにより図5(c)に示すX−Y座標上のα方向に光偏向装置17の固定軸21の軸倒れ方向を揃えることができる。   The direction of the arrow α shown in FIGS. 1 and 5C has little influence on the distortion of the spot diameter of the laser beam 12. The adjusting member 31 that adjusts the axis tilt direction of the fixed shaft 21 of the optical deflecting device 17 serving as the deflection scanning means is rotated to adjust the axis tilt direction of the fixed shaft 21. As a result, the axis tilting direction of the fixed shaft 21 of the light deflector 17 can be aligned with the α direction on the XY coordinate shown in FIG.

本実施形態によれば、偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を回転調整することで該固定軸21の軸倒れ方向を任意の傾き方向に調整することができる。これによりレーザビーム12のスポットの歪みに対して影響の少ない傾き方向に調整でき、画像不良の軽減につながる。また、偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を回転させる簡便な方法で固定軸21の軸倒れ方向が調整できる。このため調整に必要なタクトの短縮による生産性の向上、ひいてはコストダウンを図ることができる。   According to the present embodiment, by rotating and adjusting the adjustment member 31 that adjusts the axis tilt direction of the fixed shaft 21 of the optical deflector 17 serving as a deflection scanning unit, the axis tilt direction of the fixed shaft 21 is changed to an arbitrary tilt direction. Can be adjusted. As a result, the tilt direction can be adjusted with little influence on the distortion of the spot of the laser beam 12, leading to reduction of image defects. Further, the axis tilting direction of the fixed shaft 21 can be adjusted by a simple method of rotating the adjusting member 31 that adjusts the axis tilting direction of the fixed shaft 21 of the light deflecting device 17 serving as the deflection scanning means. For this reason, productivity can be improved by reducing the tact time required for adjustment, and cost can be reduced.

次に、図6を用いて本発明に係る走査光学装置の第2実施形態の構成について説明する。尚、前記第1実施形態と同様に構成したものは同一の符号、或いは符号が異なっても同一の部材名を付して説明を省略する。図6は本実施形態の走査光学装置10の構成を示す断面説明図である。   Next, the configuration of the second embodiment of the scanning optical apparatus according to the present invention will be described with reference to FIG. In addition, what was comprised similarly to the said 1st Embodiment attaches | subjects the same member name even if the same code | symbol or a code | symbol differs, and abbreviate | omits description. FIG. 6 is a cross-sectional explanatory view showing the configuration of the scanning optical device 10 of the present embodiment.

本実施形態では、図6に示すように、回転多面鏡15を備え、光源ユニット11から出射されたレーザビーム12を偏向走査する偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整部材41により調整する。その調整部材41の穴部44の中心軸48は、該調整部材41の保持部となる円筒部43の外径中心線1に対して偏心している。   In the present embodiment, as shown in FIG. 6, the axis tilting direction of the fixed shaft 21 of the optical deflector 17 that includes a rotating polygon mirror 15 and serves as a deflection scanning unit that deflects and scans the laser beam 12 emitted from the light source unit 11. Is adjusted by the adjustment member 41. The central axis 48 of the hole 44 of the adjustment member 41 is eccentric with respect to the outer diameter center line 1 of the cylindrical portion 43 serving as the holding portion of the adjustment member 41.

これにより光学箱19の底板19aに貫通して設けられた穴部44に調整部材41の円筒部43を挿入し、該調整部材41のフランジ部42を光学箱19の底板19aの上面に当接して該調整部材41が光学箱19に保持される。そして、該調整部材41の円筒部43に設けられた穴部44に光偏向装置17の固定軸21を挿入した状態で該光偏向装置17が光学箱19に組み付けられる。   As a result, the cylindrical portion 43 of the adjustment member 41 is inserted into the hole 44 provided through the bottom plate 19a of the optical box 19, and the flange portion 42 of the adjustment member 41 is brought into contact with the upper surface of the bottom plate 19a of the optical box 19. Thus, the adjustment member 41 is held by the optical box 19. Then, the optical deflection device 17 is assembled to the optical box 19 with the fixed shaft 21 of the optical deflection device 17 being inserted into the hole 44 provided in the cylindrical portion 43 of the adjustment member 41.

