JP2015214592A - Temperature-responsive polymer and method for manufacturing the same - Google Patents

Temperature-responsive polymer and method for manufacturing the same Download PDF

Info

Publication number
JP2015214592A
JP2015214592A JP2012199800A JP2012199800A JP2015214592A JP 2015214592 A JP2015214592 A JP 2015214592A JP 2012199800 A JP2012199800 A JP 2012199800A JP 2012199800 A JP2012199800 A JP 2012199800A JP 2015214592 A JP2015214592 A JP 2015214592A
Authority
JP
Japan
Prior art keywords
temperature
general formula
responsive polymer
formula
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012199800A
Other languages
Japanese (ja)
Inventor
穣 山下
Minoru Yamashita
穣 山下
建 田保橋
Tatsuru Tabohashi
建 田保橋
木村 良晴
Yoshiharu Kimura
良晴 木村
隆史 青木
Takashi Aoki
隆史 青木
嘉貢 西野
Yoshitsugu NISHINO
嘉貢 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2012199800A priority Critical patent/JP2015214592A/en
Priority to PCT/JP2013/074528 priority patent/WO2014042186A1/en
Publication of JP2015214592A publication Critical patent/JP2015214592A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/603Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing oxygen in addition to the carbonamido oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amphoteric ion polymer which is an amino acid residue-containing polymer also having properties of a temperature-responsive polymer.SOLUTION: A temperature-responsive polymer is represented by the general formula (I), where the content ratio of a constituent unit (a) to a constituent unit (b) is, as the molar ratio, 60:40 to 75:25, and n is from 20 to 500. In the formula, Ais a specific amino acid residue; Bis a functional group which is either an amide group, N-substituted amide group, ester group, carboxyl group or hydroxyalkoxycarbonyl group; and Aand Bare each independently a hydrogen atom, methyl group, or ethyl group.

Description

本発明は、温度応答性ポリマーに関する。本発明は、特に、特定のアミノ酸残基を有する両性イオン型モノマーと特定のアクリル系モノマーとのコポリマーを含む、温度応答性ポリマーに関する。 The present invention relates to a temperature-responsive polymer. The present invention particularly relates to a temperature-responsive polymer including a copolymer of a zwitterionic monomer having a specific amino acid residue and a specific acrylic monomer.

温度応答性ポリマーは、温度変化により、溶媒中において非溶解状態(コロイド状態)と溶解状態とに可逆的に変化できるポリマーである。温度応答性ポリマーとしては、ある温度以下になると可溶化する下限限界溶液温度(Lower Critical Solution Temperature, LCST)型の温度応答性ポリマーと、ある温度以上になると可溶化する上限限界溶液温度(Upper Critical Solution Temperature, UCST)型の温度応答性ポリマーとがある。特にUCST型の温度応答性ポリマーは、常温(25℃)で固体で、体内に入ると溶解するので、薬物の徐放性担体として使用することができ、ドラッグデリバリーシステム(DDS)の分野への応用が検討されている。
一方、ポリ(2-メタアクリロイルオキシエチル ホスホリルクロライン (MAC))に代表される両性イオン型ポリマーは、蛋白質の凝集を抑制する作用並びに血球等の接着を抑制する、等の作用があり、人工血管や人工心臓等の血液と接触する部位の人工臓器材料として利用されてきた。
ここで、上記温度応答性ポリマーの特性と両性イオン型ポリマーの特性とを併せ持つポリマーの検討は行われているが(非特許文献3及び4参照)、アミノ酸残基を有するポリマーが、温度応答性且つ両性イオン性を示すポリマーの検討は行われていない。
A temperature-responsive polymer is a polymer that can reversibly change between a non-dissolved state (colloidal state) and a dissolved state in a solvent by changing the temperature. The temperature-responsive polymer is a lower critical solution temperature (LCST) type temperature-responsive polymer that is solubilized when the temperature is lower than a certain temperature, and the upper critical solution temperature (Upper Critical solution temperature that is solubilized when the temperature is higher than a certain temperature). Solution Temperature, UCST) type temperature responsive polymer. In particular, the UCST-type temperature-responsive polymer is solid at room temperature (25 ° C) and dissolves when entering the body, so it can be used as a sustained-release carrier for drugs and can be used in the field of drug delivery systems (DDS). Applications are being studied.
On the other hand, zwitterionic polymers represented by poly (2-methacryloyloxyethyl phosphoryl chlorin (MAC)) have an action of suppressing protein aggregation and adhesion of blood cells, etc. It has been used as an artificial organ material for a portion that comes into contact with blood such as a blood vessel or an artificial heart.
Here, a polymer having both the characteristics of the temperature-responsive polymer and the characteristics of the zwitterionic polymer has been studied (see Non-Patent Documents 3 and 4). In addition, a polymer showing zwitterionic properties has not been studied.

特開2009−171853号公報JP 2009-171853 A 特開2003−49088号公報JP 2003-49088 A

Yu-Ju ShihおよびYung Chang, Langmuir 2010, 26(22), 17286-17294頁Yu-Ju Shih and Yung Chang, Langmuir 2010, 26 (22), 17286-17294 Hiroyuki Sasaseら, Makromol. Chem., Rapid Commun. 13, 577-581頁 (1992年)Hiroyuki Sasase et al., Makromol. Chem., Rapid Commun. 13, 577-581 (1992) L. Chenら、Polymer vol.41、141〜147頁、 (2000年)L. Chen et al., Polymer vol.41, 141-147, (2000) D. N. Schulzら、Polymer vol.27、1734〜1742頁、(1986年)D. N. Schulz et al., Polymer vol.27, pp. 1734-1742, (1986)

本発明は、従来技術では採用されたことのない、両性イオン型ポリマーと温度応答性ポリマーとの性質を併せ持つアミノ酸残基含有ポリマーを提供することを目的とする。
本発明は、また、当該温度応答性ポリマーの特性と両性イオン型ポリマーの特性とを併せ持つアミノ酸残基含有ポリマーを用いることにより、適切な生体適合性を発現しつつ、温度変化に応答した新規DDS担体を提供することを目的とする。
本発明は、更に、アルギニンのようなアミノ酸が本来有する蛋白質の凝集抑制作用や、水に対して難溶性である薬物を可溶化する作用を、該アミノ酸残基を有するポリマーを用いることにより、より効果的に発現させることを目的とする。
An object of the present invention is to provide an amino acid residue-containing polymer having properties of both a zwitterionic polymer and a temperature-responsive polymer, which has not been adopted in the prior art.
The present invention also provides a novel DDS that responds to changes in temperature while expressing appropriate biocompatibility by using an amino acid residue-containing polymer that has both the characteristics of the temperature-responsive polymer and the characteristics of the zwitterionic polymer. The object is to provide a carrier.
The present invention further provides a protein aggregation suppressing action of an amino acid such as arginine and an action of solubilizing a drug that is hardly soluble in water by using a polymer having the amino acid residue. It aims at making it express effectively.

