JP2015213125A - Spin injection magnetization reversal element - Google Patents

Spin injection magnetization reversal element Download PDF

Info

Publication number
JP2015213125A
JP2015213125A JP2014095276A JP2014095276A JP2015213125A JP 2015213125 A JP2015213125 A JP 2015213125A JP 2014095276 A JP2014095276 A JP 2014095276A JP 2014095276 A JP2014095276 A JP 2014095276A JP 2015213125 A JP2015213125 A JP 2015213125A
Authority
JP
Japan
Prior art keywords
layer
magnetization
spin
film
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014095276A
Other languages
Japanese (ja)
Inventor
秀和 金城
Hidekazu Kinjo
秀和 金城
町田 賢司
Kenji Machida
賢司 町田
加藤 大典
Daisuke Kato
大典 加藤
賢一 青島
Kenichi Aoshima
賢一 青島
久我 淳
Atsushi Kuga
淳 久我
菊池 宏
Hiroshi Kikuchi
宏 菊池
清水 直樹
Naoki Shimizu
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2014095276A priority Critical patent/JP2015213125A/en
Publication of JP2015213125A publication Critical patent/JP2015213125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spin injection magnetization reversal element effectively applied to a magnetization fixed layer or a magnetization free layer by properly adjusting a coercive force while maintaining vertical magnetic anisotropy concerning a Tb-Fe-Co alloy.SOLUTION: A spin injection magnetization reversal element 5 is formed by sequentially laminating a magnetization fixed layer 3 including a Tb-Fe-Co layer 31, a barrier layer 2 composed of MgO, and a magnetization free layer 1 including a Tb-Fe-Co layer 11. The Tb-Fe-Co layer 11 of the magnetization free layer 1, since a coercive force is reduced by being deposited on a barrier layer 2, which is an MgO film, enables spin injection magnetization reversal.

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器に用いる光変調素子に好適なスピン注入磁化反転素子に関する。   The present invention relates to a spin-injection magnetization reversal element suitable for an optical modulation element used in a spatial light modulator that emits incident light by spatially modulating the phase and amplitude of the light by a magneto-optic effect.

スピン注入磁化反転素子は、2層以上の磁性体膜(磁性膜)を備え、上下に接続された電極(配線)から膜面に垂直に電流を供給されることで、スピン注入磁化反転により一部の磁性膜(磁化自由層)の磁化方向が180°回転(反転)し、磁化方向が変化しない別の磁性膜(磁化固定層)と同じ方向または反対方向になる。このスピン注入磁化反転素子は、磁性膜同士の磁化方向が同じである状態と異なる方向の状態とで上下に接続した電極間の抵抗が変化するため、磁気抵抗効果素子として1ビットのデータの書込み/読出しを行うことができる。すなわち、スピン注入磁化反転素子は、これを備えたメモリセルをマトリクス状に配列して磁気ランダムアクセスメモリ(MRAM)を構成することができる。スピン注入磁化反転素子は、その寸法が極めて小さい上、磁化反転の動作が高速である。そのため、スピン注入磁化反転素子、ならびに大容量磁気メモリとしてこれを用いたMRAMの研究・開発が進められている。   A spin-injection magnetization reversal element includes two or more magnetic films (magnetic films), and is supplied with current from a vertically connected electrode (wiring) perpendicularly to the film surface. The magnetization direction of a part of the magnetic film (magnetization free layer) is rotated (inverted) by 180 °, and becomes the same direction or the opposite direction to another magnetic film (magnetization fixed layer) whose magnetization direction does not change. In this spin-injection magnetization reversal element, the resistance between the vertically connected electrodes changes depending on whether the magnetization directions of the magnetic films are the same or different, so that 1-bit data is written as a magnetoresistive effect element. / Reading can be performed. That is, the spin-injection magnetization reversal element can constitute a magnetic random access memory (MRAM) by arranging memory cells having the spin injection magnetization reversal element in a matrix. The spin-injection magnetization reversal element has an extremely small size and high-speed magnetization reversal operation. Therefore, research and development of spin-injection magnetization reversal elements and MRAMs using these as large-capacity magnetic memories have been advanced.

スピン注入磁化反転素子としては、CPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子が知られている。さらに近年では、MRAMのさらなる大容量化および省電力化のために、膜面に垂直な磁化方向を示す(垂直磁気異方性を有する)磁性材料がスピン注入磁化反転素子に適用されている。このような磁性材料で形成された、すなわち垂直磁気異方性を有するスピン注入磁化反転素子は、いっそうの微細化が可能で、かつ磁化反転に要する電流(反転電流)を低減することができる。   Known spin injection magnetization reversal elements include CPP-GMR (Current Perpendicular to the Plane Giant MagnetoResistance) elements and TMR (Tunnel MagnetoResistance) elements. Further, in recent years, a magnetic material exhibiting a magnetization direction perpendicular to the film surface (having perpendicular magnetic anisotropy) has been applied to the spin-injection magnetization switching element in order to further increase the capacity and power saving of the MRAM. A spin-injection magnetization reversal element formed of such a magnetic material, that is, having perpendicular magnetic anisotropy, can be further miniaturized and can reduce a current (reversal current) required for magnetization reversal.

磁気抵抗効果素子用には、CPP−GMR素子よりも磁気抵抗比(MR比)の高いTMR素子が特に研究されている。TMR素子は、2枚の磁性膜の間に、トンネル障壁または障壁層と呼ばれる極めて薄い絶縁膜を挟んだ構造を有する。TMR素子の障壁層の材料には、反転電流をいっそう低減できる酸化マグネシウム(MgO)が好適とされる。特に、TMR素子は、2つの磁性膜の少なくとも一方が、MgOからなる障壁層との界面にCo−FeやCo−Fe−B等の磁性金属の薄膜を備えることで、スピン注入効率が向上し、反転電流が低減することが知られている(非特許文献1〜5参照)。   For the magnetoresistive effect element, a TMR element having a higher magnetoresistance ratio (MR ratio) than that of the CPP-GMR element has been particularly studied. The TMR element has a structure in which an extremely thin insulating film called a tunnel barrier or a barrier layer is sandwiched between two magnetic films. As a material of the barrier layer of the TMR element, magnesium oxide (MgO) that can further reduce the inversion current is suitable. In particular, in the TMR element, at least one of the two magnetic films includes a thin film of magnetic metal such as Co—Fe or Co—Fe—B at the interface with the barrier layer made of MgO, thereby improving the spin injection efficiency. It is known that the reversal current is reduced (see Non-Patent Documents 1 to 5).

また、スピン注入磁化反転素子の別の用途に、空間光変調器の画素に搭載される光変調素子が挙げられる。光変調素子用のスピン注入磁化反転素子は、磁性膜で反射または透過した光の偏光の向きが変化する(旋光する)磁気光学効果により、磁性膜の磁化方向を反転させて光の偏光の向きを2値に変化させるものである。空間光変調器においても、従来の液晶に代わる材料として、MRAMと同様に高精細化および高速化のために、スピン注入磁化反転素子の研究・開発が進められている(例えば、特許文献1〜3参照)。光変調素子においても、空間光変調器を高精細化するべく画素数を増大しても好適に駆動し、かつ省電力化のために反転電流を低減できるTMR素子を適用することが望ましい。また、反転電流をいっそう低減するために、磁化自由層の両面のそれぞれに中間層や障壁層を挟んで磁化固定層を2つ備えたデュアルピン構造のスピン注入磁化反転素子を備える磁気抵抗効果素子や光変調素子が開発されている(特許文献4,5参照)。さらに、前記2つの磁化固定層を共に磁化自由層の一面側に設けることにより、光の入出射側に電極を接続しない並設デュアルピン構造のスピン注入磁化反転素子を備える光変調素子が開発されている(特許文献6,7参照)。   Another application of the spin injection magnetization reversal element is a light modulation element mounted on a pixel of a spatial light modulator. A spin-injection magnetization reversal element for a light modulation element reverses the magnetization direction of the magnetic film by the magneto-optic effect that changes (rotates) the polarization direction of the light reflected or transmitted by the magnetic film, thereby changing the polarization direction of the light. Is changed to a binary value. Also in the spatial light modulator, research and development of a spin-injection magnetization reversal element has been promoted as a material to replace conventional liquid crystals in order to achieve high definition and high speed as in MRAM (for example, Patent Documents 1 to 3). 3). Also in the light modulation element, it is desirable to apply a TMR element that can be suitably driven even when the number of pixels is increased to increase the definition of the spatial light modulator and can reduce the inversion current in order to save power. In addition, in order to further reduce the reversal current, a magnetoresistive effect element having a dual-pin structure spin injection magnetization reversal element having two magnetization fixed layers sandwiching an intermediate layer and a barrier layer on both sides of the magnetization free layer And light modulation elements have been developed (see Patent Documents 4 and 5). Furthermore, an optical modulation element having a parallel dual-pin structure spin injection magnetization reversal element that does not connect an electrode to the light incident / exit side has been developed by providing both of the two magnetization fixed layers on one surface side of the magnetization free layer. (See Patent Documents 6 and 7).

光変調素子に使用するスピン注入磁化反転素子は、偏光の向きの変化が大きい(光変調度が大きい)ことが望ましい。そのため、光変調素子においても、垂直磁気異方性を有するスピン注入磁化反転素子を用いて、膜面にほぼ垂直に光を入射することにより、極カー効果で光変調度を大きくすることが望ましい(例えば、非特許文献6、特許文献2,3参照)。   It is desirable that the spin injection magnetization reversal element used for the light modulation element has a large change in the direction of polarization (the degree of light modulation is large). Therefore, also in the light modulation element, it is desirable to increase the degree of light modulation by the polar Kerr effect by using a spin-injection magnetization reversal element having perpendicular magnetic anisotropy and making light incident substantially perpendicular to the film surface. (For example, refer nonpatent literature 6, patent documents 2 and 3).

特許第4829850号公報Japanese Patent No. 4829850 特開2011−2522号公報JP 2011-2522 A 特開2011−228341号公報JP 2011-228341 A 特許第3824600号公報Japanese Patent No. 3824600 特許第4939502号公報Japanese Patent No. 4939502 特開2012−78579号公報JP 2012-78579 A 特開2013−195593号公報JP 2013-195593 A

S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S. H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nature Materials, vol.3, p.862, Dec. 2004SSP Parkin, C. Kaiser, A. Panchula, PM Rice, B. Hughes, M. Samant, SH Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nature Materials, vol. 3, p. 862, Dec. 2004 Shinji Yuasa, Taro Nagahama, Akio Fukushima, Yoshishige Suzuki, Koji Ando, “Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions”, Nature Materials, vol.3, p.868, Dec. 2004.Shinji Yuasa, Taro Nagahama, Akio Fukushima, Yoshishige Suzuki, Koji Ando, “Giant room-temperature magnetoresistance in single-crystal Fe / MgO / Fe magnetic tunnel junctions”, Nature Materials, vol.3, p.868, Dec. 2004. M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, H. Yoda, “Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy”, Journal of Applied Physics, vol.103, 07A710 (2008)M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, H. Yoda, “Spin transfer switching in TbCoFe / CoFeB / MgO / CoFeB / TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy ”, Journal of Applied Physics, vol.103, 07A710 (2008) 久保田均,他,“MgOバリアを用いたMTJにおけるスピン注入磁化反転”,日本応用磁気学会研究会資料145巻,p.43−48,2006.01.30Hitoshi Kubota, et al., “Spin injection magnetization reversal in MTJ using MgO barrier”, Japan Society of Applied Magnetics, Vol.145, p. 43-48, 2006.01.30 D. D. Djayaprawira, et. al, “230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions”, Appl. Phys. Lett. 86, 092502 (2005)D. D. Djayaprawira, et. Al, “230% room-temperature magnetoresistance in CoFeB / MgO / CoFeB magnetic tunnel junctions”, Appl. Phys. Lett. 86, 092502 (2005) K. Aoshima et. al, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light”, Applied Physics Letters, vol.91, 052507 (2007)K. Aoshima et. Al, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light”, Applied Physics Letters, vol.91, 052507 (2007)

スピン注入磁化反転素子は、保磁力が大小2種類の磁性膜(磁化固定層、磁化自由層)とその間の非磁性金属または絶縁体の膜(中間層)と、を少なくとも備えた積層構造を有する。さらに、デュアルピン構造のスピン注入磁化反転素子(特許文献4〜7参照)は、2つの磁化固定層が互いに逆向きの磁化方向に固定されるために、保磁力の大きさの異なる磁性膜を適用することになり、磁化自由層を含め、3段階の保磁力の磁性膜が必要となる。そのため、各層について、保磁力も含め、所望の特性に応じて、磁性材料の選択や厚さの設計を行う。スピン注入磁化反転素子に適用される垂直磁気異方性材料としては、例えば、Co/Pd多層膜のような遷移金属膜と貴金属膜とを交互に積層した多層膜や、Tb−Fe−CoやGd−Feのような遷移金属(TM)と希土類金属(RE)との合金(RE−TM合金)が知られている。   The spin-injection magnetization reversal element has a laminated structure including at least two kinds of magnetic films (magnetization fixed layer and magnetization free layer) having a large and small coercive force and a nonmagnetic metal or insulator film (intermediate layer) therebetween. . Furthermore, the spin-injection magnetization reversal element having a dual pin structure (see Patent Documents 4 to 7) has two magnetization fixed layers fixed in opposite magnetization directions, so that magnetic films having different coercive forces are used. Therefore, a magnetic film having a three-stage coercive force including the magnetization free layer is required. Therefore, for each layer, the magnetic material is selected and the thickness is designed according to desired characteristics including coercive force. As the perpendicular magnetic anisotropic material applied to the spin injection magnetization switching element, for example, a multilayer film in which transition metal films and noble metal films such as a Co / Pd multilayer film are alternately stacked, Tb-Fe-Co, An alloy (RE-TM alloy) of a transition metal (TM) and a rare earth metal (RE) such as Gd-Fe is known.

例えば、Co膜とPd膜とを交互に積層したCo/Pd多層膜は、多層膜の合計の厚さのみならず、Co膜、Pd膜の単層での膜厚を調整することにより、異なる保磁力の多層膜として、スピン注入磁化反転素子の磁化固定層と磁化自由層の両方に適用することができる(特許文献2参照)。一方、強い垂直磁気異方性を有する磁性材料であるTb−Fe−Co合金は、保磁力が大きく、スピン注入磁化反転素子の磁化固定層に好適である(特許文献3参照)。しかし、Tb−Fe−Co合金は、厚さや組成、成膜時の雰囲気を調整して保磁力を変化させることができるものの、磁化自由層に適用できるまでに低減させることは困難であり、また、そのため、磁気光学効果を有しているにもかかわらず光変調素子に有効に適用することができない。   For example, a Co / Pd multilayer film in which a Co film and a Pd film are alternately stacked differs by adjusting not only the total thickness of the multilayer film but also the thickness of a single layer of the Co film and the Pd film. As a multilayer film having a coercive force, it can be applied to both the magnetization fixed layer and the magnetization free layer of the spin-injection magnetization switching element (see Patent Document 2). On the other hand, a Tb—Fe—Co alloy, which is a magnetic material having strong perpendicular magnetic anisotropy, has a large coercive force and is suitable for a magnetization fixed layer of a spin injection magnetization switching element (see Patent Document 3). However, although the Tb—Fe—Co alloy can change the coercive force by adjusting the thickness, composition, and atmosphere at the time of film formation, it is difficult to reduce it to be applicable to the magnetization free layer. Therefore, it cannot be effectively applied to the light modulation element despite having the magneto-optic effect.

また、スピン注入磁化反転素子は、前記した通り積層構造を有するため、一般的に、下地への密着性を付与するための下地膜等も含めて、各層に対応した複数のターゲット(スパッタ源)をスパッタ装置に装着し、ターゲットを切り替えて、連続的に順次成膜することにより製造される。さらに、磁性膜として、例えばCo/Pd多層膜を適用する場合には、この1つの磁性膜のためにCoとPdの2種類のターゲットが必要であり、また、Tb−Fe−Co合金等の合金膜についても、所望の組成を得るために2種類以上の金属または合金ターゲットを同時に用いることがある。したがって、スピン注入磁化反転素子を製造するためには、スパッタ装置に、各層の材料に応じた多数のターゲットを同時に装着する必要がある。しかし、スパッタ装置のターゲットの装着数には限界があるため、スピン注入磁化反転素子は、2以上の層で共通の材料が適用されている等、材料の種類が少ないことが、生産上、望ましい。   In addition, since the spin-injection magnetization reversal element has a laminated structure as described above, generally, a plurality of targets (sputter sources) corresponding to each layer, including a base film for imparting adhesion to the base, etc. Is mounted on a sputtering apparatus, the target is switched, and the film is continuously and sequentially formed. Furthermore, when a Co / Pd multilayer film is applied as the magnetic film, for example, two types of targets of Co and Pd are required for this one magnetic film, and a Tb—Fe—Co alloy or the like is used. Also for the alloy film, two or more kinds of metal or alloy targets may be used simultaneously in order to obtain a desired composition. Therefore, in order to manufacture the spin injection magnetization switching element, it is necessary to simultaneously mount a large number of targets corresponding to the material of each layer on the sputtering apparatus. However, since there is a limit to the number of targets that can be attached to the sputtering apparatus, it is desirable in production that the spin injection magnetization reversal element should have few types of materials, such as a common material applied to two or more layers. .

本発明は前記問題点に鑑み創案されたもので、Tb−Fe−Co合金について、垂直磁気異方性を保持しつつ保磁力を適切に調整して、磁化固定層や磁化自由層に有効に適用したスピン注入磁化反転素子を提供することを課題とする。   The present invention was devised in view of the above-mentioned problems, and for a Tb-Fe-Co alloy, the coercive force is appropriately adjusted while maintaining the perpendicular magnetic anisotropy, and is effective for the magnetization fixed layer and the magnetization free layer. It is an object of the present invention to provide an applied spin injection magnetization reversal element.

Tb−Fe−Co合金のような遷移金属と希土類金属との合金は、成膜環境により磁気特性が変化する場合がある。このことから、本願発明者らは鋭意研究の結果、MgO膜上にTb−Fe−Co合金膜を成膜した場合に、Tb−Fe−Co合金膜が十分な垂直磁気異方性を維持しながら、組成や成膜雰囲気による調整よりも保磁力が小さくなることを見出した。   An alloy of a transition metal and a rare earth metal, such as a Tb—Fe—Co alloy, may change in magnetic properties depending on the film forming environment. Based on this, the inventors of the present application have conducted intensive research and found that when a Tb-Fe-Co alloy film is formed on the MgO film, the Tb-Fe-Co alloy film maintains sufficient perpendicular magnetic anisotropy. However, it has been found that the coercive force is smaller than the adjustment by the composition and the film formation atmosphere.

一方で、このことは、MgO膜を障壁層とするTMR素子において上側に磁化固定層を設けた場合に、かかる磁化固定層にTb−Fe−Co合金を適用することは、保磁力が小さくなるので好ましくないことを示す。そこで、本願発明者らはさらに鋭意研究の結果、磁化固定層が、障壁層との界面に、適度な厚さのCo−Fe等の磁性金属膜を備えることで、MgO膜の影響が緩和されることを見出した。   On the other hand, in the case of a TMR element having a MgO film as a barrier layer, when a magnetization fixed layer is provided on the upper side, applying a Tb-Fe-Co alloy to the magnetization fixed layer reduces the coercive force. Therefore, it shows that it is not preferable. Therefore, as a result of further intensive studies, the inventors of the present application have relieved the influence of the MgO film by providing the magnetic pinned layer with a magnetic metal film such as Co—Fe having an appropriate thickness at the interface with the barrier layer. I found out.

すなわち、本発明に係るスピン注入磁化反転素子は、垂直磁気異方性を有する磁化固定層と垂直磁気異方性を有する磁化自由層との間に中間層を積層してなり、前記磁化自由層がTb−Fe−Coからなる層を備え、前記Tb−Fe−Coからなる層がMgO膜に積層されていることを特徴とする。
かかる構成により、Tb−Fe−Co合金を磁化自由層に適用しても、スピン注入磁化反転可能な垂直磁気異方性のスピン注入磁化反転素子となる。
That is, the spin injection magnetization reversal element according to the present invention comprises an intermediate layer laminated between a magnetization fixed layer having perpendicular magnetic anisotropy and a magnetization free layer having perpendicular magnetic anisotropy, and the magnetization free layer Comprises a layer made of Tb-Fe-Co, and the layer made of Tb-Fe-Co is laminated on the MgO film.
With this configuration, even if a Tb—Fe—Co alloy is applied to the magnetization free layer, a spin injection magnetization reversal element having perpendicular magnetic anisotropy capable of spin injection magnetization reversal is obtained.

また、本発明に係る別のスピン注入磁化反転素子は、垂直磁気異方性を有する磁化自由層、MgO膜からなる中間層、垂直磁気異方性を有する磁化固定層の順に積層してなり、前記磁化固定層がTb−Fe−Coからなる層を備え、前記Tb−Fe−Coからなる層と前記中間層との間にCo−FeまたはCo−Fe−Bからなる磁性金属膜をさらに備えることを特徴とする。
かかる構成により、MgOを障壁層とするトンネル磁気抵抗素子において、Tb−Fe−Co合金を適用した磁化固定層を上側に設けても、MgO膜の影響を抑えて保磁力の低下を抑制して、安定したスピン注入磁化反転可能なスピン注入磁化反転素子となる。
Another spin-injection magnetization reversal element according to the present invention is formed by laminating a magnetization free layer having perpendicular magnetic anisotropy, an intermediate layer made of an MgO film, and a magnetization fixed layer having perpendicular magnetic anisotropy in this order. The magnetization fixed layer includes a layer made of Tb-Fe-Co, and further includes a magnetic metal film made of Co-Fe or Co-Fe-B between the layer made of Tb-Fe-Co and the intermediate layer. It is characterized by that.
With this configuration, in a tunnel magnetoresistive element using MgO as a barrier layer, even if a magnetization fixed layer to which a Tb-Fe-Co alloy is applied is provided on the upper side, the influence of the MgO film is suppressed and the decrease in coercive force is suppressed. Thus, a spin injection magnetization reversal element capable of stable spin injection magnetization reversal is obtained.

本発明に係るスピン注入磁化反転素子によれば、磁化自由層にTb−Fe−Co合金を適用することができ、磁化固定層との材料の共通化により生産性を向上させることができる。また、本発明に係る別のスピン注入磁化反転素子によれば、MgO膜を障壁層とするトンネル磁気抵抗素子においても、Tb−Fe−Co合金を適用した磁化固定層を障壁層の上側に設けることができる。   According to the spin-injection magnetization switching element according to the present invention, a Tb—Fe—Co alloy can be applied to the magnetization free layer, and productivity can be improved by sharing the material with the magnetization fixed layer. According to another spin injection magnetization reversal element according to the present invention, a magnetization fixed layer using a Tb-Fe-Co alloy is provided on the upper side of the barrier layer even in a tunnel magnetoresistive element using an MgO film as a barrier layer. be able to.

本発明の第1実施形態に係るスピン注入磁化反転素子を備えた光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the optical modulation element provided with the spin injection magnetization reversal element based on 1st Embodiment of this invention. 図1に示す光変調素子の製造方法を説明する模式図であり、(a)〜(d)は光変調素子を配列した空間光変調器の部分拡大図に相当する。FIG. 2 is a schematic diagram for explaining a method for manufacturing the light modulation element shown in FIG. 1, and (a) to (d) correspond to partial enlarged views of the spatial light modulator in which the light modulation elements are arranged. 本発明の第1実施形態に係るスピン注入磁化反転素子の動作を説明する模式図であり、(a)、(b)はスピン注入磁化反転を、(c)、(d)は光変調素子および磁気抵抗効果素子としての動作を説明する図である。It is a schematic diagram explaining operation | movement of the spin injection magnetization reversal element which concerns on 1st Embodiment of this invention, (a), (b) is spin injection magnetization reversal, (c), (d) is a light modulation element, It is a figure explaining the operation | movement as a magnetoresistive effect element. 本発明の第2実施形態に係るスピン注入磁化反転素子を備えた光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light modulation element provided with the spin-injection magnetization inversion element based on 2nd Embodiment of this invention. 本発明の第3実施形態に係るスピン注入磁化反転素子を備えた光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the optical modulation element provided with the spin-injection magnetization inversion element based on 3rd Embodiment of this invention. 図5に示す光変調素子の製造方法を説明する模式図であり、(a)〜(d)は光変調素子を配列した空間光変調器の部分拡大図に相当する。FIG. 6 is a schematic diagram for explaining a manufacturing method of the light modulation element shown in FIG. 5, and (a) to (d) correspond to partial enlarged views of the spatial light modulator in which the light modulation elements are arranged. 本発明の第3実施形態の変形例に係るスピン注入磁化反転素子を備えた光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the optical modulation element provided with the spin injection magnetization reversal element which concerns on the modification of 3rd Embodiment of this invention. (a)、(b)は、図7に示す光変調素子におけるスピン注入磁化反転素子のスピン注入磁化反転動作を説明する模式図である。(A), (b) is a schematic diagram explaining the spin injection magnetization reversal operation of the spin injection magnetization reversal element in the light modulation element shown in FIG. 本発明の第4実施形態に係るスピン注入磁化反転素子を備えた磁気抵抗効果素子の構成を示す断面図である。It is sectional drawing which shows the structure of the magnetoresistive effect element provided with the spin injection magnetization reversal element which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るスピン注入磁化反転素子を備えた光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the optical modulation element provided with the spin injection magnetization reversal element which concerns on 5th Embodiment of this invention. 図10に示す光変調素子の製造方法を説明する模式図であり、(a)〜(d)は光変調素子を配列した空間光変調器の部分拡大図に相当する。It is a schematic diagram explaining the manufacturing method of the light modulation element shown in FIG. 10, (a)-(d) is corresponded in the elements on larger scale of the spatial light modulator which arranged the light modulation element. 図10に示す光変調素子の製造方法を説明する模式図であり、(a)〜(d)は光変調素子を配列した空間光変調器の部分拡大図に相当するIt is a schematic diagram explaining the manufacturing method of the light modulation element shown in FIG. 10, (a)-(d) is equivalent to the elements on larger scale of the spatial light modulator which arranged the light modulation element. (a)、(b)は、本発明の第5実施形態に係るスピン注入磁化反転素子のスピン注入磁化反転動作を説明する模式図である。(A), (b) is a schematic diagram explaining the spin injection magnetization reversal operation | movement of the spin injection magnetization reversal element which concerns on 5th Embodiment of this invention. 熱酸化Si基板にTb−Fe−Coからなる層を成膜したサンプルの、カー回転角の磁場依存性で表した磁化曲線であり、(a)は厚さ2nmのMgO膜、(b)は厚さ5nmのMgO膜、(c)は厚さ3nmのRu膜を、Tb−Fe−Coからなる層の下地に備えたサンプルである。It is a magnetization curve represented by the magnetic field dependence of the Kerr rotation angle of a sample in which a layer made of Tb—Fe—Co is formed on a thermally oxidized Si substrate, (a) is a MgO film having a thickness of 2 nm, and (b) is A MgO film having a thickness of 5 nm, (c) is a sample provided with a Ru film having a thickness of 3 nm on the base of a layer made of Tb—Fe—Co. 中間層に厚さ1.5nmのMgO膜を有し、その上下それぞれにTb−Fe−Coからなる層を備えるスピン注入磁化反転素子のサンプルの、カー回転角の磁場依存性で表した磁化曲線である。Magnetization curve represented by magnetic field dependence of Kerr rotation angle of a sample of a spin-injection magnetization reversal element having a MgO film with a thickness of 1.5 nm as an intermediate layer and layers formed of Tb-Fe-Co on each of the MgO films It is.

以下、本発明に係るスピン注入磁化反転素子を実現するための形態について、図を参照して説明する。   Hereinafter, embodiments for realizing a spin transfer magnetization switching element according to the present invention will be described with reference to the drawings.

〔第1実施形態〕
本発明の第1実施形態に係るスピン注入磁化反転素子は、上下に一対の電極を接続されて、空間光変調器の画素(空間光変調器による表示の最小単位での情報(明/暗)を表示する手段)を構成する光変調素子に適用される。このような光変調素子は、上方から入射した光を反射させて異なる2値の光(偏光成分)に変調し、上方へ出射する。以下、本発明の第1実施形態に係るスピン注入磁化反転素子、およびこれを備えた光変調素子について説明する。
[First Embodiment]
The spin-injection magnetization reversal element according to the first embodiment of the present invention has a pair of electrodes connected to the top and bottom, and a spatial light modulator pixel (information in the minimum unit of display by the spatial light modulator (bright / dark)). This is applied to a light modulation element constituting a display means. Such a light modulation element reflects light incident from above, modulates it into different binary light (polarized light component), and emits the light upward. Hereinafter, a spin-injection magnetization switching element according to a first embodiment of the present invention and a light modulation element including the same will be described.

本発明の第1実施形態に係るスピン注入磁化反転素子5は、図1に示すように、磁化固定層3、障壁層(中間層)2、磁化自由層1の順に積層された構成であり、一対の電極である上部電極7と下部電極6(以下、適宜まとめて、電極6,7)に上下で接続されて、光変調素子10を構成する。スピン注入磁化反転素子5は、磁化方向が一方向に固定された磁化固定層3および磁化方向が回転可能な磁化自由層1を、MgOからなる障壁層2(MgO膜)を挟んで積層してなるトンネル磁気抵抗(TMR)素子である。さらにスピン注入磁化反転素子5は、最上層に保護膜43を備え、また、必要に応じて最下層に下地金属膜41を備える。詳しくは後記製造方法にて説明するように、スピン注入磁化反転素子5を構成するこれらの各層は、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で、連続的に成膜されて積層される。   As shown in FIG. 1, the spin transfer magnetization switching element 5 according to the first embodiment of the present invention has a configuration in which a magnetization fixed layer 3, a barrier layer (intermediate layer) 2, and a magnetization free layer 1 are stacked in this order. The light modulation element 10 is configured by being connected to the upper electrode 7 and the lower electrode 6 (hereinafter, collectively referred to as electrodes 6 and 7 as appropriate) as a pair of electrodes. A spin-injection magnetization reversal element 5 is formed by laminating a magnetization fixed layer 3 whose magnetization direction is fixed in one direction and a magnetization free layer 1 whose magnetization direction is rotatable, with a barrier layer 2 (MgO film) made of MgO interposed therebetween. This is a tunneling magnetoresistive (TMR) element. Further, the spin injection magnetization reversal element 5 includes a protective film 43 on the uppermost layer, and a base metal film 41 on the lowermost layer as necessary. Specifically, as will be described later in the manufacturing method, these layers constituting the spin injection magnetization reversal element 5 are continuously formed by a known method such as a sputtering method or a molecular beam epitaxy (MBE) method. Are stacked.

