JP2015214963A - Combustion method of internal combustion engine - Google Patents

Combustion method of internal combustion engine Download PDF

Info

Publication number
JP2015214963A
JP2015214963A JP2014109534A JP2014109534A JP2015214963A JP 2015214963 A JP2015214963 A JP 2015214963A JP 2014109534 A JP2014109534 A JP 2014109534A JP 2014109534 A JP2014109534 A JP 2014109534A JP 2015214963 A JP2015214963 A JP 2015214963A
Authority
JP
Japan
Prior art keywords
combustion
fuel
engine
nozzle
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014109534A
Other languages
Japanese (ja)
Inventor
大西 繁
Shigeru Onishi
繁 大西
敷波 弘子
Hiroko Shikinami
弘子 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Clean Engine Laboratory Co
Original Assignee
Nippon Clean Engine Laboratory Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Clean Engine Laboratory Co filed Critical Nippon Clean Engine Laboratory Co
Priority to JP2014109534A priority Critical patent/JP2015214963A/en
Publication of JP2015214963A publication Critical patent/JP2015214963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve energy saving and low pollution related to an internal combustion engine through lean and fine formation of injection fuel, an air mixing condition and a combustion chamber structure.SOLUTION: This invention constitutes a lean fuel injection nozzle in which a valve opening lift is made a little by making a large diameter and short length pin part of a pin-type injection nozzle for use in injecting fuel into a cylinder. A combustion method of an internal combustion engine in which lean injection flow of fuel is injected and struck against the large diameter and short length nozzle pin side surface part to make separation and fine formation as well as cylindrical expansion and development of a group of lean fuel due to its striking and reaction, air sucking flow is changed into a directive swirl flow form under a cooperative relation of combination of an intake valve and a valve seat and a valve opening lift, a nozzle in the cylinder and an ignition part are cooled, a complete combustion of various kinds of fuel is executed by an EFI system or a direct injection method through improvement of a fuel mixing and combustion condition and a high compression ratio is solved under three technical conditions on a thin and fine nozzle formation, a combustion chamber and a reinforcement of air mixing so as to perform a complete combustion.

Description

本発明は内燃機関の燃焼技術であり、噴射燃料群の微薄微細化と空気との混合条件で機関の完全的燃焼を図る直噴やEFI用ノズルの燃料微薄微細化技術と燃焼室と空気スワ−ル強化による省エネと排気低公害化とCO2の処理技術である。The present invention is a combustion technique for an internal combustion engine, and is a technique for making a fuel thin and fine for a direct injection or EFI nozzle for achieving complete combustion of the engine under the condition of making the injected fuel group thin and fine and mixing with air. -Energy saving, exhaust pollution reduction and CO2 treatment technology by strengthening the energy.

内燃機関は常に熱効率が優先され燃料の燃焼手段としてディ−ゼルでは直噴方式がガソリン機関ではEFI方式が主に使われている。然し燃焼前提の燃料直噴方式には「多噴孔ホ−ルノズル」が使用されている事からホ−ル燃料噴流特性の「同一飛翔ル−トの噴流重合」により噴射燃料群の微細化目的は達成出来なく、空気との混合率も低いので燃焼は不完全となり未燃による炭化煤塵が排気と共に排出される事で煤塵の始末に複雑高価な後処理装置が必要となる。The internal combustion engine always gives priority to thermal efficiency, and the direct injection method is mainly used in the diesel and the EFI method is mainly used in the gasoline engine as a fuel combustion means. However, since the fuel direct injection system based on combustion uses a “multi-hole hole nozzle”, the purpose of miniaturization of the injected fuel group is achieved by “jet polymerization of the same flight route” in the hole fuel jet characteristics. Can not be achieved, and the mixing ratio with air is low, so that combustion is incomplete, and carbonized soot due to unburned gas is discharged together with exhaust gas, so that a complicated and expensive after-treatment device is required to clean up the soot.

内燃機関の排気低公害化燃焼技術は開発が遅れており可能な将来技術として燃料電池やハイブリッド方式技術や危険な水素燃料などによる技術の開発が進んでいるがこれら技術の普及にもインフラや安全性の確認に時間を要する事から今地球が求めている燃料資源やCO2の削減や地球温暖化の抑制に有効な新規な燃焼や排気技術の開発が早期に求められているのが世界の現状である。The development of combustion technology for reducing emissions of internal combustion engines has been delayed, and the development of technologies using fuel cells, hybrid technology, and dangerous hydrogen fuel is advancing as possible future technologies. Because it takes time to confirm the nature of the world, there is an early demand for the development of new combustion and exhaust technologies that are effective in reducing the fuel resources and CO2 demanded by the earth and suppressing global warming. It is.

この難問題の改善には早期に実施可能な技術の開発や省エネ・低公害な自動車用内燃機関や電気自動車の開発普及が急務とされている事から自動車企業は既存機関の低熱効率負荷域を電動化で補うハイブリッド技術を利用する開発を進めているがコストの上昇は避け難い問題である。In order to improve this difficult problem, the development of technologies that can be implemented early and the development and diffusion of energy-saving and low-pollution automotive internal combustion engines and electric vehicles are urgently needed. Although development using hybrid technology to compensate for this is underway, an increase in cost is an unavoidable problem.