本発明者らは、上記課題を解決すべく鋭意研究した結果、両性イオン型のアミノ酸残基を有するモノマー由来の構成単位と、アクリル系モノマー由来の構成単位とを含む特定のコポリマーが、良好な温度応答性と生体適合性とを両立できることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の内容を含み得るものである。
As a result of intensive studies to solve the above problems, the present inventors have found that a specific copolymer containing a structural unit derived from a monomer having a zwitterionic amino acid residue and a structural unit derived from an acrylic monomer is good. It has been found that both temperature responsiveness and biocompatibility can be achieved, and the present invention has been completed.
That is, the present invention can include the following contents.

[1]以下の一般式(I)
(式(I)中、A1は、以下の一般式(II-1)又は(II-2)で表されるアミノ酸残基であり、B1は、以下の一般式(III-1)又は(III-2)(但し、式(III-1)中、Rは、-NH2、-NR1R2又は-OR3であり、R1〜R3は、それぞれ独立に-H、C1~10のアルキル基又はC2~10のアルケニル基であり、式(III-2)中、R4は、C1~10のアルキレン基又はC2~10の不飽和アルキレン基である)で表される官能基であり、A2及びB2は、それぞれ独立して−H、−CH3又は−C25であり、構成単位(a):構成単位(b)はモル比で60:40〜75:25であり、nは20〜500である)





で表される、温度応答性ポリマー。
[2]前記構成単位(a):構成単位(b)のモル比が65:35〜70:30である、[1]に記載の温度応答性ポリマー。
[3]前記A1が前記一般式(II-1)で表されるアミノ酸残基であり、A2が−Hである、[1]又は[2]に記載の温度応答性ポリマー。
[4]前記Bが前記一般式(III-1)(式(III-1)中、Rが
である)で表される官能基であり、B2が−Hである、[1]〜[3]のいずれか1項に記載の温度応答性ポリマー。
[5]水と、[1]〜[4]のいずれか1項に記載の温度応答性ポリマーとを含み、pHが3〜9である、温度応答性ポリマー組成物。
[6][1]〜[4]のいずれか1項に記載の温度応答性ポリマーの製造方法であって、
(1)リジン又はアルギニンをアシル化して一般式(IV):CH2=C(-R5)-R6(式(IV)中、R5は−H、−CH3又は−C25であり、R6は前記一般式(II-1)又は前記一般式(II-2)で表される基)で表されるアクリルアミド誘導体Aを調製する工程、及び
(2)前記アクリルアミド誘導体Aと、一般式(V):CH2=CH(-R7)-R8)(式(V)中、R7は−H、−CH3又は−C25であり、R8は前記一般式(III-1)又は前記一般式(III-2)で表される基)で表される化合物Bを重合し、前記温度応答性ポリマーを合成する工程、
を含むことを特徴とする方法。
[1] The following general formula (I)
(In formula (I), A 1 is an amino acid residue represented by the following general formula (II-1) or (II-2), and B 1 is the following general formula (III-1) or (III-2) (wherein, in formula (III-1), R is —NH 2 , —NR 1 R 2 or —OR 3 , and R 1 to R 3 are each independently —H, C 1 -10 alkyl group or C 2-10 alkenyl group, and in formula (III-2), R 4 is a C 1-10 alkylene group or C 2-10 unsaturated alkylene group). A 2 and B 2 are each independently —H, —CH 3 or —C 2 H 5 , and the structural unit (a): the structural unit (b) is in a molar ratio of 60: 40-75: 25, n is 20-500)





A temperature-responsive polymer represented by
[2] The temperature-responsive polymer according to [1], wherein the molar ratio of the structural unit (a) to the structural unit (b) is 65:35 to 70:30.
[3] The temperature-responsive polymer according to [1] or [2], wherein A 1 is an amino acid residue represented by the general formula (II-1), and A 2 is —H.
[4] The B 1 is represented by the general formula (III-1) (in the formula (III-1), R is
The temperature-responsive polymer according to any one of [1] to [3], wherein B 2 is —H.
[5] A temperature-responsive polymer composition comprising water and the temperature-responsive polymer according to any one of [1] to [4], having a pH of 3 to 9.
[6] A method for producing a temperature-responsive polymer according to any one of [1] to [4],
(1) A lysine or arginine is acylated to give a general formula (IV): CH 2 = C (-R 5 ) -R 6 (wherein R 5 is -H, -CH 3 or -C 2 H 5 R 6 is a step of preparing an acrylamide derivative A represented by the general formula (II-1) or the group represented by the general formula (II-2)), and (2) the acrylamide derivative A and general formula (V): in CH 2 = CH (-R 7) -R 8) ( formula (V), R 7 is -H, a -CH 3 or -C 2 H 5, R 8 is the general A step of polymerizing the compound B represented by the formula (III-1) or the group represented by the general formula (III-2) to synthesize the temperature-responsive polymer;
A method comprising the steps of:

本発明のコポリマーは、良好な上限限界溶液温度型の温度応答性を有する。
特に、本発明は、アルギニン残基のような両性イオン型のアミノ酸残基を有するモノマー由来の構成単位を含むコポリマーであるので、蛋白質の凝集抑制作用、水に対して難溶性である薬物を可溶化する作用、及び生体適合性を有することが理解できる。
また、上記生体適合性を有することから、本発明のコポリマーは、海水を淡水化するために使用される水処理膜の表面修飾剤としても応用できる。
さらに、本発明のコポリマーは、生体適合性を有すると共に温度変化に応答し得る新規DDS担体としても使用できる。
The copolymer of the present invention has a good upper limit solution temperature type temperature response.
In particular, since the present invention is a copolymer containing a constitutional unit derived from a monomer having a zwitterionic amino acid residue such as an arginine residue, it is possible to use a drug that inhibits protein aggregation and is hardly soluble in water. It can be seen that it has a solubilizing action and biocompatibility.
Moreover, since it has the said biocompatibility, the copolymer of this invention can be applied also as a surface modifier of the water treatment membrane used in order to desalinate seawater.
Furthermore, the copolymers of the present invention can be used as novel DDS carriers that are biocompatible and can respond to temperature changes.