光変調素子10は、空間光変調器の画素とするために、基板9上に、膜面方向において2次元アレイ状に配列され(図示省略)、その際に、一対の電極6,7の一方が行方向に、他方が列方向に、それぞれ延設される。図1においては、下部電極6が手前−奥方向(紙面垂直方向)に、上部電極7が左右方向に、それぞれ延設された帯状に形成され、複数の光変調素子10に共有される。そのため、光変調素子10を配列した空間光変調器においては、光変調素子10,10間に、具体的にはスピン注入磁化反転素子5,5間、電極6,7間、下部電極6,6間および上部電極7,7間(配線間)のそれぞれに、絶縁層8が充填される。スピン注入磁化反転素子5は、平面視形状が例えば矩形であり(図示省略)、好適に磁化反転するためには、300nm×400nm相当の面積以下とすることが好ましく、一方、光変調のために、一辺の長さを少なくとも入射光の回折限界(波長の1/2程度)以上とする。   The light modulation elements 10 are arranged on the substrate 9 in a two-dimensional array (not shown) on the substrate 9 in order to form pixels of the spatial light modulator, and at this time, one of the pair of electrodes 6 and 7 is arranged. Are extended in the row direction and the other in the column direction. In FIG. 1, the lower electrode 6 is formed in a strip shape extending in the front-back direction (perpendicular to the paper surface) and the upper electrode 7 is extended in the left-right direction, and is shared by the plurality of light modulation elements 10. Therefore, in the spatial light modulator in which the light modulation elements 10 are arranged, specifically between the light modulation elements 10 and 10, specifically between the spin injection magnetization reversal elements 5 and 5, between the electrodes 6 and 7, and the lower electrodes 6 and 6. An insulating layer 8 is filled between the upper electrodes 7 and 7 (between the wirings). The spin-injection magnetization reversal element 5 has, for example, a rectangular shape in plan view (not shown), and preferably has an area equivalent to 300 nm × 400 nm or less in order to suitably reverse the magnetization. The length of one side is at least the diffraction limit of incident light (about ½ of the wavelength).

本実施形態に係るスピン注入磁化反転素子5は、磁化自由層1、磁化固定層3がそれぞれ、TbFeCo層(Tb−Fe−Coからなる層)11,31を主たる要素として備え、さらに、障壁層2との界面に、CoFe膜(磁性金属膜)12,32を備える。すなわち、スピン注入磁化反転素子5は、下から、下地金属膜41、TbFeCo層31、CoFe膜32、障壁層2、CoFe膜12、TbFeCo層11、保護膜43、を順に積層してなる。以下、スピン注入磁化反転素子5を構成する要素について詳しく説明する。   In the spin-injection magnetization switching element 5 according to this embodiment, the magnetization free layer 1 and the magnetization fixed layer 3 each include TbFeCo layers (layers made of Tb—Fe—Co) 11 and 31 as main elements, and further, a barrier layer. CoFe films (magnetic metal films) 12, 32 are provided at the interface with 2. That is, the spin injection magnetization reversal element 5 is formed by laminating a base metal film 41, a TbFeCo layer 31, a CoFe film 32, a barrier layer 2, a CoFe film 12, a TbFeCo layer 11, and a protective film 43 in this order from the bottom. Hereinafter, elements constituting the spin injection magnetization switching element 5 will be described in detail.

(磁化固定層)
磁化固定層3は、本実施形態に係るスピン注入磁化反転素子5において障壁層2の下に設けられ、前記した通り、下すなわち下部電極6の側から、TbFeCo層31、CoFe膜32の2層構造を有する。スピン注入磁化反転素子5が安定した磁化反転動作をするために、磁化固定層3は、保磁力が磁化自由層1(TbFeCo層11)に対して十分に大きく、具体的には0.5kOe以上の差となることが好ましい。
(Magnetic pinned layer)
The magnetization fixed layer 3 is provided below the barrier layer 2 in the spin injection magnetization reversal element 5 according to the present embodiment. As described above, the two layers of the TbFeCo layer 31 and the CoFe film 32 are provided below, that is, from the lower electrode 6 side. It has a structure. In order for the spin injection magnetization reversal element 5 to perform a stable magnetization reversal operation, the magnetization fixed layer 3 has a sufficiently large coercive force with respect to the magnetization free layer 1 (TbFeCo layer 11), specifically 0.5 kOe or more. It is preferable that the difference is

TbFeCo層31は磁化固定層3の主たる要素であり、前記した通り十分な大きさの保磁力になるように、磁化自由層1に応じて、一般的なTMR素子の磁化固定層と同様に、厚さを3〜50nmの範囲で設定されることが好ましい。TbFeCo層31は、垂直磁気異方性を有する磁性材料である遷移金属(TM)と希土類金属(RE)との合金(RE−TM合金)の一種で、特に保磁力の大きいTb−Fe−Co合金で形成される。RE−TM合金はフェリ磁性体の一種であり、Tb−Fe−Co合金においては、遷移金属であるFe,Coが一方向(+z方向とする)の磁気モーメントを有するのに対し、希土類金属であるTbは、この一方向の逆方向(−z方向)を中心(軸)に広がって円錐の側面を形成するように分布した磁気モーメントを示し、磁気モーメントはその分布全体として、x,y方向には相殺されて−z方向のみとなる。このように、Tb−Fe−Co合金は、スピン注入磁化反転素子の磁性材料に適用される場合には、TM,REのそれぞれの磁気モーメントが相殺される組成(補償組成)に対して僅かにREが多い組成にして、当該RE−TM合金全体として飽和磁化の小さい−z方向の磁気モーメントを有するようにして、容易に垂直磁気異方性を示すようにし、かつ必要な保磁力を確保している。特に希土類金属がTbである場合、その磁気モーメントが支配的になり易く、強い垂直磁気異方性を示す。また、RE−TM合金は、非晶質構造であるので、障壁層2として磁化固定層3(TbFeCo層31)の上に成膜されるMgO膜を後記するような(001)面配向にすることを妨げず、障壁層2の下側に設けられる磁性層としても好適である。   The TbFeCo layer 31 is a main element of the magnetization fixed layer 3, and, as described above, according to the magnetization free layer 1, in order to obtain a sufficiently large coercive force, as in the magnetization fixed layer of a general TMR element, The thickness is preferably set in the range of 3 to 50 nm. The TbFeCo layer 31 is a kind of an alloy (RE-TM alloy) of transition metal (TM) and rare earth metal (RE), which is a magnetic material having perpendicular magnetic anisotropy, and particularly Tb-Fe-Co having a large coercive force. Made of alloy. The RE-TM alloy is a kind of ferrimagnetic material. In the Tb-Fe-Co alloy, Fe and Co, which are transition metals, have a magnetic moment in one direction (+ z direction), but rare earth metals. A certain Tb indicates a magnetic moment distributed so as to form a side surface of a cone extending in the opposite direction (−z direction) of this one direction (−z direction) to the center (axis). Is canceled out to the -z direction only. As described above, when the Tb—Fe—Co alloy is applied to the magnetic material of the spin-injection magnetization switching element, the Tb—Fe—Co alloy is slightly less than the composition (compensation composition) in which the magnetic moments of TM and RE are offset. The RE-TM alloy as a whole has a magnetic moment in the -z direction with a small saturation magnetization so that it can easily exhibit perpendicular magnetic anisotropy and ensure the necessary coercive force. ing. In particular, when the rare earth metal is Tb, the magnetic moment tends to be dominant, and strong perpendicular magnetic anisotropy is exhibited. Further, since the RE-TM alloy has an amorphous structure, the MgO film formed on the magnetization fixed layer 3 (TbFeCo layer 31) as the barrier layer 2 has the (001) orientation as described later. This is also suitable as a magnetic layer provided below the barrier layer 2 without hindering this.

Co−FeやCo−Fe−Bのような磁性金属はスピン偏極率が高い。そのため、CoFe膜32が設けられることにより、磁化固定層3と障壁層2の界面でのスピン偏極率を高くして、障壁層2を介して磁化自由層1に注入されるスピンによるスピントルクが増大して、スピン注入磁化反転素子5の反転電流がいっそう低減される。なお、本明細書では要素名として「CoFe膜」32と称するが、Co−Fe、Co−Fe−Bのいずれも適用することができる。前記効果を十分に得るために、CoFe膜32は、厚さを0.1nm以上とすることが好ましい。なお、Co−FeやCo−Fe−Bは、本来は面内磁気異方性を有するが、垂直磁気異方性を示す磁性体(TbFeCo層31)と一体に垂直磁気異方性を示すように、相対的に厚さを抑えて設けられる。具体的には、CoFe膜32は、厚さを2nm以下とすることが好ましい。また、Co−FeやCo−Fe−Bは、(001)面配向の結晶のMgOとの格子整合がよく、特に成膜時において非晶質のCo−Fe−Bを適用することで、その上に成膜されるMgO膜(障壁層2)が(001)面配向の結晶構造になり易い。   Magnetic metals such as Co—Fe and Co—Fe—B have a high spin polarization. Therefore, the provision of the CoFe film 32 increases the spin polarization at the interface between the fixed magnetization layer 3 and the barrier layer 2, and the spin torque due to the spin injected into the magnetization free layer 1 through the barrier layer 2. Increases, and the reversal current of the spin injection magnetization reversal element 5 is further reduced. In this specification, the element name is referred to as “CoFe film” 32, but both Co—Fe and Co—Fe—B can be applied. In order to obtain the effect sufficiently, the CoFe film 32 preferably has a thickness of 0.1 nm or more. Co-Fe and Co-Fe-B originally have in-plane magnetic anisotropy, but seem to exhibit perpendicular magnetic anisotropy integrally with a magnetic body (TbFeCo layer 31) exhibiting perpendicular magnetic anisotropy. Further, it is provided with a relatively small thickness. Specifically, the CoFe film 32 preferably has a thickness of 2 nm or less. In addition, Co—Fe and Co—Fe—B have good lattice matching with MgO of (001) -oriented crystals, and by applying amorphous Co—Fe—B at the time of film formation, The MgO film (barrier layer 2) formed thereon tends to have a (001) -oriented crystal structure.

(障壁層)
障壁層2は、TMR素子の障壁層として好適なMgOで形成される。障壁層2がMgOで形成されることにより、スピン注入磁化反転素子5は反転電流が低減されたTMR素子になると同時に、障壁層2の上に成膜される後記のTbFeCo層11(磁化自由層1)の保磁力が小さくなって、スピン注入磁化反転が可能になる。障壁層2は、一般的なTMR素子と同様に、厚さを0.1〜2nmの範囲とすることが好ましく、上に設けたTbFeCo層11の保磁力を小さくする効果を十分なものにするために、厚さを1nm以上とすることがより好ましい。また、本実施形態に係るスピン注入磁化反転素子5においては、障壁層2は、下地となる磁化固定層3に非晶質構造であるTbFeCo層31が適用され、さらに当該障壁層2との界面にCo−FeまたはCo−Fe−B(CoFe膜32)が設けられているので、(001)面配向のMgOになり易い。MgOのこのような結晶構造により、スピン注入磁化反転素子5において電子が散乱せずに注入されて、コヒーレントなトンネル電流が流れることにより、スピン注入磁化反転素子5の反転電流をいっそう低減させることができる。特に本実施形態に係るスピン注入磁化反転素子5においては、TbFeCo層11の保磁力を小さくするために障壁層2が比較的厚いことが好ましく、その結果、反転電流が大きくなるので、障壁層2をこのような結晶構造のMgOに形成することが好ましい。
(Barrier layer)
The barrier layer 2 is made of MgO suitable as a barrier layer of the TMR element. By forming the barrier layer 2 of MgO, the spin injection magnetization reversal element 5 becomes a TMR element with a reduced reversal current, and at the same time, a TbFeCo layer 11 (magnetization free layer) described later formed on the barrier layer 2. The coercive force of 1) becomes small, and spin injection magnetization reversal becomes possible. As in the case of a general TMR element, the barrier layer 2 preferably has a thickness in the range of 0.1 to 2 nm, and makes the effect of reducing the coercive force of the TbFeCo layer 11 provided above sufficient. Therefore, the thickness is more preferably 1 nm or more. In the spin-injection magnetization switching element 5 according to the present embodiment, the barrier layer 2 includes the TbFeCo layer 31 having an amorphous structure applied to the magnetization fixed layer 3 serving as an underlayer, and an interface with the barrier layer 2. Since Co—Fe or Co—Fe—B (CoFe film 32) is provided on the substrate, it tends to be (001) -oriented MgO. With such a crystal structure of MgO, electrons are injected without being scattered in the spin-injection magnetization reversal element 5 and a coherent tunnel current flows, whereby the reversal current of the spin-injection magnetization reversal element 5 can be further reduced. it can. In particular, in the spin transfer magnetization reversal element 5 according to the present embodiment, the barrier layer 2 is preferably relatively thick in order to reduce the coercive force of the TbFeCo layer 11, and as a result, the reversal current becomes large. Is preferably formed in MgO having such a crystal structure.

(磁化自由層)
磁化自由層1は、光変調素子10における光変調層であり、本実施形態に係るスピン注入磁化反転素子5において障壁層2の上に設けられ、前記した通り、障壁層2の側、すなわち下から、CoFe膜12、TbFeCo層11の2層構造を有する。
(Magnetization free layer)
The magnetization free layer 1 is a light modulation layer in the light modulation element 10 and is provided on the barrier layer 2 in the spin injection magnetization reversal element 5 according to the present embodiment. Therefore, it has a two-layer structure of a CoFe film 12 and a TbFeCo layer 11.

TbFeCo層11は磁化自由層1の主たる要素であり、Tb−Fe−Co合金で形成される。Tb−Fe−Co合金は、磁化固定層3にも適用されているように保磁力が比較的大きく、後記するような厚さや組成による調整のみでは、本来は磁化反転させることが困難であるが、MgO膜の上に成膜されることで保磁力が小さくなる。スピン注入磁化反転素子5においては、TbFeCo層11は、後記するように極めて薄いCoFe膜12のみを介して障壁層2の上に形成されることにより、前記効果が得られる。TbFeCo層11は、厚いほど磁気光学効果が高くなるが、一方で厚くなるにしたがい保磁力が増大するため磁化反転が困難になる。また、TbFeCo層11は、厚いと、障壁層2(MgO膜)から離れた上層部分でMgO膜による保磁力を低減させる効果が低下して、全体として、本来の大きな保磁力に近くなる。したがって、TbFeCo層11は、一般的なTMR素子の磁化自由層と同様に、厚さを1〜20nmの範囲とすることが好ましく、10nm以下がより好ましい。   The TbFeCo layer 11 is a main element of the magnetization free layer 1 and is formed of a Tb—Fe—Co alloy. The Tb—Fe—Co alloy has a relatively large coercive force as applied to the magnetization fixed layer 3, and it is difficult to reverse the magnetization by simply adjusting the thickness and composition as described later. The coercive force is reduced by being formed on the MgO film. In the spin transfer magnetization switching element 5, the TbFeCo layer 11 is formed on the barrier layer 2 only through the extremely thin CoFe film 12 as will be described later. The thicker the TbFeCo layer 11, the higher the magneto-optical effect. On the other hand, as the thickness increases, the coercive force increases, so that the magnetization reversal becomes difficult. On the other hand, if the TbFeCo layer 11 is thick, the effect of reducing the coercive force due to the MgO film in the upper layer part away from the barrier layer 2 (MgO film) is lowered, and the TbFeCo layer 11 becomes close to the original large coercive force as a whole. Therefore, the thickness of the TbFeCo layer 11 is preferably in the range of 1 to 20 nm, more preferably 10 nm or less, like the magnetization free layer of a general TMR element.

CoFe膜12は、磁化固定層3におけるCoFe膜32と同様に、Co−Fe、Co−Fe−Bのいずれも適用することができ、磁化自由層1と障壁層2の界面でのスピン偏極率を高くする。スピン注入磁化反転素子5は、磁化固定層3におけるCoFe膜32だけでなく、磁化自由層1にもCoFe膜12が設けられることで、障壁層2を介して磁化自由層1へ注入するスピンによるスピントルクが増大して、反転電流がいっそう低減される。CoFe膜12は、CoFe膜32と同様に、厚さを0.1nm以上とすることが好ましい。CoFe膜12は、一方で、障壁層2(MgO膜)によるTbFeCo層11の保磁力低減の効果を妨げないために、連続した膜を形成しないように厚さを1nm未満とすることが好ましく、1原子膜相当の0.3nm以下とすることがより好ましい。   As the CoFe film 12, both Co—Fe and Co—Fe—B can be applied, as is the case with the CoFe film 32 in the magnetization fixed layer 3, and the spin polarization at the interface between the magnetization free layer 1 and the barrier layer 2. Increase the rate. The spin-injection magnetization reversal element 5 includes not only the CoFe film 32 in the magnetization fixed layer 3 but also the CoFe film 12 provided in the magnetization free layer 1, so that the spin-injection magnetization reversal element 5 is driven by spin injected into the magnetization free layer 1 through the barrier layer 2. The spin torque is increased and the reversal current is further reduced. As with the CoFe film 32, the CoFe film 12 preferably has a thickness of 0.1 nm or more. On the other hand, the CoFe film 12 preferably has a thickness of less than 1 nm so as not to form a continuous film in order not to hinder the effect of reducing the coercive force of the TbFeCo layer 11 by the barrier layer 2 (MgO film). More preferably, it is 0.3 nm or less corresponding to one atomic film.

(下地金属膜)
下地金属膜41は、スピン注入磁化反転素子5の最下層すなわち磁化固定層3の下に、下部電極6への密着性を付与するために設けられる。下地金属膜41は、非磁性金属材料の中で、Ru,Taを適用することが好ましく、これらの金属膜であれば、磁化固定層3に非晶質のTbFeCo層31を備えてその上に設けられる障壁層2とするMgO膜について、(001)面配向にすることを妨げない。下地金属膜41は、厚さが1nm未満であると連続した(ピンホールのない)膜を形成し難く密着性を付与する効果が十分に得られ難く、一方、10nmを超えて厚くしても、密着性がそれ以上には向上しないので、厚さを1〜10nmとすることが好ましい。
(Underlying metal film)
The base metal film 41 is provided under the lowermost layer of the spin injection magnetization switching element 5, that is, below the magnetization fixed layer 3 in order to provide adhesion to the lower electrode 6. The base metal film 41 is preferably made of Ru, Ta among non-magnetic metal materials. If these metal films are used, the magnetization fixed layer 3 includes an amorphous TbFeCo layer 31 on top of it. The MgO film used as the barrier layer 2 to be provided is not prevented from being (001) oriented. If the thickness of the base metal film 41 is less than 1 nm, it is difficult to form a continuous (pinhole-free) film and it is difficult to obtain a sufficient effect of imparting adhesiveness. Since the adhesion does not improve any more, the thickness is preferably 1 to 10 nm.

(保護膜)
保護膜43は、スピン注入磁化反転素子5の最上層すなわち磁化自由層1の上に、当該スピン注入磁化反転素子5の各層、特に最上層の磁化自由層1のTbFeCo層11を、光変調素子10の製造工程におけるダメージから保護するために設けられる。製造工程におけるダメージとは、例えばレジストパターン形成時の現像液の含浸等が挙げられ、特に酸化し易いRE−TM合金であるTbFeCo層11を外部環境に曝さないように、保護膜43が設けられる。保護膜43は、Ru,Ta,Cu,Pt,Au等の非磁性金属材料からなる単層膜、またはCu/Ta,Cu/Ru等の異なる金属材料からなる金属膜を2層以上積層した積層膜から構成される。保護膜43は、下地金属膜41と同様に、厚さが1nm未満であると連続した(ピンホールのない)膜を形成し難いので、TbFeCo層11等を保護する効果が十分に得られ難い。一方、保護膜43は、10nmを超えて厚くしても、前記効果がそれ以上には向上せず、また、光変調素子10の上方からの入射光の透過光量を減衰させる。したがって、保護膜43は、厚さを1〜10nmとすることが好ましい。
(Protective film)
The protective film 43 is formed on the uppermost layer of the spin injection magnetization reversal element 5, that is, on the magnetization free layer 1. Each layer of the spin injection magnetization reversal element 5, particularly the TbFeCo layer 11 of the uppermost magnetization free layer 1, It is provided in order to protect from damage in 10 manufacturing processes. The damage in the manufacturing process includes, for example, impregnation with a developer at the time of forming a resist pattern, and the protective film 43 is provided so as not to expose the TbFeCo layer 11 which is a particularly easily oxidizable RE-TM alloy to the external environment. . The protective film 43 is a laminated film in which two or more metal films made of a non-magnetic metal material such as Ru, Ta, Cu, Pt, or Au, or metal films made of different metal materials such as Cu / Ta, Cu / Ru, are laminated. Consists of a membrane. As with the base metal film 41, the protective film 43 has a thickness of less than 1 nm, and it is difficult to form a continuous film (without pinholes). Therefore, it is difficult to sufficiently obtain the effect of protecting the TbFeCo layer 11 and the like. . On the other hand, even if the protective film 43 is thicker than 10 nm, the effect is not improved any more, and the transmitted light amount of incident light from above the light modulation element 10 is attenuated. Therefore, the protective film 43 preferably has a thickness of 1 to 10 nm.

スピン注入磁化反転素子5以外の光変調素子10を構成する要素について、以下に説明する。   Elements constituting the light modulation element 10 other than the spin injection magnetization switching element 5 will be described below.

(下部電極)
下部電極6は、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な金属電極材料で形成され、また、前記金属や合金の2種類以上を積層してもよい。このような金属電極材料は、スパッタリング法等の公知の方法により成膜され、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状等の所望の形状に加工される。
(Lower electrode)
The lower electrode 6 is formed of a general metal electrode material such as a metal such as Cu, Al, Au, Ag, Ta, or Cr, or an alloy thereof, or two or more of the metals or alloys may be laminated. Good. Such a metal electrode material is formed into a film by a known method such as a sputtering method, and is processed into a desired shape such as a stripe shape by photolithography and an etching or lift-off method.

(上部電極)
上部電極7は、光が透過するように透明電極材料からなる層(透明電極層)73と、その下地の金属膜74と、からなる。透明電極層73は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In23)等の公知の透明電極材料からなる。これらの透明電極材料は塗布法でも成膜されるが、透明電極層73は、後記するように金属膜74と連続して成膜されることが好ましい。そのため、透明電極層73は、金属膜74と共に、連続的に成膜が可能なスパッタリング法や真空蒸着法等を適用して成膜されることが好ましく、フォトリソグラフィおよびエッチング等でストライプ状等の所望の形状に一括に加工される。特に、上部電極7は、TbFeCo層11,31を含むスピン注入磁化反転素子5の上に形成されるため、透明電極層73には無加熱(室温等)成膜で比較的良好な導電性が得られるIZOを適用されることが好ましい。
(Upper electrode)
The upper electrode 7 is composed of a layer (transparent electrode layer) 73 made of a transparent electrode material and a base metal film 74 so as to transmit light. The transparent electrode layer 73 includes, for example, indium zinc oxide (IZO), indium tin oxide (ITO), tin oxide (SnO 2 ), antimony oxide-tin oxide (ATO), zinc oxide (ZnO), fluorine-doped tin oxide (FTO), consisting of a known transparent electrode material such as indium oxide (in 2 O 3). Although these transparent electrode materials are also formed by a coating method, the transparent electrode layer 73 is preferably formed continuously with the metal film 74 as described later. Therefore, the transparent electrode layer 73 is preferably formed together with the metal film 74 by applying a sputtering method, a vacuum deposition method, or the like that can be continuously formed. It is processed into a desired shape all at once. In particular, since the upper electrode 7 is formed on the spin-injection magnetization reversal element 5 including the TbFeCo layers 11 and 31, the transparent electrode layer 73 has a relatively good conductivity by non-heating (room temperature or the like) film formation. The resulting IZO is preferably applied.

電極(配線)を透明電極材料で形成する場合、電極とこの電極に接続するスピン注入磁化反転素子5との間に金属膜が設けられていることが好ましい。したがって、上部電極7は、下地に金属膜74を設けて、その上に透明電極層73を積層した構造とすることが好ましい。スピン注入磁化反転素子5との間に金属膜74を介在させることで、金属電極材料よりも抵抗が大きい透明電極材料(透明電極層73)を主体として構成される上部電極7においても、上部電極7−スピン注入磁化反転素子5間の接触抵抗を低減させて応答速度を上げることができる。   When the electrode (wiring) is formed of a transparent electrode material, a metal film is preferably provided between the electrode and the spin injection magnetization reversal element 5 connected to the electrode. Therefore, it is preferable that the upper electrode 7 has a structure in which the metal film 74 is provided on the base and the transparent electrode layer 73 is laminated thereon. Even in the upper electrode 7 mainly composed of a transparent electrode material (transparent electrode layer 73) having a resistance higher than that of the metal electrode material by interposing the metal film 74 between the spin injection magnetization switching element 5 and the upper electrode 7 The contact resistance between the 7-spin injection magnetization reversal elements 5 can be reduced to increase the response speed.

透明電極層73とスピン注入磁化反転素子5との間を介在する金属膜74としては、例えば、Au,Ru,Ta、またはそれらの金属の2種以上からなる合金等を用いることができる。そして、金属膜74は、その上の透明電極層73との密着性をよくして接触抵抗をさらに低減するために、前記した通り、スパッタリング法等で、透明電極材料と連続的に真空処理室にて成膜されることが好ましい。金属膜74の厚さは、保護膜43と同様に、1nm未満であると連続した(ピンホールのない)膜を形成し難く、一方、10nmを超えると光の透過量を低下させるので、1〜10nmが好ましい。   As the metal film 74 interposed between the transparent electrode layer 73 and the spin-injection magnetization switching element 5, for example, Au, Ru, Ta, or an alloy made of two or more of these metals can be used. Then, as described above, the metal film 74 is continuously vacuum-treated with the transparent electrode material by a sputtering method or the like in order to improve the adhesion with the transparent electrode layer 73 thereon and further reduce the contact resistance. It is preferable to form a film with If the thickness of the metal film 74 is less than 1 nm, it is difficult to form a continuous film (without pinholes) as in the case of the protective film 43. On the other hand, if the thickness exceeds 10 nm, the amount of transmitted light decreases. 10 nm is preferable.

(絶縁層)
絶縁層8は、2次元アレイ状に配列された光変調素子10,10間に、すなわちスピン注入磁化反転素子5,5間、電極6,7間(層間)、下部電極6,6間および上部電極7,7間(配線間)を、それぞれ絶縁するために設けられる。絶縁層8は、例えばSiO2やAl23等の酸化膜やSi窒化物(Si34)等の公知の絶縁材料を適用することができる。ただし、スピン注入磁化反転素子5が、TbFeCo層11,31のような極めて酸化し易いRE−TM合金からなる層を含むため、スピン注入磁化反転素子5に接触する部分(スピン注入磁化反転素子5,5間)に設けられる絶縁層8は、O(酸素)を浸入させ易いSiO2等の酸化物よりも、Si窒化物やMgF2等のOを含有しない非酸化物、あるいはOを放出し難いMgO等を適用することが好ましい。
(Insulating layer)
The insulating layer 8 is arranged between the light modulation elements 10 and 10 arranged in a two-dimensional array, that is, between the spin injection magnetization reversal elements 5 and 5, between the electrodes 6 and 7 (interlayer), between the lower electrodes 6 and 6, and the upper part. It is provided to insulate between the electrodes 7 and 7 (between wirings). For the insulating layer 8, for example, a known insulating material such as an oxide film such as SiO 2 or Al 2 O 3 or Si nitride (Si 3 N 4 ) can be applied. However, since the spin-injection magnetization reversal element 5 includes a layer made of an RE-TM alloy that is very easily oxidized, such as the TbFeCo layers 11 and 31, a portion in contact with the spin-injection magnetization reversal element 5 (spin-injection magnetization reversal element 5). , 5), the non-oxide containing no O, such as Si nitride and MgF 2 , or O is released rather than the oxide such as SiO 2 that easily infiltrates O (oxygen). It is preferable to apply difficult MgO or the like.

(基板)
基板9は、光変調素子10を配列するための土台であり、公知の基板材料が適用でき、例えば表面を熱酸化したSi基板やガラス等の公知の基板が適用できる。
(substrate)
The substrate 9 is a base on which the light modulation elements 10 are arranged, and a known substrate material can be applied. For example, a known substrate such as a Si substrate or glass whose surface is thermally oxidized can be applied.

(光変調素子の製造方法)
次に、スピン注入磁化反転素子5を備える光変調素子10の製造方法について、その一例を、図2を参照して説明する。光変調素子10は、前記したように、基板9上に2次元配列された空間光変調器として製造される。一般的に、スピン注入磁化反転素子は、磁性膜等の各材料を成膜、積層して、イオンミリング法等のエッチング異方性の高いエッチングで加工されて製造されることが多いが、本実施形態に係るスピン注入磁化反転素子5は、耐熱性に劣るTb−Fe−Coからなる層(TbFeCo層11,31)を備えることから、以下の方法で製造されることが好ましい。
(Manufacturing method of light modulation element)
Next, an example of a method for manufacturing the light modulation element 10 including the spin injection magnetization switching element 5 will be described with reference to FIG. As described above, the light modulation element 10 is manufactured as a spatial light modulator arranged two-dimensionally on the substrate 9. In general, a spin-injection magnetization reversal element is often manufactured by forming and laminating each material such as a magnetic film and processing it by etching with high etching anisotropy such as an ion milling method. Since the spin-injection magnetization switching element 5 according to the embodiment includes the layers (TbFeCo layers 11 and 31) made of Tb—Fe—Co which is inferior in heat resistance, it is preferably manufactured by the following method.