従って今世界が早期に求めている地球の大気環境悪化防止や燃料資源節減の目的を達成するには人間が動力として大量に消費する燃料資源の節減(省エネ)や環境の温暖化や大気を汚染し人体に有害な物質(CO2・NOx・CO・HC・PM2.5等の微粒媒塵)の排出を極力減ずる動力源(エンジン)の開発が不可欠であり特に増大化の続く自動車やその動力源である4サイクルエンジンの省エネ低公害化技術の開発や改善改革が急務であるが結果的に燃費熱効率の悪い低負荷域を電化で補うHV方式とし製造コストの利用者負担が現状の対策となっている。Therefore, in order to achieve the purpose of preventing the deterioration of the global atmospheric environment and the saving of fuel resources that the world demands at an early stage, the reduction of fuel resources (energy saving) consumed by humans as a power source, the warming of the environment, and pollution of the atmosphere Development of power sources (engines) that reduce emissions of substances harmful to the human body (fine particles such as CO2, NOx, CO, HC, and PM2.5) is indispensable. The development and improvement reform of energy-saving and low-pollution technology for the 4-cycle engine is an urgent task, but as a result, the HV system that compensates for the low load area with poor fuel efficiency and thermal efficiency is electrified, and the user's burden of manufacturing cost is the current measure. ing.

内燃機関の燃焼問題を改革改善するには従来の馬力出力本位の競合を排し、改めて省エネと低公害性の両立する新しい動力源としての資質を有するエンジンや新規な燃焼技術が必要なのである。本発明はこの課題に応えうる開発例として燃料と空気との合理的整合による燃焼の完全化技術の開発手段を示す事にある。In order to reform and improve the combustion problem of internal combustion engines, it is necessary to eliminate the conventional competition of horsepower output, and to renew the engine and the new combustion technology as a new power source that achieves both energy saving and low pollution. The present invention presents a means for developing a combustion perfection technique by rational matching between fuel and air as a development example that can meet this problem.

本技術の開発者は省エネ・クリンエンジンには2サイクルではATAC燃焼範囲を広めても燃料混合気の吹き抜けで(HC)の増加する特性は避けられず高速高負荷エンジンとして基本に関わるこの問題は小型高速機関として2サイクルの宿命的限界と見限っている。従って省エネ・低公害エンジンには4サイクル方式が適することを多くの実験により見極め早期に省エネ低公害化を実用化し得る4サイクル機関の完全的な燃焼技術を開発しその技術を開示する事とした。The developer of this technology has the problem that the characteristics of the high-speed, high-load engine are unavoidable for the energy saving / clean engine. As a small high-speed engine, it is limited to the fatal limit of two cycles. Therefore, we decided to develop and disclose a complete combustion technology for a 4-cycle engine that can be put into practical use for energy-saving and low-pollution as soon as possible through many experiments. .

特願 2012−163095
特願 2013−49614
Japanese Patent Application 2012-163095
Japanese Patent Application 2013-49614

本発明は多用する自動車機関の省エネ低公害化には軽量化やコストも重要な事から小型軽量な4サイクル機関の燃焼方式を燃焼技術で完全化すれば熱効率は向上し排気の低公害化も可能となる。従って燃焼技術により機関を高圧縮比化し燃焼の完全化目的を達成すれば高熱効率化と共に排気煤塵PMの低減目的も燃料の燃焼灰化で捕捉し処理できる事を燃焼技術の実験で知験している。Since the present invention is light weight and cost are important for energy saving and low pollution of a frequently used automobile engine, if the combustion system of a small and light four-cycle engine is completed with combustion technology, the thermal efficiency is improved and the emission of the exhaust gas is reduced. It becomes possible. Therefore, if the combustion engine achieves a high compression ratio and achieves the purpose of complete combustion, it is known from the experiment of the combustion technology that the purpose of reducing the exhaust dust PM can be captured and processed by the combustion ashing of the fuel as well as increasing the thermal efficiency. Yes.

この新燃焼技術の構成には先ず噴射燃料群の微薄微細化と空気との流動混合条件との整合が重要であり機関の高圧縮比化と新規な燃焼技術の開発が必要となる。特に燃焼の完全化によれば熱効率が高まると共に未燃で排出されていた炭化煤塵やPMのエネルギ−は燃焼に活用し同時に灰化する事で捕捉処理も容易となり省エネ・低公害化の目的が達成される事になる。この合理的な燃料の燃焼技術は燃料噴射ノズルによる燃料の微薄微細化と燃焼室と空気との混合による完全的燃焼を構成すれば解決が可能であり本燃焼技術はこれの開示を課題とする。In order to construct the new combustion technology, it is first important to make the injected fuel group thinner and finer and to match the fluid mixing conditions with the air, and it is necessary to increase the compression ratio of the engine and to develop a new combustion technology. In particular, the complete combustion improves the thermal efficiency, and the charcoal dust and PM energy that has been discharged unburned is used for combustion and ashed at the same time, facilitating the capture process, and is intended to save energy and reduce pollution. Will be achieved. This rational fuel combustion technology can be solved by composing a complete combustion by making the fuel thinner and finer by the fuel injection nozzle and mixing the combustion chamber and air. .

本発明は従来の4サイクル機関は燃料の噴射供給方法を「超高圧とホ−ルノズルとの組合せ」による燃焼方式としている事から、この過度な噴射圧力と噴流慣到性を抑制するために噴射圧を中圧以下に減じ更に噴射燃料群を微薄微細化状に多方向へ拡散展開できる直噴用燃料噴射ノズルを新規に考案し噴射燃料群の微細噴霧群の拡散展開を可能とする直噴用噴射ノズルをピン型ノズルで構成した。In the present invention, since the conventional four-cycle engine uses a fuel injection method of “combination of ultra-high pressure and hole nozzle” as a fuel injection supply method, an injection is performed to suppress this excessive injection pressure and jet inertia. Direct injection that reduces the pressure below the medium pressure and further diffusively expands the fine spray group of the injected fuel group by devising a new direct injection fuel injection nozzle that can diffuse and expand the injected fuel group in multiple directions in a thin and finer form. The injection nozzle was composed of a pin type nozzle.