これにより該光偏向装置17の固定軸21が軸倒れした状態になる。偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材41の円筒部43の軸方向端部に設けられた凸部45を図示しない調整工具により把持して調整部材41を穴部30内で回転調整する。これにより光偏向装置17の固定軸21が傾く方向を調整できる。他の構成は前記第1実施形態と同様に構成され、同様の効果を得ることが出来る。   As a result, the fixed shaft 21 of the light deflecting device 17 is in a state of being tilted. An adjustment member that grips a convex portion 45 provided at an axial end of the cylindrical portion 43 of the adjustment member 41 of the adjustment member 41 that adjusts the axial tilt direction of the fixed shaft 21 of the light deflector 17 serving as a deflection scanning means by an adjustment tool (not shown). 41 is rotated in the hole 30. Thereby, the direction in which the fixed shaft 21 of the light deflector 17 is tilted can be adjusted. Other configurations are the same as those in the first embodiment, and the same effects can be obtained.

次に、図7を用いて本発明に係る走査光学装置の第3実施形態の構成について説明する。尚、前記各実施形態と同様に構成したものは同一の符号、或いは符号が異なっても同一の部材名を付して説明を省略する。図7は本実施形態の走査光学装置10の構成を示す断面説明図である。   Next, the configuration of the third embodiment of the scanning optical apparatus according to the present invention will be described with reference to FIG. In addition, what was comprised similarly to each said embodiment attaches | subjects the same member name even if the same code | symbol or a code | symbol differs, and abbreviate | omits description. FIG. 7 is a cross-sectional explanatory view showing the configuration of the scanning optical device 10 of the present embodiment.

本実施形態では、図7に示すように、回転多面鏡15を備え、光源ユニット11から出射されたレーザビーム12を偏向走査する偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整部材51により調整する。その調整部材51の穴部54の壁面の一部には光偏向装置17の固定軸21と当接する凸部54aが設けられている。   In the present embodiment, as shown in FIG. 7, the axis tilting direction of the fixed shaft 21 of the optical deflector 17 that includes the rotary polygon mirror 15 and serves as a deflection scanning means for deflecting and scanning the laser beam 12 emitted from the light source unit 11 Is adjusted by the adjusting member 51. A part of the wall surface of the hole portion 54 of the adjustment member 51 is provided with a convex portion 54a that comes into contact with the fixed shaft 21 of the light deflection device 17.

調整部材51の穴部54の直径aと、凸部54aが設けられた部分の該凸部54aの先端部54bと該先端部54bが対面する穴部54の壁面との離間間隔bとの関係は、a>bとなっている。   The relationship between the diameter a of the hole 54 of the adjusting member 51 and the distance b between the tip 54b of the projection 54a and the wall surface of the hole 54 facing the tip 54b at the portion where the projection 54a is provided. Is a> b.

これにより凸部54aが設けられた部分の穴中心線58は、偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材51の円筒部53の外径中心線2に対して偏心している。調整部材51の穴部54の壁面の一部に突出して設けられた凸部54aと、光偏向装置17の固定軸21とが点接触する。これにより光偏向装置17の固定軸21は軸倒れした状態で光学箱19に組み付けられる。偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材31を回転調整する。これにより光偏向装置17の固定軸21が傾く方向を調整できる。他の構成は前記各実施形態と同様に構成され、同様の効果を得ることが出来る。   As a result, the hole center line 58 of the portion where the convex portion 54a is provided is the outer diameter center line 2 of the cylindrical portion 53 of the adjusting member 51 that adjusts the direction of tilting of the fixed shaft 21 of the optical deflecting device 17 serving as the deflection scanning means. Is eccentric. The convex part 54a provided to project from a part of the wall surface of the hole part 54 of the adjustment member 51 and the fixed shaft 21 of the light deflector 17 are in point contact. As a result, the fixed shaft 21 of the light deflector 17 is assembled to the optical box 19 with the shaft tilted. The adjustment member 31 that adjusts the direction of tilting of the fixed shaft 21 of the light deflector 17 serving as a deflection scanning unit is rotated and adjusted. Thereby, the direction in which the fixed shaft 21 of the light deflector 17 is tilted can be adjusted. Other configurations are the same as those in the above embodiments, and the same effects can be obtained.