合成例1の1H−NMRスペクトル(溶媒:D2O) 1 H-NMR spectrum of Synthesis Example 1 (solvent: D 2 O) 合成例2の1H−NMRスペクトル(溶媒:D2O) 1 H-NMR spectrum of Synthesis Example 2 (solvent: D 2 O) 合成例3の1H−NMRスペクトル(溶媒:メタノール-d6 + トリフルオロ酢酸(TFA)-d6) 1 H-NMR spectrum of Synthesis Example 3 (solvent: methanol-d6 + trifluoroacetic acid (TFA) -d6) 表10中のポリマー濃度1.0質量%および2.0質量%の例の透過率Transmittance of examples with polymer concentrations of 1.0% and 2.0% by weight in Table 10

[1]温度応答性ポリマー
本発明の態様の一つは、以下の一般式(I)で表される温度応答性ポリマーである。
以下、一般式(I)の各官能基、各構成単位等について詳細に説明する。
[1] Temperature-responsive polymer One aspect of the present invention is a temperature-responsive polymer represented by the following general formula (I).
Hereafter, each functional group of general formula (I), each structural unit, etc. are demonstrated in detail.

上記一般式(I)中、A1は、以下の一般式(II-1)又は(II-2)で表されるアミノ酸残基である。


式(II-1)は、アルギニン由来のアミノ酸残基であり、式(II-2)は、リジン由来のアミノ酸残基である。各式の官能基は、カルボン酸残基:-COO-及びアミノ基:-NH3 +の双方を有するので、両性イオン型ポリマーとなり得る。A1として特に好ましくは、式(II-1)の官能基である。
2は、それぞれ独立して−H、−CH3又は−C25であり、好ましくは、−Hである。
In the general formula (I), A 1 is an amino acid residue represented by the following general formula (II-1) or (II-2).


Formula (II-1) is an amino acid residue derived from arginine, and Formula (II-2) is an amino acid residue derived from lysine. Since the functional group of each formula has both a carboxylic acid residue: —COO 2 and an amino group: —NH 3 + , it can be a zwitterionic polymer. A 1 is particularly preferably a functional group of the formula (II-1).
A 2 is independently —H, —CH 3 or —C 2 H 5 , preferably —H.

上記一般式(I)中、B1は、以下の一般式(III-1)又は(III-2)で表される官能基である。


ここで、上記式(III-1)中、Rは、-NH2、-NR1R2又は-OR3である。R1〜R3は、それぞれ独立に-H、C1~10のアルキル基又はC2~10のアルケニル基であり、好ましくは、-H、-CH3、-C2H5、-C3H7である。Rとして特に好ましくは、-NH2(式(III-1)はアクリルアミド残基)、
(式(III-1)はN,N-ジメチルアクリルアミド残基)又は-OH(式(III-1)はアクリル酸残基)で酸残基)である。
上記式(III-2)中、R4は、C1~10のアルキレン基又はC2~10の不飽和アルキレン基、好ましくは、C1~5のアルキレン基である。R4として特に好ましくは、-C2H5-(式(III-2)はメタクリル酸2-ヒドロキシエチル(HEMA)の残基)である。
2は、それぞれ独立して−H、−CH3又は−C25であり、Bが式(III-1)であるときは−Hが好ましく、Bが式(III-2)であるときは−CH3が好ましい。
In the general formula (I), B 1 is a functional group represented by the following general formula (III-1) or (III-2).


Here, in the formula (III-1), R is —NH 2 , —NR 1 R 2 or —OR 3 . R 1 to R 3 are each independently -H, a C 1-10 alkyl group or a C 2-10 alkenyl group, preferably -H, -CH 3 , -C 2 H 5 , -C 3 it is H 7. Particularly preferably as R, -NH 2 (formula (III-1) is an acrylamide residue),
(Formula (III-1) is an N, N-dimethylacrylamide residue) or -OH (formula (III-1) is an acrylic acid residue) and an acid residue).
In the above formula (III-2), R 4 is a C 1-10 alkylene group or a C 2-10 unsaturated alkylene group, preferably a C 1-5 alkylene group. R 4 is particularly preferably —C 2 H 5 — (the formula (III-2) is a residue of 2-hydroxyethyl methacrylate (HEMA)).
B 2 is independently —H, —CH 3 or —C 2 H 5. When B is the formula (III-1), —H is preferable, and B is the formula (III-2). when it is preferably -CH 3.

上記一般式(I)は、-CH2-C(-A1)(-A2)-で示される構成単位(a)と、-CH2-C(-B1)(-B2)-で示される構成単位(b)とを含む。本発明のコポリマーに含まれるこれら構成単位(a):構成単位(b)のモル比は、例えば60:40〜75:25、好ましくは、65:35〜70:30、より好ましくは、66:34〜68:32である。
上記一般式(I)のnは、例えば、20〜500、好ましくは20〜300、より好ましくは25〜250である。
上記一般式(I)で表すことができるコポリマーは、構成単位(a)及び(b)から構成されるランダム共重合体、ブロック共重合体、グラフト共重合体のいずれの構造であってもよい。該コポリマーの分子量は、例えば、5000〜50000、好ましくは7000〜20000、より好ましくは10000±1000〜2000程度である。
In the general formula (I), the structural unit (a) represented by -CH 2 -C (-A 1 ) (-A 2 )-and -CH 2 -C (-B 1 ) (-B 2 )- And a structural unit (b). The molar ratio of these structural units (a): structural units (b) contained in the copolymer of the present invention is, for example, 60:40 to 75:25, preferably 65:35 to 70:30, and more preferably 66: 34-68: 32.
N in the general formula (I) is, for example, 20 to 500, preferably 20 to 300, and more preferably 25 to 250.
The copolymer that can be represented by the general formula (I) may have any structure of a random copolymer, a block copolymer, and a graft copolymer composed of the structural units (a) and (b). . The molecular weight of the copolymer is, for example, about 5000 to 50000, preferably about 7000 to 20000, and more preferably about 10,000 ± 1000 to 2000.

上記一般式(I)で表すことができるコポリマーは、温度応答性ポリマー、より具体的には、ある温度以上になると可溶化する上限限界溶液温度(Upper Critical Solution Temperature, UCST)型の温度応答性ポリマーである。ここで、上限限界溶液温度は、公知の方法を用いて測定することができるが、通常、測定するべきポリマーを、水や有機溶媒等の溶媒に混合し、所定の温度における溶解性を観察することにより決定される。有機溶媒としては、例えば、メタノール、エタノール、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ホルムアルデヒド、エチレングリコール等が挙げられる。この際の溶媒とポリマーとの混合溶液のpHは、例えば、1〜11、好ましくは2〜10、より好ましくは3〜9である。上限限界溶液温度は、コポリマーを構成する構成単位の種類、分子量、重合形式(ランダム共重合体かブロック共重合体か等)にもよるが、通常30〜100℃、好ましくは35〜80℃、より好ましくは40〜70℃の範囲にあることが適当である。   The copolymer represented by the above general formula (I) is a temperature-responsive polymer, more specifically, an upper critical solution temperature (UCST) type temperature responsiveness that is solubilized at a certain temperature or higher. It is a polymer. Here, the upper limit solution temperature can be measured using a known method. Usually, the polymer to be measured is mixed with a solvent such as water or an organic solvent, and the solubility at a predetermined temperature is observed. Is determined by Examples of the organic solvent include methanol, ethanol, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), formaldehyde, ethylene glycol and the like. In this case, the pH of the mixed solution of the solvent and the polymer is, for example, 1 to 11, preferably 2 to 10, and more preferably 3 to 9. The upper limit solution temperature is usually 30 to 100 ° C., preferably 35 to 80 ° C., although it depends on the type of constituent unit constituting the copolymer, the molecular weight, and the polymerization type (whether it is a random copolymer or a block copolymer). More preferably, it is in the range of 40 to 70 ° C.