またエンジンの燃焼室を上下二段の構造とし、供給する空気の吸気手段を吸気弁と弁座部との加工組合せと開弁リフトの可変で吸気流れを指向的に強化し吸気流れで噴射ノズルや点火栓部の冷却を図りEFIノズルでの燃料混合気群を二段構成の燃焼室上部室内に混合気が指向的に流入充填し反転すべくに構成している。Also, the combustion chamber of the engine has a two-stage structure, and the intake air flow direction is reinforced by changing the combination of the intake valve and valve seat part and the valve opening lift, and the intake nozzle is directed by the intake flow. Further, the spark plug portion is cooled so that the fuel mixture group at the EFI nozzle is configured so that the air-fuel mixture flows directionally into the combustion chamber upper chamber and is reversed.

このEFIノズルによる微薄噴射燃料群の上部燃焼室展開と吸入空気の気筒内流入条件での燃料混合気群をピストンの上昇による高圧縮条件で点火着火する燃焼によれば燃焼は機関の高圧縮比化で低負荷域の高熱効率化目的が機関の層状燃焼により物理的に改善可能なことを確認している。According to the combustion in which the fuel mixture group is ignited and ignited under the high compression condition by the piston ascending by the upper combustion chamber of the finely injected fuel group by the EFI nozzle and the intake air inflow condition in the cylinder, the combustion is performed at a high compression ratio. It has been confirmed that the purpose of increasing the thermal efficiency in the low load region can be physically improved by stratified combustion of the engine.

発明者は先に外開茸型燃料噴射弁での微薄燃料噴射の燃料微細化での完全的燃焼作用や効果等を確認しているがこの外開茸型噴射方法ではコモンレ−ルや電子制御系技術にも改善を要し早期な実施に時間を要しコストも増える事から今度は小型機関の更なる高速高性能化に対応し得る燃料の微薄化と分割噴射での微細展開条件を満たすべく直噴ではピン型ノズルの特性を活用しコストの低減化を図り、外開茸型噴射弁や従来のホ−ル型噴孔ノズルによる燃料噴射方法の基本を改め噴射燃料群を微薄化し微細状に多量に噴霧化し得るノズルをEFIの微薄間隙多層ノズルの中低圧噴射方法で開発した。The inventor has previously confirmed the complete combustion action and effect of the fine fuel injection of the thin fuel injection in the outer open type fuel injection valve, but this outer open type injection method uses common rail and electronic control. As system technology needs to be improved and time is required for early implementation and costs increase, it is now possible to meet the requirements for micro deployment in split injection and thinning of fuel that can cope with higher speed and higher performance of small engines. For direct injection, the pin type nozzle characteristics are used to reduce costs, and the basic fuel injection method using the outer open type injection valve and the conventional hole type nozzle nozzle is revised to make the injected fuel group thinner and finer. A nozzle that can be atomized in large quantities is developed by the medium-low pressure injection method of EFI fine gap multi-layer nozzle.

本発明は燃料噴射機関の基本と言える燃料噴射ノズル技術の更なる性能機能の向上を目的として合理化を追究し、EFI機関が多用する小型高速機関用ノズルの新規構造の開発と更に付加する制御装置のコスト低減をも課題とし直噴機関に於いてはピン型ノズルのピン部を大径短状に形成して大径短ピン部の側壁面部に微薄燃料噴流群を衝突させ衝突作用と反作用により微薄燃料噴流群の***微細化を図り多方向に拡散展開するピン型ノズルとし、EFI用には微薄間隙の多層噴孔ノズルを小型に構成した。The present invention pursues rationalization for the purpose of further improving the performance function of the fuel injection nozzle technology which can be said to be the basic of the fuel injection engine, and develops a new structure of a nozzle for a small high-speed engine frequently used by an EFI engine and further adds a control device. In the direct injection engine, the pin part of the pin type nozzle is formed to have a large diameter and short shape, and a thin fuel jet group collides with the side wall surface part of the large diameter short pin part. A pin-type nozzle that diffuses and expands in multiple directions by splitting and refining the micro-thin fuel jet group was created, and a multi-layer nozzle hole nozzle with a micro-thin gap was made compact for EFI.

多用されるEFI方式機関では低圧噴射ノズルの避熱特性を活用しホ−ル小4噴孔噴射での微粒化と空気との混合条件を改め、新ノズルを0.1mm以下の微薄間隙噴孔ノズルを多層微薄膜構造とし合計で噴孔面積を大とした微薄状多層燃料群を電磁開閉部の開時に同時的に多量の微細噴霧の供給を可能とする噴孔部として微小溝状間隙を多層に構成した噴孔部とし、分割噴射で二段燃焼室上部経由で混合気群を反転し下部に展開し空気接触で瞬時に微薄を***微細噴霧群とし空気との混合気化条件を促進する噴射燃料群での完全的燃焼条件で機関の省エネ排気低公害化の目的とコストの低減を可能といている。
「従来の多噴孔ホ−ルノズル方法では超高圧の同一飛翔ル−ト・噴流重合のホ−ル特性で近接するピストン燃焼室内を噴流衝突で破損し、噴流は液化して到達域に停滞し空気との混合が悪化し燃料の微細化目的も不可能な事は物理的にも証明される事である」。
In the EFI engine, which is frequently used, the heat insulation characteristics of the low-pressure injection nozzle are utilized, and the atomization and air mixing conditions in the small hole four-hole injection are changed. A micro-thin gap is used as a nozzle hole that enables a large amount of fine spray to be supplied simultaneously when the electromagnetic switching part is opened. A multi-hole injection hole is formed, and the mixed gas group is inverted via the upper part of the two-stage combustion chamber by split injection and expanded to the lower part. The complete combustion conditions in the injected fuel group enable the purpose and cost reduction of energy-saving exhaust emission reduction of the engine.
“In the conventional multi-hole hole nozzle method, due to the characteristics of the super high pressure same flight route and jet polymerization, the adjacent piston combustion chamber was damaged by jet collision, and the jet liquefied and stagnated in the arrival area. It is physically proved that mixing with air worsens and the purpose of fuel refinement is impossible. "