まず、図2(a)に示すように、下部電極6および下部電極6,6間を埋める絶縁層8を形成する。詳しくは、基板9の表面に、SiO2等の絶縁膜を下部電極6の厚さに合わせて成膜する。この絶縁膜の上に、下部電極6を形成する領域を空けたレジストパターンを形成し、絶縁膜をエッチングして基板9を露出させる。この上から金属電極材料を成膜して、絶縁膜(絶縁層8)のエッチング跡に埋め込んで下部電極6を形成し、レジストパターンを除去する(リフトオフ)。 First, as shown in FIG. 2A, an insulating layer 8 that fills the space between the lower electrode 6 and the lower electrodes 6 and 6 is formed. Specifically, an insulating film such as SiO 2 is formed on the surface of the substrate 9 in accordance with the thickness of the lower electrode 6. On this insulating film, a resist pattern is formed with a region for forming the lower electrode 6, and the substrate 9 is exposed by etching the insulating film. A metal electrode material is deposited from above and buried in the etching mark of the insulating film (insulating layer 8) to form the lower electrode 6, and the resist pattern is removed (lift-off).

次に、スピン注入磁化反転素子5を形成する。詳しくは、下部電極6および絶縁層8の上に、Si窒化物等の非酸化物の絶縁膜(図中、加工後における絶縁層8と同じ符号(8)で表す。第2実施形態以降も同様。)を、スピン注入磁化反転素子5(下地金属膜41〜保護膜43)の厚さに合わせて成膜する。この絶縁膜の上に、スピン注入磁化反転素子5を形成する領域を空けたレジストパターンPRを形成し(図2(b))、絶縁膜をエッチングして下部電極6を露出させる(図2(c))。このとき、反応性イオンエッチング(RIE)のような加工ダメージの比較的少ない方法を適用し、Ru等の金属材料(下部電極6の表面における材料)に対して絶縁膜(Si窒化物)のエッチング選択性の高い条件でエッチングすることが好ましい。このような方法により、図2(c)に示すように、エッチングで形成される絶縁層8の側壁の立ち上がりに丸みが残らないようにオーバーエッチングを施しても、エッチング面(下部電極6の表面)が粗くならず、下部電極6上に形成されるスピン注入磁化反転素子5の各層の特性が劣化しない。この上から、下地金属膜41、TbFeCo層31、CoFe膜32、障壁層2、CoFe膜12、TbFeCo層11、保護膜43の各材料を連続して成膜して、絶縁層8に形成された孔に埋め込んでスピン注入磁化反転素子5を形成し、レジストパターンPRをその上の材料ごと除去する(リフトオフ、図2(d))。   Next, the spin injection magnetization switching element 5 is formed. Specifically, on the lower electrode 6 and the insulating layer 8, a non-oxide insulating film such as Si nitride (in the figure, the same reference numeral (8) as that of the insulating layer 8 after processing. In the second and subsequent embodiments). The same applies to the thickness of the spin injection magnetization reversal element 5 (underlying metal film 41 to protective film 43). On this insulating film, a resist pattern PR is formed with a region for forming the spin transfer magnetization reversal element 5 (FIG. 2B), and the insulating film is etched to expose the lower electrode 6 (FIG. 2 ( c)). At this time, a method with relatively little processing damage such as reactive ion etching (RIE) is applied to etch the insulating film (Si nitride) with respect to a metal material (material on the surface of the lower electrode 6) such as Ru. Etching is preferably performed under conditions with high selectivity. Even if over-etching is performed by such a method so that the rising of the side wall of the insulating layer 8 formed by etching does not remain round as shown in FIG. ) Does not become rough, and the characteristics of each layer of the spin transfer magnetization reversal element 5 formed on the lower electrode 6 do not deteriorate. From this, the base metal film 41, the TbFeCo layer 31, the CoFe film 32, the barrier layer 2, the CoFe film 12, the TbFeCo layer 11, and the protective film 43 are successively formed to form the insulating layer 8. The spin injection magnetization reversal element 5 is formed by being buried in the hole, and the resist pattern PR is removed together with the material thereon (lift-off, FIG. 2 (d)).

次に、上部電極7を形成する。スピン注入磁化反転素子5(保護膜43)および絶縁層8の上に、上部電極7を形成する領域を空けたレジストパターンを形成し、この上から金属膜、透明電極材料を連続して成膜して、レジストパターンを除去し(リフトオフ)、下部電極6と直交するストライプ状の上部電極7とする。そして、上部電極7,7間にSiO2等の絶縁膜を堆積させて絶縁層8とし、光変調素子10が得られる。 Next, the upper electrode 7 is formed. On the spin-injection magnetization switching element 5 (protective film 43) and the insulating layer 8, a resist pattern with a region for forming the upper electrode 7 is formed, and a metal film and a transparent electrode material are successively formed thereon. Then, the resist pattern is removed (lift-off) to form a striped upper electrode 7 orthogonal to the lower electrode 6. Then, an insulating film such as SiO 2 is deposited between the upper electrodes 7 and 7 to form the insulating layer 8, and the light modulation element 10 is obtained.

このように、スピン注入磁化反転素子5を構成する材料に対してエッチングによる加工を行わずに成形することで、特にTbFeCo層11,31へのダメージが抑えられ、また、図2(d)に示すように、TbFeCo層11等が成膜と同時に側面(端面)を絶縁層8で封止されるので、特性の劣化を防止することができる。さらに、スピン注入磁化反転素子5の後に形成される上部電極7についても、透明電極材料等のエッチングではなく、リフトオフ法で形成することで、TbFeCo層11等のスピン注入磁化反転素子5の各層へのダメージを避けることができる。   In this way, by forming the material constituting the spin injection magnetization reversal element 5 without performing processing by etching, particularly damage to the TbFeCo layers 11 and 31 can be suppressed, and FIG. As shown, the TbFeCo layer 11 and the like are sealed at the side surfaces (end faces) with the insulating layer 8 at the same time as the film formation, so that deterioration of characteristics can be prevented. Further, the upper electrode 7 formed after the spin injection magnetization reversal element 5 is also formed by the lift-off method instead of etching the transparent electrode material or the like, so that each layer of the spin injection magnetization reversal element 5 such as the TbFeCo layer 11 is formed. Can avoid damage.

なお、下部電極6を、基板9上に絶縁膜(絶縁層8)を成膜する前に形成することもできる。具体的には、まず、基板9の表面に、下部電極6を形成する領域を空けたレジストパターンを形成し、この上から金属電極材料を成膜して、レジストパターンを除去し(リフトオフ)、下部電極6が形成される。この上から、Si窒化物等の絶縁膜(絶縁層8)を堆積させて、下部電極6,6間を埋め、さらにスピン注入磁化反転素子5の厚さ以上に形成する。そして、この絶縁膜の表面を、化学的機械研磨(CMP)等で研削、研磨して、下部電極6上の絶縁膜の厚さをスピン注入磁化反転素子5の厚さに調整する。その後は、絶縁膜の上に、レジストパターンPRを形成し(図2(b))、前記と同様に、スピン注入磁化反転素子5、上部電極7を形成する。   The lower electrode 6 can also be formed before the insulating film (insulating layer 8) is formed on the substrate 9. Specifically, first, a resist pattern is formed on the surface of the substrate 9 with a region for forming the lower electrode 6, a metal electrode material is formed thereon, and the resist pattern is removed (lift-off). A lower electrode 6 is formed. From this, an insulating film (insulating layer 8) such as Si nitride is deposited to fill the space between the lower electrodes 6 and 6, and further to have a thickness equal to or greater than the thickness of the spin injection magnetization switching element 5. Then, the surface of the insulating film is ground and polished by chemical mechanical polishing (CMP) or the like, and the thickness of the insulating film on the lower electrode 6 is adjusted to the thickness of the spin injection magnetization switching element 5. Thereafter, a resist pattern PR is formed on the insulating film (FIG. 2B), and the spin transfer magnetization switching element 5 and the upper electrode 7 are formed in the same manner as described above.

(空間光変調器の初期設定)
空間光変調器におけるすべての画素の光変調素子10のスピン注入磁化反転素子5は、磁化固定層3の磁化方向が同じ向きに固定されている必要がある。磁化固定層3は電極6,7を介した電流供給では磁化反転しないので、外部から磁化固定層3の保磁力よりも大きな磁界を印加して、磁化固定層3の磁化方向を、例えば上向きに(図3参照)揃える初期設定を行う。この初期設定は、完成した、すなわち製造後の光変調素子10(空間光変調器)に限られず、製造工程途中において磁化固定層3(TbFeCo層31/CoFe膜32)用の磁性材料を成膜した後以降であれば、どの段階であっても実施することができる。
(Initial setting of spatial light modulator)
In the spin injection magnetization reversal elements 5 of the light modulation elements 10 of all the pixels in the spatial light modulator, the magnetization direction of the magnetization fixed layer 3 needs to be fixed in the same direction. Since the magnetization fixed layer 3 does not reverse the magnetization when current is supplied through the electrodes 6 and 7, a magnetic field larger than the coercive force of the magnetization fixed layer 3 is applied from the outside to change the magnetization direction of the magnetization fixed layer 3, for example, upward. (Refer to FIG. 3) The initial setting for aligning is performed. This initial setting is not limited to the completed optical modulator 10 (spatial light modulator) after manufacture, and a magnetic material for the magnetization fixed layer 3 (TbFeCo layer 31 / CoFe film 32) is formed during the manufacturing process. After that, it can be carried out at any stage.

(磁化反転動作)
スピン注入磁化反転素子5の磁化反転動作を、図3(a)、(b)を参照して、光変調素子10にて説明する。なお、図3において、下地金属膜41および保護膜43は図示を省略する。スピン注入磁化反転素子5は、磁化自由層1が逆向きのスピンを持つ電子を注入されることにより、その磁化方向が反転(スピン注入磁化反転、以下、適宜磁化反転という)する。具体的には、図3(a)に示すように、上部電極7を「+」、下部電極6を「−」にして、スピン注入磁化反転素子5に、磁化自由層1側から磁化固定層3へ電流Iwを供給して、磁化固定層3側から電子を注入する。すると、磁化方向を上向きに固定された磁化固定層3により当該磁化固定層3の磁化方向と向きの異なる下向きのスピンを持つ電子dDが弁別されて、磁化自由層1は上向きのスピンを持つ電子dUが偏って注入される。磁化自由層1においては、電子dUの上向きスピンによるスピントルクが作用することによって当該磁化自由層1の内部電子のスピンが反転し、磁化方向が上向きに反転する。反対に、図3(b)に示すように、上部電極7を「−」、下部電極6を「+」にして、スピン注入磁化反転素子5に、磁化固定層3側から磁化自由層1へ電流Iwを供給して、磁化自由層1側から電子を注入する。すると、下向きのスピンを持つ電子dDが磁化固定層3により弁別されて磁化自由層1に留まるため、磁化自由層1の磁化方向は下向きに反転する。
(Magnetization reversal operation)
A magnetization reversal operation of the spin injection magnetization reversal element 5 will be described with reference to FIGS. In FIG. 3, the base metal film 41 and the protective film 43 are not shown. In the spin-injection magnetization reversal element 5, when the magnetization free layer 1 is injected with electrons having spins in the opposite direction, the magnetization direction is reversed (spin injection magnetization reversal, hereinafter referred to as magnetization reversal as appropriate). Specifically, as shown in FIG. 3A, the upper electrode 7 is set to “+” and the lower electrode 6 is set to “−”, and the spin fixed magnetization switching element 5 is set to the magnetization fixed layer from the magnetization free layer 1 side. 3 is supplied with current I w to inject electrons from the magnetization fixed layer 3 side. Then, the electrons d D having the downward spin different from the magnetization direction of the magnetization fixed layer 3 are discriminated by the magnetization fixed layer 3 whose magnetization direction is fixed upward, and the magnetization free layer 1 has the upward spin. electronic d U are injected unevenly. In the magnetization free layer 1, an electron d U the magnetization free layer 1 inside electron spin is inverted by the action of the spin torque according to upward spin magnetization direction is reversed upward. On the other hand, as shown in FIG. 3B, the upper electrode 7 is set to “−” and the lower electrode 6 is set to “+”, so that the spin injection magnetization switching element 5 is moved from the magnetization fixed layer 3 side to the magnetization free layer 1. A current I w is supplied to inject electrons from the magnetization free layer 1 side. Then, the electrons d D having a downward spin are discriminated by the magnetization fixed layer 3 and remain in the magnetization free layer 1, so that the magnetization direction of the magnetization free layer 1 is reversed downward.

このように、スピン注入磁化反転素子5は、上下面に接続した一対の電極7,6で膜面垂直方向に電流を供給されることで、磁化自由層1の磁化方向が磁化固定層3と同じ方向(平行)または反対の方向(反平行)になる。また、スピン注入磁化反転素子5において、磁化自由層1の磁化方向が平行、反平行のいずれかを示していれば、その磁化方向を反転させる大きさの電流(Iw)が供給されるまでは、当該磁化自由層1の保磁力により磁化方向が保持される。そのため、スピン注入磁化反転素子5に供給する電流としては、パルス電流のように、磁化方向を反転させる電流値に一時的に到達する電流(直流パルス電流)を用いることができる。 As described above, the spin injection magnetization reversal element 5 is supplied with a current in the direction perpendicular to the film surface by the pair of electrodes 7 and 6 connected to the upper and lower surfaces, so that the magnetization direction of the magnetization free layer 1 is the same as that of the magnetization fixed layer 3. Either the same direction (parallel) or the opposite direction (antiparallel). In the spin injection magnetization reversal element 5, if the magnetization direction of the magnetization free layer 1 indicates either parallel or antiparallel, a current (I w ) of a magnitude that reverses the magnetization direction is supplied. The magnetization direction is maintained by the coercive force of the magnetization free layer 1. Therefore, as the current supplied to the spin injection magnetization reversal element 5, a current (DC pulse current) that temporarily reaches the current value for reversing the magnetization direction, such as a pulse current, can be used.

(光変調動作)
本実施形態に係るスピン注入磁化反転素子を備える光変調素子の動作を、図3(c)、(d)を参照して説明する。上方から光変調素子10に入射した光は、上部電極7を透過してスピン注入磁化反転素子5に到達し、スピン注入磁化反転素子5や下部電極6で反射して、再び上部電極7を透過して上方へ出射する。その際、磁性体である磁化自由層1の磁気光学効果により、光はその偏光面が回転(旋光)して出射する。さらに、磁性体の磁化方向が180°異なると、当該磁性体の磁気光学効果による旋光の向きは反転する。したがって、図3(c)、(d)にそれぞれ示す、磁化自由層1の磁化方向が互いに180°異なるスピン注入磁化反転素子5における旋光角は+θk,−θkで、互いに逆方向に偏光面が回転する。スピン注入磁化反転素子5の磁化反転動作は、前記の通りである。したがって、光変調素子10は、その出射光の偏光の向きを、電極6,7から電流Iwの向き(正負)を入れ替えて供給することで変化させる。なお、旋光角+θk,−θkには、磁化自由層1での1回の反射による旋光(カー回転)に限られず、例えばスピン注入磁化反転素子5における多重反射により累積された角度も含める。
(Light modulation operation)
The operation of the light modulation element including the spin injection magnetization switching element according to the present embodiment will be described with reference to FIGS. Light incident on the light modulation element 10 from above passes through the upper electrode 7 and reaches the spin injection magnetization switching element 5, is reflected by the spin injection magnetization switching element 5 and the lower electrode 6, and passes through the upper electrode 7 again. And then emits upward. At this time, the polarization plane of the light rotates (rotates) by the magneto-optic effect of the magnetization free layer 1 that is a magnetic material, and is emitted. Further, if the magnetization direction of the magnetic material is different by 180 °, the direction of optical rotation due to the magneto-optical effect of the magnetic material is reversed. Therefore, the rotation angles in the spin-injection magnetization reversal elements 5 shown in FIGS. 3C and 3D, respectively, in which the magnetization directions of the magnetization free layer 1 are 180 ° different from each other are + θ k and −θ k and polarized in opposite directions. The surface rotates. The magnetization reversal operation of the spin injection magnetization reversal element 5 is as described above. Therefore, the light modulation element 10, the direction of polarization of the emitted light is varied by supplying interchanged direction (positive or negative) of the current I w from the electrodes 6 and 7. Note that the optical rotation angles + θ k and −θ k are not limited to optical rotation (Kerr rotation) by one reflection at the magnetization free layer 1 but also include, for example, angles accumulated by multiple reflection at the spin injection magnetization reversal element 5. .

(抵抗変化)
スピン注入磁化反転素子5の磁化反転に伴う抵抗の変化を、図3(c)、(d)を参照して説明する。スピン注入磁化反転素子5は磁気抵抗効果素子であり、その積層方向における抵抗、すなわち上下に接続した電極7,6間の抵抗が、磁化自由層1の磁化方向により変化する。詳しくは、スピン注入磁化反転素子5は、図3(c)に示す磁化方向が平行な状態における抵抗RPよりも、図3(d)に示す磁化方向が反平行な状態における抵抗RAPの方が高い(RP<RAP)。そのため、磁化反転しない大きさの定電流Irを供給して電圧を計測することにより、磁化反転動作が正常に行われたかの書込みエラー検出を行うことができる。なお、図3(c)、(d)に示すスピン注入磁化反転素子5は、磁化自由層1側から磁化固定層3へ電流Irを供給されているが、電流Irの向きは逆でもよい。
(Resistance change)
A change in resistance accompanying the magnetization reversal of the spin injection magnetization reversal element 5 will be described with reference to FIGS. The spin injection magnetization reversal element 5 is a magnetoresistive effect element, and the resistance in the stacking direction, that is, the resistance between the upper and lower electrodes 7 and 6 changes depending on the magnetization direction of the magnetization free layer 1. Specifically, the spin-injection magnetization reversal element 5 than the resistance R P in the parallel state magnetization direction shown in FIG. 3 (c), the magnetization direction shown in FIG. 3 (d) of the resistance R AP in the anti-parallel state Is higher (R P <R AP ). Therefore, by measuring the voltage by supplying a constant current I r of magnitude without magnetization inversion, the magnetization reversal operation can be performed whether the write error detection was successful. Incidentally, FIG. 3 (c), the induced magnetization switching element 5 shown in (d) is has been supplied with current I r to the magnetization fixed layer 3 from the magnetization free layer 1 side in a direction the reverse current I r Good.

光変調素子10は、画素として2次元配列して、公知の反射型の空間光変調器(例えば、特許文献2参照)と同様に動作させることができる。このような空間光変調器は、所望の画素(光変調素子10)について、そのスピン注入磁化反転素子5を磁化反転動作させるために、電流供給源(電流源)と、それぞれ並設された下部電極6および上部電極7から選択的に、特定のスピン注入磁化反転素子5に接続する電極6,7を前記電流源に接続するスイッチを備える(図示省略)。空間光変調器はさらに、書込みエラー検出を行うために、定電流源と電圧の高低を判定する電圧比較器とを備えてもよい。空間光変調器(光変調素子10)への入射光は、例えばレーザー光源から偏光子(図示省略)を透過させた特定の1つの偏光成分の光であり、出射光は、別の偏光子(図示省略)により前記入射光に対して+θk,−θkの一方に旋光した光を遮光して、他方に旋光した光が透過して取り出される(図3(c)、(d)参照)。 The light modulation elements 10 can be two-dimensionally arranged as pixels and operated in the same manner as a known reflection type spatial light modulator (see, for example, Patent Document 2). Such a spatial light modulator has a current supply source (current source) and a lower portion arranged in parallel with each other in order to perform a magnetization reversal operation of the spin injection magnetization reversal element 5 for a desired pixel (light modulation element 10). A switch for connecting the electrodes 6 and 7 connected to the specific spin-injection magnetization reversal element 5 to the current source selectively from the electrode 6 and the upper electrode 7 is provided (not shown). The spatial light modulator may further include a constant current source and a voltage comparator that determines whether the voltage is high or low in order to perform write error detection. The incident light to the spatial light modulator (light modulation element 10) is, for example, light of one specific polarization component that is transmitted from a laser light source through a polarizer (not shown), and the outgoing light is another polarizer ( (Not shown), the light rotated to one of + θ k and −θ k with respect to the incident light is shielded, and the light rotated to the other is transmitted and extracted (see FIGS. 3C and 3D). .

図3(c)、(d)においては、入射光と出射光の経路を識別し易くするために、入射光の入射角を傾斜させて示しているが、磁化自由層1の極カー効果でカー回転角を大きくするために、膜面により垂直に入射、すなわち入射角を0°に近付けることが好ましく、具体的には入射角を30°以内にすることが好ましい。最も好ましくは、膜面に垂直に入射、すなわち入射角を0°とすることであり、この場合は入射光と出射光の経路が一致するため、光変調素子10の上(入射光用の偏光子との間)にハーフミラーが配置され、出射光のみを側方へ反射させて、反射させた先に出射光用の偏光子が配置される。   In FIGS. 3C and 3D, the incident angle of the incident light is shown to be inclined in order to make it easy to distinguish the paths of the incident light and the emitted light. In order to increase the Kerr rotation angle, it is preferable that the incidence is perpendicular to the film surface, that is, the incidence angle is close to 0 °, and specifically, the incidence angle is preferably within 30 °. Most preferably, the incident light is perpendicular to the film surface, that is, the incident angle is set to 0 °. In this case, since the paths of the incident light and the emitted light coincide with each other, the light is incident on the light modulation element 10 (polarization for incident light). A half mirror is disposed between the optical element and the light beam so that only the emitted light is reflected laterally, and a polarizer for the emitted light is disposed on the reflected side.

第1実施形態に係るスピン注入磁化反転素子5を備える光変調素子10は、基板9にガラス等の透明基板を適用し、また、下部電極6を上部電極7と同様に透明電極材料で形成して、透過型の空間光変調器の光変調素子に適用することもできる(図示せず)。これら光を透過する基板および下部電極については、後記第1実施形態の変形例(図4参照)にて説明する。   In the light modulation element 10 including the spin injection magnetization reversal element 5 according to the first embodiment, a transparent substrate such as glass is applied to the substrate 9, and the lower electrode 6 is formed of a transparent electrode material like the upper electrode 7. The present invention can also be applied to a light modulation element of a transmissive spatial light modulator (not shown). The substrate that transmits light and the lower electrode will be described later in a modification of the first embodiment (see FIG. 4).

第1実施形態に係るスピン注入磁化反転素子5は、磁化自由層1および磁化固定層3にTb−Fe−Co合金(TbFeCo層11,31)が適用されて材料を共通化されているが、これに限られず、磁化固定層について、その他の、垂直磁気異方性を有し、磁化自由層1(TbFeCo層11)に対して保磁力の十分に大きい公知の磁性材料を適用することができる。具体的には、Fe,Co,Ni等の遷移金属とPt,Pd等の貴金属とを含む、例えば[Co/Pt]×n、[Co/Pd]×nの多層膜、あるいは前記遷移金属とNd,Gd,Tb,Dy,Ho等の希土類金属との合金(Tb−Fe−Co合金以外のRE−TM合金)、L10系の規則合金としたFePt, FePd等が挙げられる。 In the spin-injection magnetization reversal element 5 according to the first embodiment, the Tb—Fe—Co alloy (TbFeCo layers 11 and 31) is applied to the magnetization free layer 1 and the magnetization fixed layer 3, and the material is shared. However, the magnetic pinned layer is not limited to this, and any other known magnetic material having perpendicular magnetic anisotropy and sufficiently large coercive force with respect to the magnetization free layer 1 (TbFeCo layer 11) can be applied. . Specifically, for example, a [Co / Pt] × n, [Co / Pd] × n multilayer film including a transition metal such as Fe, Co, or Ni and a noble metal such as Pt or Pd, or the transition metal Nd, Gd, Tb, Dy, alloys of rare earth metals Ho etc. (Tb-Fe-Co RE- TM alloy other than alloy), FePt was L1 0 type ordered alloys, FePd, and the like.

以上のように、本発明の第1実施形態に係るスピン注入磁化反転素子は、Tb−Fe−Coからなる2つの層がそれぞれ、磁化自由層、磁化固定層として好適な保磁力を有しているので、安定した動作とすることができ、また、磁化自由層と磁化固定層に共通の材料が適用されているので生産性がよい。さらに本実施形態に係るスピン注入磁化反転素子は、磁化自由層に垂直磁気異方性を有し、かつ磁気光学効果の高いTb−Fe−Coが適用されているので、光変調度が大きく、コントラストのよい空間光変調器を構成することができる。   As described above, in the spin-injection magnetization switching element according to the first embodiment of the present invention, the two layers made of Tb—Fe—Co have coercive force suitable as a magnetization free layer and a magnetization fixed layer, respectively. Therefore, stable operation can be achieved, and productivity is good because a common material is applied to the magnetization free layer and the magnetization fixed layer. Furthermore, since the spin injection magnetization switching element according to the present embodiment has Tb—Fe—Co having a perpendicular magnetic anisotropy and a high magneto-optic effect applied to the magnetization free layer, the degree of light modulation is large, A spatial light modulator with good contrast can be configured.

〔第2実施形態〕
第1実施形態においては、MgOからなる障壁層の上に磁化自由層が設けられていることにより、Tb−Fe−Co合金を磁化自由層に適用することができ、一方、磁化固定層が、金属膜(下部電極、下地金属膜)上に成膜されたことにより、Tb−Fe−Co合金本来の大きな保磁力を有する。ところが、反対に、障壁層の上に磁化固定層が成膜されたTMR素子においては、磁化固定層にTb−Fe−Co合金を適用すると、本来の大きな保磁力を示さないことになる。以下、第2実施形態に係るスピン注入磁化反転素子、およびこれを備えた光変調素子について説明する。第1実施形態(図1〜3参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment]
In the first embodiment, the magnetization free layer is provided on the barrier layer made of MgO, so that the Tb-Fe-Co alloy can be applied to the magnetization free layer, while the magnetization fixed layer includes Since it is formed on the metal film (lower electrode, base metal film), it has a large coercive force inherent to the Tb—Fe—Co alloy. However, in contrast, in a TMR element in which a magnetization fixed layer is formed on a barrier layer, when a Tb—Fe—Co alloy is applied to the magnetization fixed layer, the original large coercive force is not exhibited. Hereinafter, the spin-injection magnetization switching element according to the second embodiment and the light modulation element including the same will be described. The same elements as those in the first embodiment (see FIGS. 1 to 3) are denoted by the same reference numerals, and description thereof is omitted.

図4に示すように、本発明の第2実施形態に係るスピン注入磁化反転素子5Aは、磁化自由層1A、障壁層(中間層)2A、磁化固定層3Aの順に積層された構成であり、一対の電極である上部電極7Aと下部電極6A(以下、適宜まとめて、電極6A,7A)に上下で接続されて、光変調素子10Aを構成する。光変調素子10Aは、第1実施形態に係るスピン注入磁化反転素子5を備える光変調素子10(図1参照)の、積層順をほぼ逆にした構造であり、反射型の空間光変調器の画素として透明な基板9A上に2次元配列されて、下方から入射した光を反射させて下方へ出射する。   As shown in FIG. 4, the spin transfer magnetization switching element 5A according to the second embodiment of the present invention has a configuration in which a magnetization free layer 1A, a barrier layer (intermediate layer) 2A, and a magnetization fixed layer 3A are stacked in this order. A pair of electrodes, the upper electrode 7A and the lower electrode 6A (hereinafter collectively referred to as electrodes 6A and 7A) are connected in the vertical direction to constitute the light modulation element 10A. The light modulation element 10A has a structure in which the stacking order of the light modulation element 10 (see FIG. 1) including the spin-injection magnetization reversal element 5 according to the first embodiment is substantially reversed, and is a reflection type spatial light modulator. The pixels are two-dimensionally arranged on the transparent substrate 9A as pixels, and reflect the light incident from below and emit it downward.

本実施形態に係るスピン注入磁化反転素子5Aは、第1実施形態に係るスピン注入磁化反転素子5と同様に、磁化固定層3Aおよび磁化自由層1Aを、MgOからなる障壁層2A(MgO膜)を挟んで積層してなるTMR素子であり、さらに最上層に保護膜43Aを備え、また、必要に応じて最下層に下地金属膜41Aを備える。スピン注入磁化反転素子5Aは、磁化固定層3Aが、第1実施形態と同様にTbFeCo層(Tb−Fe−Coからなる層)31を主たる要素として備え、一方、磁化自由層1Aが、主たる要素として磁性層11Aを備える。さらに、磁化自由層1Aおよび磁化固定層3Aがそれぞれ、障壁層2Aとの界面に、CoFe膜(磁性金属膜)12A,32Aを備える。すなわち、スピン注入磁化反転素子5Aは、下から、下地金属膜41A、磁性層11A、CoFe膜12A、障壁層2A、CoFe膜32A、TbFeCo層31、保護膜43A、を順に積層してなる。以下、スピン注入磁化反転素子5Aを構成する要素について詳しく説明する。   Similar to the spin transfer magnetization switching element 5 according to the first embodiment, the spin transfer magnetization switching element 5A according to the present embodiment uses the magnetization fixed layer 3A and the magnetization free layer 1A as a barrier layer 2A (MgO film) made of MgO. And a protective film 43A in the uppermost layer, and a base metal film 41A in the lowermost layer if necessary. In the spin-injection magnetization switching element 5A, the magnetization fixed layer 3A includes a TbFeCo layer (a layer made of Tb—Fe—Co) 31 as a main element as in the first embodiment, while the magnetization free layer 1A includes a main element. As a magnetic layer 11A. Furthermore, the magnetization free layer 1A and the magnetization fixed layer 3A include CoFe films (magnetic metal films) 12A and 32A at the interface with the barrier layer 2A, respectively. That is, the spin injection magnetization reversal element 5A is formed by sequentially laminating a base metal film 41A, a magnetic layer 11A, a CoFe film 12A, a barrier layer 2A, a CoFe film 32A, a TbFeCo layer 31, and a protective film 43A from the bottom. Hereinafter, elements constituting the spin injection magnetization switching element 5A will be described in detail.