次に、図8を用いて本発明に係る走査光学装置の第4実施形態の構成について説明する。尚、前記各実施形態と同様に構成したものは同一の符号、或いは符号が異なっても同一の部材名を付して説明を省略する。図8は本実施形態の走査光学装置10の構成を示す断面説明図である。   Next, the configuration of the fourth embodiment of the scanning optical apparatus according to the present invention will be described with reference to FIG. In addition, what was comprised similarly to each said embodiment attaches | subjects the same member name even if the same code | symbol or a code | symbol differs, and abbreviate | omits description. FIG. 8 is a cross-sectional explanatory view showing the configuration of the scanning optical device 10 of the present embodiment.

本実施形態では、図8に示すように、回転多面鏡15を備え、光源ユニット11から出射されたレーザビーム12を偏向走査する偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整部材61により調整する。その調整部材61は、光学箱19の底板19aを貫通して設けられた穴部30内に嵌合する第一の保持部となる嵌合部66を有する。更に、光偏向装置17の固定軸21が挿入される穴部64が形成された第二の保持部となる円筒部63を有する。更に、光学箱19の底板19aの上面に当接するフランジ部62を有する。更に、嵌合部66の軸方向(図8の上下方向)の端部から一部が突出した凸部65を有している。   In the present embodiment, as shown in FIG. 8, the axis tilting direction of the fixed shaft 21 of the optical deflector 17 that includes the rotary polygon mirror 15 and serves as a deflection scanning unit that deflects and scans the laser beam 12 emitted from the light source unit 11. Is adjusted by the adjusting member 61. The adjustment member 61 has a fitting portion 66 serving as a first holding portion that fits into a hole 30 provided through the bottom plate 19 a of the optical box 19. Furthermore, it has the cylindrical part 63 used as the 2nd holding | maintenance part in which the hole 64 in which the fixed axis | shaft 21 of the optical deflection apparatus 17 is inserted is formed. Further, the optical box 19 has a flange portion 62 that comes into contact with the upper surface of the bottom plate 19a. Furthermore, it has the convex part 65 which one part protruded from the edge part of the axial direction (up-down direction of FIG. 8) of the fitting part 66. As shown in FIG.

この凸部65を図示しない調整工具等により把持して調整部材61を光学箱19の底板19aを貫通して設けられた穴部30内で回転させる。これにより光偏向装置17の固定軸21が傾く方向を調整可能である。光偏向装置17の固定軸21が挿入される調整部材61の穴部64の中心軸68は回路基板26の取付面26aに対して垂直な軸方向49に対して傾斜角度φだけ傾いている。   The convex portion 65 is gripped by an adjustment tool (not shown) or the like, and the adjustment member 61 is rotated in a hole 30 provided through the bottom plate 19a of the optical box 19. As a result, the direction in which the fixed shaft 21 of the light deflector 17 is tilted can be adjusted. The central axis 68 of the hole 64 of the adjustment member 61 into which the fixed shaft 21 of the light deflector 17 is inserted is inclined by an inclination angle φ with respect to the axial direction 49 perpendicular to the mounting surface 26a of the circuit board 26.