本燃焼方法による燃料微細化直噴ノズル燃焼方法では従来燃料噴射のコモンレ−ル技術や電子制御技術に新規な開発を要しなくピン型ノズルのピン径部を大きくした短側壁部に対し微小なピン開閉リフトによる微薄噴射燃料流を衝突させ微薄燃料群をピン側壁部の衝突と反作用で***微細化を図る極めて簡便で実施容易な噴射技術であるがその微細化作用と燃焼室内空気との混合による燃焼効果は絶大である。The fuel refined direct injection nozzle combustion method according to this combustion method does not require any new development in the common rail technology or electronic control technology of conventional fuel injection, and is smaller than the short side wall portion where the pin diameter portion of the pin type nozzle is increased. This is a very simple and easy injection technology that splits and refines a thin fuel group by the collision of the side wall of the pin with the collision of the finely injected fuel flow by the pin opening and closing lift, and mixing it with the air in the combustion chamber The combustion effect by is great.

即ち大径ピン部の微小間隙より噴出する燃料群には従来の電子噴射制御技術が活用され従来ホ−ルノズル方式が必要とした200MPの超高圧力は10分の1の20MP以下で目的とする噴射燃料群の微薄微細化目的が達成されその減圧動力分は熱効率に加算される、これにより構成される噴射燃料群の微細化と空気との拡散混合展開で燃焼条件は多様化し燃料もセタン価に依存する事なく目的とする燃焼の省エネ・低公害化に火花点火が活用されて多種多様な燃料の使用が可能となる。燃焼も完全化に近づき機関の性能が飛躍的に向上すると共にコストの低減も合理的に改善されるのである。That is, for the fuel group ejected from the small gap of the large diameter pin portion, the conventional electronic injection control technology is utilized, and the ultrahigh pressure of 200MP required by the conventional hole nozzle method is set to 1/10 of 20MP or less. The purpose of making the injected fuel group finer and finer is achieved, and the reduced pressure power is added to the thermal efficiency. By making the injected fuel group smaller and diffusing and mixing with air, the combustion conditions are diversified and the fuel has a cetane number. This makes it possible to use a wide variety of fuels by using spark ignition for energy saving and low pollution of the target combustion without depending on the fuel. Combustion approaches perfection, and engine performance is dramatically improved and cost reduction is reasonably improved.

ガソリン機関に多用されるEFI方式では微薄溝状多段ノズルの大噴孔部よりの微細燃料混合気群はノズル開閉弁で瞬時に吸気路内に多量に供給され微細な混合噴霧となり吸気弁の開により二段構造燃焼室の点火栓を有する上部燃焼室内に吸気弁座の切欠部より流出して上部燃焼室を充填し、反転して下部燃焼室に展開する仕組みからノズルの分割噴射が活用され機関の負荷に応じた混合気群の展開が点火栓を有する上部燃焼室の火炎伝播条件で構成され不可能とされていた層状燃焼の構成が実現する。In the EFI system often used in gasoline engines, a large amount of fine fuel mixture from the large nozzle hole of a fine groove-shaped multistage nozzle is instantaneously supplied to the intake passage by a nozzle opening / closing valve, and becomes a fine mixed spray to open the intake valve. The split injection of the nozzle is utilized due to the mechanism that flows into the upper combustion chamber with the ignition plug of the two-stage structure combustion chamber from the notch portion of the intake valve seat, fills the upper combustion chamber, reverses and expands into the lower combustion chamber The configuration of the stratified combustion is realized in which the development of the air-fuel mixture group according to the engine load is configured by the flame propagation condition of the upper combustion chamber having the ignition plug and cannot be performed.

即ち内燃機関の歴史上に不可能とされフオ−ドプロコ・三菱GDIトヨタD4が失敗している理想的層状燃焼が本噴射燃料の微細化と燃焼容積部の二段構成と吸気空気スワ−ルの強化により300年を経過した今日に於いて既述の3条件の構成により初めて層状給気燃焼の成果が立証される事になる。この層状燃焼方式は使用燃料の多様化や大気環境の改善や燃料資源の節減や気候変動因であるCO2の抑制にも有効な大きな作用効果を有している。In other words, the ideal stratified combustion, which is impossible in the history of the internal combustion engine and has been failed by Prop Proco and Mitsubishi GDI Toyota D4, is the refinement of the injected fuel, the two-stage structure of the combustion volume, and the intake air swirl. Today, after 300 years have passed since the strengthening, the result of the stratified charge combustion is proved for the first time by the configuration of the three conditions described above. This stratified combustion system has a large effect that is effective for diversifying the fuel used, improving the air environment, reducing fuel resources, and suppressing CO2 which is a cause of climate change.

本発明機関の透視図Perspective view of the engine of the present invention 本発明機関の部品配置図Parts layout of the engine 本発明の吸気弁と弁座部Intake valve and valve seat of the present invention 本発明の吸気展開図Intake developed view of the present invention 本発明のEFIノズル図EFI nozzle diagram of the present invention 本発明のピン型ノズル図Pin type nozzle diagram of the present invention

以下、本発明の実施形態を燃料直噴方法で説明する。
燃料直噴方式においては図(1)の如くヘッド部は上層下層の二段構造の燃焼容積部(2)として設けられその略上部中央域にピン大径短ノズル(3)が配備され吸気弁(4)(5)や排気弁(6)が下層部に図1や図2の如く配備されている。
Hereinafter, an embodiment of the present invention will be described by a fuel direct injection method.
In the direct fuel injection system, as shown in FIG. 1 (1), the head portion is provided as a combustion volume portion (2) having a two-stage structure in an upper layer and a lower layer, and a pin large-diameter short nozzle (3) is provided in the substantially upper central region. (4) (5) and the exhaust valve (6) are arranged in the lower layer as shown in FIGS.