(磁化自由層)
磁化自由層1Aは、スピン注入磁化反転素子5Aにおいて障壁層2Aの下に設けられ、主たる要素として磁性層11Aを備え、さらに障壁層2Aの側(障壁層2Aとの界面)に、第1実施形態に係るスピン注入磁化反転素子5の磁化自由層1と同様にCoFe膜12Aを備える。すなわち磁化自由層1Aは、下から、磁性層11A、CoFe膜12Aの2層構造を有する。
(Magnetization free layer)
The magnetization free layer 1A is provided below the barrier layer 2A in the spin injection magnetization reversal element 5A, includes a magnetic layer 11A as a main element, and further on the side of the barrier layer 2A (interface with the barrier layer 2A) in the first embodiment. Similar to the magnetization free layer 1 of the spin injection magnetization reversal element 5 according to the embodiment, the CoFe film 12A is provided. That is, the magnetization free layer 1A has a two-layer structure of the magnetic layer 11A and the CoFe film 12A from the bottom.

磁性層11Aは、一般的なTMR素子の磁化自由層と同様に、厚さを1〜20nmの範囲で設定されることが好ましく、公知の垂直磁気異方性材料にて形成することができる。具体的には、Fe,Co,Ni等の遷移金属とPt,Pd等の貴金属とを含む、例えば[Co/Pt]×n、[Co/Pd]×nの多層膜、あるいは前記遷移金属とNd,Gd,Tb,Dy,Ho等の希土類金属との合金(RE−TM合金)が挙げられ、スピン注入磁化反転素子5Aへの電流供給により磁化反転可能な程度に保磁力の小さい材料が適用される。また、磁性層11Aは、障壁層2Aとして磁化自由層1Aの上に形成されるMgO膜を(001)面配向とすることを妨げないように、非晶質であることが好ましいため、RE−TM合金が好適で、磁気光学効果の高いGd−Fe合金が特に好ましい。   The magnetic layer 11A is preferably set to a thickness in the range of 1 to 20 nm, and can be formed of a known perpendicular magnetic anisotropic material, like the magnetization free layer of a general TMR element. Specifically, for example, a [Co / Pt] × n, [Co / Pd] × n multilayer film including a transition metal such as Fe, Co, or Ni and a noble metal such as Pt or Pd, or the transition metal Examples include alloys (RE-TM alloys) with rare earth metals such as Nd, Gd, Tb, Dy, and Ho, and a material having a small coercive force to the extent that magnetization can be reversed by supplying current to the spin injection magnetization reversal element 5A is applied. Is done. The magnetic layer 11A is preferably amorphous so as not to prevent the MgO film formed on the magnetization free layer 1A as the barrier layer 2A from being in the (001) plane orientation. A TM alloy is preferable, and a Gd—Fe alloy having a high magneto-optical effect is particularly preferable.

CoFe膜12Aは、第1実施形態に係るスピン注入磁化反転素子5のCoFe膜12と同様の構成であり、厚さを0.1nm以上とすることが好ましい。一方、CoFe膜12Aが厚いと、磁性層11Aが材料や厚さによっては垂直磁気異方性を示さなくなる。したがって、CoFe膜12Aは、第1実施形態と同様に厚さを1nm未満とすることが好ましく、0.3nm以下とすることがより好ましい。   The CoFe film 12A has the same configuration as the CoFe film 12 of the spin transfer magnetization switching element 5 according to the first embodiment, and preferably has a thickness of 0.1 nm or more. On the other hand, if the CoFe film 12A is thick, the magnetic layer 11A does not exhibit perpendicular magnetic anisotropy depending on the material and thickness. Accordingly, the thickness of the CoFe film 12A is preferably less than 1 nm, more preferably 0.3 nm or less, as in the first embodiment.

(障壁層)
障壁層2Aは、第1実施形態と同様にMgOで形成され、一般的なTMR素子と同様に、厚さを0.1〜2nmの範囲とすることが好ましい。ただし本実施形態においては、この上に成膜される磁化固定層3A(TbFeCo層31)の保磁力を低減させる必要がないので、反転電流の大きさ等に基づいて厚さを設計すればよい。
(Barrier layer)
The barrier layer 2A is made of MgO as in the first embodiment, and preferably has a thickness in the range of 0.1 to 2 nm, as in a general TMR element. However, in this embodiment, it is not necessary to reduce the coercive force of the magnetization fixed layer 3A (TbFeCo layer 31) formed thereon, and therefore the thickness may be designed based on the magnitude of the reversal current. .

(磁化固定層)
磁化固定層3Aは、本実施形態に係るスピン注入磁化反転素子5Aにおいて障壁層2Aの上に設けられ、障壁層2Aの側、すなわち下から、CoFe膜32A、TbFeCo層31の2層構造を有する。スピン注入磁化反転素子5Aが安定した磁化反転動作をするために、第1実施形態と同様に、磁化固定層3Aは、保磁力が磁化自由層1Aに対して十分に大きく、具体的には0.5kOe以上の差となることが好ましい。特に、本実施形態においては、TbFeCo層31がMgOからなる障壁層2Aの上に成膜されているため、障壁層2Aとの界面にCoFe膜32Aを設けて、スピン偏極率を高くするのと同時に、TbFeCo層31がMgO膜によって保磁力が低下しないようにする。
(Magnetic pinned layer)
The magnetization fixed layer 3A is provided on the barrier layer 2A in the spin injection magnetization reversal element 5A according to the present embodiment, and has a two-layer structure of the CoFe film 32A and the TbFeCo layer 31 from the barrier layer 2A side, that is, from below. . In order for the spin injection magnetization reversal element 5A to perform a stable magnetization reversal operation, as in the first embodiment, the magnetization fixed layer 3A has a sufficiently large coercive force relative to the magnetization free layer 1A. It is preferable that the difference be 0.5 kOe or more. In particular, in this embodiment, since the TbFeCo layer 31 is formed on the barrier layer 2A made of MgO, the CoFe film 32A is provided at the interface with the barrier layer 2A to increase the spin polarization rate. At the same time, the coercive force of the TbFeCo layer 31 is prevented from being lowered by the MgO film.

TbFeCo層31の構成は、第1実施形態にて説明した通りである。ただし、本実施形態に係るスピン注入磁化反転素子5Aにおいては、TbFeCo層31は、CoFe膜32Aのみを介して障壁層2Aの上に設けられているため、第1実施形態における磁化自由層1のTbFeCo層11とは反対に、厚く形成して、厚さにより保磁力を大きくすると同時に、上層部分が障壁層2A(MgO膜)から離れることでMgO膜による影響を低減させることが好ましい。   The configuration of the TbFeCo layer 31 is as described in the first embodiment. However, in the spin transfer magnetization switching element 5A according to the present embodiment, the TbFeCo layer 31 is provided on the barrier layer 2A through only the CoFe film 32A. Contrary to the TbFeCo layer 11, it is preferable to increase the coercive force by increasing the thickness and to reduce the influence of the MgO film by separating the upper layer portion from the barrier layer 2 </ b> A (MgO film).

CoFe膜32Aは、第1実施形態に係るスピン注入磁化反転素子5のCoFe膜32と同様の構成であり、厚さを0.1〜2nmの範囲とすることができる。ただし、本実施形態に係るスピン注入磁化反転素子5Aにおいては、CoFe膜32Aは、障壁層2AすなわちMgO膜とその上のTbFeCo層31との間に設けられているので、TbFeCo層31の保磁力の低下を抑制するために、TbFeCo層31の垂直磁気異方性が維持される範囲で十分な厚さに形成されることが好ましい。具体的には、CoFe膜32Aは、厚さを0.3nm超とすることが好ましい。   The CoFe film 32A has the same configuration as the CoFe film 32 of the spin transfer magnetization switching element 5 according to the first embodiment, and can have a thickness in the range of 0.1 to 2 nm. However, in the spin-injection magnetization switching element 5A according to the present embodiment, the CoFe film 32A is provided between the barrier layer 2A, that is, the MgO film, and the TbFeCo layer 31 thereon, so that the coercive force of the TbFeCo layer 31 is increased. In order to suppress the decrease in the thickness, it is preferable that the TbFeCo layer 31 is formed to have a sufficient thickness as long as the perpendicular magnetic anisotropy is maintained. Specifically, the CoFe film 32A preferably has a thickness exceeding 0.3 nm.

(下地金属膜、保護膜)
下地金属膜41A、保護膜43Aは、それぞれ第1実施形態に係るスピン注入磁化反転素子5の下地金属膜41、保護膜43と同様の構成とすることができ、すなわち非磁性金属材料で形成され、厚さを1〜10nmとすることが好ましい。ただし、本実施形態に係るスピン注入磁化反転素子5Aは下から光を入射されるので、透過光量を減衰させないために、下地金属膜41Aが厚くないことがより好ましい。
以下に、光変調素子10Aを構成するスピン注入磁化反転素子5A以外の要素について説明する。
(Underlying metal film, protective film)
The base metal film 41A and the protective film 43A can have the same configuration as the base metal film 41 and the protective film 43 of the spin transfer magnetization switching element 5 according to the first embodiment, that is, are formed of a nonmagnetic metal material. The thickness is preferably 1 to 10 nm. However, since the spin-injection magnetization switching element 5A according to the present embodiment receives light from below, it is more preferable that the base metal film 41A is not thick so as not to attenuate the transmitted light amount.
Hereinafter, elements other than the spin injection magnetization switching element 5A constituting the light modulation element 10A will be described.

(電極)
光変調素子10Aは、第1実施形態の光変調素子10(図1参照)とは反対に下方から光を入出射させるので、下部電極6A、上部電極7Aの構成が、第1実施形態の下部電極6、上部電極7と逆に入れ替わる。したがって、下部電極6Aは、光が透過するように、第1実施形態における上部電極7と同様に、透明電極材料で形成され、さらに、スピン注入磁化反転素子5Aとの間に金属膜を設けられることが好ましく、すなわち透明電極材料からなる層(透明電極層)63と、この上に積層した金属膜64とからなることが好ましい。透明電極層63、金属膜64は、それぞれ第1実施形態における上部電極7の透明電極層73、金属膜74と同様の構成にすることができる。さらに下部電極6Aは、TbFeCo層31を含むスピン注入磁化反転素子5Aを形成する前に形成されるので、透明電極層63に、ポストアニール等により抵抗を低減することができるITO等の結晶性の透明電極材料を適用してもよい。また、後記製造方法にて説明するように、金属膜64が、下部電極6A上の絶縁膜(スピン注入磁化反転素子5A,5A間の絶縁層8)をエッチングするときのエッチングストッパ膜になる。一方、上部電極7Aは、第1実施形態における下部電極6と同様の金属電極材料を適用することができる。
(electrode)
Since the light modulation element 10A allows light to enter and exit from below, as opposed to the light modulation element 10 (see FIG. 1) of the first embodiment, the configuration of the lower electrode 6A and the upper electrode 7A is the lower part of the first embodiment. The electrodes 6 and the upper electrode 7 are reversed. Therefore, the lower electrode 6A is formed of a transparent electrode material, and a metal film is provided between the lower electrode 6A and the spin-injection magnetization switching element 5A, like the upper electrode 7 in the first embodiment, so that light is transmitted. In other words, it is preferably composed of a layer (transparent electrode layer) 63 made of a transparent electrode material and a metal film 64 laminated thereon. The transparent electrode layer 63 and the metal film 64 can be configured similarly to the transparent electrode layer 73 and the metal film 74 of the upper electrode 7 in the first embodiment, respectively. Furthermore, since the lower electrode 6A is formed before forming the spin-injection magnetization switching element 5A including the TbFeCo layer 31, the transparent electrode layer 63 has a crystalline property such as ITO that can reduce resistance by post-annealing or the like. A transparent electrode material may be applied. Further, as will be described later in the manufacturing method, the metal film 64 serves as an etching stopper film when etching the insulating film (the insulating layer 8 between the spin injection magnetization reversal elements 5A and 5A) on the lower electrode 6A. On the other hand, the metal electrode material similar to the lower electrode 6 in the first embodiment can be applied to the upper electrode 7A.

(基板、絶縁層)
本実施形態に係るスピン注入磁化反転素子5Aを備える光変調素子10Aは、基板9Aの側から光を入出射するので、基板9Aは光を透過させる材料からなる。このような基板9Aとして、公知の透明基板材料が適用でき、具体的には、SiO2(酸化ケイ素、ガラス)、MgO(酸化マグネシウム)、サファイア、GGG(ガドリニウムガリウムガーネット)、SiC(シリコンカーバイド)、Ge(ゲルマニウム)単結晶基板等を適用することができる。絶縁層8は、第1実施形態と同様の構成とすることができる。
(Substrate, insulating layer)
Since the light modulation element 10A including the spin injection magnetization reversal element 5A according to the present embodiment inputs and outputs light from the substrate 9A side, the substrate 9A is made of a material that transmits light. A known transparent substrate material can be applied as such a substrate 9A, and specifically, SiO 2 (silicon oxide, glass), MgO (magnesium oxide), sapphire, GGG (gadolinium gallium garnet), SiC (silicon carbide). A Ge (germanium) single crystal substrate or the like can be applied. The insulating layer 8 can have the same configuration as in the first embodiment.

(光変調素子の製造方法)
第2実施形態に係るスピン注入磁化反転素子5Aを備える光変調素子10Aは、積層順を入れ替えて、第1実施形態の光変調素子10と同様に製造することができる(図2参照)。本実施形態においては、スピン注入磁化反転素子5Aを形成する前に形成される下部電極6Aの透明電極層63については、例えばITO等の結晶性の透明電極材料を適用して、加熱成膜、あるいは成膜または成形の後のポストアニールにより抵抗を低減することができる。また、絶縁層8をエッチングして、スピン注入磁化反転素子5Aの各層を埋め込むための孔を形成する工程(図2(c)参照)では、下部電極6Aの表面の金属膜64が絶縁層8に対するエッチングストッパ膜になる。
(Manufacturing method of light modulation element)
The light modulation element 10A including the spin injection magnetization reversal element 5A according to the second embodiment can be manufactured in the same manner as the light modulation element 10 of the first embodiment by changing the stacking order (see FIG. 2). In the present embodiment, for the transparent electrode layer 63 of the lower electrode 6A formed before the spin injection magnetization reversal element 5A is formed, for example, a crystalline transparent electrode material such as ITO is applied and heated to form a film. Alternatively, the resistance can be reduced by post-annealing after film formation or molding. Further, in the step of etching the insulating layer 8 to form holes for embedding each layer of the spin transfer magnetization switching element 5A (see FIG. 2C), the metal film 64 on the surface of the lower electrode 6A is formed on the insulating layer 8. It becomes an etching stopper film against the above.

(磁化反転動作、抵抗変化、光変調動作)
本実施形態に係るスピン注入磁化反転素子5Aは、磁化反転動作が、図3(a)、(b)に示す第1実施形態に係るスピン注入磁化反転素子5とは、電極6A,7A(6,7)から供給される電流Iwの向きと磁化自由層1A(1)の磁化方向との関係が逆になり、それ以外は同様である。また、磁化自由層1Aの磁化方向による電極6A,7A間の抵抗(RP,RAP)の変化も、図3(c)、(d)に示すスピン注入磁化反転素子5と同様である。また、スピン注入磁化反転素子5Aは、図3(c)、(d)に示す光変調素子10のスピン注入磁化反転素子5と同様に、旋光角+θk,−θkで光変調動作をする。ただし、スピン注入磁化反転素子5Aを備える光変調素子10Aは、磁化自由層1Aの側から光を入射させるので、下部電極6Aから光が入射する。
(Magnetization reversal operation, resistance change, light modulation operation)
The spin transfer magnetization reversal element 5A according to this embodiment is different from the spin transfer magnetization reversal element 5 according to the first embodiment shown in FIGS. 3 (a) and 3 (b) in terms of magnetization reversal operation. , 7) the relationship between the magnetization orientation and the magnetization free layer 1A of current I w supplied (1) is reversed from the other are the same. The change in resistance (R P , R AP ) between the electrodes 6A and 7A depending on the magnetization direction of the magnetization free layer 1A is the same as that of the spin injection magnetization reversal element 5 shown in FIGS. 3 (c) and 3 (d). In addition, the spin injection magnetization reversal element 5A performs a light modulation operation at the optical rotation angles + θ k and −θ k similarly to the spin injection magnetization reversal element 5 of the light modulation element 10 shown in FIGS. 3 (c) and 3 (d). . However, since the light modulation element 10A including the spin injection magnetization reversal element 5A enters light from the magnetization free layer 1A side, light enters from the lower electrode 6A.

第2実施形態に係るスピン注入磁化反転素子5Aを備える光変調素子10Aは、上部電極7Aを、透明電極層73を備える上部電極7(図1参照)に置き換えて、透過型の空間光変調器の光変調素子とすることもできる(図示せず)。   The light modulation element 10A including the spin injection magnetization reversal element 5A according to the second embodiment replaces the upper electrode 7A with the upper electrode 7 (see FIG. 1) including the transparent electrode layer 73, thereby transmitting a transmissive spatial light modulator. It is also possible to use a light modulation element (not shown).

以上のように、本発明の第2実施形態に係るスピン注入磁化反転素子は、障壁層の上に設けた磁化固定層に、適切な厚さのCo−FeまたはCo−Fe−Bからなる磁性金属膜を備えることで、Tb−Fe−Co合金を適用しても、保磁力を維持して安定した動作とすることができる。   As described above, the spin-injection magnetization switching element according to the second embodiment of the present invention has a magnetic pinned layer provided on the barrier layer and a magnetic layer made of Co—Fe or Co—Fe—B having an appropriate thickness. By providing the metal film, even when a Tb—Fe—Co alloy is applied, the coercive force can be maintained and a stable operation can be achieved.

〔第3実施形態〕
本発明の第1実施形態に係るスピン注入磁化反転素子は、Tb−Fe−Coからなる層を備える磁化自由層がMgO膜の上に設けられるように、MgO膜を障壁層とするTMR素子としたが、CPP−GMR素子についても同様の効果を得ることができる。以下、第3実施形態に係るスピン注入磁化反転素子、およびこれを備えた光変調素子について説明する。第1、第2実施形態(図1〜4参照)と同一の要素については同じ符号を付し、説明を省略する。
[Third Embodiment]
The spin-injection magnetization switching element according to the first embodiment of the present invention includes a TMR element using a MgO film as a barrier layer so that a magnetization free layer including a layer made of Tb—Fe—Co is provided on the MgO film. However, the same effect can be obtained for the CPP-GMR element. Hereinafter, a spin-injection magnetization reversal device according to a third embodiment and a light modulation device including the same will be described. The same elements as those in the first and second embodiments (see FIGS. 1 to 4) are denoted by the same reference numerals, and the description thereof is omitted.

本発明の第3実施形態に係るスピン注入磁化反転素子5Bは、図5に示すように、下から磁化自由層1B、中間層2B、磁化固定層3Bの順に積層された構成で、非磁性金属からなる中間層2Bを備えるCPP−GMR素子であり、さらに、最上層に保護膜43Aを備える。本実施形態に係るスピン注入磁化反転素子5Bは、同一平面視形状のMgO膜42の上に直接に設けられ、さらに一対の電極である上部電極7Aと下部電極6Bに上下で接続されて、光変調素子10Bを構成する。このように、光変調素子10Bにおいては、スピン注入磁化反転素子5Bは、下面が絶縁体であるMgO膜42で被覆されているために、下部電極6Bには磁化自由層1Bが側面で接続する。そのために、下部電極6Bは、スピン注入磁化反転素子5Bの下部(磁化自由層1B)をその下のMgO膜42と共に収容し、さらに、スピン注入磁化反転素子5Bに入射する光を遮らないように、貫通孔が形成されている。   As shown in FIG. 5, the spin injection magnetization reversal element 5B according to the third embodiment of the present invention has a configuration in which a magnetization free layer 1B, an intermediate layer 2B, and a magnetization fixed layer 3B are stacked in this order from the bottom. A CPP-GMR element having an intermediate layer 2B made of The spin-injection magnetization switching element 5B according to the present embodiment is provided directly on the MgO film 42 having the same planar view shape, and is connected to the upper electrode 7A and the lower electrode 6B, which are a pair of electrodes, at the upper and lower sides. The modulation element 10B is configured. Thus, in the light modulation element 10B, since the lower surface of the spin injection magnetization reversal element 5B is covered with the MgO film 42 which is an insulator, the magnetization free layer 1B is connected to the lower electrode 6B on the side surface. . Therefore, the lower electrode 6B accommodates the lower part (magnetization free layer 1B) of the spin injection magnetization reversal element 5B together with the MgO film 42 thereunder, and further does not block light incident on the spin injection magnetization reversal element 5B. A through hole is formed.

光変調素子10Bは、スピン注入磁化反転素子5Bが、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)と同様に磁化自由層1Bを下側に備えるため、下方から光が入出射され、反射型の空間光変調器の画素として透明な基板9A上に2次元配列される。以下、スピン注入磁化反転素子5Bを構成する要素について詳しく説明する。   In the light modulation element 10B, the spin injection magnetization reversal element 5B includes the magnetization free layer 1B on the lower side in the same manner as the spin injection magnetization reversal element 5A (see FIG. 4) according to the second embodiment. The light is emitted and two-dimensionally arranged on a transparent substrate 9A as pixels of a reflective spatial light modulator. Hereinafter, the elements constituting the spin transfer magnetization switching element 5B will be described in detail.

(磁化自由層)
磁化自由層1Bは、TbFeCo層11からなる。本実施形態に係るスピン注入磁化反転素子5Bにおいては、磁化自由層1Bは、TbFeCo層11がMgO膜42の上に直接に成膜されることにより保磁力がいっそう小さくなる。TbFeCo層11は、第1実施形態に係るスピン注入磁化反転素子5(図1参照)の磁化自由層1に設けられたものと同じもので、その構成は、第1実施形態にて説明した通りであり、同様に厚さを20nm以下とすることが好ましく、10nm以下がより好ましい。ただし、光変調素子10Bにおいては、下部電極6Bが磁化自由層1Bの側面のみで接続するために、厚さを3nm超とする。
(Magnetization free layer)
The magnetization free layer 1 </ b> B is composed of a TbFeCo layer 11. In the spin-injection magnetization switching element 5B according to the present embodiment, the magnetization free layer 1B has a further reduced coercive force because the TbFeCo layer 11 is formed directly on the MgO film. The TbFeCo layer 11 is the same as that provided in the magnetization free layer 1 of the spin transfer magnetization switching element 5 (see FIG. 1) according to the first embodiment, and the configuration thereof is as described in the first embodiment. Similarly, the thickness is preferably 20 nm or less, more preferably 10 nm or less. However, in the light modulation element 10B, since the lower electrode 6B is connected only at the side surface of the magnetization free layer 1B, the thickness is made to be more than 3 nm.

(中間層)
中間層2Bは、Cu,Ag,Al,Auのような非磁性金属やZnO等の半導体で形成され、その厚さを1〜10nmの範囲とすることが好ましい。中間層2Bは、光反射率の高いAgを適用して、厚さを6nm以上とすることが特に好ましい。このような中間層2Bを備えるスピン注入磁化反転素子5Bとすることで、光変調素子10Bは、磁化自由層1Bの側(下)から入射した光を効率よく反射させて、出射する光の量を多くすることができる。
(Middle layer)
The intermediate layer 2B is preferably made of a nonmagnetic metal such as Cu, Ag, Al, or Au, or a semiconductor such as ZnO, and its thickness is preferably in the range of 1 to 10 nm. The intermediate layer 2B is particularly preferably made to have a thickness of 6 nm or more by applying Ag having a high light reflectance. By using the spin-injection magnetization reversal element 5B including such an intermediate layer 2B, the light modulation element 10B efficiently reflects light incident from the magnetization free layer 1B side (bottom) and emits light. Can be more.

(磁化固定層)
磁化固定層3Bは、TbFeCo層31からなる。TbFeCo層31は、第1実施形態に係るスピン注入磁化反転素子5(図1参照)の磁化固定層3に設けられたものと同じものである。スピン注入磁化反転素子5Bにおいては、磁化固定層3Bは、中間層2Bの上側に設けられるが、下地となる中間層2BがAg等からなるので、Tb−Fe−Co合金本来の大きな保磁力を有する。
(Magnetic pinned layer)
The magnetization fixed layer 3 </ b> B is composed of a TbFeCo layer 31. The TbFeCo layer 31 is the same as that provided in the magnetization fixed layer 3 of the spin injection magnetization switching element 5 (see FIG. 1) according to the first embodiment. In the spin injection magnetization reversal element 5B, the magnetization fixed layer 3B is provided on the upper side of the intermediate layer 2B. However, since the intermediate layer 2B as a base is made of Ag or the like, the large coercive force inherent to the Tb—Fe—Co alloy is obtained. Have.

(保護膜)
保護膜43Aは、第2実施形態(図4参照)と同様の構成である。なお、本実施形態に係るスピン注入磁化反転素子5Bは、磁化自由層1B(TbFeCo層11)の保磁力を小さくするために、後記のMgO膜42の上に直接に設けられる。したがって、スピン注入磁化反転素子5Bは、最下層に、下地膜として一般的に適用されるRu等の金属膜(図4に示す下地金属膜41A)を備えない。
以下に、光変調素子10Bを構成するスピン注入磁化反転素子5B以外の要素について説明する。
(Protective film)
The protective film 43A has the same configuration as that of the second embodiment (see FIG. 4). Note that the spin transfer magnetization switching element 5B according to the present embodiment is provided directly on the MgO film 42 described later in order to reduce the coercive force of the magnetization free layer 1B (TbFeCo layer 11). Therefore, the spin transfer magnetization switching element 5B does not include a metal film such as Ru (base metal film 41A shown in FIG. 4) generally applied as a base film in the lowermost layer.
Hereinafter, elements other than the spin-injection magnetization switching element 5B constituting the light modulation element 10B will be described.

(MgO膜)
MgO膜42は、第1実施形態に係るスピン注入磁化反転素子5(図1参照)における障壁層2(MgO膜)と同様に、TbFeCo層11の保磁力を小さくする。この効果を十分なものにするために、MgO膜42は厚さを1nm以上とすることが好ましい。一方、MgO膜42は5nmを超えて厚く形成されても、前記効果がそれ以上には向上し難い。また、本実施形態においては、後記製造方法にて説明するように、MgO膜42が過剰に厚いと、MgO膜42が収容される下部電極6B(第2層62)の孔を形成するためのエッチング量が多くなる。したがって、MgO膜42は、厚さを5nm以下とすることが好ましい。本実施形態においては、MgO膜42は、磁化自由層1B(TbFeCo層11)の全体の保磁力を小さくするために、磁化自由層1B等のスピン注入磁化反転素子5Bの各層と同一の平面視形状に形成される。また、密着性を得るために、MgO膜42の下に、透過光量を減衰させない程度の厚さのRu,Ta等の金属膜をさらに設けてもよい(図示せず)。このような金属膜は、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)の下地金属膜41Aと同様の構成とすることができる。
(MgO film)
The MgO film 42 reduces the coercivity of the TbFeCo layer 11 in the same manner as the barrier layer 2 (MgO film) in the spin transfer magnetization switching element 5 (see FIG. 1) according to the first embodiment. In order to make this effect sufficient, the thickness of the MgO film 42 is preferably 1 nm or more. On the other hand, even if the MgO film 42 is formed to be thicker than 5 nm, the above effect is hardly improved. In the present embodiment, as will be described later in the manufacturing method, when the MgO film 42 is excessively thick, a hole for forming the lower electrode 6B (second layer 62) in which the MgO film 42 is accommodated is formed. The amount of etching increases. Therefore, the MgO film 42 preferably has a thickness of 5 nm or less. In the present embodiment, the MgO film 42 has the same plan view as each layer of the spin-injection magnetization switching element 5B such as the magnetization free layer 1B in order to reduce the coercive force of the entire magnetization free layer 1B (TbFeCo layer 11). It is formed into a shape. In order to obtain adhesion, a metal film such as Ru or Ta having a thickness that does not attenuate the amount of transmitted light may be further provided under the MgO film 42 (not shown). Such a metal film can have the same configuration as that of the base metal film 41A of the spin-injection magnetization switching element 5A (see FIG. 4) according to the second embodiment.

(電極)
上部電極7Aは、第2実施形態(図4参照)と同様の構成であり、金属電極材料を適用することができる。一方、下部電極6Bは、光の入出射側に設けられるが、前記した通り、スピン注入磁化反転素子5Bの平面視形状に合わせて貫通孔が形成されて光を遮らないので、上部電極7Aと同様に金属電極材料を適用することができる。すなわち下部電極6Bは、空間光変調器において画素(光変調素子10B)毎に孔が開いた帯状に形成される。また、下部電極6Bは、光変調素子10B毎に形成された貫通孔により断面の狭い配線になるため、そして、スピン注入磁化反転素子5Bとの接続面積が磁化固定層3Bの側面に限定されて小さいため、透明電極材料よりも低抵抗な金属電極材料を適用することが好ましいといえる。下部電極6Bに形成される孔は、その内壁面で磁化自由層1Bに接続するために、スピン注入磁化反転素子5Bの平面視形状に形成される。このとき、下部電極6Bは、磁化自由層1B上の中間層2Bや磁化固定層3Bと短絡しないために、上面の位置が磁化自由層1Bの上面よりも低くなるように、互いの高さの位置等が制御される必要がある。具体的には、下部電極6Bは、上面を、磁化自由層1Bの上面(中間層2Bとの界面)から3nm以上低い位置にして、磁化自由層1B(TbFeCo層11)以外の導体(中間層2B等)に対して3nm以上の距離を空けて、リーク電流やトンネル電流が流れることがないようにする。
(electrode)
The upper electrode 7A has the same configuration as that of the second embodiment (see FIG. 4), and a metal electrode material can be applied. On the other hand, although the lower electrode 6B is provided on the light incident / exit side, as described above, a through hole is formed in accordance with the shape of the spin injection magnetization switching element 5B in plan view so as not to block light. Similarly, a metal electrode material can be applied. That is, the lower electrode 6B is formed in a band shape in which a hole is opened for each pixel (light modulation element 10B) in the spatial light modulator. Further, the lower electrode 6B is a wiring having a narrow cross section due to the through-hole formed for each light modulation element 10B, and the connection area with the spin injection magnetization reversal element 5B is limited to the side surface of the magnetization fixed layer 3B. Since it is small, it can be said that it is preferable to apply a metal electrode material having a lower resistance than the transparent electrode material. The hole formed in the lower electrode 6B is formed in a planar view shape of the spin injection magnetization switching element 5B in order to connect to the magnetization free layer 1B on the inner wall surface thereof. At this time, the lower electrode 6B is not short-circuited with the intermediate layer 2B or the magnetization fixed layer 3B on the magnetization free layer 1B, so that the position of the upper surface is lower than the upper surface of the magnetization free layer 1B. The position etc. need to be controlled. Specifically, the lower electrode 6B has an upper surface positioned at a position 3 nm or more lower than the upper surface of the magnetization free layer 1B (interface with the intermediate layer 2B), and a conductor (intermediate layer) other than the magnetization free layer 1B (TbFeCo layer 11). 2B or the like) at a distance of 3 nm or more so that no leak current or tunnel current flows.