[2]温度応答性ポリマーの製造方法
本発明の一つの態様である上記温度応答性ポリマーは、(1)リジン又はアルギニンをアシル化して一般式(IV):CH2=C(-R5)-R6(式(IV)中、R5は−H、−CH3又は−C25であり、R6は前記一般式(II-1)又は前記一般式(II-2)で表される基)で表されるアクリルアミド誘導体Aを調製する工程、及び(2)前記アクリルアミド誘導体Aと、一般式(V):CH2=CH(-R7)-R8)(式(V)中、R7は−H、−CH3又は−C25であり、R8は前記一般式(III-1)又は前記一般式(III-2)で表される基)で表される化合物Bを重合し、前記温度応答性ポリマーを合成する工程、を含む方法により製造され得る。以下、温度応答性ポリマーの製造方法について具体的に説明する。
[2] Method for Producing Temperature Responsive Polymer The above temperature responsive polymer according to one embodiment of the present invention comprises (1) acylation of lysine or arginine to form a general formula (IV): CH 2 = C (-R 5 ) -R 6 (in the formula (IV), R 5 is -H, -CH 3 or -C 2 H 5 , and R 6 is represented by the general formula (II-1) or the general formula (II-2)). And (2) the acrylamide derivative A and the general formula (V): CH 2 = CH (-R 7 ) -R 8 ) (formula (V) R 7 is —H, —CH 3 or —C 2 H 5 , and R 8 is represented by the general formula (III-1) or the group represented by the general formula (III-2)). And polymerizing compound B to synthesize the temperature-responsive polymer. Hereinafter, the manufacturing method of a temperature-responsive polymer is demonstrated concretely.

まず、(1)の工程において、一般式(I)の構成単位(a)の由来となる成分を調製する。具体的には、リジン又はアルギニンをアシル化して一般式(IV):
CH2=C(-R5)-R6
(式(IV)中、R5は−H、−CH3又は−C25であり、R6は前記一般式(II-1)又は前記一般式(II-2)で表される基)
で表されるアクリルアミド誘導体Aを調製する。アクリルアミド誘導体Aとしては、例えば、アクリロイル L−アルギニン、メタクリロイル L−アルギニン、アクリロイル L−リジン、及び、メタクリロイル L−リジンを挙げることができる。なお、上記L−体の他、D−体、DL−体であってもよい。
次いで、(2)の工程において、当該アクリルアミド誘導体Aと、一般式(I)の構成単位(b)の由来となる成分とを重合する。具体的には、まず、一般式(V):CH2=CH(-R7)-R8)(式(V)中、R7は−H、−CH3又は−C25であり、R8は前記一般式(III-1)又は前記一般式(III-2)で表される基)で表される化合物Bを準備する。化合物Bとしては、例えば、アクリルアミド、N,N-ジメチルアクリルアミド(DMAAm)、アクリル酸、メタクリル酸2-ヒドロキシエチル(HEMA)等が挙げられる。さらに(1)の工程で得られたアクリルアミド誘導体Aと当該化合物Bとを重合することによって、前記温度応答性ポリマーを得る。ここで、重合は、通常公知のフリーラジカル重合、可逆的付加−開裂型連鎖(RAFT)重合、原子移動ラジカル(ATRP)重合を使用することができる。重合の際、開始剤として、例えば、アゾビスイソブチロニトリル(AIBN)などのアゾ系開始剤、過酸化ベンゾイル(BPO)、過硫酸アンモニウム(APS)を加えてもよい。
First, in the step (1), a component that is derived from the structural unit (a) of the general formula (I) is prepared. Specifically, lysine or arginine is acylated to give a general formula (IV):
CH 2 = C (-R 5 ) -R 6
(In the formula (IV), R 5 is —H, —CH 3 or —C 2 H 5 , and R 6 is a group represented by the general formula (II-1) or the general formula (II-2). )
The acrylamide derivative A represented by is prepared. Examples of the acrylamide derivative A include acryloyl L-arginine, methacryloyl L-arginine, acryloyl L-lysine, and methacryloyl L-lysine. In addition to the L-form, a D-form and a DL-form may be used.
Next, in the step (2), the acrylamide derivative A and a component that is derived from the structural unit (b) of the general formula (I) are polymerized. Specifically, first, the general formula (V): in CH 2 = CH (-R 7) -R 8) ( Formula (V), R 7 is -H, be -CH 3 or -C 2 H 5 , R 8 prepares a compound B represented by the general formula (III-1) or a group represented by the general formula (III-2). Examples of compound B include acrylamide, N, N-dimethylacrylamide (DMAAm), acrylic acid, 2-hydroxyethyl methacrylate (HEMA), and the like. Furthermore, the temperature-responsive polymer is obtained by polymerizing the acrylamide derivative A obtained in the step (1) and the compound B. Here, as the polymerization, generally known free radical polymerization, reversible addition-fragmentation chain (RAFT) polymerization, and atom transfer radical (ATRP) polymerization can be used. In the polymerization, for example, an azo initiator such as azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), or ammonium persulfate (APS) may be added as an initiator.