この吸気弁は図3に示す如く弁と弁座部(7)により気筒(8)内に供給する空気流れの方向を矢印(A)で示す如く直噴ノズルや点火栓(9)方向とすべく空気流れの方向(10)を弁座部とリフトで変える構造でありノズルや電極部の冷却を図り噴射燃料群の微細化や層状化や分割噴射作用を電子制御部(11)の指示により実行するのである。In this intake valve, as shown in FIG. 3, the direction of the air flow supplied into the cylinder (8) by the valve and the valve seat (7) is set to the direction of the direct injection nozzle or spark plug (9) as shown by the arrow (A). The direction of air flow (10) is changed by the valve seat and lift as much as possible, and the nozzle and electrode parts are cooled to make the injected fuel group finer, stratified, and divided injections as directed by the electronic control unit (11). Do it.

本発明による大径短ピン型ノズルは図6の拡大図で示す如くに大径ピン(3)とピンホルダ−部(12)との小間隙開閉部(13)よりコモンレ−ル(14)や電子制御で調圧された燃料が微薄状(15)に噴出し燃料群は大径で短く構成したピン部の側壁部(16)に必然的に衝突し(B)のごとく微細に噴霧化し慣徹性は抑制されて拡散展開する事になる。As shown in the enlarged view of FIG. 6, the large-diameter short pin type nozzle according to the present invention has a common rail (14) and an electronic device through a small gap opening / closing portion (13) between the large-diameter pin (3) and the pin holder portion (12). The fuel regulated by the control is ejected in a thin state (15), and the fuel group inevitably collides with the side wall portion (16) of the pin portion having a large diameter and a short configuration, and is atomized finely as shown in (B). The sex will be suppressed and diffused.

この衝突作用や反作用による微薄燃料噴流群は容易に***微細化されて噴霧群となり空気との混合気化の促進と共に円錐状噴霧群が燃焼室内に展開され火花点火による理想的な火炎伝播条件で燃焼が開始され完結するのである。
大径でありながら短く構成したピンの側面壁部(16)に衝突する微薄噴流群は当然ながら物理の法則により入射角や反射条件で拡散が異なるも衝突する側面の形状により微薄燃料群は***微細化し燃料群は必然的に微薄燃料群より***して微細化し拡散燃料群は多様な噴霧パタ−ンB(17)となり気筒内空気との混合接触条件が進展する、従って最適な衝突側面形状は面の傾斜角度により作用は変化するも完全的燃焼条件が空気スワ−ル強化による混合作用で促進されるのである。
The thin fuel jets caused by this collision and reaction are easily split and refined to become sprays, and the conical sprays are developed in the combustion chamber with the promotion of gas mixture with air and burned under ideal flame propagation conditions by spark ignition. Is started and completed.
Although the thin jet group that collides with the side wall (16) of the pin, which has a large diameter but a short length, of course, the diffusion of the thin fuel group is divided due to the shape of the colliding side surface, although the diffusion varies depending on the incident angle and reflection conditions according to the laws of physics The refined fuel group is inevitably divided from the fine fuel group and refined, and the diffused fuel group becomes various spray patterns B (17), and the mixed contact condition with the air in the cylinder advances. Although the action changes depending on the inclination angle of the surface, the complete combustion condition is promoted by the mixing action by the air swirl strengthening.

内燃機関の省エネ低公害化は全人類のニ−ズであるがこの目的を達成するには先ず噴射燃料を微薄から微細化し空気との混合による前提条件が完全的燃焼条件に必要でありホ−ル噴流では微薄や微細化手段は物理的に不可能なのである。
本発明は20年前に開発したOSKA(大西衝突拡散技術)を基に小型内燃機関の省エネ低公害化に加えコストの低減を図りたる完全燃焼の構成に必要な技術であり将来的に有望視されるガス燃料の使用を踏まえて構成した燃料噴射ノズルによる新規な燃焼システムである。
Reducing energy consumption and reducing pollution in internal combustion engines is a need for all mankind. To achieve this goal, the preconditions of mixing fuel with finely injected fuel are necessary for complete combustion conditions. It is physically impossible for the jet to be thin and fine.
The present invention is a technology that is necessary for the configuration of complete combustion to reduce the cost in addition to energy saving and low pollution of small internal combustion engines based on OSKA (Onishi collision diffusion technology) developed 20 years ago. It is a novel combustion system with a fuel injection nozzle constructed based on the use of gas fuel.

従って本燃焼技術によれば人類唯一の生存基盤であり共有財産でもある地球の文明構築原動力として活動してきた内燃機関は燃料資源消費と排気で大気環境を汚染してきた負の問題は抜本的に改善が可能となる。内燃機関の性能が噴射燃料群の微細化と空気との混合による完全的燃焼条件の構成でコスト安価に自在となれば地球の燃料資源保全や大気環境改善の将来的展望に明るさをもたらす事になる。Therefore, according to this combustion technology, the internal combustion engine that has been acting as the driving force for building the civilization of the earth, which is the only survival base and shared property of mankind, drastically improves the negative problems that have polluted the air environment due to fuel resource consumption and exhaust Is possible. If the performance of an internal combustion engine becomes flexible at a low cost with the configuration of complete combustion conditions by miniaturization of the injected fuel group and mixing with air, it will bring brightness to the future prospects of global fuel resource conservation and air environment improvement become.