本実施形態では、第一、第二の保持部となる嵌合部66と円筒部63とが弾性変形可能に構成される。光偏向装置17の固定軸21から光学箱19の底板19aが受ける応力を調整部材61の嵌合部66と円筒部63とが弾性変形することで軽減することが出来る。   In the present embodiment, the fitting portion 66 and the cylindrical portion 63 serving as the first and second holding portions are configured to be elastically deformable. The stress received by the bottom plate 19a of the optical box 19 from the fixed shaft 21 of the light deflector 17 can be reduced by elastically deforming the fitting portion 66 and the cylindrical portion 63 of the adjustment member 61.

本実施形態によれば偏向走査手段となる光偏向装置17の固定軸21の軸倒れ方向を調整する調整部材61が弾性変形する。これにより光学箱19の底板19aの変形を軽減することができる。また、円筒部63と、嵌合部66との間に隙間67が設けてある。このため回転多面鏡15等が回転することにより発生した振動や熱を光学箱19の底板19aに伝え難くすることができる。これにより光学箱19の変形や振動に起因する画像不良を軽減することができる。他の構成は前記各実施形態と同様に構成され、同様の効果を得ることが出来る。   According to the present embodiment, the adjusting member 61 that adjusts the direction in which the fixed shaft 21 of the light deflector 17 serving as the deflection scanning means is tilted elastically deforms. Thereby, deformation of the bottom plate 19a of the optical box 19 can be reduced. In addition, a gap 67 is provided between the cylindrical portion 63 and the fitting portion 66. For this reason, it is possible to make it difficult to transmit vibration and heat generated by the rotation of the rotary polygon mirror 15 and the like to the bottom plate 19a of the optical box 19. As a result, image defects due to deformation or vibration of the optical box 19 can be reduced. Other configurations are the same as those in the above embodiments, and the same effects can be obtained.

次に、図9を用いて本発明に係る走査光学装置の第5実施形態の構成について説明する。尚、前記各実施形態と同様に構成したものは同一の符号、或いは符号が異なっても同一の部材名を付して説明を省略する。走査光学装置10に設けられる光偏向装置17は前記各実施形態で説明した構成だけに限定されるものではない。   Next, the configuration of the fifth embodiment of the scanning optical apparatus according to the present invention will be described with reference to FIG. In addition, what was comprised similarly to each said embodiment attaches | subjects the same member name even if the same code | symbol or a code | symbol differs, and abbreviate | omits description. The light deflection device 17 provided in the scanning optical device 10 is not limited to the configuration described in each of the above embodiments.

例えば、図9に示す回転多面鏡77を備え、光源ユニット11から出射されたレーザビーム12を偏向走査する偏向走査手段となる光偏向装置70は以下の通りである。回転軸72と一体的に結合された座面73やヨーク74及びロータマグネット75を備えた回転部となるロータ76を有する。そしてロータ76と、該ロータ76と共に回転する回転多面鏡77とを、回路基板26に対して垂直に固定された軸受71が支持する構成でも良い。   For example, an optical deflecting device 70 that includes the rotating polygon mirror 77 shown in FIG. 9 and serves as a deflection scanning unit that deflects and scans the laser beam 12 emitted from the light source unit 11 is as follows. A rotor surface 76 having a seating surface 73 integrally coupled to the rotating shaft 72, a yoke 74, and a rotor magnet 75 is provided. The rotor 76 and the rotating polygon mirror 77 that rotates together with the rotor 76 may be supported by a bearing 71 that is fixed perpendicular to the circuit board 26.