[3]温度応答性ポリマー組成物
本発明の別の態様は、上記温度応答性ポリマーを含む温度応答性ポリマー組成物である。当該温度応答性ポリマー組成物は、pHが、例えば、1〜11、好ましくは2〜10、より好ましくは3〜9の水溶液の形態であり得る。温度応答性ポリマー組成物は、好ましくは、温度応答性ハイドロゲルであり得る。温度応答性ハイドロゲルは、温度応答性ポリマーをポリマー架橋体の形態としたものであり、上限限界溶液温度未満では収縮し、上限限界溶液温度以上になると膨潤する性質を有する。このような特性を有する温度応答性ハイドロゲルは、薬物の徐放性担体として利用することができる。
温度応答性ポリマーを架橋して温度応答性ハイドロゲルを製造する方法は、公知のポリマーの架橋方法を利用することができる。例えば、特開平8−134146号明細書に開示されているように、溶媒中で、ラジカル開始剤と架橋剤との存在下反応させることによって温度応答性ポリマーを架橋し、温度応答性ハイドロゲルを得ることができる。溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)等であり、またラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)、架橋剤としてはN−メチレンビスアクリルアミド等を挙げることができる。
[3] Temperature-responsive polymer composition Another embodiment of the present invention is a temperature-responsive polymer composition containing the above-described temperature-responsive polymer. The temperature-responsive polymer composition may be in the form of an aqueous solution having a pH of, for example, 1 to 11, preferably 2 to 10, more preferably 3 to 9. The temperature responsive polymer composition may preferably be a temperature responsive hydrogel. The temperature-responsive hydrogel is obtained by forming a temperature-responsive polymer in the form of a polymer crosslinked body, and has a property of shrinking when the temperature is lower than the upper limit solution temperature and swelling when the temperature is higher than the upper limit solution temperature. The temperature-responsive hydrogel having such characteristics can be used as a sustained-release carrier for drugs.
As a method for producing a temperature-responsive hydrogel by crosslinking a temperature-responsive polymer, a known method for crosslinking a polymer can be used. For example, as disclosed in JP-A-8-134146, a temperature-responsive polymer is crosslinked by reacting in a solvent in the presence of a radical initiator and a crosslinking agent. Can be obtained. Examples of the solvent include dimethyl sulfoxide (DMSO) and dimethylformamide (DMF). Examples of the radical initiator include azobisisobutyronitrile (AIBN). Examples of the crosslinking agent include N-methylenebisacrylamide. .

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
・アクリロイル L−アルギニン(ALArg)の合成
アクリルアミド誘導体Aとしてアクリロイル L−アルギニン(ALArg)を以下のように調製した。
まず、300mLナスフラスコにL-アルギニン8.7113g(5.00×10-2 mol) 、水酸化カリウムKOH 2.9737g(5.30×10-2mol)、水(H2O) 65 mL、アセトン65 mLを入れ撹拌した。得られた溶液に、N2フローした滴下ロート内のアクリロイルクロライド 4.554g(5.00×10-2mol)を6秒に1滴のペースで滴下した。滴下後の溶液を、氷冷下で1時間、さらに室温下で3時間撹拌した後、得られた反応溶液のpHを測定したところ、pH9であった。ここで薄層クロマトグラフ(TLC(展開溶媒 EtOH:H2O=4:1))により、反応の進行の確認を行った。同時にUVランプでモノマー及びアルギニンの確認を、ニンヒドリン溶液でアルギニンの確認を行った。
上記反応溶液を分液ロートに移し、酢酸エチルを130 mL加え、アクリル酸の抽出操作を行い、30分間静置した。この分液ロートによる操作は3回繰り返した。水層に15.0 mLの3.0mol/L KOH溶液を加え、pH7に調節した水溶液と、上記分液ロートによる操作を3回目繰り返した後の有機層のTLC測定を行い、有機層に生成物が抽出されていない事を確認した。
その後、エバポレーターを用いて、水層(モノマー水溶液)中のアセトンを留去し、3.0mol/L HCl溶液を16.0 mL加え、pH 3に調節した。分液ロートにこのモノマー水溶液を移し、1-ブタノール50 mLを加え、抽出操作を行い、15分間静置した。得られた水層のpH測定、水層と有機層のTLC測定を行った。有機層のTLC結果より生成物のスポットが確認されなくなるまで、抽出操作を繰り返した。
TLC測定よりモノマーのみのスポットが確認された当該有機層(1-ブタノール溶液)を500 mL三角フラスコに入れ、さらにKOHを溶解した1-ブタノールを30.0mL加え、pH7に調節した。乾燥剤として硫酸マグネシウムを加え、撹拌し、一晩冷蔵庫内で静置した。静置後、自然ろ過を行い、次いでエバポレーターを用いて、1-ブタノールを留去し、濃縮したモノマー溶液を得た。該濃縮したモノマー溶液をエーテル300 mLに対して滴下し、1時間撹拌し、白色固体を得た。得られた白色固体を吸引ろ過し、デシケーターを用いて6時間減圧乾燥し、アクリルアミド誘導体Aとしてのアクリロイル L−アルギニン(ALArg)を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
-Synthesis of acryloyl L-arginine (ALArg) As acrylamide derivative A, acryloyl L-arginine (ALArg) was prepared as follows.
First, 8.7113 g (5.00 × 10 -2 mol) of L-arginine, 2.9737 g (5.30 × 10 -2 mol) of potassium hydroxide, 65 mL of water (H 2 O) and 65 mL of acetone are stirred in a 300 mL eggplant flask. did. To the resulting solution, 4.554 g (5.00 × 10 −2 mol) of acryloyl chloride in a dropping funnel that had flowed N 2 was dropped at a rate of one drop every 6 seconds. The solution after dropping was stirred for 1 hour under ice-cooling and further for 3 hours at room temperature, and then the pH of the resulting reaction solution was measured. Here, the progress of the reaction was confirmed by thin layer chromatography (TLC (developing solvent EtOH: H 2 O = 4: 1)). At the same time, monomer and arginine were confirmed with a UV lamp, and arginine was confirmed with a ninhydrin solution.
The reaction solution was transferred to a separatory funnel, 130 mL of ethyl acetate was added, acrylic acid was extracted, and allowed to stand for 30 minutes. This operation with the separatory funnel was repeated three times. 15.0 mL of 3.0 mol / L KOH solution was added to the aqueous layer, and TLC measurement of the aqueous layer adjusted to pH 7 and the organic layer after repeating the operation with the above separating funnel for the third time was performed, and the product was extracted into the organic layer Confirmed that it was not done.
Thereafter, acetone in the aqueous layer (monomer aqueous solution) was distilled off using an evaporator, and 16.0 mL of a 3.0 mol / L HCl solution was added to adjust to pH 3. This monomer aqueous solution was transferred to a separatory funnel, 50 mL of 1-butanol was added, extraction operation was performed, and the mixture was allowed to stand for 15 minutes. The pH measurement of the obtained water layer and the TLC measurement of the water layer and the organic layer were performed. The extraction operation was repeated until no product spot was confirmed from the TLC result of the organic layer.
The organic layer (1-butanol solution) in which a monomer-only spot was confirmed by TLC measurement was placed in a 500 mL Erlenmeyer flask, and 30.0 mL of 1-butanol in which KOH was dissolved was further added to adjust to pH7. Magnesium sulfate was added as a desiccant, stirred and allowed to stand overnight in the refrigerator. After standing, natural filtration was performed, and then 1-butanol was distilled off using an evaporator to obtain a concentrated monomer solution. The concentrated monomer solution was added dropwise to 300 mL of ether and stirred for 1 hour to obtain a white solid. The obtained white solid was subjected to suction filtration and dried under reduced pressure for 6 hours using a desiccator to obtain acryloyl L-arginine (ALArg) as acrylamide derivative A.