内燃機関の燃焼技術は未完成ながらも化石燃料の消費は進み原油に変りCNG等のガス燃料がガソリンや軽重油に変る時代が近づいている、然し何れの燃料や燃焼でも省エネ低公害化目的は重要であり燃焼の完全化とコストの低減が課題である。
歴史的にも燃焼技術は永遠の課題として継承されて300年が経過したが未だに完全的燃焼条件の構築に到らず高圧縮比で熱効率の良いドイツディ−ゼル燃焼方式も未燃炭化煤塵PMによる大気汚染と健康の被害問題は現在でも解決されていない事実が如何に燃焼技術の改革が困難なのかを示している。
Combustion technology for internal combustion engines is incomplete, but fossil fuel consumption is progressing and turning to crude oil. Gas fuels such as CNG are changing to gasoline and light heavy oil, but the purpose of energy saving and low pollution is any fuel and combustion. It is important to complete combustion and reduce costs.
Historically, combustion technology has been handed down as an eternal issue, and 300 years have passed. However, the complete combustion conditions have not yet been established, and the German diesel combustion method with high compression ratio and good thermal efficiency is also unburned carbon dust PM The fact that the problem of air pollution and health damage caused by the problem has not been solved even today shows how difficult it is to reform the combustion technology.

これの原因は燃料燃焼技術の不合理が基にある、噴射燃料群の微細化技術の欠如も原因の1つであり、更に噴射燃料群と空気との混合条件の不充分も原因である、即ち燃料噴射用に超高圧(200MP)を使い8〜10ホ−ル噴孔で噴霧の拡散展開を図る現燃料直噴射方式の物理的矛盾と限界に未だ気付かない現代技術者の不勉強と創造力の欠如が最大の原因とも言える。The cause of this is one of the reasons for the lack of miniaturization technology of the injected fuel group based on the unreasonableness of the fuel combustion technology, and also the insufficient mixing conditions of the injected fuel group and air. In other words, the modern engineer who has not yet noticed the physical contradiction and limitations of the current direct fuel injection system that uses ultra-high pressure (200MP) for fuel injection and spreads and spreads spray at the 8-10 hole nozzles. It can be said that lack of power is the biggest cause.

ホ−ルノズルと超高圧による強い燃料噴流はピストンを破壊し衝突域に過濃な燃料域を構成する事を知りながら直噴ホ−ルノズルの基本問題の解決を疎かにしアルミピストンを鋳鋼製に変える未熟な思考ではディ−ゼルや内燃機関の排気炭化煤塵PM問題の解決は出来ない。この問題を解決するには先ず噴射燃料群を中低圧力で微細化し多方向に拡散展開する噴射ノズル技術の開発が必要であり加えて空気との混合条件の構成や燃焼室二段構造の重要性に早く気付く必要がある。While knowing that the strong fuel jet due to the hole nozzle and ultra-high pressure destroys the piston and forms a rich fuel area in the collision area, the solution to the basic problem of the direct injection hole nozzle is neglected and the aluminum piston is changed to cast steel Inexperienced thinking cannot solve the problem of diesel PM and exhaust charcoal PM in internal combustion engines. To solve this problem, it is necessary to develop an injection nozzle technology that refines the injected fuel group at medium and low pressures and diffuses and expands it in multiple directions. In addition, the composition of the mixing conditions with air and the importance of the two-stage combustion chamber structure are important. It is necessary to notice sex early.

燃料は固体でも液体でも微細化して空気との混合条件を促進すれぱ完全燃焼条件の構成が可能となる、先ず燃料を微薄化してから微細化を図り空気との混合を促進して層状的や分割的に燃焼条件を構成すれば完全燃焼の構築に近づく事になる。
然しホ−ルノズル噴流を微細化する技術は世界の企業が300年研究しても解けない問題でありこのホ−ル噴流特性に早く気付かねば改善は不可能なのである。
Fuels can be refined in solid or liquid form to promote mixing conditions with air, so that complete combustion conditions can be configured.First, the fuel is thinned and then refined to promote mixing with air. If the combustion conditions are divided, the construction of complete combustion will be approached.
However, the technology for refining the hole nozzle jet is a problem that cannot be solved even if companies around the world have studied for 300 years, and improvement cannot be achieved unless the hole jet characteristics are noticed quickly.

燃料が化石原油からバイオ燃料やガス燃料に移行する今日こそ既存の超高圧とホ−ル噴孔ノズルの特性による矛盾した燃料噴射燃焼条件の実態を知り1日も早く現ディ−ゼルの超高圧とホ−ル噴射システムを継続するドイツボッシュ技術から脱却し新しい合理的な燃焼技術を創造する必要がある。Today, when the fuel moves from fossil crude oil to biofuel and gas fuel, it is time to know the actual conditions of the existing ultra-high pressure and the contradictory fuel injection and combustion conditions due to the characteristics of the hole nozzles. It is necessary to move away from the German Bosch technology that continues the hole injection system and create a new rational combustion technology.

大径短ピン型ノズルの燃料微薄微細化技術や微薄溝状ノズルでの空気との完全燃焼条件によれば燃焼の不完全で生成されていた未燃炭化煤塵やPMのエネルギ−は当然燃焼に活用され熱効率は向上する。また歴史的に困難とされているディ−ゼル燃焼による炭化煤塵PM問題も合理的な完全的燃焼技術によれば煤塵のエネルギ−は熱として活用された後で灰化処理が可能な事から地球環境も改善されるのであり更にディ−ゼルより熱効率の低いガソリン機関や多種燃料使用機関もエンドガスノッキングの発生で封じられていた機関の高圧縮比化燃焼が火花点火で可能となり熱効率をディ−ゼルの如くに高めることも出来るのである。According to the fuel thinning technology of the large diameter short pin type nozzle and the complete combustion conditions with air in the fine grooved nozzle, the unburned carbonized dust and PM energy generated due to incomplete combustion is naturally burnt. It is utilized and heat efficiency is improved. In addition, the PM problem of carbonization dust caused by diesel combustion, which has been regarded as historically difficult, can be ashed after the dust energy is used as heat according to a rational and complete combustion technology. The environment is also improved, and even gasoline engines and multi-fuel engines that have lower thermal efficiency than diesel engines are capable of high compression ratio combustion of engines that have been sealed due to the occurrence of end gas knocking, making it possible to reduce thermal efficiency. It can be raised like a zel.