下部電極6Bは、第1層61とその上の第2層62との2層構造を有し、それぞれ金属電極材料で形成される。第2層62は、孔にスピン注入磁化反転素子5Bの下部(磁化自由層1B)とMgO膜42を収容し、第1層61は、孔が絶縁層8B(81)で充填される。第2層62は、孔の内壁面で磁化自由層1Bに接続しつつ、下部電極6Bが中間層2B等と短絡しないように、MgO膜42よりも厚く、かつ磁化自由層1BとMgO膜42の合計の厚さよりも薄く、好ましくは3nm以上の差で薄く形成される。一方、第1層61は、下部電極6Bを全体で十分に低抵抗とするために必要な厚さに形成される。また、第1層61は、平面視形状が第2層62と略一致し、あるいは孔の平面視形状を光の入射角に応じて拡げてもよい。なお、第1層61と第2層62は、材料が同じでも異なるものでもよいが、第2層62については、後記製造方法にて説明するようにエッチングで加工して孔が形成されるので、エッチングし易い材料を選択することが好ましい。   The lower electrode 6B has a two-layer structure of a first layer 61 and a second layer 62 thereon, and each is formed of a metal electrode material. The second layer 62 accommodates the lower part of the spin-injection magnetization switching element 5B (magnetization free layer 1B) and the MgO film 42 in the hole, and the first layer 61 is filled with the insulating layer 8B (81). The second layer 62 is connected to the magnetization free layer 1B at the inner wall surface of the hole, and is thicker than the MgO film 42 so as not to short-circuit the lower electrode 6B with the intermediate layer 2B and the like, and is also thicker than the MgO film 42. It is thinner than the total thickness of, and preferably formed with a difference of 3 nm or more. On the other hand, the first layer 61 is formed to have a thickness necessary for making the lower electrode 6B have a sufficiently low resistance as a whole. The first layer 61 may have a plan view shape that is substantially the same as that of the second layer 62, or may expand the plan view shape of the hole according to the incident angle of light. The first layer 61 and the second layer 62 may be made of the same material or different materials, but the second layer 62 is processed by etching to form holes as will be described later in the manufacturing method. It is preferable to select a material that is easy to etch.

(絶縁層、基板)
絶縁層8Bは、図5に示すように、下部電極6Bの第1層61と同じ厚さの絶縁層81と、その上の絶縁層82との2層構造を有する。絶縁層81,82は、それぞれ第1実施形態における絶縁層8と同様に公知の絶縁材料を適用することができ、同じでも異なる種類でもよい。特に、絶縁層82のスピン注入磁化反転素子5B,5B間に設けられる部分は、Si窒化物等の非酸化物であって、エッチング選択性の高い材料を適用することが好ましい。基板9Aは、第2実施形態(図4参照)と同様の構成である。
(Insulating layer, substrate)
As shown in FIG. 5, the insulating layer 8B has a two-layer structure of an insulating layer 81 having the same thickness as the first layer 61 of the lower electrode 6B and an insulating layer 82 thereon. A known insulating material can be applied to each of the insulating layers 81 and 82 as in the case of the insulating layer 8 in the first embodiment, and the same or different types may be used. In particular, the portion provided between the spin-injection magnetization switching elements 5B and 5B of the insulating layer 82 is preferably made of a non-oxide such as Si nitride and having a high etching selectivity. The substrate 9A has the same configuration as that of the second embodiment (see FIG. 4).

(光変調素子の製造方法)
第2実施形態に係るスピン注入磁化反転素子5Bを備える光変調素子10Bの製造方法について、その一例を、図6を参照して説明する。本実施形態に係るスピン注入磁化反転素子5Bは、第1実施形態に係るスピン注入磁化反転素子5(図1参照)と同様に耐熱性に劣るTbFeCo層11,31を備え、さらに磁化自由層1B(TbFeCo層11)の側面に下部電極6Bが接続されることから、以下の方法で製造されることが好ましい。
(Manufacturing method of light modulation element)
An example of a method for manufacturing the light modulation element 10B including the spin transfer magnetization switching element 5B according to the second embodiment will be described with reference to FIG. The spin injection magnetization reversal element 5B according to the present embodiment includes TbFeCo layers 11 and 31 that are inferior in heat resistance as in the case of the spin injection magnetization reversal element 5 (see FIG. 1) according to the first embodiment, and further includes a magnetization free layer 1B. Since the lower electrode 6B is connected to the side surface of the (TbFeCo layer 11), it is preferably manufactured by the following method.

まず、図6(a)に示すように、下部電極6Bの第1層61および絶縁層81を形成する。詳しくは、基板9Aの表面に、第1層61を形成する領域を空けたレジストパターン(図示省略)を形成し、上から金属電極材料を成膜して第1層61を形成し、レジストパターンをその上の金属電極材料ごと除去する(リフトオフ)。この上に、SiO2等の絶縁膜(絶縁層81)を成膜して、第1層61,61間や第1層61の孔を充填する。そして、表面をCMP等で研削して第1層61上の絶縁膜を除去し、さらに研磨して表面を平滑にする。 First, as shown in FIG. 6A, the first layer 61 and the insulating layer 81 of the lower electrode 6B are formed. Specifically, a resist pattern (not shown) is formed on the surface of the substrate 9A so that a region for forming the first layer 61 is formed, a metal electrode material is formed from above, and the first layer 61 is formed. Are removed together with the metal electrode material thereon (lift-off). On this, an insulating film (insulating layer 81) such as SiO 2 is formed to fill the gaps between the first layers 61 and 61 and the first layer 61. Then, the surface is ground by CMP or the like to remove the insulating film on the first layer 61, and further polished to smooth the surface.

次に、下部電極6Bの第1層61の上に、リフトオフ等で、第2層62(図6(b)参照)を、孔のないストライプ状に形成し、この第2層62の上に、Si窒化物等の絶縁膜(絶縁層82、図6(b)参照)を、スピン注入磁化反転素子5Bの上面(保護膜43A)の高さ位置に合わせた厚さに成膜する。詳しくは、第2層62とその上の絶縁膜の厚さの合計を、MgO膜42とスピン注入磁化反転素子5Bの厚さの合計に合わせる。   Next, a second layer 62 (see FIG. 6B) is formed in a stripe shape without holes on the first layer 61 of the lower electrode 6B by lift-off or the like. Then, an insulating film such as Si nitride (insulating layer 82, see FIG. 6B) is formed to a thickness matching the height position of the upper surface (protective film 43A) of the spin transfer magnetization switching element 5B. Specifically, the total thickness of the second layer 62 and the insulating film thereon is matched with the total thickness of the MgO film 42 and the spin transfer magnetization switching element 5B.

次に、絶縁膜(絶縁層82)およびその下の下部電極6Bの第2層62を加工して穴を形成し、この穴にスピン注入磁化反転素子5Bの下部を埋め込むように形成する。詳しくは、絶縁膜の上に、スピン注入磁化反転素子5Bを形成する領域を空けたレジストパターンPRを形成し(図6(b))、絶縁膜(絶縁層82)をエッチングし、引き続いて下部電極6Bの第2層62をエッチングして、第1層61の孔に充填された絶縁層81を底面とする穴を形成する(図6(c))。この上から、MgO膜42、磁化自由層1B(TbFeCo層11)、中間層2B、磁化固定層3B(TbFeCo層31)、保護膜43Aの各材料を連続して成膜して、絶縁層82から下部電極6Bの第2層62までに形成された穴に埋め込んでMgO膜42およびスピン注入磁化反転素子5Bを形成し、レジストパターンPRをその上の材料ごと除去する(リフトオフ、図6(d))。この上に、第2実施形態の光変調素子10Aと同様に上部電極7Aを形成して、光変調素子10Bが得られる。   Next, the hole is formed by processing the insulating film (insulating layer 82) and the second layer 62 of the lower electrode 6B below the insulating film, and the hole is formed so that the lower part of the spin transfer magnetization switching element 5B is embedded. Specifically, a resist pattern PR is formed on the insulating film with a region for forming the spin injection magnetization reversal element 5B (FIG. 6B), the insulating film (insulating layer 82) is etched, and then the lower part is formed. The second layer 62 of the electrode 6B is etched to form a hole whose bottom surface is the insulating layer 81 filled in the hole of the first layer 61 (FIG. 6C). From this, the MgO film 42, the magnetization free layer 1B (TbFeCo layer 11), the intermediate layer 2B, the magnetization fixed layer 3B (TbFeCo layer 31), and the protective film 43A are successively formed, and the insulating layer 82 is formed. To the second layer 62 of the lower electrode 6B, the MgO film 42 and the spin transfer magnetization reversal element 5B are formed, and the resist pattern PR is removed together with the material thereon (lift-off, FIG. 6D )). On this, the upper electrode 7A is formed similarly to the light modulation element 10A of the second embodiment, and the light modulation element 10B is obtained.

このように、光変調素子10Bの製造において、下部電極6Bを2層に分けて、上層の第2層62をスピン注入磁化反転素子5B,5B間の絶縁層82と共に加工することで、第1実施形態と同様にTbFeCo層11,31等の特性の劣化を防止することができ、さらに、スピン注入磁化反転素子5Bを側面で下部電極6Bに接続することができる。また、下部電極6Bにおける第2層62のみを絶縁層82と共に加工するので、エッチング量が抑えられてエッチング深さを制御し易く、スピン注入磁化反転素子5Bが適切に下部電極6Bに接続される。   Thus, in the manufacture of the light modulation element 10B, the lower electrode 6B is divided into two layers, and the upper second layer 62 is processed together with the insulating layer 82 between the spin-injection magnetization reversal elements 5B and 5B. Similar to the embodiment, it is possible to prevent the characteristics of the TbFeCo layers 11, 31 and the like from being deteriorated, and further, the spin injection magnetization reversal element 5B can be connected to the lower electrode 6B on the side surface. Further, since only the second layer 62 in the lower electrode 6B is processed together with the insulating layer 82, the etching amount is suppressed and the etching depth can be easily controlled, and the spin transfer magnetization switching element 5B is appropriately connected to the lower electrode 6B. .

下部電極6Bの第1層61および絶縁層81の形成においては、基板9A上に先に絶縁層81を形成して、その後に金属電極材料を埋め込んで第1層61を形成してもよい。   In forming the first layer 61 and the insulating layer 81 of the lower electrode 6B, the insulating layer 81 may be formed first on the substrate 9A, and then the metal electrode material may be embedded to form the first layer 61.

また、下部電極6Bは、抵抗をより低減するために、貫通孔のMgO膜42の下を透明電極材料で埋めてもよい。すなわち、図5に示す下部電極6Bの孔の絶縁層81に代えて、透明電極層63(図4参照)が設けられる(図示せず)。そのためには、例えば、下部電極6Bの第1層61、および第1層61,61間と第1層61の孔を充填する絶縁層81を形成した(図6(a)参照)後に、第1層61の孔の領域を空けたレジストパターンを形成し、第1層61の孔における絶縁層81を除去して、透明電極材料を成膜して孔に埋め込み、レジストパターンを除去すればよい。あるいは、下部電極6Bは、第1層61に代えて孔のない帯状の透明電極層63を備えてもよい。この場合は、基板9A上に、透明電極層63と、孔を形成する前の第2層62とを連続して形成すればよい。   The lower electrode 6B may be filled with a transparent electrode material under the MgO film 42 in the through hole in order to further reduce the resistance. That is, instead of the insulating layer 81 in the hole of the lower electrode 6B shown in FIG. 5, a transparent electrode layer 63 (see FIG. 4) is provided (not shown). For that purpose, for example, after forming the first layer 61 of the lower electrode 6B and the insulating layer 81 between the first layers 61 and 61 and filling the holes of the first layer 61 (see FIG. 6A), A resist pattern in which the hole area of the first layer 61 is formed, the insulating layer 81 in the hole of the first layer 61 is removed, a transparent electrode material is formed, embedded in the hole, and the resist pattern is removed. . Alternatively, the lower electrode 6 </ b> B may include a band-shaped transparent electrode layer 63 without holes instead of the first layer 61. In this case, the transparent electrode layer 63 and the second layer 62 before forming the holes may be continuously formed on the substrate 9A.

(磁化反転動作、抵抗変化、光変調動作)
スピン注入磁化反転素子5Bは、磁化自由層1Bが下側に設けられているので、磁化反転動作および光変調動作が、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)と同様になる。すなわち、磁化反転動作については、図3(a)、(b)に示す第1実施形態に係るスピン注入磁化反転素子5とは、電極6B,7A(6,7)から供給される電流Iwの向きと磁化自由層1B(1)の磁化方向との関係が逆になる。また、スピン注入磁化反転素子5Bは、図3(c)、(d)に示すスピン注入磁化反転素子5と同様に、磁化自由層1Bの磁化方向により電極6B,7A間の抵抗が変化する。ただし、スピン注入磁化反転素子5Bは、TMR素子よりもMR比が低いCPP−GMR素子であるため、書込みエラー検出を行う場合は、後記するように、上(磁化固定層3Bの側)にトランジスタ等の選択素子を接続することが好ましい。
(Magnetization reversal operation, resistance change, light modulation operation)
Since the spin injection magnetization switching element 5B is provided with the magnetization free layer 1B on the lower side, the magnetization switching operation and the light modulation operation are the same as those of the spin injection magnetization switching element 5A (see FIG. 4) according to the second embodiment. become. That is, regarding the magnetization reversal operation, the current I w supplied from the electrodes 6B and 7A (6, 7) is different from the spin-injection magnetization reversal element 5 according to the first embodiment shown in FIGS. And the magnetization direction of the magnetization free layer 1B (1) are reversed. In the spin-injection magnetization reversal element 5B, the resistance between the electrodes 6B and 7A varies depending on the magnetization direction of the magnetization free layer 1B, similarly to the spin-injection magnetization reversal element 5 shown in FIGS. However, since the spin injection magnetization reversal element 5B is a CPP-GMR element having an MR ratio lower than that of the TMR element, when performing write error detection, as described later, a transistor is formed above (on the magnetization fixed layer 3B side). It is preferable to connect selection elements such as.

〔第3実施形態の変形例〕
第3実施形態に係るスピン注入磁化反転素子は、磁化自由層が側面で下部電極に接続されるが、磁化自由層(Tb−Fe−Coからなる層)の厚さが小さいと、十分な接続面積を確保し難く、また、製造において高い精度でのエッチングや成膜を要する。以下、第3実施形態の変形例に係るスピン注入磁化反転素子、およびこれを備えた光変調素子について説明する。第1、第2、第3実施形態(図1〜6参照)と同一の要素については同じ符号を付し、説明を省略する。
[Modification of Third Embodiment]
In the spin-injection magnetization switching element according to the third embodiment, the magnetization free layer is connected to the lower electrode on the side surface. However, when the thickness of the magnetization free layer (layer made of Tb—Fe—Co) is small, sufficient connection is achieved. It is difficult to secure an area, and high-precision etching and film formation are required in manufacturing. Hereinafter, a spin-injection magnetization switching element according to a modification of the third embodiment and a light modulation element including the same will be described. The same elements as those in the first, second, and third embodiments (see FIGS. 1 to 6) are denoted by the same reference numerals, and description thereof is omitted.

本発明の第3実施形態の変形例に係るスピン注入磁化反転素子5Cは、図7に示すように、下から磁化自由層1C、障壁層(中間層)2A、磁化固定層3Aの順に積層された構成であり、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)と同様に、MgOからなる障壁層2Aの上に磁化固定層3Aが設けられたTMR素子である。スピン注入磁化反転素子5Cは、さらに、最上層に保護膜43Aを備える。本変形例に係るスピン注入磁化反転素子5Cは、MgO膜42の上に直接に設けられ、さらに一対の電極である上部電極7Aと下部電極6Cに上下で接続されて、光変調素子10Cを構成する。このように、スピン注入磁化反転素子5Cの下面には絶縁体であるMgO膜42が接触しているために、このMgO膜42が下部電極6Cに形成された貫通孔に設けられ、スピン注入磁化反転素子5Cは、下面(磁化自由層1C)が周縁のみで下部電極6Cに接続する。   As shown in FIG. 7, a spin-injection magnetization reversal element 5C according to a modification of the third embodiment of the present invention is laminated in order of a magnetization free layer 1C, a barrier layer (intermediate layer) 2A, and a magnetization fixed layer 3A. Similar to the spin-injection magnetization switching element 5A (see FIG. 4) according to the second embodiment, the TMR element has a magnetization fixed layer 3A provided on a barrier layer 2A made of MgO. The spin transfer magnetization switching element 5C further includes a protective film 43A as the uppermost layer. The spin-injection magnetization switching element 5C according to this modification is provided directly on the MgO film 42, and further connected to the upper electrode 7A and the lower electrode 6C, which are a pair of electrodes, in the vertical direction to constitute the light modulation element 10C. To do. Thus, since the MgO film 42 which is an insulator is in contact with the lower surface of the spin injection magnetization reversal element 5C, this MgO film 42 is provided in the through hole formed in the lower electrode 6C, and the spin injection magnetization The inversion element 5C is connected to the lower electrode 6C with the lower surface (magnetization free layer 1C) only at the periphery.

光変調素子10Cは、スピン注入磁化反転素子5Cが、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)と同様に磁化自由層1Cを下側に備えるため、下方から光が入出射され、反射型の空間光変調器の画素として透明な基板9A上に2次元配列される。   In the light modulation element 10C, since the spin injection magnetization reversal element 5C includes the magnetization free layer 1C on the lower side in the same manner as the spin injection magnetization reversal element 5A (see FIG. 4) according to the second embodiment, light enters from below. The light is emitted and two-dimensionally arranged on a transparent substrate 9A as pixels of a reflective spatial light modulator.

光変調素子10Cにおいては、MgO膜42が、スピン注入磁化反転素子5Cの平面視形状よりも小さく形成されている。そのため、詳しくは後記にて説明するが、スピン注入磁化反転素子5Cの磁化自由層1Cが磁化反転するのは、MgO膜42の直上の領域に限定される。したがって、本実施形態において、スピン注入磁化反転素子5Cの平面視サイズが大きくても、MgO膜42が磁化反転可能な面積に形成されていればよい。一方、光変調素子10Cにおいては、MgO膜42の平面視形状に合わせて下部電極6Cに形成された貫通孔が、空間光変調器の画素の開口部になる。そのため、MgO膜42は、平面視の一辺の長さが少なくとも入射光の回折限界(波長の1/2程度)以上に形成される。なお、スピン注入磁化反転素子5Cは、磁化自由層1C(下面)が下部電極6Cとの接続面積を確保していればよく、例えば平面視における対向する2辺のみがMgO膜42の外側に形成される形状でもよい。以下、スピン注入磁化反転素子5Cを構成する要素について詳しく説明する。   In the light modulation element 10C, the MgO film 42 is formed smaller than the planar view shape of the spin injection magnetization switching element 5C. Therefore, as will be described in detail later, the magnetization reversal of the magnetization free layer 1C of the spin injection magnetization reversal element 5C is limited to the region immediately above the MgO film 42. Therefore, in this embodiment, even if the size of the spin injection magnetization switching element 5C in plan view is large, it is sufficient that the MgO film 42 is formed in an area where magnetization can be reversed. On the other hand, in the light modulation element 10 </ b> C, the through hole formed in the lower electrode 6 </ b> C according to the planar view shape of the MgO film 42 becomes the opening of the pixel of the spatial light modulator. Therefore, the MgO film 42 is formed such that the length of one side in a plan view is at least equal to or greater than the diffraction limit of incident light (about ½ of the wavelength). In the spin-injection magnetization switching element 5C, the magnetization free layer 1C (lower surface) only needs to secure a connection area with the lower electrode 6C. For example, only two opposite sides in plan view are formed outside the MgO film 42. The shape to be made may be sufficient. Hereinafter, the elements constituting the spin transfer magnetization switching element 5C will be described in detail.

(磁化自由層)
磁化自由層1Cは、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)の磁化自由層1Aの、磁性層11AをTbFeCo層11に置き換えたものであり、TbFeCo層11、CoFe膜12Aの各構成は、第1、第2実施形態にて説明した通りである。特に本変形例に係るスピン注入磁化反転素子5Cにおいては、第3実施形態と同様に、TbFeCo層11が、MgO膜42の上に直接に成膜されることにより保磁力がいっそう小さくなる。
(Magnetization free layer)
The magnetization free layer 1C is obtained by replacing the magnetic layer 11A of the magnetization free layer 1A of the spin-injection magnetization switching element 5A (see FIG. 4) according to the second embodiment with a TbFeCo layer 11, a TbFeCo layer 11, and a CoFe film. Each configuration of 12A is as described in the first and second embodiments. In particular, in the spin transfer magnetization switching element 5C according to this modification, the coercive force is further reduced by forming the TbFeCo layer 11 directly on the MgO film 42, as in the third embodiment.

また、磁化自由層1Cは、MgO膜42の周囲に設けられた下部電極6Cに電気的に接続されるように、平面視でMgO膜42の外側へ拡張して形成されている。したがって、本変形例において、磁化自由層1C(TbFeCo層11)は、MgO膜42の直上の領域(適宜、磁化反転領域と称する)のみにおいて保磁力が小さく、磁化自由層として磁化反転する(図8参照)。一方で、磁化自由層1Cは、下部電極6Cに接続する周縁の領域においては、Tb−Fe−Co合金本来の大きな保磁力を示して磁化反転し難く、後記に説明するようにもう一つの磁化固定層(適宜、磁化固定領域と称する)であるといえる。   Also, the magnetization free layer 1C is formed to extend to the outside of the MgO film 42 in plan view so as to be electrically connected to the lower electrode 6C provided around the MgO film 42. Therefore, in the present modification, the magnetization free layer 1C (TbFeCo layer 11) has a small coercive force only in a region immediately above the MgO film 42 (referred to as a magnetization reversal region as appropriate), and magnetization reversal as a magnetization free layer (FIG. 8). On the other hand, the magnetization free layer 1C exhibits a large coercive force inherent in the Tb—Fe—Co alloy and is difficult to reverse the magnetization in the peripheral region connected to the lower electrode 6C, and another magnetization as will be described later. It can be said that it is a fixed layer (referred to as a magnetization fixed region as appropriate).

(障壁層、磁化固定層)
障壁層2A、磁化固定層3Aは、それぞれ第2実施形態(図4参照)と同様の構成である。特に障壁層2Aは、本変形例に係るスピン注入磁化反転素子5Cにおいては、下地となる磁化自由層1Cに非晶質構造であるTbFeCo層11が適用され、さらに当該障壁層2Aとの界面にCo−FeまたはCo−Fe−B(CoFe膜12A)が設けられているので、第1実施形態の障壁層2と同様に(001)面配向のMgOになり易い。
(Barrier layer, magnetization fixed layer)
The barrier layer 2A and the magnetization fixed layer 3A have the same configuration as that of the second embodiment (see FIG. 4). In particular, the barrier layer 2A has a TbFeCo layer 11 having an amorphous structure applied to the magnetization free layer 1C serving as a base in the spin-injection magnetization reversal element 5C according to this modification, and further, at the interface with the barrier layer 2A. Since Co—Fe or Co—Fe—B (CoFe film 12A) is provided, it is likely to be (001) -oriented MgO as in the barrier layer 2 of the first embodiment.

(保護膜)
保護膜43Aは、第2実施形態(図4参照)と同様の構成である。なお、本変形例に係るスピン注入磁化反転素子5Cは、第3実施形態に係るスピン注入磁化反転素子5B(図5参照)と同様に、最下層にRu等の金属膜(図4に示す下地金属膜41A)を備えない。
以下に、光変調素子10Cを構成するスピン注入磁化反転素子5C以外の要素について説明する。
(Protective film)
The protective film 43A has the same configuration as that of the second embodiment (see FIG. 4). Note that the spin transfer magnetization switching element 5C according to the present modification is similar to the spin transfer magnetization switching element 5B according to the third embodiment (see FIG. 5), and a metal film such as Ru (underlayer shown in FIG. The metal film 41A) is not provided.
Hereinafter, elements other than the spin injection magnetization switching element 5C constituting the light modulation element 10C will be described.

(MgO膜)
MgO膜42は、第3実施形態と同様の構成である。
(MgO film)
The MgO film 42 has the same configuration as that of the third embodiment.

(電極)
上部電極7Aは、第2実施形態(図4参照)と同様の構成であり、金属電極材料を適用することができる。一方、下部電極6Cは、光の入出射側に設けられるが、前記した通り、スピン注入磁化反転素子5Cの下面が周縁でのみ接続し、光変調素子10Cにおける中央部には貫通孔が形成されて光を遮らないので、上部電極7Aと同様に金属電極材料を適用することができる。すなわち下部電極6Cは、第3実施形態(図5参照)の下部電極6Bと同様に、空間光変調器において光変調素子10C毎に孔が開いた帯状に形成される。下部電極6Cは、孔が光変調素子として必要な開口を有しつつ、この内部に設けられたMgO膜42の直上で磁化自由層1Cが磁化反転可能であり、また、スピン注入磁化反転素子5C(磁化自由層1C)の下面と電気的な接続に必要な面積で接続(平面視で重複)する形状に設計される。
(electrode)
The upper electrode 7A has the same configuration as that of the second embodiment (see FIG. 4), and a metal electrode material can be applied. On the other hand, the lower electrode 6C is provided on the light incident / exit side, but as described above, the lower surface of the spin injection magnetization reversal element 5C is connected only at the periphery, and a through hole is formed in the central portion of the light modulation element 10C. Therefore, the metal electrode material can be applied similarly to the upper electrode 7A. That is, the lower electrode 6C is formed in a band shape having a hole for each light modulation element 10C in the spatial light modulator, similarly to the lower electrode 6B of the third embodiment (see FIG. 5). In the lower electrode 6C, the hole has an opening necessary as a light modulation element, the magnetization free layer 1C can be reversed in magnetization immediately above the MgO film 42 provided therein, and the spin injection magnetization reversal element 5C. It is designed in a shape that connects (overlaps in plan view) with an area necessary for electrical connection with the lower surface of (magnetization free layer 1C).

(絶縁層)
絶縁層8Cは、図7に示すように、下部電極6C,6C間および下部電極6Cの孔においては、絶縁層81とMgO膜42の2層構造であり、スピン注入磁化反転素子5C,5C間および上部電極7A,7A間においては、絶縁層82が設けられる。絶縁層81は、MgO膜42と合わせた2層で下部電極6Cの厚さになるように形成され、第3実施形態と同様に、SiO2等の公知の絶縁材料を適用することができる。なお、MgO膜42は、下部電極6Cの孔に形成されていればよく、下部電極6C,6C間には絶縁層81のみが形成されていてもよい。絶縁層82も、第3実施形態と同様に公知の絶縁材料を適用し、特にスピン注入磁化反転素子5C,5C間に設けられる部分には、非酸化物であって、MgO膜42に対してエッチング選択性の高いSi窒化物等を適用することが好ましい。
(Insulating layer)
As shown in FIG. 7, the insulating layer 8C has a two-layer structure of the insulating layer 81 and the MgO film 42 between the lower electrodes 6C and 6C and in the hole of the lower electrode 6C, and between the spin injection magnetization reversal elements 5C and 5C. An insulating layer 82 is provided between the upper electrodes 7A and 7A. The insulating layer 81 is formed of two layers combined with the MgO film 42 so as to have the thickness of the lower electrode 6C, and a known insulating material such as SiO 2 can be applied as in the third embodiment. The MgO film 42 may be formed in the hole of the lower electrode 6C, and only the insulating layer 81 may be formed between the lower electrodes 6C and 6C. Similarly to the third embodiment, a known insulating material is applied to the insulating layer 82, and in particular, a portion provided between the spin-injection magnetization reversal elements 5 C and 5 C is non-oxide, and is not exposed to the MgO film 42. It is preferable to apply Si nitride or the like having high etching selectivity.

(基板)
基板9Aは、第2実施形態(図4参照)と同様の構成である。
(substrate)
The substrate 9A has the same configuration as that of the second embodiment (see FIG. 4).

(光変調素子の製造方法)
第3実施形態の変形例に係るスピン注入磁化反転素子5Cを備える光変調素子10Cは、第1、第2実施形態の光変調素子10,10Aと同様に製造することができる(図2参照)。本実施形態においては、下部電極6C、および絶縁層81、MgO膜42を形成する工程について、表面の下部電極6CとMgO膜42に段差がなく、かつMgO膜42が所望の厚さに制御されるように、例えば以下のように行う。
(Manufacturing method of light modulation element)
The light modulation element 10C including the spin injection magnetization reversal element 5C according to the modification of the third embodiment can be manufactured in the same manner as the light modulation elements 10 and 10A of the first and second embodiments (see FIG. 2). . In this embodiment, in the step of forming the lower electrode 6C, the insulating layer 81, and the MgO film 42, there is no step between the lower electrode 6C on the surface and the MgO film 42, and the MgO film 42 is controlled to a desired thickness. For example, it is performed as follows.