・ポリ(ALArg-co-DMAAm)の合成
アクリロイル L−アルギニン(ALArg)とN,N-ジメチルアクリルアミド(DMAAm)とのコポリマーであるポリ(ALArg-co-DMAAm)を以下のように合成した。
合成例1〜5のコポリマーを得るため、表1に示すとおり各成分を重合管に入れた。この際、全量に対する全モノマーの濃度は、すべて0.5 mol / Lである。
Synthesis of poly (ALArg-co-DMAAm) Poly (ALArg-co-DMAAm), which is a copolymer of acryloyl L-arginine (ALArg) and N, N-dimethylacrylamide (DMAAm), was synthesized as follows.
In order to obtain the copolymers of Synthesis Examples 1 to 5, each component was placed in a polymerization tube as shown in Table 1. At this time, the concentration of all monomers with respect to the total amount is 0.5 mol / L.

表1
ALA-K(g):アクリロイル L−アルギニンのカリウム塩の添加量(g)
DMAAm(g):N,N-ジメチルアクリルアミドの添加量(g)
ALA-K:DMAAm(仕込み比):添加したALA-KとDMAAmのモル比
M/I:全モノマー(モル量)/開始剤(モル量)
APS:過硫酸アンモニウム(開始剤として)
H2O(ml):添加した水の量(ml)
Table 1
ALA-K (g): Amount of potassium salt of acryloyl L-arginine (g)
DMAAm (g): N, N-dimethylacrylamide added amount (g)
ALA-K: DMAAm (preparation ratio): molar ratio of added ALA-K and DMAAm
M / I: total monomer (molar amount) / initiator (molar amount)
APS: ammonium persulfate (as initiator)
H 2 O (ml): amount of water added (ml)

重合管中の各成分に対し、窒素バブリングを30分間行った。その後、70℃で24時間重合を行った。重合前後の様子は、表2に示すとおりである。   Nitrogen bubbling was performed for 30 minutes for each component in the polymerization tube. Thereafter, polymerization was carried out at 70 ° C. for 24 hours. The state before and after the polymerization is as shown in Table 2.

表2
Table 2

重合終了後、メタノール100 mLを更に加えて1時間撹拌し、再沈殿を行った。得られた沈殿を3回デカンテーションし、白色固体のポリマーを精製した。生成したポリマーを3時間 減圧乾燥し、得られた固体にイオン交換水10mL及び3mol/L HCl水溶液300μLを加え、撹拌した。固体が完全に溶解した後、メタノール100mL及び3mol/L KOH水溶液300μLを加え、さらに再沈殿を行った。得られた沈殿を3回デカンテーションし、ポリマーを精製した。(2, 3回目の溶媒はメタノール)。得られたポリマーを6時間減圧乾燥し、目的のポリ(ALArg-co-DMAAm)を得た(式(VI)参照、但しn=25〜250)。得られたポリ(ALArg-co-DMAAm)の各構成単位のモル比、収率等を表3に示す。また、得られた合成例1〜3の1H−NMRスペクトルを図1〜3に示す。なお、各合成例の1H−NMRスペクトルの帰属及び使用した溶媒は以下のとおりである。
合成例1(溶媒:D2O):1.3 (s, -CH2-CH-/-CH2-CH-, 1H), 1.5〜1.6 (d, -CH2-CH-/-CH2-CH-, -CH-CH2-CH2-, 8H), 2.6 (s, -CH2-CH-/-CH2-CH-, 1H), 2.8〜2.9 (s, -N-(CH3)2, 6H), 3.1 (s, -CH2-CH2-NH-, 2H), 4.0 (d, -CO-NH-CH-, 1H)
合成例2(溶媒:D2O):1.1〜1.2 (s, -CH2-CH-/-CH2-CH-, 1H), 1.4〜1.7 (d, -CH2-CH-/-CH2-CH-, -CH-CH2-CH2-, 8H), 2.5 (s, -CH2-CH-/-CH2-CH-, 1H), 2.8 (s, -N-(CH3)2, 6H), 3.1 (s, -CH2-CH2-NH-, 2H), 4.1〜4.3 (d, -CO-NH-CH-, 1H), 7.0〜7.5 (d, -C-NH2, =NH, 3H), 7.7 (s, -CH2-NH-C-, 1H)
合成例3(溶媒:メタノール-d6 + TFA-d6) :1.2〜1.4 (s, -CH2-CH-/-CH2-CH-, 1H), 1.4〜1.7 (d, -CH2-CH-/-CH2-CH-, -CH-CH2-CH2-, 8H), 2.5 (s, -CH2-CH-/-CH2-CH-, 1H), 2.8 (s, -N-(CH3)2, 6H), 3.1 (s, -CH2-CH2-NH-, 2H), 4.0〜4.4 (d, -CO-NH-CH-, 1H), 7.0〜7.6 (d, -C-NH2, =NH, 3H), 7.7 (s, -CH2-NH-C-, 1H)
After completion of the polymerization, 100 mL of methanol was further added and stirred for 1 hour to perform reprecipitation. The resulting precipitate was decanted three times to purify the white solid polymer. The produced polymer was dried under reduced pressure for 3 hours, and 10 mL of ion-exchange water and 300 μL of 3 mol / L HCl aqueous solution were added to the obtained solid and stirred. After the solid was completely dissolved, 100 mL of methanol and 300 μL of 3 mol / L KOH aqueous solution were added, and reprecipitation was performed. The resulting precipitate was decanted three times to purify the polymer. (The second and third solvent is methanol). The obtained polymer was dried under reduced pressure for 6 hours to obtain the desired poly (ALArg-co-DMAAm) (see formula (VI), where n = 25 to 250). Table 3 shows the molar ratio, yield, and the like of each structural unit of the obtained poly (ALArg-co-DMAAm). Moreover, the 1 H-NMR spectrum of the obtained synthesis examples 1 to 3 is shown in FIGS. In addition, the attribution of the 1 H-NMR spectrum of each synthesis example and the solvent used are as follows.
Synthesis Example 1 (solvent: D 2 O): 1.3 (s, —CH 2 —CH — / — CH 2 —CH—, 1H), 1.5 to 1.6 (d, —CH 2 —CH — / — CH 2 —CH -, -CH-CH 2 -CH 2- , 8H), 2.6 (s, -CH 2 -CH-/-CH 2 -CH-, 1H), 2.8-2.9 (s, -N- (CH 3 ) 2 , 6H), 3.1 (s, -CH 2 -CH 2 -NH-, 2H), 4.0 (d, -CO-NH-CH-, 1H)
Synthesis Example 2 (solvent: D 2 O): 1.1 to 1.2 (s, —CH 2 —CH — / — CH 2 —CH—, 1H), 1.4 to 1.7 (d, —CH 2 —CH — / — CH 2 -CH-, -CH-CH 2 -CH 2- , 8H), 2.5 (s, -CH 2 -CH-/-CH 2 -CH-, 1H), 2.8 (s, -N- (CH 3 ) 2 , 6H), 3.1 (s, -CH 2 -CH 2 -NH-, 2H), 4.1-4.3 (d, -CO-NH-CH-, 1H), 7.0-7.5 (d, -C-NH 2 , = NH, 3H), 7.7 (s, -CH 2 -NH-C-, 1H)
Synthesis Example 3 (solvent: methanol-d 6 + TFA-d 6 ): 1.2 to 1.4 (s, -CH 2 -CH-/-CH 2 -CH-, 1H), 1.4 to 1.7 (d, -CH 2- CH-/-CH 2 -CH-, -CH-CH 2 -CH 2- , 8H), 2.5 (s, -CH 2 -CH-/-CH 2 -CH-, 1H), 2.8 (s, -N -(CH 3 ) 2 , 6H), 3.1 (s, -CH 2 -CH 2 -NH-, 2H), 4.0 to 4.4 (d, -CO-NH-CH-, 1H), 7.0 to 7.6 (d, -C-NH 2 , = NH, 3H), 7.7 (s, -CH 2 -NH-C-, 1H)