自動車用機関として多用されているEFIノズルは図(5)の如く多層の微薄間隙とし現用のノズルと燃焼の効果を比較すればその気化混合による微細化効果で点火栓に濡れがなく失火が解消されてガソリン以外の多様な燃料の使用も可能となる。
機関の負荷が要求する瞬時多量の微細燃料群の供給条件に応えうる新規なノズル技術と二段燃焼室と吸気スワ−ル強化の3条件のどれかが欠如しても究極的なEFI燃焼方法による完全燃焼技術の開発は出来ないのである。
The EFI nozzle, which is widely used as an engine for automobiles, has a multi-layered thin gap as shown in Fig. (5). If the effect of combustion is compared with that of the current nozzle, the spark plug does not get wet due to the refinement effect of vaporization and mixing eliminates misfire. In addition, various fuels other than gasoline can be used.
The ultimate EFI combustion method even if any of the three conditions of the new nozzle technology, the two-stage combustion chamber, and the intake swirl strengthening that can meet the supply conditions of the instantaneous large amount of fine fuel group required by the engine load is missing It is not possible to develop a complete combustion technology by.

特に本内燃機関の完全的燃焼技術は地球温暖化の現因ともされているCO2の処理も可能な技術である、大気清浄化に有効な各種の触媒機能を煤塵で損ずる事なく、煤塵を燃焼灰化で処理を可能とする技術でありCO2を捕捉して処理する事が出来ることからこのCO2低減効果は地球の大気環境や気候変動因の悪化を防止し大気環境の改善に資する大きな役割を果たす燃焼技術なのである。In particular, the complete combustion technology of this internal combustion engine is a technology that can treat CO2, which is also considered to be the cause of global warming. Combustion of dust without impairing various catalytic functions effective for air purification with dust. Because it is a technology that enables processing by ashing and CO2 can be captured and processed, this CO2 reduction effect plays a major role in preventing the deterioration of the global atmospheric environment and climate change factors and contributing to the improvement of the atmospheric environment. It is a combustion technology that fulfills.

人類生存の唯一の基盤であり人間生活に必要な熱エネルギ−や気候変動因とされているCO2のコントロ−ルを可能とする本燃焼技術はそのヒントを早期に世界に開示し更なる技術開発の促進に世界の門戸を開くべく思慮しているが日本の国民として発明者として本燃焼技術が国益地球益に資する事を願っている。This combustion technology that enables the control of CO2 that is the only foundation for human survival and the thermal energy necessary for human life and climate change is disclosed to the world at an early stage and further technology development. As a Japanese citizen, I hope that this combustion technology will contribute to the global interests of the nation as an inventor.

付号の説明Explanation of number

1 燃焼容積部
2 機関ヘッド部
3 ピン大径短ノズル
4 吸気弁
5 吸気弁
6 排気弁
7 弁座部
8 気筒
9 点火栓
10 空気流れ方向
11 電子制御部
12 ピンノズルホルダ部
13 電磁開閉部
14 ピストン
15 微細状噴流
16 ピン側面壁部
17 EFI用大噴口ノズル
18 上下二段構造燃焼室
19 上部燃焼容積部
20 反転混合気流れ
A 噴霧パタ−ン
B 噴霧パターン
DESCRIPTION OF SYMBOLS 1 Combustion volume part 2 Engine head part 3 Pin large diameter short nozzle 4 Intake valve 5 Intake valve 6 Exhaust valve 7 Valve seat part 8 Cylinder 9 Spark plug 10 Air flow direction 11 Electronic control part 12 Pin nozzle holder part 13 Electromagnetic switching part 14 Piston 15 Fine jet 16 Pin side wall 17 Large nozzle nozzle 18 for EFI Upper and lower two-stage combustion chamber 19 Upper combustion volume 20 Inverted mixture flow A Spray pattern B Spray pattern

Claims (3)