まず、基板9Aの表面に、SiO2等の絶縁膜(絶縁層81)、MgO膜を成膜して、合計で下部電極6Cと同じ厚さになるように積層する。このMgO膜の上に、下部電極6Cを形成する領域を空けたレジストパターンを形成し、MgO膜、SiO2膜をエッチングして基板9Aを露出させる。この上から金属電極材料を成膜して、SiO2膜/MgO膜(絶縁層81/MgO膜42)のエッチング跡に埋め込んで下部電極6Cを形成し、レジストパターンをその上の金属電極材料ごと除去する(リフトオフ)。 First, an insulating film (insulating layer 81) such as SiO 2 and an MgO film are formed on the surface of the substrate 9A, and are laminated so as to have the same thickness as the lower electrode 6C in total. On this MgO film, a resist pattern is formed with a region for forming the lower electrode 6C, and the substrate 9A is exposed by etching the MgO film and the SiO 2 film. A metal electrode material is deposited from above, and embedded in the etching traces of the SiO 2 film / MgO film (insulating layer 81 / MgO film 42) to form the lower electrode 6C, and the resist pattern is formed together with the metal electrode material thereon. Remove (lift off).

次に、第1実施形態(図2(b)〜(d)参照)と同様に、スピン注入磁化反転素子5C、およびスピン注入磁化反転素子5C,5C間の絶縁層82を形成する。絶縁層82をエッチングしてスピン注入磁化反転素子5Cを埋め込むための孔を形成するときには、MgO膜42および下部電極6Cがエッチングストッパ膜になるように、エッチング条件を設定する。また、本実施形態では、第1、第2実施形態のように密着性を得るための下地金属膜41(41A)を設けることができないので、MgO膜42および下部電極6Cへの密着性を高くするために、絶縁層82のエッチング跡にスピン注入磁化反転素子5Cを構成する各層を成膜する際、1層目のTbFeCo層11(磁化自由層1C)を成膜する前に、スパッタ装置にて、Ar,Kr等のキャリアガスのイオンやプラズマによるクリーニングを、下部電極6C等の表面に行うことが好ましい。そして、スピン注入磁化反転素子5Cの上に、上部電極7Aを第1実施形態と同様に形成して、光変調素子10Cが得られる。   Next, as in the first embodiment (see FIGS. 2B to 2D), the spin transfer magnetization switching element 5C and the insulating layer 82 between the spin transfer magnetization switching elements 5C and 5C are formed. When the hole for embedding the spin injection magnetization switching element 5C is formed by etching the insulating layer 82, the etching conditions are set so that the MgO film 42 and the lower electrode 6C become etching stopper films. Further, in this embodiment, since the base metal film 41 (41A) for obtaining adhesion cannot be provided as in the first and second embodiments, the adhesion to the MgO film 42 and the lower electrode 6C is high. Therefore, before forming the first TbFeCo layer 11 (magnetization free layer 1C) when forming each layer constituting the spin injection magnetization reversal element 5C on the etching trace of the insulating layer 82, the sputtering apparatus is used. Thus, it is preferable to clean the surface of the lower electrode 6C or the like with ions of carrier gas such as Ar or Kr or plasma. Then, the upper electrode 7A is formed on the spin-injection magnetization switching element 5C in the same manner as in the first embodiment to obtain the light modulation element 10C.

下部電極6C、絶縁層81およびMgO膜42の形成においては、例えば第3実施形態の光変調素子10Bにおける下部電極6Bの第1層61のように、まず、基板9A上に、リフトオフ法で下部電極6Cを形成した後に、SiO2等の絶縁膜のみを成膜して、CMP等で研削して下部電極6C上の絶縁膜を除去してもよい(図6(a)参照)。この場合は、その次に、下部電極6Cの孔の領域を空けたレジストパターンを形成し、下部電極6Cの孔のSiO2膜を所望の深さにエッチングして、その跡にMgO膜42を成膜して埋め込み、その後にレジストパターンを除去する。 In the formation of the lower electrode 6C, the insulating layer 81, and the MgO film 42, for example, as in the first layer 61 of the lower electrode 6B in the light modulation element 10B of the third embodiment, the lower electrode 6C is first formed on the substrate 9A by a lift-off method. After forming the electrode 6C, only an insulating film such as SiO 2 may be formed and ground by CMP or the like to remove the insulating film on the lower electrode 6C (see FIG. 6A). In this case, next, a resist pattern in which the hole region of the lower electrode 6C is opened is formed, the SiO 2 film in the hole of the lower electrode 6C is etched to a desired depth, and the MgO film 42 is formed on the trace. A film is formed and embedded, and then the resist pattern is removed.

あるいは、下部電極6Bと同様に、下部電極6Cの孔のSiO2膜をすべて除去して、MgO膜42の前(下)に透明電極材料を成膜して、図7に示す下部電極6Cの孔の絶縁層81に代えて、透明電極層63(図4参照)が設けられてもよい(図示せず)。 Alternatively, like the lower electrode 6B, the SiO 2 film in the holes of the lower electrode 6C is completely removed, and a transparent electrode material is formed in front of (below) the MgO film 42 to form the lower electrode 6C shown in FIG. Instead of the hole insulating layer 81, a transparent electrode layer 63 (see FIG. 4) may be provided (not shown).

(空間光変調器の初期設定)
本変形例に係るスピン注入磁化反転素子5Cにおいては、磁化自由層1C(TbFeCo層11)が、下部電極6Cの直上の領域(磁化固定領域)において保磁力が大きく、磁化反転し難い。光変調素子10Cは、磁化自由層1Cが磁化固定領域のみで下部電極6Cに直接に接続しているので、スピン注入磁化反転素子5Cにおいて、磁化固定層3Aと磁化自由層1Cの磁化固定領域との間に、MgO膜42の直上の磁化反転領域を経由せずに電流が流れる経路が形成され得る。この経路に電流Iwの多くが流れると、磁化反転の効率が低下する。
(Initial setting of spatial light modulator)
In the spin-injection magnetization reversal element 5C according to this modification, the magnetization free layer 1C (TbFeCo layer 11) has a large coercive force in the region (magnetization fixed region) immediately above the lower electrode 6C and is difficult to reverse magnetization. In the optical modulation element 10C, since the magnetization free layer 1C is directly connected to the lower electrode 6C only in the magnetization fixed region, in the spin injection magnetization switching element 5C, the magnetization fixed layer 3A and the magnetization fixed region of the magnetization free layer 1C In the meantime, a path through which a current flows without passing through the magnetization switching region immediately above the MgO film 42 can be formed. When much of the current Iw flows through this path, the efficiency of magnetization reversal is reduced.

そこで、本変形例においては、磁化自由層1Cの磁化固定領域が、磁化固定層3Aの磁化方向と逆向きに固定されていることが好ましい(図8参照)。そのために、次のような初期設定を行う。なお、磁化固定層3Aと磁化自由層1Cのそれぞれの厚さ等にもよるが、ここでは、磁化固定層3Aの方が磁化自由層1Cの磁化固定領域よりも保磁力が大きいものとする。まず、磁化固定層3Aの保磁力よりも大きな磁界を印加して、磁化固定層3Aおよび磁化自由層1Cを、共に上向きの磁化方向に揃える。次に、磁化固定層3Aの保磁力よりも小さく、かつ磁化自由層1Cの磁化固定領域における保磁力よりも大きな磁界を逆向きに印加して、磁化自由層1C全体の磁化方向を下向きにする。このように、大きさと向きを切り替えて、2回の磁界印加を行う。   Therefore, in this modification, it is preferable that the magnetization fixed region of the magnetization free layer 1C is fixed in the opposite direction to the magnetization direction of the magnetization fixed layer 3A (see FIG. 8). For this purpose, the following initial settings are made. Here, although it depends on the respective thicknesses of the magnetization fixed layer 3A and the magnetization free layer 1C, it is assumed here that the magnetization fixed layer 3A has a larger coercive force than the magnetization fixed region of the magnetization free layer 1C. First, a magnetic field larger than the coercive force of the magnetization fixed layer 3A is applied so that the magnetization fixed layer 3A and the magnetization free layer 1C are both aligned in the upward magnetization direction. Next, a magnetic field that is smaller than the coercive force of the magnetization fixed layer 3A and larger than the coercive force in the magnetization fixed region of the magnetization free layer 1C is applied in the opposite direction to make the magnetization direction of the entire magnetization free layer 1C downward. . In this way, the magnetic field is applied twice by switching the size and direction.

(磁化反転動作)
スピン注入磁化反転素子5Cの磁化反転動作を、図8(a)、(b)を参照して、光変調素子10Cにて説明する。なお、図8において、MgO膜42および保護膜43Aは図示を省略する。本変形例に係るスピン注入磁化反転素子5Cは、第2、第3実施形態に係るスピン注入磁化反転素子5A,5Bと同様に、磁化反転動作が、図3(a)、(b)に示す第1実施形態に係るスピン注入磁化反転素子5とは、上下電極7A,6C(7,6)から供給される電流Iwの向きと磁化自由層1C(1)の磁化方向との関係が逆になる。さらに光変調素子10Cにおいては、磁化自由層1Cの一部の領域において磁化方向が変化しない。
(Magnetization reversal operation)
The magnetization reversal operation of the spin injection magnetization reversal element 5C will be described with reference to FIGS. 8A and 8B in the light modulation element 10C. In FIG. 8, the illustration of the MgO film 42 and the protective film 43A is omitted. The spin transfer magnetization reversal element 5C according to the present modification is similar to the spin transfer magnetization reversal elements 5A and 5B according to the second and third embodiments in that the magnetization reversal operation is shown in FIGS. 3 (a) and 3 (b). the induced magnetization switching element 5 of the first embodiment, the upper and lower electrodes 7A, the relationship between the magnetization direction of 6C (7, 6) the direction of the current I w supplied from the magnetization free layer 1C (1) reverse become. Furthermore, in the light modulation element 10C, the magnetization direction does not change in a partial region of the magnetization free layer 1C.

まず、磁化自由層1Cの全体が磁化固定層3Aとは逆向きの下向きの磁化方向を示すスピン注入磁化反転素子5Cに、図8(a)に示すように、上部電極7Aを「−」、下部電極6Cを「+」にして、磁化自由層1C側から磁化固定層3Aへ電流Iwを供給して、磁化固定層3A側から電子を注入する。すると、磁化方向を上向きに固定された磁化固定層3Aにより当該磁化固定層3Aの磁化方向と向きの異なる下向きのスピンを持つ電子dDが弁別されて、上部電極7Aから上向きのスピンを持つ電子dUが磁化固定層3Aに偏って注入される。さらに、この電子dUは、障壁層2Aを介して磁化自由層1Cに注入されるが、磁化方向が異なる下向きの下部電極6Cの直上の磁化固定領域には弁別されて注入されず、磁化反転領域の方に集中して注入され、その結果、磁化反転領域に限定して、磁化方向が上向きに反転する。 First, as shown in FIG. 8A, the upper electrode 7A is attached to “−”, as shown in FIG. 8A, on the spin injection magnetization switching element 5C in which the entire magnetization free layer 1C has a downward magnetization direction opposite to the magnetization fixed layer 3A. The lower electrode 6C is set to “+”, the current Iw is supplied from the magnetization free layer 1C side to the magnetization fixed layer 3A, and electrons are injected from the magnetization fixed layer 3A side. Then, the electrons d D having the downward spin different from the magnetization direction of the magnetization fixed layer 3A are discriminated by the magnetization fixed layer 3A whose magnetization direction is fixed upward, and the electrons having the upward spin from the upper electrode 7A. d U is biased and injected into the magnetization fixed layer 3A. Further, the electron d U will be injected in the magnetization free layer 1C through the barrier layer 2A, not injected is discriminated in the magnetization fixed region immediately above the magnetization directions are different downward lower electrode 6C, the magnetization reversal As a result, the magnetization direction is reversed upward only in the magnetization switching region.

反対に、図8(b)に示すように、上部電極7Aを「+」、下部電極6Cを「−」にして、スピン注入磁化反転素子5Cに、磁化固定層3A側から磁化自由層1Cへ電流Iwを供給して、磁化自由層1C側から電子を注入する。すると、磁化自由層1Cにおいて下部電極6Cの直上の磁化固定領域には、当該磁化固定領域の磁化方向と向きの異なる上向きのスピンを持つ電子dUが弁別されて、下部電極6Cから下向きのスピンを持つ電子dDが偏って注入される。この電子dDは、磁化固定層3Aにより弁別されて磁化自由層1Cに留まるため、磁化固定領域から磁化反転領域へ注入される。また、磁化自由層1Cの磁化反転領域は、下部電極6Cの端(MgO膜42との境界)で接しているため、リーク等も含めてある程度の電子が下部電極6Cから直接に注入される。そのうちの上向きのスピンを持つ電子dUは障壁層2Aを介して磁化固定層3Aに注入されるため、下向きのスピンを持つ電子dDが偏って磁化自由層1Cに留まる。その結果、磁化自由層1Cの磁化反転領域における磁化方向が、下向きに反転する。 On the other hand, as shown in FIG. 8B, the upper electrode 7A is set to “+” and the lower electrode 6C is set to “−”, so that the spin injection magnetization switching element 5C is moved from the magnetization fixed layer 3A side to the magnetization free layer 1C. A current Iw is supplied to inject electrons from the magnetization free layer 1C side. Then, the magnetization in the magnetization fixed region directly above the lower electrode 6C in the free layer 1C, are discriminated electronic d U with different upward spin of the magnetization direction and the direction of the magnetization fixed area, a downward spin from lower electrode 6C Electrons d D having are injected with a bias. Since the electrons d D are discriminated by the magnetization fixed layer 3A and remain in the magnetization free layer 1C, they are injected from the magnetization fixed region into the magnetization switching region. Further, since the magnetization reversal region of the magnetization free layer 1C is in contact with the end of the lower electrode 6C (boundary with the MgO film 42), a certain amount of electrons including a leak is directly injected from the lower electrode 6C. Since electrons d U having an upward spin of which is injected into the magnetization fixed layer 3A through the barrier layer 2A, it remains in the magnetization free layer 1C biased electron d D having a downward spin. As a result, the magnetization direction in the magnetization switching region of the magnetization free layer 1C is reversed downward.

このように、磁化自由層1Cの一部の領域における保磁力が大きく、この領域を経由して電流が供給されるスピン注入磁化反転素子5Cは、予めこの領域の磁化方向を磁化固定層3Aとは逆向きに固定されていることで、磁化自由層1Cの前記領域を除いて磁化反転させることができる。   Thus, the spin-injection magnetization reversal element 5C, which has a large coercive force in a partial region of the magnetization free layer 1C and is supplied with a current via this region, previously sets the magnetization direction of this region to the magnetization fixed layer 3A. Is fixed in the opposite direction, so that magnetization can be reversed except for the region of the magnetization free layer 1C.

(光変調動作、抵抗変化)
スピン注入磁化反転素子5Cは、磁化自由層1Cが下側に設けられているので、第2実施形態に係るスピン注入磁化反転素子5A(図4参照)と同様に、光変調動作をする。また、スピン注入磁化反転素子5Cは、図3(c)、(d)に示すスピン注入磁化反転素子5と同様に、磁化自由層1C(1)の磁化方向により電極6C,7A間の抵抗が変化する。
(Light modulation operation, resistance change)
Since the magnetization free layer 1C is provided on the lower side of the spin transfer magnetization switching element 5C, the spin transfer magnetization switching element 5C performs a light modulation operation in the same manner as the spin transfer magnetization switching element 5A according to the second embodiment (see FIG. 4). Further, the spin-injection magnetization reversal element 5C has a resistance between the electrodes 6C and 7A depending on the magnetization direction of the magnetization free layer 1C (1), similarly to the spin-injection magnetization reversal element 5 shown in FIGS. 3 (c) and 3 (d). Change.

第3実施形態およびその変形例に係るスピン注入磁化反転素子5B,5Cを備える光変調素子10B,10Cは、上部電極7Aを、透明電極層73を備える上部電極7(図1参照)に置き換えて、透過型の空間光変調器の光変調素子とすることもできる(図示せず)。この場合には、スピン注入磁化反転素子5Bの中間層2Bは、光透過性の比較的高い材料を適用されることが好ましい。   In the light modulation elements 10B and 10C including the spin injection magnetization reversal elements 5B and 5C according to the third embodiment and the modification thereof, the upper electrode 7A is replaced with the upper electrode 7 including the transparent electrode layer 73 (see FIG. 1). Also, it can be a light modulation element of a transmissive spatial light modulator (not shown). In this case, it is preferable that a material having a relatively high light transmittance is applied to the intermediate layer 2B of the spin injection magnetization switching element 5B.

第3実施形態およびその変形例に係るスピン注入磁化反転素子5B,5Cにおいて、中間層2B、障壁層2Aは、TbFeCo層11(磁化自由層1B,1C)の下地ではなく、TbFeCo層11の保磁力に影響しないので、公知のスピン注入磁化反転素子の中間層や障壁層を適用することができる。したがって、スピン注入磁化反転素子5B,5Cは、中間層2Bや障壁層2AをMgO以外の絶縁膜(障壁層)としたTMR素子としてもよい。障壁層は、Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜を適用することができる。また、磁化固定層、磁化自由層は、このような障壁層との界面に設けられる磁性金属膜が、Co−FeやCo−Fe−Bに限られず、Co,Fe,Ni,Ni−Fe,Co−Fe−Si等の遷移金属またはこれを含む合金を適用して、スピン偏極率を高くすることもできる。 In the spin-injection magnetization switching elements 5B and 5C according to the third embodiment and the modifications thereof, the intermediate layer 2B and the barrier layer 2A are not the base of the TbFeCo layer 11 (magnetization free layers 1B and 1C), but the TbFeCo layer 11 is retained. Since the magnetic force is not affected, an intermediate layer or a barrier layer of a known spin injection magnetization reversal element can be applied. Therefore, the spin injection magnetization reversal elements 5B and 5C may be TMR elements in which the intermediate layer 2B and the barrier layer 2A are insulating films (barrier layers) other than MgO. As the barrier layer, an insulator such as Al 2 O 3 or HfO 2 or a laminated film including an insulator such as Mg / MgO / Mg can be applied. In the magnetization fixed layer and the magnetization free layer, the magnetic metal film provided at the interface with such a barrier layer is not limited to Co—Fe or Co—Fe—B, and Co, Fe, Ni, Ni—Fe, A spin metal can be increased by applying a transition metal such as Co—Fe—Si or an alloy containing the same.

第3実施形態およびその変形例に係るスピン注入磁化反転素子5B,5Cは、磁化自由層1B,1Cおよび磁化固定層3B,3AにTb−Fe−Co合金(TbFeCo層11,31)が適用されて材料を共通化されているが、これに限られず、磁化固定層について、第1実施形態にて説明したような、Tb−Fe−Co合金以外の垂直磁気異方性を有する公知の磁性材料を適用することができる。   In the spin-injection magnetization reversal elements 5B and 5C according to the third embodiment and the modifications thereof, Tb—Fe—Co alloys (TbFeCo layers 11 and 31) are applied to the magnetization free layers 1B and 1C and the magnetization fixed layers 3B and 3A. However, the present invention is not limited to this, and a known magnetic material having perpendicular magnetic anisotropy other than the Tb-Fe-Co alloy as described in the first embodiment is not limited to this. Can be applied.

以上のように、本発明の第3実施形態およびその変形例に係るスピン注入磁化反転素子は、第1実施形態と同様に、Tb−Fe−Coからなる2つの層がそれぞれ、磁化自由層、磁化固定層として好適な保磁力を有しているので、安定した動作とすることができ、また、磁化自由層と磁化固定層に共通の材料が適用されているので生産性がよく、また、光変調度が大きく、コントラストのよい空間光変調器を構成することができる。さらに第3実施形態およびその変形例に係るスピン注入磁化反転素子は、中間層(障壁層)によらずに磁化自由層の保磁力が制御されているので、中間層の材料や厚さを磁化反転動作等に応じて設計することができる。   As described above, in the spin-injection magnetization switching element according to the third embodiment of the present invention and the modification thereof, the two layers made of Tb—Fe—Co are each a free magnetic layer, as in the first embodiment. Since it has a coercive force suitable as a magnetization fixed layer, it can be operated stably, and since a common material is applied to the magnetization free layer and the magnetization fixed layer, the productivity is good. A spatial light modulator having a high degree of light modulation and good contrast can be configured. Furthermore, since the coercive force of the magnetization free layer is controlled regardless of the intermediate layer (barrier layer), the spin injection magnetization reversal element according to the third embodiment and the modification thereof magnetizes the material and thickness of the intermediate layer. It can be designed according to the inversion operation or the like.

〔第4実施形態〕
本発明の第1、第2実施形態、ならびに第3実施形態およびその変形例においては、磁化自由層、中間層(障壁層)、磁化固定層を1層ずつ積層して備えるスピン注入磁化反転素子について説明したが、これに限られず、例えば、1つの磁化自由層の両面に中間層または障壁層を介して2つの磁化固定層を設けたデュアルピン構造のスピン注入磁化反転素子(特許文献4,5参照)においても適用し得て、同様の効果を有する。以下、第4実施形態に係るスピン注入磁化反転素子、およびこれを備えた磁気抵抗効果素子について説明する。第1、第2、第3実施形態(図1〜7参照)と同一の要素については同じ符号を付し、説明を省略する。
[Fourth Embodiment]
In the first and second embodiments of the present invention, and the third embodiment and modifications thereof, a spin-injection magnetization reversal element comprising a magnetization free layer, an intermediate layer (barrier layer), and a magnetization fixed layer stacked one by one However, the present invention is not limited to this. For example, a spin-injection magnetization reversal element having a dual pin structure in which two magnetization fixed layers are provided on both surfaces of one magnetization free layer via an intermediate layer or a barrier layer (Patent Documents 4 and 4). 5)) and has the same effect. Hereinafter, the spin-injection magnetization switching element according to the fourth embodiment and the magnetoresistive effect element including the same will be described. The same elements as those in the first, second, and third embodiments (see FIGS. 1 to 7) are denoted by the same reference numerals, and description thereof is omitted.

本発明の第4実施形態に係るスピン注入磁化反転素子5Dは、図9に示すように、下から磁化固定層3、障壁層2、磁化自由層1C、障壁層2A、磁化固定層3Cの順に積層された構成であり、さらに、最上層にすなわち磁化固定層3Cの上に保護膜43Aを備え、また、必要に応じて最下層にすなわち磁化固定層3の下に下地金属膜41を備える。本実施形態に係るスピン注入磁化反転素子5Dは、一対の電極である下部電極6と上部電極7Aに接続されて、磁気抵抗効果素子10Dを構成する。   As shown in FIG. 9, the spin-injection magnetization reversal element 5D according to the fourth embodiment of the present invention is arranged in the order of the magnetization fixed layer 3, the barrier layer 2, the magnetization free layer 1C, the barrier layer 2A, and the magnetization fixed layer 3C from the bottom. Further, a protective film 43A is provided on the uppermost layer, that is, on the magnetization fixed layer 3C, and a base metal film 41 is provided on the lowermost layer, that is, below the magnetization fixed layer 3, as necessary. The spin transfer magnetization switching element 5D according to the present embodiment is connected to a lower electrode 6 and an upper electrode 7A, which are a pair of electrodes, and constitutes a magnetoresistive element 10D.

磁気抵抗効果素子10Dは、選択トランジスタ型のMRAMのメモリセルとして、下部電極6を経由してトランジスタ(図示省略)に接続され、光変調素子10(図1参照)等と同様に2次元配列され、上部電極7Aが面内における一方向(図9においては左右方向)に延設されてビット線として共有される。メモリセルのトランジスタは、例えばMOSFET(金属酸化膜半導体電界効果トランジスタ)であり、下部電極6はドレインに接続され、ソースおよびゲートに、互いに直交する配線であるソース線とワード線(図示省略)がそれぞれ接続される。   The magnetoresistive effect element 10D is connected to a transistor (not shown) via the lower electrode 6 as a memory cell of a select transistor type MRAM, and is two-dimensionally arranged like the light modulation element 10 (see FIG. 1) and the like. The upper electrode 7A extends in one direction in the plane (left and right in FIG. 9) and is shared as a bit line. The transistor of the memory cell is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), the lower electrode 6 is connected to the drain, and a source line and a word line (not shown) which are interconnects orthogonal to each other are connected to the source and the gate. Each is connected.

スピン注入磁化反転素子5Dは、磁気抵抗効果素子10Dに適用されるので、第1実施形態に係るスピン注入磁化反転素子5等とは異なり、光変調のための平面視の大きさ(一辺の長さ)の下限が規定されず、磁化自由層1Cの磁化方向が保持される面積であればよい。具体的には、スピン注入磁化反転素子5Dは、より好適に磁化反転するために、平面視の大きさが一般的なスピン注入磁化反転素子の300nm×100nm程度相当の面積であることが好ましい。   Since the spin transfer magnetization reversal element 5D is applied to the magnetoresistive effect element 10D, unlike the spin transfer magnetization reversal element 5 according to the first embodiment, the size in plan view for light modulation (the length of one side) The lower limit of (b) is not specified, and any area may be used as long as the magnetization direction of the magnetization free layer 1C is maintained. Specifically, the spin injection magnetization reversal element 5D preferably has an area equivalent to about 300 nm × 100 nm of a general spin injection magnetization reversal element in order to reverse the magnetization more suitably.

スピン注入磁化反転素子5Dは、磁化固定層3、障壁層2、磁化自由層1Cの3層からなるTMR素子と、磁化自由層1C、障壁層2A、磁化固定層3Cの3層からなるTMR素子と、を磁化自由層1Cで接続して備えるデュアルピン構造のスピン注入磁化反転素子である。また、スピン注入磁化反転素子5Dは、第3実施形態の変形例に係るスピン注入磁化反転素子5C(図7参照)を、第1実施形態に係るスピン注入磁化反転素子5(図1参照)の上に、磁化自由層1CのTbFeCo層11を共有して組み合わせた構造といえる。障壁層2,2AがそれぞれMgOからなるので、スピン注入磁化反転素子5Dは、磁化自由層1C、および2つの磁化固定層3,3Cのすべてがそれぞれ、TbFeCo層(Tb−Fe−Coからなる層)11,31を主たる要素として備えることができる。以下、スピン注入磁化反転素子5Dを構成する要素について詳しく説明する。   The spin injection magnetization reversal element 5D includes a TMR element composed of three layers of a magnetization fixed layer 3, a barrier layer 2, and a magnetization free layer 1C, and a TMR element composed of three layers of a magnetization free layer 1C, a barrier layer 2A, and a magnetization fixed layer 3C. Are connected to each other by a magnetization free layer 1C. Further, the spin transfer magnetization reversal element 5D is different from the spin transfer magnetization reversal element 5C (see FIG. 7) according to the modification of the third embodiment to the spin transfer magnetization reversal element 5 (refer to FIG. 1) according to the first embodiment. Furthermore, it can be said that the TbFeCo layer 11 of the magnetization free layer 1C is shared and combined. Since each of the barrier layers 2 and 2A is made of MgO, the spin injection magnetization reversal element 5D has a magnetization free layer 1C and two magnetization fixed layers 3 and 3C, all of which are TbFeCo layers (layers made of Tb-Fe-Co). ) 11 and 31 can be provided as main elements. Hereinafter, the elements constituting the spin transfer magnetization switching element 5D will be described in detail.

(磁化固定層)
スピン注入磁化反転素子5Dにおいて磁化自由層1Cの下側に設けられた磁化固定層3は、下部電極6または下地金属膜41上に形成され、第1実施形態(図1参照)と同様に、下すなわち下部電極6の側から、TbFeCo層31、CoFe膜32の2層構造を有する。TbFeCo層31、CoFe膜32の各構成は、第1実施形態にて説明した通りである。磁化固定層3におけるTbFeCo層31は、金属(下部電極6または下地金属膜41)上に成膜されているので、Tb−Fe−Co合金本来の大きな保磁力を有する。一方、スピン注入磁化反転素子5Dにおいて磁化自由層1Cの上側に設けられた磁化固定層3Cは、第2実施形態(図4参照)の磁化固定層3Aと同様に、MgOからなる障壁層2A上に形成され、障壁層2Aの側から、CoFe膜32C、TbFeCo層31の2層構造を有する。CoFe膜32Cの構成は、第2実施形態のCoFe膜32Aと同様とすることができる。ただし後記するように、磁化固定層3Cは、保磁力が磁化自由層1Cに対して十分に大きく、かつ磁化固定層3よりも小さくなるように設計され、そのために、下地である障壁層2Aの影響が適度に生じるように、TbFeCo層31やCoFe膜32Cの厚さが調整される。
(Magnetic pinned layer)
In the spin injection magnetization reversal element 5D, the magnetization fixed layer 3 provided below the magnetization free layer 1C is formed on the lower electrode 6 or the base metal film 41, and as in the first embodiment (see FIG. 1), It has a two-layer structure of a TbFeCo layer 31 and a CoFe film 32 from below, that is, from the lower electrode 6 side. Each configuration of the TbFeCo layer 31 and the CoFe film 32 is as described in the first embodiment. Since the TbFeCo layer 31 in the magnetization fixed layer 3 is formed on the metal (the lower electrode 6 or the base metal film 41), it has a large coercive force inherent to the Tb—Fe—Co alloy. On the other hand, similarly to the magnetization fixed layer 3A of the second embodiment (see FIG. 4), the magnetization fixed layer 3C provided on the upper side of the magnetization free layer 1C in the spin injection magnetization reversal element 5D is on the barrier layer 2A made of MgO. And has a two-layer structure of a CoFe film 32C and a TbFeCo layer 31 from the side of the barrier layer 2A. The configuration of the CoFe film 32C can be the same as that of the CoFe film 32A of the second embodiment. However, as will be described later, the magnetization fixed layer 3C is designed so that the coercive force is sufficiently larger than that of the magnetization free layer 1C and smaller than the magnetization fixed layer 3, so that the barrier layer 2A which is the base is formed. The thicknesses of the TbFeCo layer 31 and the CoFe film 32C are adjusted so that the influence is moderately generated.