ポリ(ALArg-co-DMAAm) Poly (ALArg-co-DMAAm)

表3
なお、ALA-K:DMAAm(コポリマー内のモル比)の値より、合成例3のみが本発明の実施例であり、合成例1,2,4,5は比較例である。
Table 3
From the value of ALA-K: DMAAm (molar ratio in the copolymer), only Synthesis Example 3 is an example of the present invention, and Synthesis Examples 1, 2, 4, and 5 are comparative examples.

[溶解試験1]
合成例1〜3のポリ(ALArg-co-DMAAm)の異なる温度における溶解性を測定した。具体的には、所定量の合成例1〜3のポリ(ALArg-co-DMAAm)をpHの異なる水1mlに加えた。水のpHは、あらかじめ塩酸と水酸化カリウムにより、所定のpHに調整した。合成例1〜3のコポリマーの各水溶液を20℃若しくは70℃とし、コポリマーの溶解性を肉眼で観測した。結果を表4〜6に示す。表6に示すとおり、合成例3は、良好な上限限界溶液温度型の温度応答性を示している。
[溶解試験2]
溶媒として水の代わりに各種溶媒を使用した以外は、溶解試験1と同様に溶解試験2を行い、コポリマーの溶解性を肉眼で観測した。結果を表7〜9に示す。
[溶解試験3]
合成例3のポリ(ALArg-co-DMAAm)の量を4.0mg〜80.3mgとした以外は、合成例3に関する溶解試験1と同様に溶解試験3を行い、コポリマーの溶解性を肉眼で観測した。結果を表10に示す。また、表10中のポリマー濃度1.0質量%および2.0質量%の例について、透過率を測定した結果を図4に示す。なお、透過率の測定は、石英セル(光路長1mm)にポリマー水溶液を4cm3入れ、500nmの可視光の透過率を、温度を変化させながら行った。昇温速度は、0.5℃/分とした。
[Dissolution test 1]
The solubility of the poly (ALArg-co-DMAAm) of Synthesis Examples 1 to 3 at different temperatures was measured. Specifically, a predetermined amount of poly (ALArg-co-DMAAm) of Synthesis Examples 1 to 3 was added to 1 ml of water having a different pH. The pH of water was previously adjusted to a predetermined pH with hydrochloric acid and potassium hydroxide. The aqueous solutions of the copolymers of Synthesis Examples 1 to 3 were set to 20 ° C. or 70 ° C., and the solubility of the copolymer was observed with the naked eye. The results are shown in Tables 4-6. As shown in Table 6, Synthesis Example 3 shows good upper limit solution temperature type temperature responsiveness.
[Dissolution test 2]
Except for using various solvents instead of water as the solvent, dissolution test 2 was performed in the same manner as dissolution test 1, and the solubility of the copolymer was observed with the naked eye. The results are shown in Tables 7-9.
[Dissolution test 3]
Except that the amount of poly (ALArg-co-DMAAm) in Synthesis Example 3 was set to 4.0 mg to 80.3 mg, dissolution test 3 was performed in the same manner as in dissolution test 1 related to Synthesis Example 3, and the solubility of the copolymer was visually checked. Observed. The results are shown in Table 10. Moreover, the result of having measured the transmittance | permeability about the example of polymer concentration 1.0 mass% in Table 10 and 2.0 mass% is shown in FIG. The transmittance was measured by placing 4 cm 3 of an aqueous polymer solution in a quartz cell (optical path length: 1 mm) and changing the visible light transmittance of 500 nm while changing the temperature. The heating rate was 0.5 ° C./min.

表4(合成例1)
Table 4 (Synthesis Example 1)

表5(合成例2)
Table 5 (Synthesis Example 2)

表6(合成例3)
Table 6 (Synthesis Example 3)

表7(合成例1)
Table 7 (Synthesis Example 1)

表8(合成例2)
Table 8 (Synthesis Example 2)

表9(合成例3)
Table 9 (Synthesis Example 3)

表10(合成例3)
Table 10 (Synthesis Example 3)

Claims (6)

以下の一般式(I)
(式(I)中、A1は、以下の一般式(II-1)又は(II-2)で表されるアミノ酸残基であり、B1は、以下の一般式(III-1)又は(III-2)(但し、式(III-1)中、Rは、-NH2、-NR1R2又は-OR3であり、R1〜R3は、それぞれ独立に-H、C1~10のアルキル基又はC2~10のアルケニル基であり、式(III-2)中、R4は、C1~10のアルキレン基又はC2~10の不飽和アルキレン基である)で表される官能基であり、A2及びB2は、それぞれ独立して−H、−CH3又は−C25であり、構成単位(a):構成単位(b)はモル比で60:40〜75:25であり、nは20〜500である)





で表される、温度応答性ポリマー。
The following general formula (I)
(In formula (I), A 1 is an amino acid residue represented by the following general formula (II-1) or (II-2), and B 1 is the following general formula (III-1) or (III-2) (wherein, in formula (III-1), R is —NH 2 , —NR 1 R 2 or —OR 3 , and R 1 to R 3 are each independently —H, C 1 -10 alkyl group or C 2-10 alkenyl group, and in formula (III-2), R 4 is a C 1-10 alkylene group or C 2-10 unsaturated alkylene group). A 2 and B 2 are each independently —H, —CH 3 or —C 2 H 5 , and the structural unit (a): the structural unit (b) is in a molar ratio of 60: 40-75: 25, n is 20-500)