液体燃料内燃機関の燃焼方式を、噴射燃料群の微薄微細化ノズルと、燃焼室の上下二段構造と、吸入空気の指向的スワ−ル強化との3条件の整合により燃焼を促進し、噴射燃料の圧力や分割噴射を電子制御やメカニカルで容易として触媒の作用によりNOxやCO2の処理を進展させ機関の低負荷域熱効率に有利な層状燃焼や高圧縮比化で熱効率を高める燃焼技術により内燃機関の全運動範囲の省エネ・低公害化目的を供給燃料の微薄微細化と燃焼室構造と空気スワ−ル強化との3条件の整合で構成する内燃機関の完全燃焼方法。Combustion of liquid fuel internal combustion engine is promoted by matching the three conditions of the finely-thinned nozzles of the injected fuel group, the upper and lower two-stage structure of the combustion chamber, and the directional swirl enhancement of the intake air. Fuel pressure and split injection are facilitated by electronic control and mechanical processing, and the processing of NOx and CO2 is advanced by the action of the catalyst, so that internal combustion is achieved by stratified combustion that is advantageous for the low load region thermal efficiency and combustion technology that increases the thermal efficiency by increasing the compression ratio A complete combustion method for an internal combustion engine, which is composed of the matching of the three conditions of finer fuel supply, combustion chamber structure, and air swirl for the purpose of energy saving and low pollution in the entire range of motion of the engine. ガス燃料火花点火内燃機関に於いて、給気吸入弁と弁座部の加工組合せで給気流れを指向的に強化し、各吸気路を二段構造ヘッド部の下段に設けガス噴射用EFIノズルを主吸気路内に配備して上部燃焼室に対持させ微細な燃料混合気群を吸気と共に多量に供給し得る手段を電子制御開閉による分割噴射で実行し、ガス混合気群を上部燃焼容積部内に充填した後に反転すべくにEFI用ノズルの分割噴射で行い、給気指向的スワ−ル流れの強化を電子制御の先行による端域ガス排除で端域ガスに因るノッキングを抑制し機関の高圧縮比化と混合気群の完全燃焼を計る方式を、ガス燃焼機関の吸気弁リフトの可変による空気スワ−ルの強化と薄膜多層EFIノズルの分割噴射と上部燃焼室内混合気群の層状燃焼条件で構成しガス燃料群と空気との混合による層状燃焼や希薄燃焼で機関の熱効率を高め製造コストと排気有害成分の低減を図るEFI内燃機関の省エネ低コスト低公害完全燃焼方法。In a gas fuel spark ignition internal combustion engine, the supply flow is directionally enhanced by the combination of processing of the intake valve and the valve seat, and each intake passage is provided at the lower stage of the two-stage head part to provide an EFI nozzle for gas injection Is installed in the main intake passage and held in the upper combustion chamber to supply a large amount of fine fuel mixture together with the intake air by means of split injection by electronically controlled opening and closing, and the gas mixture is set in the upper combustion volume In order to reverse after filling in the part, it is performed by split injection of the nozzle for EFI, and reinforcement of the supply air-oriented swirl flow is suppressed by the end region gas elimination by the advance of electronic control to suppress knocking due to the end region gas. A method for measuring high compression ratio and complete combustion of the air-fuel mixture group, strengthening the air swirl by changing the intake valve lift of the gas combustion engine, split injection of the thin film multilayer EFI nozzle, and stratified combustion of the air-fuel mixture group in the upper combustion chamber Gas fuel group and air Energy saving cost low pollution complete combustion method EFI engine to reduce the harmful exhaust components and manufacturing costs increase the thermal efficiency of the engine by stratified combustion and lean combustion by mixing. 前記特許請求項1並びに請求項2記載の完全燃焼方法を燃料微薄微細化と二段燃焼室と空気との混合燃焼方式で燃焼を完全化し、EGR混合スワ−ルにより端域混合気の排除や燃焼最高温度やエンドガスノッキングを制御して機関の高圧縮比化を図り、NOxを低減する燃焼の層状化や希薄燃焼により多種多様な燃料の使用を火花点火で可能とし、完全的燃焼によりボイラ−や内燃機関が排出するCO2も除去しうる燃焼技術により機関の低負荷域熱効率を完全燃焼により高め製造コストやNOxやCO2の触媒処理を容易とした内燃機関の完全燃焼方法。The complete combustion method according to claim 1 and claim 2 completes combustion by making the fuel finer and finer and the mixed combustion method of the two-stage combustion chamber and air, and the EGR mixed swirl eliminates the end region mixture. By controlling the maximum combustion temperature and end gas knocking to increase the compression ratio of the engine, it is possible to use a wide variety of fuels with spark ignition through stratification and lean combustion that reduces NOx, and boilers with complete combustion -A complete combustion method for an internal combustion engine in which the combustion efficiency that can also remove CO2 emitted from the internal combustion engine increases the low-load region thermal efficiency of the engine by complete combustion, thereby facilitating the manufacturing cost and the catalyst treatment of NOx and CO2.
JP2014109534A 2014-05-09 2014-05-09 Combustion method of internal combustion engine Pending JP2015214963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014109534A JP2015214963A (en) 2014-05-09 2014-05-09 Combustion method of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014109534A JP2015214963A (en) 2014-05-09 2014-05-09 Combustion method of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015214963A true JP2015214963A (en) 2015-12-03

Family

ID=54752053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109534A Pending JP2015214963A (en) 2014-05-09 2014-05-09 Combustion method of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2015214963A (en)

Similar Documents

Publication Publication Date Title
CN106164439B (en) Method for injecting fuel into a combustion chamber of an internal combustion engine operating in a single-fuel or multi-fuel mode
US9885277B2 (en) Compression-ignition direct-injection combustion engine and fuel injection method for same
JP5257054B2 (en) Spark ignition direct injection engine
CN102251897A (en) Multi-fuel premixing combustion system for internal combustion engine
CN104454190B (en) Intra-cylinder direct injection double gas fuel ignition type combustion and control device
JP6591994B2 (en) Gaseous fuel combustion system for internal combustion engines
CN102182608A (en) Combustion system of gasoline direct injection engine and control method thereof
CN110953067B (en) Engine and double-jet combustion method thereof
JP2008151000A (en) Internal combustion engine
CN106640455A (en) Cylinder cover combustion system of middle-arranged oil atomizer for direct-injection gasoline engine
KR20170070750A (en) Gasolin-diesel complex combustion engine
JP2009215960A (en) Internal combustion engine
EP3377741B1 (en) Internal combustion engine and method of operating it
CN214836690U (en) System for reducing fuel consumption of rotary engine
JP2015214963A (en) Combustion method of internal combustion engine
WO2012114482A1 (en) Internal combustion engine control system
US10871101B2 (en) Internal-combustion engine with direct fuel injection in the direction of the intake gas motion
JP6402753B2 (en) Combustion chamber structure of direct injection engine
CN201661365U (en) Mechanical type fueling device for internal combustion engine
Ganesan Combustion Aspects of Non-Conventional Reciprocating Internal Combustion Engines
JP2015075094A (en) Combustion method of internal combustion engine
JP2011236882A (en) Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine
JP2008163918A (en) Combustion method for cylinder injection internal combustion engine, and cylinder injection internal combustion engine
JP6296114B2 (en) Engine control device
JP2016125479A (en) Complete combustion method by lean and fine molecular mixing of combustion engine fuel