偏向走査手段となる光偏向装置70の回転軸72を回転自在に支持する軸受71の軸倒れ方向を調整部材81により調整する。この調整部材81は、該軸受71が挿入される穴部84を有する。更に、光学箱19の底板19aを貫通して設けられた穴部30内に嵌合する保持部となる円筒部83を有する。更に、光学箱19の底板19aの上面に当接するフランジ部82とを有する。   The adjusting member 81 adjusts the direction of shaft tilt of the bearing 71 that rotatably supports the rotating shaft 72 of the light deflecting device 70 serving as the deflection scanning means. The adjustment member 81 has a hole 84 into which the bearing 71 is inserted. Furthermore, it has the cylindrical part 83 used as the holding | maintenance part fitted in the hole 30 provided through the bottom plate 19a of the optical box 19. As shown in FIG. Furthermore, it has a flange portion 82 that contacts the upper surface of the bottom plate 19a of the optical box 19.

そして、調整部材81が光学箱19に保持され、調整部材81の穴部84内に軸受71が挿入された状態において、該軸受71の回転中心59が回路基板26の取付面26aに対して垂直な軸方向49に対して傾斜角度φだけ傾いている。そして、前記各実施形態と同様に調整部材81を用いて軸受71が傾く方向を調整可能である。   When the adjustment member 81 is held by the optical box 19 and the bearing 71 is inserted into the hole 84 of the adjustment member 81, the rotation center 59 of the bearing 71 is perpendicular to the mounting surface 26a of the circuit board 26. Inclined by an inclination angle φ with respect to the axial direction 49. And the direction in which the bearing 71 inclines can be adjusted using the adjustment member 81 similarly to each said embodiment.

調整部材81の円筒部83の軸方向端部の一部には凸部85が設けられている。この凸部85を図示しない調整工具等により把持して調整部材81を光学箱19の底板19aを貫通して設けられた穴部30内で回転させることにより光偏向装置70の固定軸21を回転自在に軸支する軸受71が傾く方向を調整可能である。他の構成は前記各実施形態と同様に構成され、同様の効果を得ることが出来る。尚、図7に示して前述した調整部材51の穴部54の壁面に設けた凸部54aが図9に示す光偏向装置70の回転軸72を回転自在に支持する軸受71と当接する構成とすることも出来る。   A convex portion 85 is provided on a part of the axial end portion of the cylindrical portion 83 of the adjustment member 81. The projection 85 is gripped by an adjustment tool (not shown) and the adjustment member 81 is rotated in the hole 30 provided through the bottom plate 19a of the optical box 19, thereby rotating the fixed shaft 21 of the light deflector 70. The direction in which the bearing 71 that supports the shaft freely tilts can be adjusted. Other configurations are the same as those in the above embodiments, and the same effects can be obtained. In addition, the structure which the convex part 54a provided in the wall surface of the hole 54 of the adjustment member 51 shown in FIG. 7 contact | abuts the bearing 71 which rotatably supports the rotating shaft 72 of the optical deflection apparatus 70 shown in FIG. You can also

17 …光偏向装置(偏向走査手段)
19 …光学箱
21 …固定軸(軸)
26 …回路基板
26a …取付面
31 …調整部材
33 …円筒部(保持部)
34 …穴部
49 …軸方向(回路基板の取付面に対して垂直な軸方向)
17 Optical deflection device (deflection scanning means)
19 Optical box
21… Fixed shaft (shaft)
26… Circuit board
26a: Mounting surface
31… Adjustment member
33 ... Cylindrical part (holding part)
34… hole
49… Axial direction (Axial direction perpendicular to the circuit board mounting surface)

Claims (8)