(障壁層)
障壁層2,2Aは、それぞれ第1、第2実施形態と同様の構成とすることができる。特にスピン注入磁化反転素子5Dにおいては、後記するように磁化自由層1Cの磁化反転により電極6,7A間の抵抗を変化させるために、上下2つのTMR素子の各抵抗が異なるように、例えば障壁層2,2Aで互いに厚さを変えてもよい。
(Barrier layer)
The barrier layers 2 and 2A can have the same configuration as that of the first and second embodiments, respectively. Particularly in the spin-injection magnetization reversal element 5D, in order to change the resistance between the electrodes 6 and 7A by the magnetization reversal of the magnetization free layer 1C as will be described later, for example, the resistances of the two upper and lower TMR elements are different. The layers 2 and 2A may have different thicknesses.

(磁化自由層)
磁化自由層1Cは、スピン注入磁化反転素子5Dにおいて2つのTMR素子に共有される磁化自由層であるが、上側のTMR素子を構成する障壁層2Aの側の界面にのみCoFe膜12Aを備える。このように、スピン注入磁化反転素子5Dは、磁化自由層1Cの下側にCoFe膜12(図1参照)を備えないことで、第3実施形態やその変形例に係るスピン注入磁化反転素子5B,5C(図5、図7参照)における磁化自由層1B,1Cと同様に、TbFeCo層11がMgO膜(障壁層2)の上に直接に成膜されることにより、保磁力がいっそう小さくなる。さらにスピン注入磁化反転素子5Dは、上下2つのTMR素子がCoFe膜の有無の異なる構成にすることで、後記するように磁化自由層1Cの磁化方向により電極6,7A間の抵抗が変化する。
(Magnetization free layer)
The magnetization free layer 1C is a magnetization free layer shared by the two TMR elements in the spin injection magnetization switching element 5D, but includes the CoFe film 12A only at the interface on the side of the barrier layer 2A constituting the upper TMR element. As described above, the spin-injection magnetization reversal element 5D does not include the CoFe film 12 (see FIG. 1) below the magnetization free layer 1C, so that the spin-injection magnetization reversal element 5B according to the third embodiment or its modification is provided. , 5C (see FIGS. 5 and 7), the coercive force is further reduced by forming the TbFeCo layer 11 directly on the MgO film (barrier layer 2) as in the magnetization free layers 1B and 1C. . Further, in the spin-injection magnetization switching element 5D, the resistance between the electrodes 6 and 7A varies depending on the magnetization direction of the magnetization free layer 1C, as will be described later, by making the upper and lower TMR elements different in the presence or absence of the CoFe film.

(保護膜)
下地金属膜41、保護膜43Aは、第1実施形態およびその変形例(図1、図4参照)と同様の構成である。
以下に、磁気抵抗効果素子10Dを構成するスピン注入磁化反転素子5D以外の要素について説明する。
(Protective film)
The base metal film 41 and the protective film 43A have the same configuration as that of the first embodiment and the modifications thereof (see FIGS. 1 and 4).
Hereinafter, elements other than the spin injection magnetization switching element 5D constituting the magnetoresistive effect element 10D will be described.

(電極)
磁気抵抗効果素子10Dは光を透過する必要がないので、下部電極6、上部電極7A、ならびにソース線およびワード線(図示省略)は、第1実施形態の下部電極6等と同様の金属電極材料で形成される。
(electrode)
Since the magnetoresistive effect element 10D does not need to transmit light, the lower electrode 6, the upper electrode 7A, the source line and the word line (not shown) are the same metal electrode materials as the lower electrode 6 and the like of the first embodiment. Formed with.

(絶縁層、基板)
絶縁層8は、第1、第2実施形態と同様の構成とすることができる。磁気抵抗効果素子10Dが形成される基板(図示省略)は、磁気抵抗効果素子10Dがトランジスタに接続されるために、表層にMOSFETを形成されたp型シリコン(Si)基板が適用される。
(Insulating layer, substrate)
The insulating layer 8 can have the same configuration as in the first and second embodiments. As the substrate (not shown) on which the magnetoresistive effect element 10D is formed, a p-type silicon (Si) substrate having a MOSFET formed on the surface layer is used in order to connect the magnetoresistive effect element 10D to the transistor.

(磁気抵抗効果素子の製造方法)
第4実施形態に係るスピン注入磁化反転素子5Dを備える磁気抵抗効果素子10Dは、前記したように、表層にMOSFETを形成されたSi基板上に、ソース線およびワード線を金属電極材料で形成された上に、絶縁膜を介してスピン注入磁化反転素子5Dを形成して製造することができる。スピン注入磁化反転素子5Dは、第1、第2実施形態に係るスピン注入磁化反転素子5,5Aと同様に形成することができる。
(Method for manufacturing magnetoresistive element)
As described above, the magnetoresistive effect element 10D including the spin-injection magnetization switching element 5D according to the fourth embodiment has the source line and the word line formed of the metal electrode material on the Si substrate having the MOSFET formed on the surface layer. In addition, the spin-injection magnetization switching element 5D can be formed and manufactured through an insulating film. The spin transfer magnetization switching element 5D can be formed in the same manner as the spin transfer magnetization switching elements 5 and 5A according to the first and second embodiments.

(MRAMの初期設定)
磁気抵抗効果素子10Dを配列したMRAMについても、空間光変調器と同様に、すべてのメモリセルの磁気抵抗効果素子10Dが、スピン注入磁化反転素子5Dの磁化固定層3,3Cの磁化方向がそれぞれ所定の向きに固定されている必要がある。ただし、スピン注入磁化反転素子5Dの2層の磁化固定層3,3Cは、磁化方向が互いに逆向きに固定される。したがって、第3実施形態の変形例と同様に、大きさと向きを切り替えて、2回の磁界印加を行う。
(MRAM initial setting)
Also in the MRAM in which the magnetoresistive effect element 10D is arranged, the magnetoresistive effect element 10D of all the memory cells has the magnetization directions of the magnetization fixed layers 3 and 3C of the spin injection magnetization reversal element 5D, respectively, as in the spatial light modulator. It must be fixed in a predetermined orientation. However, the magnetization directions of the two magnetization fixed layers 3 and 3C of the spin injection magnetization reversal element 5D are fixed to be opposite to each other. Therefore, similarly to the modification of the third embodiment, the magnetic field is applied twice by switching the size and direction.

(磁化反転動作)
メモリセルの書込みとして、磁気抵抗効果素子10Dにおけるスピン注入磁化反転素子5Dの磁化反転が行われる。スピン注入磁化反転素子5Dは、磁化方向が互いに逆向きに固定された磁化固定層3,3Cにより、磁化固定層3,3Cの電子を注入する側(「−」に接続した側)の磁化方向と同じ向きに磁化自由層1Cが磁化反転する。例えば、下部電極6に接続した磁化固定層3が上向きに(図3(a)、(b)参照)、上部電極7Aに接続した磁化固定層3Cが下向きに、それぞれ磁化方向が固定されているとする。この場合に、図3(a)に示すように、下部電極6を「−」に、上部電極7A(7)を「+」にして、磁化固定層3の側から電子を注入する。すると、図3(a)と同様に、磁化固定層3で当該磁化固定層3の磁化方向と逆の下向きのスピンを持つ電子dDが弁別されて、下部電極6からは上向きのスピンを持つ電子dUが偏って磁化固定層3に注入され、さらに障壁層2を介して磁化自由層1C(1)に注入される。さらに磁化自由層1Cに注入された電子dUは、磁化方向が逆の下向きに固定された磁化固定層3Cで弁別されるために磁化自由層1Cに留まり易く(図示省略)、その結果、磁化自由層1Cの磁化方向が、磁化固定層3と同じ上向きへ反転する。反対に、図3(b)に示すように、上部電極7A(7)を「−」に、下部電極6を「+」にして、磁化固定層3Cの側から電子を注入すると、磁化自由層1Cの磁化方向が磁化固定層3Cと同じ下向きへ反転する。このように、スピン注入磁化反転素子5Dは、通常の(シングルピン構造の)スピン注入磁化反転素子5(図3参照)等と同様に、一対の電極で磁化反転させることができ、さらに、上下2層の磁化固定層3,3Cにより効率的に磁化反転する。
(Magnetization reversal operation)
As the memory cell write, the magnetization reversal of the spin injection magnetization reversal element 5D in the magnetoresistive effect element 10D is performed. The spin injection magnetization reversal element 5D has a magnetization direction on the side where electrons are injected from the magnetization fixed layers 3 and 3C (the side connected to “−”) by the magnetization fixed layers 3 and 3C whose magnetization directions are fixed in opposite directions. The magnetization free layer 1C is reversed in magnetization in the same direction. For example, the magnetization fixed layer 3 connected to the lower electrode 6 faces upward (see FIGS. 3A and 3B), and the magnetization fixed layer 3C connected to the upper electrode 7A faces downward, and the magnetization direction is fixed. And In this case, as shown in FIG. 3A, the lower electrode 6 is set to “−” and the upper electrode 7A (7) is set to “+”, and electrons are injected from the magnetization fixed layer 3 side. Then, as in FIG. 3A, electrons d D having a downward spin opposite to the magnetization direction of the magnetization fixed layer 3 are discriminated by the magnetization fixed layer 3 and have an upward spin from the lower electrode 6. are injected into the magnetization fixed layer 3 biased electron d U, it is further through the barrier layer 2 injected into the magnetization free layer 1C (1). Further electronic d U is injected into the free layer 1C, easily remain in the magnetization free layer 1C to the magnetization direction is discriminated in reverse magnetization fixed layer 3C fixed downward (not shown), as a result, the magnetization The magnetization direction of the free layer 1 </ b> C is reversed to the same upward direction as that of the magnetization fixed layer 3. On the contrary, as shown in FIG. 3B, when the upper electrode 7A (7) is set to “−”, the lower electrode 6 is set to “+”, and electrons are injected from the magnetization fixed layer 3C side, the magnetization free layer The magnetization direction of 1C is reversed to the same downward direction as the magnetization fixed layer 3C. As described above, the spin-injection magnetization reversal element 5D can be reversed in magnetization by a pair of electrodes in the same manner as the normal (single-pin structure) spin-injection magnetization reversal element 5 (see FIG. 3). Magnetization is efficiently reversed by the two magnetization fixed layers 3 and 3C.

(抵抗変化)
メモリセルの読出しは、一般的な選択トランジスタ型のMRAMと同様に、スピン注入磁化反転素子5Dが磁化反転しない所定の大きさの定電流(電流Ir)を供給したときの電極6,7A間の電圧の値から判定される(図3(c)、(d)参照)。ここで、第4実施形態に係るスピン注入磁化反転素子5Dは、2つのTMR素子が磁化自由層1Cを共有するデュアルピン構造のスピン注入磁化反転素子である。そして、スピン注入磁化反転素子5Dは、前記したように磁化固定層3,3Cの磁化方向が互いに逆向きに固定されているために、常に、磁化自由層1Cの磁化方向が磁化固定層3,3Cの一方と平行かつ他方と反平行である。したがって、2つのTMR素子の抵抗およびその変化率が同値であると、電極6,7A間の抵抗が実質的に変化しないことになる(特許文献7参照)。そこで、スピン注入磁化反転素子5Dにおいては、上側のTMR素子が障壁層2Aの両面にCoFe膜12A,32Cを備えるのに対し、下側のTMR素子が障壁層2の片面(下面、磁化固定層3側)にのみCoFe膜32を備えることによりMR比を低く抑えている。このような構造により、スピン注入磁化反転素子5Dは、MR比の高い上側のTMR素子(磁化自由層1C、障壁層2A、磁化固定層3C)において磁化方向が反平行であるときに全体の抵抗が高くなり、磁気抵抗効果素子10Dは、磁化自由層1Cの磁化方向により、電極6,7A間の抵抗が変化する。
(Resistance change)
Reading of the memory cell is performed between the electrodes 6 and 7A when a constant current (current I r ) of a predetermined magnitude that does not cause magnetization reversal is supplied by the spin-injection magnetization reversal element 5D, as in a general select transistor type MRAM. (See FIGS. 3C and 3D). Here, the spin-injection magnetization switching element 5D according to the fourth embodiment is a dual-pin structure spin-transfer magnetization switching element in which two TMR elements share the magnetization free layer 1C. In the spin-injection magnetization switching element 5D, since the magnetization directions of the magnetization fixed layers 3 and 3C are fixed in the opposite directions as described above, the magnetization direction of the magnetization free layer 1C is always the magnetization fixed layer 3 and 3C. It is parallel to one of 3C and antiparallel to the other. Therefore, when the resistance of the two TMR elements and the rate of change thereof are the same, the resistance between the electrodes 6 and 7A does not substantially change (see Patent Document 7). Therefore, in the spin injection magnetization reversal element 5D, the upper TMR element includes the CoFe films 12A and 32C on both surfaces of the barrier layer 2A, whereas the lower TMR element has one surface (the lower surface, the magnetization fixed layer) of the barrier layer 2. By providing the CoFe film 32 only on the third side), the MR ratio is kept low. With such a structure, the spin-injection magnetization reversal element 5D has an overall resistance when the magnetization direction is antiparallel in the upper TMR element (magnetization free layer 1C, barrier layer 2A, magnetization fixed layer 3C) having a high MR ratio. In the magnetoresistive element 10D, the resistance between the electrodes 6 and 7A changes depending on the magnetization direction of the magnetization free layer 1C.

なお、磁気抵抗効果素子10Dにおいて、下部電極6は、トランジスタを経由してソース線に接続し、この接続は、スピン注入磁化反転素子5Dに供給される電流とは別の電流(ゲート電流)によりON/OFFする。したがって、MRAMにおいて、書込み、読出しの電流Iw,Irは、上部電極7A(ビット線)とソース線を一対の電極としてスピン注入磁化反転素子5Dに供給される。 In the magnetoresistive effect element 10D, the lower electrode 6 is connected to a source line via a transistor, and this connection is caused by a current (gate current) different from the current supplied to the spin injection magnetization switching element 5D. Turn ON / OFF. Therefore, in the MRAM, the write and read currents I w and I r are supplied to the spin transfer magnetization switching element 5D using the upper electrode 7A (bit line) and the source line as a pair of electrodes.

磁気抵抗効果素子10Dは、MOSFETに代えて、ダイオードを接続されてメモリセルとしてもよい。ダイオードについても、MOSFETと同様に、Si基板の表層に形成することができる。あるいは、磁気抵抗効果素子10Dは、トランジスタに接続されずに、下部電極6をワード線とするクロスポイント型のMRAMのメモリセルとしてもよい(図示せず)。   The magnetoresistive element 10D may be a memory cell by connecting a diode instead of the MOSFET. The diode can also be formed on the surface layer of the Si substrate, like the MOSFET. Alternatively, the magnetoresistive effect element 10D may be a memory cell of a cross-point type MRAM (not shown) that is not connected to a transistor but has the lower electrode 6 as a word line.

(変形例)
第4実施形態に係るスピン注入磁化反転素子5Dは、上側の障壁層2AをMgO以外の絶縁膜で形成してもよく、あるいは非磁性金属膜等からなる中間層2B(図5参照)に替えて、TMR素子とCPP−GMR素子を備えるデュアルピン構造のスピン注入磁化反転素子としてもよい。なお、障壁層2Aを中間層2Bに替えた場合は、その上下のCoFe膜32C,12Aは不要であり、また、障壁層の材料に応じて異なる磁性金属膜に替えてもよい。さらにこれらの場合には、磁化自由層1Cの下側の界面にもCoFe膜12(図1参照)を設けて、下側の障壁層2を備えるTMR素子の方のMR比を高くすることが好ましい。
(Modification)
In the spin transfer magnetization switching element 5D according to the fourth embodiment, the upper barrier layer 2A may be formed of an insulating film other than MgO, or may be replaced with an intermediate layer 2B (see FIG. 5) made of a nonmagnetic metal film or the like. Thus, a spin-injection magnetization reversal element having a dual pin structure including a TMR element and a CPP-GMR element may be used. When the barrier layer 2A is replaced with the intermediate layer 2B, the upper and lower CoFe films 32C and 12A are not necessary, and may be replaced with different magnetic metal films depending on the material of the barrier layer. Further, in these cases, a CoFe film 12 (see FIG. 1) is also provided on the lower interface of the magnetization free layer 1C to increase the MR ratio of the TMR element including the lower barrier layer 2. preferable.

また、スピン注入磁化反転素子5Dにおいて、磁化固定層3,3Cの保磁力の差は、厚さや磁化固定層3Cの下地の障壁層2A(MgO膜)によらず、TbFeCo層31の組成や成膜時の雰囲気(キャリアガス圧)を調整することにより異なるものとしてもよく、あるいは磁化固定層3,3Cの一方をTbFeCo層31以外の磁性層に替えてもよい。また、例えば上側の障壁層2Aを中間層2Bに替える等して、その上の磁化固定層3C(3B)が磁化固定層3と保磁力の差がなくても、磁化固定層3,3Bの一方に交換結合膜を積層すればよく、これにより、初期設定における1回の外部磁界印加により他方の磁化固定層と逆向きの磁化方向に固定されるようにすることができる(図示せず)。   In the spin-injection magnetization reversal element 5D, the difference in coercive force between the magnetization fixed layers 3 and 3C depends on the composition and composition of the TbFeCo layer 31 regardless of the thickness and the barrier layer 2A (MgO film) underlying the magnetization fixed layer 3C. It may be different by adjusting the atmosphere (carrier gas pressure) during film formation, or one of the magnetization fixed layers 3 and 3C may be replaced with a magnetic layer other than the TbFeCo layer 31. Further, even if, for example, the upper barrier layer 2A is replaced with the intermediate layer 2B, the magnetization fixed layer 3C (3B) on the upper barrier layer 2A does not have a difference in coercive force from the magnetization fixed layer 3, so It is only necessary to stack an exchange coupling film on one side, so that it can be fixed in a magnetization direction opposite to the other magnetization fixed layer by applying an external magnetic field once in the initial setting (not shown). .

以上のように、本発明の第4実施形態に係るスピン注入磁化反転素子は、2つの磁化固定層および1つの磁化自由層のそれぞれにおいて、Tb−Fe−Coからなる層が互いに異なる好適な保磁力を有しているので、安定した動作とすることができ、また、3つの磁性層に共通の材料が適用されているので、生産性がよい。   As described above, the spin-injection magnetization switching element according to the fourth embodiment of the present invention is suitable for the two magnetization fixed layers and one magnetization free layer in which the layers made of Tb—Fe—Co are different from each other. Since it has a magnetic force, it can be operated stably, and since a common material is applied to the three magnetic layers, the productivity is good.

本発明の第1、第2実施形態、第3実施形態およびその変形例に係るスピン注入磁化反転素子5,5A,5B,5Cは、第4実施形態に係るスピン注入磁化反転素子5D(図9参照)と同様に、MRAMのメモリセルの磁気抵抗効果素子に適用されてもよい。この場合には、下部電極6と上部電極7Aのように、一対の電極の両方に金属電極材料を適用することができ、また下部電極6B,6C(図5、図7参照)の貫通孔が不要であり、さらに、表層にMOSFETを形成されたSi基板上に形成されて、下部電極6等でトランジスタのドレインに接続してもよい(図示せず)。あるいは、スピン注入磁化反転素子5,5A,5B,5Cは、光変調素子に適用される場合においてもトランジスタを接続して、電流の消費が抑制された空間光変調器を構成することができる。ただし、スピン注入磁化反転素子5A,5B,5Cは、下方から光を入射する光変調素子10A,10B,10C(図4、図5、図7参照)に適用されるため、光変調素子10A,10B,10Cを配列した基板9Aに、MOSFETやソース線等の配線を形成されたSi基板を、水酸基接合等の常温接合により貼り合わせて、上部電極7Aでトランジスタのドレインに接続する。   The spin injection magnetization reversal elements 5, 5A, 5B, and 5C according to the first, second, third, and modifications of the present invention are the same as the spin injection magnetization reversal element 5D according to the fourth embodiment (FIG. 9). Similarly to the reference), the present invention may be applied to a magnetoresistive element of an MRAM memory cell. In this case, like the lower electrode 6 and the upper electrode 7A, the metal electrode material can be applied to both of the pair of electrodes, and the through holes of the lower electrodes 6B and 6C (see FIGS. 5 and 7) are provided. Further, it is unnecessary and may be formed on a Si substrate having a MOSFET formed on the surface layer and connected to the drain of the transistor by the lower electrode 6 or the like (not shown). Alternatively, the spin-injection magnetization reversal elements 5, 5A, 5B, and 5C can form a spatial light modulator in which current consumption is suppressed by connecting transistors even when applied to the light modulation element. However, since the spin injection magnetization reversal elements 5A, 5B, and 5C are applied to the light modulation elements 10A, 10B, and 10C (see FIGS. 4, 5, and 7) that receive light from below, the light modulation elements 10A, 10A, A Si substrate on which wirings such as MOSFETs and source lines are formed is bonded to a substrate 9A on which 10B and 10C are arranged by room temperature bonding such as hydroxyl bonding, and is connected to the drain of the transistor with the upper electrode 7A.

〔第5実施形態〕
本発明の第3実施形態およびその変形例では、中間層(障壁層)によらずに磁化自由層の下に絶縁体であるMgO膜を設けるために、磁化自由層が下面の周縁か側面に制限して下部電極を接続される。これに対して、1つの磁化自由層の一面に中間層または障壁層を介して2つの磁化固定層を設けた並設デュアルピン構造のスピン注入磁化反転素子(特許文献6,7参照)であれば、磁化自由層が電極に接続される必要がなく、また他面に別の磁性層等が設けられていないので、この他面を下にして下地にMgO膜を設けることに制約がない。以下、第5実施形態に係るスピン注入磁化反転素子、およびこれを備えた光変調素子について説明する。第1〜第4実施形態(図1〜9参照)と同一の要素については同じ符号を付し、説明を省略する。
[Fifth Embodiment]
In the third embodiment of the present invention and its modification, in order to provide an MgO film as an insulator under the magnetization free layer without using the intermediate layer (barrier layer), the magnetization free layer is formed on the peripheral edge or side surface of the lower surface. The lower electrode is connected with restriction. On the other hand, a spin injection magnetization reversal element having a parallel dual pin structure in which two magnetization fixed layers are provided on one surface of one magnetization free layer via an intermediate layer or a barrier layer (see Patent Documents 6 and 7). In this case, the magnetization free layer does not need to be connected to the electrode, and another magnetic layer or the like is not provided on the other surface, so there is no restriction on providing the MgO film on the base with this other surface facing down. Hereinafter, a spin-injection magnetization switching element according to a fifth embodiment and a light modulation element including the same will be described. The same elements as those in the first to fourth embodiments (see FIGS. 1 to 9) are denoted by the same reference numerals and description thereof is omitted.

本発明の第5実施形態に係るスピン注入磁化反転素子5Eは、図10に示すように、1つの磁化自由層1Cとその上に積層された障壁層2Aのさらに上に、膜面方向に離間した2つの磁化固定層3A,3Cが積層された構成であり、2つの磁化固定層3A,3C上に一対の電極である第1電極71と第2電極72が接続されて、光変調素子10Eを構成する。スピン注入磁化反転素子5Eは、さらに、磁化固定層3A,3Cのそれぞれの上に保護膜43A,43Aを備える。本実施形態に係るスピン注入磁化反転素子5Eは、MgO膜42の上に直接に設けられ、すなわち磁化自由層1CがMgO膜42の上に形成されている。スピン注入磁化反転素子5Eは、一対の電極71,72の両方が、磁化自由層1Cの上側に設けられた磁化固定層3A,3C上に接続されるので、磁化自由層1Cの下側に絶縁体であるMgO膜42が設けられても電気的な接続が妨げられない。したがって、磁化自由層1C(TbFeCo層11)の全体がMgO膜42の上に直接に成膜されることにより保磁力が小さくなる。さらに、障壁層2AがMgOからなることにより、後記製造方法にて説明するように、平面視形状の異なる磁化自由層1Cと磁化固定層3A,3Cを備えるスピン注入磁化反転素子5Eにおいて、耐熱性に劣るTbFeCo層11を磁化自由層1Cに適用することができる。   As shown in FIG. 10, the spin-injection magnetization switching element 5E according to the fifth embodiment of the present invention is separated in the film surface direction further above one magnetization free layer 1C and a barrier layer 2A stacked thereon. The two magnetization fixed layers 3A and 3C are stacked, and the first electrode 71 and the second electrode 72, which are a pair of electrodes, are connected to the two magnetization fixed layers 3A and 3C, and the light modulation element 10E. Configure. The spin injection magnetization switching element 5E further includes protective films 43A and 43A on the magnetization fixed layers 3A and 3C, respectively. The spin-injection magnetization switching element 5E according to this embodiment is provided directly on the MgO film 42, that is, the magnetization free layer 1C is formed on the MgO film 42. In the spin-injection magnetization reversal element 5E, since both of the pair of electrodes 71 and 72 are connected on the magnetization fixed layers 3A and 3C provided on the upper side of the magnetization free layer 1C, they are insulated on the lower side of the magnetization free layer 1C. Even if the MgO film 42 as a body is provided, electrical connection is not hindered. Therefore, the entire magnetization free layer 1 </ b> C (TbFeCo layer 11) is directly formed on the MgO film 42 to reduce the coercive force. Further, since the barrier layer 2A is made of MgO, as described later in the manufacturing method, in the spin-injection magnetization switching element 5E including the magnetization free layer 1C and the magnetization fixed layers 3A and 3C having different shapes in plan view, Can be applied to the magnetization free layer 1C.

光変調素子10Eは、スピン注入磁化反転素子5Eが下側に磁化自由層1Cを備え、さらにその下に電極が接続されていないため、第2実施形態の光変調素子10A(図4参照)と同様に、反射型の空間光変調器の画素として透明な基板9A上に2次元配列されて、下方から入射した光を反射させて下方へ出射する。光変調素子10Eにおいて、一対の電極71,72は、第1実施形態の光変調素子10における一対の電極6,7(図1参照)と同様に、一方を行方向に、他方を列方向に、それぞれ延設される。図10においては、磁化固定層3A,3Cが左右方向に並んで設けられているため、第1電極71は、下側(スピン注入磁化反転素子5Eに近い側)に設けられて磁化固定層3Aに接続し、手前−奥方向(紙面垂直方向)に延設された帯状に形成されている。一方、第2電極72は、第1電極71の上方で、第1電極71と直交して左右方向に延設された帯状に形成され、コンタクト部(第2電極72の帯状部分と第1電極71の層間部)を経由して磁化固定層3Cに接続する。   In the light modulation element 10E, the spin injection magnetization reversal element 5E includes the magnetization free layer 1C on the lower side, and no electrode is connected thereunder, so that the light modulation element 10E and the light modulation element 10A of the second embodiment (see FIG. 4) Similarly, the pixels of the reflective spatial light modulator are two-dimensionally arranged on the transparent substrate 9A to reflect the light incident from below and emit the light downward. In the light modulation element 10E, the pair of electrodes 71 and 72 is one in the row direction and the other in the column direction, like the pair of electrodes 6 and 7 (see FIG. 1) in the light modulation element 10 of the first embodiment. , Respectively. In FIG. 10, since the magnetization fixed layers 3A and 3C are provided side by side in the left-right direction, the first electrode 71 is provided on the lower side (side closer to the spin-injection magnetization switching element 5E), and the magnetization fixed layer 3A. And is formed in a strip shape extending in the front-back direction (perpendicular to the paper surface). On the other hand, the second electrode 72 is formed in a strip shape extending in the left-right direction orthogonal to the first electrode 71 above the first electrode 71, and a contact portion (a strip portion of the second electrode 72 and the first electrode). 71 to the magnetization fixed layer 3C.

障壁層2Aは絶縁体であるMgOからなるので、スピン注入磁化反転素子5Eは、1つの磁化自由層1Cの上に、膜面方向に並んで2つの磁化固定層3A,3Cがそれぞれ障壁層2A,2Aを挟んで積層された構成であるといえる。また、スピン注入磁化反転素子5Eは、磁化自由層1C、障壁層2A、磁化固定層3Aと、磁化自由層1C、障壁層2A、磁化固定層3Cと、の各3層からなる2つのスピン注入磁化反転素子(TMR素子)を磁化自由層1Cで接続した構成である。これら3層が積層された各領域がスピン注入磁化反転素子として機能するので、それぞれの平面視形状がスピン注入磁化反転素子として好適なものであればよく、磁化固定層3A,3Cについては、例えば各100nm×300nmにすることができる。一方、磁化自由層1Cは、詳しくは後記するように、スピン注入磁化反転素子として機能する磁化固定層3A,3Cが積層された2つの領域と、これら2つの領域に挟まれた領域とにおいて、磁化反転し、すなわち光変調素子として機能するので、これらを合わせた平面視サイズを例えば300nm×300nmにして、光変調素子に好適なサイズにすることができる。なお、磁化固定層3A,3C間の距離については特に規定されない。   Since the barrier layer 2A is made of MgO which is an insulator, the spin-injection magnetization switching element 5E has two magnetization fixed layers 3A and 3C arranged on the one magnetization free layer 1C in the film surface direction, respectively. , 2A can be said to be laminated. In addition, the spin injection magnetization reversal element 5E includes two spin injections each including three layers of a magnetization free layer 1C, a barrier layer 2A, a magnetization fixed layer 3A, a magnetization free layer 1C, a barrier layer 2A, and a magnetization fixed layer 3C. A magnetization reversal element (TMR element) is connected by a magnetization free layer 1C. Since each region where these three layers are stacked functions as a spin-injection magnetization reversal element, the shape in plan view may be any suitable as a spin-injection magnetization reversal element. For the magnetization fixed layers 3A and 3C, for example, Each can be 100 nm × 300 nm. On the other hand, as will be described in detail later, the magnetization free layer 1C includes two regions in which magnetization fixed layers 3A and 3C functioning as spin injection magnetization reversal elements are stacked, and a region sandwiched between these two regions. Since the magnetization is reversed, that is, it functions as an optical modulation element, the combined size in plan view can be set to, for example, 300 nm × 300 nm to be a suitable size for the optical modulation element. The distance between the magnetization fixed layers 3A and 3C is not particularly specified.