A temperature-responsive polymer represented by
前記構成単位(a):構成単位(b)のモル比が65:35〜70:30である、請求項1に記載の温度応答性ポリマー。   The temperature-responsive polymer according to claim 1, wherein the molar ratio of the structural unit (a) to the structural unit (b) is 65:35 to 70:30. 前記A1が前記一般式(II-1)で表されるアミノ酸残基であり、A2が−Hである、請求項1又は2に記載の温度応答性ポリマー。 The temperature-responsive polymer according to claim 1 or 2, wherein A 1 is an amino acid residue represented by the general formula (II-1), and A 2 is -H. 前記B1が前記一般式(III-1)(式(III-1)中、Rが
である)で表される官能基であり、B2が−Hである、請求項1〜3のいずれか1項に記載の温度応答性ポリマー。
B 1 is the above general formula (III-1) (in the formula (III-1), R is
The temperature-responsive polymer according to claim 1, wherein B 2 is —H.
水と、請求項1〜4のいずれか1項に記載の温度応答性ポリマーとを含み、pHが3〜9である、温度応答性ポリマー組成物。   A temperature-responsive polymer composition comprising water and the temperature-responsive polymer according to any one of claims 1 to 4 and having a pH of 3 to 9. 請求項1〜4のいずれか1項に記載の温度応答性ポリマーの製造方法であって、
(1)リジン又はアルギニンをアシル化して一般式(IV):CH2=C(-R5)-R6(式(IV)中、R5は−H、−CH3又は−C25であり、R6は前記一般式(II-1)又は前記一般式(II-2)で表される基)で表されるアクリルアミド誘導体Aを調製する工程、及び
(2)前記アクリルアミド誘導体Aと、一般式(V):CH2=CH(-R7)-R8)(式(V)中、R7は−H、−CH3又は−C25であり、R8は前記一般式(III-1)又は前記一般式(III-2)で表される基)で表される化合物Bを重合し、前記温度応答性ポリマーを合成する工程、
を含むことを特徴とする方法。
A method for producing a temperature-responsive polymer according to any one of claims 1 to 4,
(1) A lysine or arginine is acylated to give a general formula (IV): CH 2 = C (-R 5 ) -R 6 (wherein R 5 is -H, -CH 3 or -C 2 H 5 R 6 is a step of preparing an acrylamide derivative A represented by the general formula (II-1) or the group represented by the general formula (II-2)), and (2) the acrylamide derivative A and general formula (V): in CH 2 = CH (-R 7) -R 8) ( formula (V), R 7 is -H, a -CH 3 or -C 2 H 5, R 8 is the general A step of polymerizing the compound B represented by the formula (III-1) or the group represented by the general formula (III-2) to synthesize the temperature-responsive polymer;
A method comprising the steps of:
JP2012199800A 2012-09-11 2012-09-11 Temperature-responsive polymer and method for manufacturing the same Pending JP2015214592A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012199800A JP2015214592A (en) 2012-09-11 2012-09-11 Temperature-responsive polymer and method for manufacturing the same
PCT/JP2013/074528 WO2014042186A1 (en) 2012-09-11 2013-09-11 Temperature-responsive polymer and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199800A JP2015214592A (en) 2012-09-11 2012-09-11 Temperature-responsive polymer and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2015214592A true JP2015214592A (en) 2015-12-03

Family

ID=50278296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199800A Pending JP2015214592A (en) 2012-09-11 2012-09-11 Temperature-responsive polymer and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2015214592A (en)
WO (1) WO2014042186A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11147952B2 (en) * 2016-04-28 2021-10-19 Medtronic Vascular, Inc. Drug coated inflatable balloon having a thermal dependent release layer
CN110684150B (en) * 2019-09-06 2021-05-11 南方医科大学 Amino acid nano hydrogel and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439545A (en) * 1981-11-19 1984-03-27 Societe D "Expansion Scientifique "Expansia" Acrylic copolymers of N-acryloylpolymethyleneimines or N-acryloyldialkylamides, N,N'-acryloyldiaminoalcanes and N-acryloylaminoacids (or esters) their preparation and use as cation exchangers
JP2002145847A (en) * 2000-11-01 2002-05-22 National Institute Of Advanced Industrial & Technology Acrylic acid derivative bearing amino acid residue
JP4046570B2 (en) * 2002-07-31 2008-02-13 ポーラ化成工業株式会社 Hair cosmetics
JP3855060B2 (en) * 2003-08-21 2006-12-06 独立行政法人産業技術総合研究所 Thermal sensor and pH sensor

Also Published As

Publication number Publication date
WO2014042186A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP6239043B2 (en) Inclusion complex, gel with self-healing and shape memory
Taktak et al. Synthesis and physical gels of pH-and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies
Pan et al. Backbone degradable multiblock N-(2-hydroxypropyl) methacrylamide copolymer conjugates via reversible addition− fragmentation chain transfer polymerization and thiol− ene coupling reaction
TWI426931B (en) Ophthalmic and otorhinolaryngological device materials
Lin et al. Synthesis and characterization of hyperbranched poly (ether amide) s with thermoresponsive property and unexpected strong blue photoluminescence
JP2003508606A (en) Uniform molecular weight polymer
Nakayama et al. Unique thermoresponsive polymeric micelle behavior via cooperative polymer corona phase transitions
CN101701051A (en) Hydrogel with pH sensibility and temperature sensibility and preparation method thereof
EP2935378B1 (en) Novel method for preparing heat-thickening polymers
JP7093975B2 (en) Zwitterionic polymers, their production methods, and protein stabilizers containing zwitterionic polymers
Kumar et al. Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments via RAFT polymerization
WO2014042186A1 (en) Temperature-responsive polymer and method for manufacturing same
Sheng et al. Temperature and pH responsive hydrogels based on polyethylene glycol analogues and poly (methacrylic acid) via click chemistry
JP5268048B2 (en) Gene transfer agent and method for producing the same
EP1320553A1 (en) Novel polymer compounds
JP2014114395A (en) Temperature sensitive material and its application
JP3855060B2 (en) Thermal sensor and pH sensor
JP4343002B2 (en) Thermosensitive gel composite
US10407527B2 (en) Charge-shifting polymers for tissue compatible hydrogels
JP2001335603A (en) Method for producing water-soluble polymer
JP2006257048A (en) Borate-containing polymerizable (meth)acrylate
JP2008245747A (en) Epidermal affinity coating agent and medical instrument
JPH11255839A (en) Heat responsive polymer derivative having both low limit critical temperature and high limit critical temperature
JP6266527B2 (en) Water-soluble copolymer
van Dijk et al. Thermoresponsive Methacryloylamide Polymers Based on L-Serine and L-Threonine Alkyl Esters