光源と、
回転多面鏡を備え、前記光源から出射された光を偏向走査する偏向走査手段と、
前記偏向走査手段により偏向走査された光を被走査体に結像させる走査レンズと、
前記光源と、前記偏向走査手段と、前記走査レンズと、を収容する光学箱と、
を有し、
前記偏向走査手段は、
前記回転多面鏡と共に回転する回転部と、
前記回転部を回転駆動させるための回路基板と、
前記回路基板に対して垂直に固定された軸または軸受と、
を有し、
前記回路基板が前記光学箱に固定された走査光学装置において、
前記軸または軸受が挿入される穴部と、前記光学箱に保持される保持部とを有する調整部材を有し、
前記調整部材が前記光学箱に保持され、前記穴部に前記軸または軸受が挿入された状態において、前記軸または軸受が前記回路基板の取付面に対して垂直な軸方向に対して傾いており、前記調整部材を用いて前記軸または軸受が傾く方向を調整可能であることを特徴とする走査光学装置。
A light source;
A deflection scanning means comprising a rotary polygon mirror, and deflecting and scanning the light emitted from the light source;
A scanning lens that forms an image on the scanning object light deflected and scanned by the deflection scanning means;
An optical box that houses the light source, the deflection scanning means, and the scanning lens;
Have
The deflection scanning means includes
A rotating part that rotates together with the rotary polygon mirror;
A circuit board for rotationally driving the rotating part;
A shaft or bearing fixed perpendicular to the circuit board;
Have
In the scanning optical device in which the circuit board is fixed to the optical box,
An adjustment member having a hole portion into which the shaft or the bearing is inserted and a holding portion held by the optical box;
In a state where the adjustment member is held by the optical box and the shaft or the bearing is inserted into the hole, the shaft or the bearing is inclined with respect to an axial direction perpendicular to the mounting surface of the circuit board. A scanning optical device characterized in that the direction in which the shaft or the bearing is inclined can be adjusted using the adjusting member.
前記調整部材の前記穴部の中心軸は、前記回路基板の取付面に対して垂直な軸方向に対して傾いていることを特徴とする請求項1に記載の走査光学装置。   The scanning optical device according to claim 1, wherein a central axis of the hole portion of the adjustment member is inclined with respect to an axial direction perpendicular to a mounting surface of the circuit board. 前記調整部材の前記穴部の中心軸は、前記調整部材の前記保持部の外径中心線に対して偏心していることを特徴とする請求項1に記載の走査光学装置。   The scanning optical apparatus according to claim 1, wherein a central axis of the hole portion of the adjustment member is decentered with respect to an outer diameter center line of the holding portion of the adjustment member. 前記調整部材の前記穴部の壁面に前記軸または軸受と当接する凸部が設けられたことを特徴とする請求項3に記載の走査光学装置。   The scanning optical apparatus according to claim 3, wherein a convex portion that comes into contact with the shaft or the bearing is provided on a wall surface of the hole portion of the adjustment member. 前記調整部材は、前記光学箱に保持される第一の保持部と、前記軸または軸受が挿入される穴部を有する第二の保持部とを有し、該第一、第二の保持部が弾性変形可能に構成されたことを特徴とする請求項2に記載の走査光学装置。   The adjustment member has a first holding part held by the optical box and a second holding part having a hole part into which the shaft or the bearing is inserted, and the first and second holding parts The scanning optical device according to claim 2, wherein the scanning optical device is configured to be elastically deformable. 前記調整部材は、回転調整後に前記光学箱に対して接着剤を用いて接着固定されることを特徴とする請求項1〜5のいずれか1項に記載の走査光学装置。   The scanning optical apparatus according to claim 1, wherein the adjustment member is bonded and fixed to the optical box using an adhesive after rotation adjustment. 前記調整部材は、回転調整後に該光学箱及び調整部材の一部を溶着して前記光学箱に対して固定されることを特徴とする請求項1〜5のいずれか1項に記載の走査光学装置。   The scanning optical according to claim 1, wherein the adjustment member is fixed to the optical box by welding a part of the optical box and the adjustment member after rotation adjustment. apparatus. 光源と、
回転多面鏡を備え、前記光源から出射された光を偏向走査する偏向走査手段と、
前記偏向走査手段により偏向走査された光を被走査体に結像させる走査レンズと、
前記光源と、前記偏向走査手段と、前記走査レンズと、を収容する光学箱と、
を有し、
前記偏向走査手段は、
前記回転多面鏡と共に回転する回転部と、
前記回転部を回転駆動させるための回路基板と、
前記回路基板に対して垂直に固定された軸または軸受と、
を有し、
更に、前記軸または軸受が挿入される穴部と、前記光学箱に保持される保持部とを有する調整部材を有し、
前記回路基板が前記光学箱に固定された走査光学装置の調整方法であって、
前記調整部材が前記光学箱に保持され、前記穴部に前記軸または軸受が挿入された状態において、前記軸または軸受が前記回路基板の取付面に対して垂直な軸方向に対して傾いており、前記調整部材を回転することで前記軸または軸受の傾き方向を調整することを特徴とする走査光学装置の調整方法。
A light source;
A deflection scanning means comprising a rotary polygon mirror, and deflecting and scanning the light emitted from the light source;
A scanning lens that forms an image on the scanning object light deflected and scanned by the deflection scanning means;
An optical box that houses the light source, the deflection scanning means, and the scanning lens;
Have
The deflection scanning means includes
A rotating part that rotates together with the rotary polygon mirror;
A circuit board for rotationally driving the rotating part;
A shaft or bearing fixed perpendicular to the circuit board;
Have
Furthermore, it has an adjustment member having a hole portion into which the shaft or the bearing is inserted and a holding portion held by the optical box,
An adjustment method of a scanning optical device in which the circuit board is fixed to the optical box,
In a state where the adjustment member is held by the optical box and the shaft or the bearing is inserted into the hole, the shaft or the bearing is inclined with respect to an axial direction perpendicular to the mounting surface of the circuit board. A method of adjusting a scanning optical device, wherein the tilting direction of the shaft or the bearing is adjusted by rotating the adjusting member.
JP2014097632A 2014-05-09 2014-05-09 Optical scanner and adjustment method thereof Pending JP2015215446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097632A JP2015215446A (en) 2014-05-09 2014-05-09 Optical scanner and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097632A JP2015215446A (en) 2014-05-09 2014-05-09 Optical scanner and adjustment method thereof

Publications (1)

Publication Number Publication Date
JP2015215446A true JP2015215446A (en) 2015-12-03

Family

ID=54752395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097632A Pending JP2015215446A (en) 2014-05-09 2014-05-09 Optical scanner and adjustment method thereof

Country Status (1)

Country Link
JP (1) JP2015215446A (en)

Similar Documents

Publication Publication Date Title
US9581929B2 (en) Optical scanning apparatus, image forming apparatus, and support member for an optical scanning apparatus
JP2021021921A (en) Rotary polygon mirror, optical deflector unit, and optical scanning device equipped with optical deflector unit
US8723910B2 (en) Optical scanning device and image forming apparatus using same
JP2008003231A (en) Scanning optical apparatus
JP2008145952A (en) Scanning optical apparatus
JP2015215446A (en) Optical scanner and adjustment method thereof
JP2010237432A (en) Optical scanner and image forming apparatus using the same
JP2010243747A (en) Scanning optical apparatus and method of manufacturing the same
JP2008009285A (en) Optical scanner and its assembling method
JP2010117517A (en) Optical scanner
JP5818657B2 (en) Scanning optical device and image forming apparatus using the same
JP2008026896A (en) Optical scanning apparatus and image forming apparatus equipped with the optical scanning apparatus
JP2009276407A (en) Optical scanner
JP2017072777A (en) Scan optical device and image formation apparatus
JP2009098542A (en) Multibeam scanning device
JP2008145517A (en) Scanning optical apparatus
JP2010048971A (en) Laser scanning optical apparatus
JP2004333559A (en) Light source device and scanning optical device
JP2013171256A (en) Optical scanning device
JP3671708B2 (en) Optical deflection device
JP2004341264A (en) Light beam scanner
JP2001143296A (en) Light source device and light deflecting scanner
JP2011133817A (en) Method of manufacturing optical scanner and optical scanner
JP3702676B2 (en) Optical deflection device
JP2008304628A (en) Optical deflector