また、図10に示すように、スピン注入磁化反転素子5Eにおいて、磁化自由層1Cは、並んだ磁化固定層3A,3Cの外側へ張り出して拡張して形成されていることが好ましい。これは、後記製造方法にて説明するように、磁化自由層1Cと同一平面視形状に形成される障壁層2Aを、磁化固定層3A,3Cを形成するためのエッチングストッパ膜にするためである。磁化自由層1Cは、この張り出した領域においては磁化反転しない。また、磁化自由層1Cの張り出した長さは特に規定されず、隣り合うスピン注入磁化反転素子5E,5E間で短絡しなければよいが、磁性膜は面積がある程度以上大きくなると保磁力が減少する傾向があるので、保磁力に影響しない程度にすることが好ましい。以下、スピン注入磁化反転素子5Eを構成する要素について詳しく説明する。   Further, as shown in FIG. 10, in the spin injection magnetization switching element 5E, the magnetization free layer 1C is preferably formed so as to extend outside the aligned magnetization fixed layers 3A and 3C. This is because the barrier layer 2A formed in the same planar view shape as the magnetization free layer 1C is used as an etching stopper film for forming the magnetization fixed layers 3A and 3C, as will be described later in the manufacturing method. . The magnetization free layer 1C does not reverse the magnetization in this overhanging region. In addition, the protruding length of the magnetization free layer 1C is not particularly limited, and it is not necessary to short-circuit between the adjacent spin-injection magnetization reversal elements 5E and 5E. However, the coercive force decreases when the magnetic film has a certain area or more. Since there is a tendency, it is preferable that the coercive force is not affected. Hereinafter, the elements constituting the spin transfer magnetization switching element 5E will be described in detail.

(磁化自由層)
磁化自由層1Cは、第3実施形態の変形例(図7参照)と同様の構成であり、TbFeCo層11がMgO膜42の上に直接に成膜されることにより保磁力がいっそう小さくなる。さらに本実施形態においては、MgO膜42がTbFeCo層11と同一の平面視形状に形成されているので、TbFeCo層11の全体の保磁力を小さくすることができる。
(Magnetization free layer)
The magnetization free layer 1C has the same configuration as that of the modification of the third embodiment (see FIG. 7), and the coercive force is further reduced by forming the TbFeCo layer 11 directly on the MgO film. Furthermore, in this embodiment, since the MgO film 42 is formed in the same planar view shape as the TbFeCo layer 11, the overall coercive force of the TbFeCo layer 11 can be reduced.

(障壁層)
障壁層2Aは、第2実施形態や第3実施形態の変形例(図4、図7参照)と同様の構成である。さらに本実施形態においては、後記製造方法にて説明するように、障壁層2Aは、スピン注入磁化反転素子5Eの形成時における磁化自由層1Cの保護膜であり、かつ、当該障壁層2A上の絶縁膜(磁化固定層3A,3C間等の絶縁層8)をエッチングするときのエッチングストッパ膜になる。そのために、図10に示すように、スピン注入磁化反転素子5Eにおいて、障壁層2Aは、その下の磁化自由層1Cと同一の平面視形状に形成され、また、厚さを1nm以上とすることが好ましい。
(Barrier layer)
The barrier layer 2A has the same configuration as that of the modified example of the second embodiment or the third embodiment (see FIGS. 4 and 7). Furthermore, in this embodiment, as will be described later in the manufacturing method, the barrier layer 2A is a protective film for the magnetization free layer 1C when the spin-injection magnetization switching element 5E is formed, and on the barrier layer 2A. It becomes an etching stopper film when etching the insulating film (insulating layer 8 between the magnetization fixed layers 3A and 3C). Therefore, as shown in FIG. 10, in the spin injection magnetization reversal element 5E, the barrier layer 2A is formed in the same planar view shape as the magnetization free layer 1C therebelow, and the thickness is 1 nm or more. Is preferred.

(磁化固定層)
磁化固定層3Aおよび磁化固定層3Cは、第2実施形態および第4実施形態(図4、図9参照)とそれぞれ同様の構成であり、それぞれ、MgOからなる障壁層2Aの上に設けられているため、障壁層2Aとの界面にCoFe膜32A,32Cを備えて、TbFeCo層31の保磁力の低下を抑制している。さらに磁化固定層3A,3Cは、第4実施形態に係るスピン注入磁化反転素子5D(図9参照)の磁化固定層3,3Cと同様に、互いの保磁力が異なる大きさになるように、CoFe膜32A,32Cの厚さ、あるいはさらにそれぞれのTbFeCo層31,31の厚さが異なるものに設計される。
(Magnetic pinned layer)
The magnetization fixed layer 3A and the magnetization fixed layer 3C have the same configurations as those of the second and fourth embodiments (see FIGS. 4 and 9), and are provided on the barrier layer 2A made of MgO, respectively. Therefore, CoFe films 32A and 32C are provided at the interface with the barrier layer 2A to suppress a decrease in coercive force of the TbFeCo layer 31. Further, similarly to the magnetization fixed layers 3 and 3C of the spin injection magnetization reversal element 5D (see FIG. 9) according to the fourth embodiment, the magnetization fixed layers 3A and 3C have different coercive forces so as to have different sizes. The CoFe films 32A and 32C are designed to have different thicknesses or different TbFeCo layers 31 and 31.

(保護膜)
保護膜43Aは第2実施形態(図4参照)と同様の構成である。なお、スピン注入磁化反転素子5Eにおいて、2つの保護膜43A,43Aは、材料や厚さが異なるものでもよい。
以下に、光変調素子10Eを構成するスピン注入磁化反転素子5E以外の要素について説明する。
(Protective film)
The protective film 43A has the same configuration as that of the second embodiment (see FIG. 4). In the spin transfer magnetization switching element 5E, the two protective films 43A and 43A may be different in material and thickness.
Hereinafter, elements other than the spin injection magnetization switching element 5E constituting the light modulation element 10E will be described.

(MgO膜)
MgO膜42は、第3実施形態およびその変形例(図5、図7参照)と同様に、磁化自由層1C(TbFeCo層11)の保磁力を小さくするために設けられる。スピン注入磁化反転素子5Eにおいては、磁化自由層1Cが電極に接続されないので、MgO膜42は、磁化自由層1Cの下面の全体に形成することができ、ここでは磁化自由層1Cと同一の平面視形状に形成される。
(MgO film)
The MgO film 42 is provided in order to reduce the coercive force of the magnetization free layer 1C (TbFeCo layer 11), as in the third embodiment and its modifications (see FIGS. 5 and 7). In the spin transfer magnetization switching element 5E, since the magnetization free layer 1C is not connected to the electrode, the MgO film 42 can be formed on the entire lower surface of the magnetization free layer 1C. Here, the same plane as the magnetization free layer 1C is used. It is formed in a visual shape.

(電極)
第1電極71および第2電極72は、いずれも光の入出射側と反対側に設けられるので、第2実施形態(図4参照)の上部電極7Aと同様に、良導体の金属電極材料を適用することができる。
(electrode)
Since both the first electrode 71 and the second electrode 72 are provided on the side opposite to the light incident / exit side, a metal electrode material of a good conductor is applied in the same manner as the upper electrode 7A of the second embodiment (see FIG. 4). can do.

(絶縁層)
絶縁層8は、第1、第2実施形態と同様の構成とすることができる。ただし、スピン注入磁化反転素子5E,5E間、および磁化固定層3A,3C間に設けられる絶縁層8は、障壁層2Aとは異なるすなわちMgO以外の絶縁材料で形成され、特にMgOよりもエッチング選択性の高い材料、具体的にはSi窒化物で形成されることが好ましい。なお、スピン注入磁化反転素子5Eにおける磁化固定層3A,3Cの直下を除く障壁層2A(MgO膜)も、絶縁層の一部であるといえる。
(Insulating layer)
The insulating layer 8 can have the same configuration as in the first and second embodiments. However, the insulating layer 8 provided between the spin-injection magnetization reversal elements 5E and 5E and between the magnetization fixed layers 3A and 3C is formed of an insulating material different from the barrier layer 2A, that is, other than MgO. It is preferable that the material is made of a highly specific material, specifically, Si nitride. It can be said that the barrier layer 2A (MgO film) other than the magnetization fixed layers 3A and 3C in the spin injection magnetization reversal element 5E is also a part of the insulating layer.

(基板)
基板9Aは、第2実施形態(図4参照)と同様の構成である。
(substrate)
The substrate 9A has the same configuration as that of the second embodiment (see FIG. 4).

(光変調素子の製造方法)
第5実施形態に係るスピン注入磁化反転素子5Eは、MgOからなる障壁層2Aを境に、障壁層2Aおよびその下の磁化自由層1Cと、これらとは平面視形状の異なる上側の磁化固定層3A,3Cと、をそれぞれに接触する絶縁層8ごと、分けて形成することで製造することができる。以下、光変調素子10Eの製造方法について、その一例を、図11および図12を参照して説明する。
(Manufacturing method of light modulation element)
A spin-injection magnetization reversal element 5E according to the fifth embodiment includes a barrier layer 2A made of MgO as a boundary, a barrier layer 2A and a magnetization free layer 1C therebelow, and an upper magnetization fixed layer having a different shape in plan view. 3A and 3C can be manufactured by separately forming the insulating layer 8 in contact with each other. Hereinafter, an example of a method for manufacturing the light modulation element 10E will be described with reference to FIGS.

まず、MgO膜42、ならびにスピン注入磁化反転素子5Eの磁化自由層1Cおよび障壁層2Aを形成する。詳しくは、基板9Aの表面に、Si窒化物等の絶縁膜(図11(a)の絶縁層8)を、MgO膜42、およびスピン注入磁化反転素子5E(磁化自由層1C〜保護膜43A)の合計の厚さに合わせて成膜する。この絶縁膜の上に、図11(a)に示すように、磁化自由層1Cを形成する領域を空けたレジストパターンPR1を形成する。なお、図11(a)には、スピン注入磁化反転素子5E,5Eの輪郭を太い二点鎖線で表す。そして、絶縁膜をエッチングして、図11(b)に示すように基板9Aを露出させる。この上から、MgO膜42、TbFeCo層11、CoFe膜12A、障壁層2Aの各材料を連続して成膜して、絶縁膜(絶縁層8)に形成された孔に埋め込んで、MgO膜42、磁化自由層1C、および障壁層2Aを形成する。引き続いて、障壁層2Aの上に、Si窒化物等の絶縁膜(図11(c)の絶縁層8)をさらに、磁化固定層3A(3C)と保護膜43Aの合計の厚さに合わせて成膜する。そして、レジストパターンPR1をその上の材料ごと除去する(リフトオフ)。これにより、図11(c)に示すように、MgO膜42、磁化自由層1Cおよび障壁層2Aが形成され、さらにその上に絶縁層8(絶縁膜)が全面を被覆して形成される。   First, the MgO film 42, the magnetization free layer 1C and the barrier layer 2A of the spin injection magnetization switching element 5E are formed. Specifically, an insulating film such as Si nitride (insulating layer 8 in FIG. 11A) is formed on the surface of the substrate 9A, the MgO film 42, and the spin-injection magnetization switching element 5E (magnetization free layer 1C to protective film 43A). The film is formed in accordance with the total thickness. On this insulating film, as shown in FIG. 11A, a resist pattern PR1 is formed with a region for forming the magnetization free layer 1C. In FIG. 11A, the outlines of the spin injection magnetization reversal elements 5E and 5E are represented by thick two-dot chain lines. Then, the insulating film is etched to expose the substrate 9A as shown in FIG. From this, the MgO film 42, the TbFeCo layer 11, the CoFe film 12A, and the barrier layer 2A are successively formed and filled in the holes formed in the insulating film (insulating layer 8). Then, the magnetization free layer 1C and the barrier layer 2A are formed. Subsequently, an insulating film such as Si nitride (insulating layer 8 in FIG. 11C) is further formed on the barrier layer 2A in accordance with the total thickness of the magnetization fixed layer 3A (3C) and the protective film 43A. Form a film. Then, the resist pattern PR1 is removed together with the material thereon (lift-off). As a result, as shown in FIG. 11C, the MgO film 42, the magnetization free layer 1C and the barrier layer 2A are formed, and the insulating layer 8 (insulating film) is further formed so as to cover the entire surface.

次に、磁化固定層3A,3Cを片方ずつ形成する。詳しくは、図11(d)に示すように、絶縁膜(絶縁層8)の上に、磁化固定層3Aを形成する領域を空けたレジストパターンPR2を形成する。そして、障壁層2A(MgO膜)をエッチングストッパ膜として絶縁層8をエッチングして、図12(a)に示すように障壁層2Aを露出させる。この上から、CoFe膜32A、TbFeCo層31、保護膜43Aの各材料を連続して成膜して、絶縁層8に形成された孔に埋め込んで、障壁層2A上に磁化固定層3Aおよび保護膜43Aを形成する。なお、CoFe膜32Aを成膜する前に、第3実施形態の変形例と同様に、スパッタ装置にてキャリアガスのイオンやプラズマによるクリーニングを障壁層2Aの表面に行うことが好ましい。そして、レジストパターンPR2をその上の材料ごと除去する(リフトオフ)。これにより、図12(b)に示すように、磁化固定層3Aおよびその上の保護膜43Aが形成され、それ以外の領域が絶縁層8で埋められた状態となる。   Next, the magnetization fixed layers 3A and 3C are formed one by one. Specifically, as shown in FIG. 11D, a resist pattern PR2 is formed on the insulating film (insulating layer 8) with a region for forming the magnetization fixed layer 3A. Then, the insulating layer 8 is etched using the barrier layer 2A (MgO film) as an etching stopper film to expose the barrier layer 2A as shown in FIG. From this, each material of the CoFe film 32A, the TbFeCo layer 31, and the protective film 43A is continuously formed and buried in the hole formed in the insulating layer 8, and the magnetization fixed layer 3A and the protective layer 3A are formed on the barrier layer 2A. A film 43A is formed. Before the CoFe film 32A is formed, it is preferable that the surface of the barrier layer 2A be cleaned with carrier gas ions or plasma in a sputtering apparatus, as in the modification of the third embodiment. Then, the resist pattern PR2 is removed together with the material thereon (lift-off). Thereby, as shown in FIG. 12B, the magnetization fixed layer 3 </ b> A and the protective film 43 </ b> A thereon are formed, and the other region is filled with the insulating layer 8.

保護膜43Aおよび絶縁層8の上に、磁化固定層3Cを形成する領域を空けたレジストパターンPR3(図12(c)参照)を形成して、磁化固定層3Aを形成する前と同様に、障壁層2Aをエッチングストッパ膜として絶縁層8をエッチングして、図12(c)に示すように障壁層2Aを露出させる。この障壁層2Aの表面をクリーニングして、続けて、CoFe膜32C、TbFeCo層31、保護膜43Aの各材料を連続して成膜して、絶縁層8に形成された孔に埋め込んで、磁化固定層3Cおよび保護膜43Aを形成する。そして、レジストパターンPR3をその上の材料ごと除去する(リフトオフ)。これにより、図12(d)に示すように、スピン注入磁化反転素子5E、ならびにスピン注入磁化反転素子5Eの磁化固定層3A,3C間およびスピン注入磁化反転素子5E,5E間の絶縁層8が形成される。   On the protective film 43A and the insulating layer 8, a resist pattern PR3 (see FIG. 12C) with a region for forming the magnetization fixed layer 3C is formed, and before the magnetization fixed layer 3A is formed, The insulating layer 8 is etched using the barrier layer 2A as an etching stopper film to expose the barrier layer 2A as shown in FIG. The surface of the barrier layer 2A is cleaned, and subsequently, the respective materials of the CoFe film 32C, the TbFeCo layer 31, and the protective film 43A are successively formed and buried in the holes formed in the insulating layer 8, and magnetized. The fixed layer 3C and the protective film 43A are formed. Then, the resist pattern PR3 is removed together with the material thereon (lift-off). As a result, as shown in FIG. 12D, the spin-injection magnetization reversal element 5E and the insulating layers 8 between the magnetization fixed layers 3A and 3C of the spin-injection magnetization reversal element 5E and between the spin-injection magnetization reversal elements 5E and 5E are formed. It is formed.

次に、第1電極71および第2電極72を、一般的な多層配線と同様の方法で形成する(図示省略)。具体的には、スピン注入磁化反転素子5E(保護膜43A,43A)および絶縁層8の上に、第1電極71を形成する領域、および第2電極72の磁化固定層3Cに接続する部分を形成する領域を空けたレジストパターンを形成し、この上から金属電極材料を成膜して、レジストパターンを除去する(リフトオフ)。これにより、帯状の第1電極71、および第2電極72の一部が形成される。この上にSiO2等の絶縁膜を堆積させ、必要に応じて表面の絶縁膜を平坦化する。そして、この絶縁膜の上にレジストパターンを形成し、エッチングにて前記形成された第2電極72上にコンタクトホールを形成する。さらに、コンタクトホールに金属電極材料を埋め込み、その上に第1電極71と直交する第2電極72の帯状の部分を形成して、光変調素子10Eが得られる。 Next, the first electrode 71 and the second electrode 72 are formed by a method similar to that for general multilayer wiring (not shown). Specifically, on the spin-injection magnetization reversal element 5E (protective films 43A and 43A) and the insulating layer 8, a region for forming the first electrode 71 and a portion of the second electrode 72 connected to the magnetization fixed layer 3C are provided. A resist pattern with a region to be formed is formed, a metal electrode material is formed thereon, and the resist pattern is removed (lift-off). Thereby, a part of the strip-shaped first electrode 71 and the second electrode 72 is formed. An insulating film such as SiO 2 is deposited thereon, and the insulating film on the surface is planarized as necessary. Then, a resist pattern is formed on this insulating film, and a contact hole is formed on the formed second electrode 72 by etching. Further, a metal electrode material is embedded in the contact hole, and a strip-like portion of the second electrode 72 orthogonal to the first electrode 71 is formed thereon, whereby the light modulation element 10E is obtained.

このように、スピン注入磁化反転素子5Eを、磁化自由層1Cおよび障壁層2Aを形成する工程と、磁化固定層3A,3Cを形成する工程と、に2工程(2層)に分けて形成し、さらに、絶縁層8の、磁化自由層1Cおよび障壁層2Aに接触する部分、あるいは磁化固定層3A,3Cのそれぞれに接触する部分を成形してから、磁化自由層1C等の材料を成膜する。このような手順により、TbFeCo層11,31へのダメージが抑えられる。また、MgO膜である障壁層2Aが磁化自由層1Cの保護膜になって、磁化自由層1Cと磁化固定層3A,3Cとで異なる平面視形状に形成することができる。さらに、磁化固定層3A,3Cの側面に接触する絶縁層8を成形する際に、障壁層2Aをエッチングストッパ膜にすることで、加工ダメージの比較的少ない方法でエッチングすることができ、TbFeCo層11へのダメージが抑えられる。   In this way, the spin transfer magnetization reversal element 5E is formed in two steps (two layers), the step of forming the magnetization free layer 1C and the barrier layer 2A and the step of forming the magnetization fixed layers 3A and 3C. Further, after forming a portion of the insulating layer 8 in contact with the magnetization free layer 1C and the barrier layer 2A or a portion in contact with each of the magnetization fixed layers 3A and 3C, a material such as the magnetization free layer 1C is formed. To do. By such a procedure, damage to the TbFeCo layers 11 and 31 is suppressed. Further, the barrier layer 2A, which is an MgO film, becomes a protective film for the magnetization free layer 1C, and the magnetization free layer 1C and the magnetization fixed layers 3A, 3C can be formed in different shapes in plan view. Further, when forming the insulating layer 8 in contact with the side surfaces of the magnetization fixed layers 3A and 3C, the barrier layer 2A can be used as an etching stopper film, so that etching can be performed with a relatively small processing damage, and the TbFeCo layer. The damage to 11 is suppressed.

なお、スピン注入磁化反転素子5Eの磁化固定層3A,3Cは、どちらを先に形成してもよい。また、MgO膜42は、空間光変調器全体(基板9A全面)に形成されていてもよい。この場合は、まず、基板9A上に、MgO膜42、およびスピン注入磁化反転素子5Eの厚さのSi窒化物等の絶縁膜を順次成膜し、絶縁膜のみをエッチングして磁化自由層1Cの平面視形状の孔を形成すればよい。   Note that either one of the magnetization fixed layers 3A and 3C of the spin injection magnetization switching element 5E may be formed first. The MgO film 42 may be formed on the entire spatial light modulator (the entire surface of the substrate 9A). In this case, first, an MgO film 42 and an insulating film such as Si nitride having a thickness of the spin injection magnetization reversal element 5E are sequentially formed on the substrate 9A, and only the insulating film is etched to etch the magnetization free layer 1C. A hole having a shape in plan view may be formed.

(空間光変調器の初期設定)
空間光変調器におけるすべての画素の光変調素子10Eのスピン注入磁化反転素子5Eは、第4実施形態に係るスピン注入磁化反転素子5Dと同様にデュアルピン構造のスピン注入磁化反転素子であるので、磁化固定層3A,3Cの磁化方向がそれぞれ所定の向きに固定されている必要がある。したがって、第3実施形態の変形例および第4実施形態と同様に、大きさと向きを切り替えて、2回の磁界印加を行う。
(Initial setting of spatial light modulator)
Since the spin-injection magnetization reversal element 5E of the light modulation elements 10E of all the pixels in the spatial light modulator is a dual-pin structure spin-injection magnetization reversal element like the spin-injection magnetization reversal element 5D according to the fourth embodiment, The magnetization directions of the magnetization fixed layers 3A and 3C need to be fixed in a predetermined direction. Therefore, similarly to the modification of the third embodiment and the fourth embodiment, the magnetic field is applied twice by switching the size and direction.

(磁化反転動作)
スピン注入磁化反転素子5Eの磁化反転動作を、図13(a)、(b)を参照して、光変調素子10Eにて説明する。なお、図13において、MgO膜42および保護膜43Aは図示を省略し、また、磁化自由層1Cは、磁化固定層3A,3Cが積層された領域とその間のみを示す。
(Magnetization reversal operation)
The magnetization reversal operation of the spin injection magnetization reversal element 5E will be described with reference to FIGS. 13A and 13B in the light modulation element 10E. In FIG. 13, the illustration of the MgO film 42 and the protective film 43A is omitted, and the magnetization free layer 1C shows only the region where the magnetization fixed layers 3A and 3C are laminated and the space therebetween.

図13(a)に示すように、磁化固定層3Aに接続した第1電極71を「−」に、磁化固定層3Cに接続した第2電極72を「+」にして、磁化方向が上向きに固定された磁化固定層3Aの側から電子を注入する。すると、磁化固定層3Aで当該磁化固定層3Aの磁化方向と逆の下向きのスピンを持つ電子dDが弁別されて、第1電極71からは上向きのスピンを持つ電子dUが偏って磁化固定層3Aに注入され、さらに障壁層2Aを介して磁化自由層1Cに注入される。磁化自由層1Cにおいては、第1実施形態(図3(a)参照)等と同様に、電子dUのスピントルクが作用することによって、磁化固定層3Aの直下の領域から磁化方向が上向きへ反転する。さらに、磁化自由層1Cに注入された電子dUは、磁化方向が逆の下向きに固定された磁化固定層3Cで弁別されるために磁化自由層1Cに留まり易く、その結果、磁化自由層1Cは、磁化固定層3A,3Cが積層された領域だけでなく、これら2つの領域に挟まれた領域も含めて、磁化固定層3Aの磁化方向と同じ上向きの磁化方向を示す状態に変化(磁化反転)する。 As shown in FIG. 13A, the first electrode 71 connected to the magnetization fixed layer 3A is set to “−”, the second electrode 72 connected to the magnetization fixed layer 3C is set to “+”, and the magnetization direction is upward. Electrons are injected from the fixed magnetization fixed layer 3A side. Then, the electrons d D having a downward spin opposite to the magnetization direction of the magnetization fixed layer 3A are discriminated by the magnetization fixed layer 3A, and the electrons d U having an upward spin are biased from the first electrode 71 so that the magnetization is fixed. It is injected into the layer 3A and further injected into the magnetization free layer 1C through the barrier layer 2A. In the magnetization free layer 1C, similarly to the first embodiment (see FIG. 3 (a)) or the like, by spin torque of electrons d U acts, upward magnetization direction from a region just below the magnetization fixed layer 3A Invert. Moreover, magnetized electrons d U is injected into the free layer 1C, easily remain in the magnetization free layer 1C to the magnetization direction is discriminated in reverse magnetization fixed layer 3C which is fixed downward, as a result, the magnetization free layer 1C Changes to a state that shows the same upward magnetization direction as the magnetization direction of the magnetization fixed layer 3A (magnetization) including not only the area where the magnetization fixed layers 3A and 3C are stacked but also the area sandwiched between these two areas. Invert).

反対に、磁化自由層1Cの磁化方向を下向きに反転させるためには、前記の図13(a)に示す動作とは反対に、図13(b)に示すように、第1電極71を「+」に、第2電極72を「−」にして、磁化方向が下向きに固定された磁化固定層3Cの側から電子を注入する。すると、磁化自由層1Cには下向きのスピンを持つ電子dDが偏って注入されることによって当該磁化自由層1Cの内部電子のスピンが反転し、磁化固定層3Cの直下の領域から全体に磁化方向が下向きへと反転(磁化反転)する。 On the contrary, in order to reverse the magnetization direction of the magnetization free layer 1C downward, as shown in FIG. In “+”, the second electrode 72 is set to “−”, and electrons are injected from the side of the magnetization fixed layer 3 </ b> C whose magnetization direction is fixed downward. Then, electrons d D having a downward spin are biased and injected into the magnetization free layer 1C, so that the spins of the internal electrons of the magnetization free layer 1C are reversed, and the entire magnetization is magnetized from the region immediately below the magnetization fixed layer 3C. The direction is reversed downward (magnetization reversal).

このように、並設デュアルピン構造のスピン注入磁化反転素子であるスピン注入磁化反転素子5Eは、第4実施形態に係るスピン注入磁化反転素子5D(図9参照)と同様に、互いに逆向きの磁化方向に固定された磁化固定層3A,3Cのそれぞれに一対の電極71,72を接続して電流を供給して、磁化自由層1Cの全体の磁化方向を変化させる(磁化反転させる)ことができる。なお、磁化自由層1Cの、磁化固定層3A,3Cの外側へ張り出して形成された部分(図13においては省略)は、電流経路が形成されないので、磁化反転せず、初期設定により磁化固定層3Cと同じ下向きの磁化方向を維持する。   Thus, the spin-injection magnetization reversal element 5E, which is a spin-injection magnetization reversal element having a parallel dual pin structure, is opposite to each other in the same manner as the spin-injection magnetization reversal element 5D according to the fourth embodiment (see FIG. 9). A pair of electrodes 71 and 72 are connected to the magnetization fixed layers 3A and 3C fixed in the magnetization direction, respectively, and current is supplied to change the entire magnetization direction of the magnetization free layer 1C (magnetization inversion). it can. The portion of the magnetization free layer 1C that is formed to protrude outside the magnetization fixed layers 3A and 3C (omitted in FIG. 13) does not form a current path, so that the magnetization is not reversed, and the magnetization fixed layer is initially set. The same downward magnetization direction as 3C is maintained.

(光変調動作)
スピン注入磁化反転素子5Eは、第1実施形態に係るスピン注入磁化反転素子5(図3参照)等と同様に磁化自由層1Cが磁化反転するので、旋光角+θk,−θkで光変調動作をする。ただし、本実施形態においては、第2実施形態(図4参照)等と同様に、磁化自由層1Cが設けられた下側から光を入射させる。
(Light modulation operation)
Induced magnetization reversal element 5E, since the spin injection magnetization reversal element 5 (see FIG. 3) or the like similarly to the magnetization free layer 1C according to the first embodiment magnetization reversal, optical rotation angle + theta k, the light modulated by - [theta] k To work. However, in the present embodiment, light is incident from the lower side where the magnetization free layer 1C is provided, as in the second embodiment (see FIG. 4).

(変形例)
第5実施形態に係るスピン注入磁化反転素子5Eにおいて、磁化固定層3A,3Cの保磁力の差は、CoFe膜32A,32Cの厚さやTbFeCo層31,31の厚さによらず、第4実施形態における変形例と同様に、TbFeCo層31の組成や成膜時の雰囲気により、あるいは磁化固定層3A,3Cの一方をTbFeCo層31以外の磁性層に替えることにより、異なるものとしてもよい。または、TbFeCo層31,31に保磁力の差を設けず、磁化固定層3A,3Cの一方に交換結合膜を備えてもよい(図示せず)。
(Modification)
In the spin-injection magnetization switching element 5E according to the fifth embodiment, the difference in coercive force between the magnetization fixed layers 3A and 3C is the same regardless of the thickness of the CoFe films 32A and 32C and the thickness of the TbFeCo layers 31 and 31. Similarly to the modification in the embodiment, the TbFeCo layer 31 may be different depending on the composition of the TbFeCo layer 31 and the atmosphere during film formation, or by replacing one of the magnetization fixed layers 3A and 3C with a magnetic layer other than the TbFeCo layer 31. Alternatively, the TbFeCo layers 31 and 31 may not be provided with a difference in coercive force, and an exchange coupling film may be provided on one of the magnetization fixed layers 3A and 3C (not shown).

第5実施形態に係るスピン注入磁化反転素子5Eは、スピン注入磁化反転素子5Dと同様、図13に示すように、常に、磁化自由層1Cの磁化方向が磁化固定層3A,3Cの一方と平行で他方と反平行である。光変調素子10Eについて、電極71,72間の抵抗に基づく書込みエラー検出を行うためには、スピン注入磁化反転素子5Eについて、例えば、磁化固定層3CをTbFeCo層31以外の磁性層に替えて、さらにCoFe膜32Cを備えない構成にすればよい(図示せず)。このような構成により、磁化自由層1C、障壁層2A、磁化固定層3Aの方が、障壁層2Aの両面側にCoFe膜12A,32Aを備えるのでMR比が高くなる。したがって、図3(c)、(d)に示すスピン注入磁化反転素子5等と同様に、一対の電極71,72間の抵抗により、磁化反転動作が正常に行われたかの書込みエラー検出を行うことができる。   As in the spin injection magnetization switching element 5D, the spin injection magnetization switching element 5E according to the fifth embodiment always has the magnetization direction of the magnetization free layer 1C parallel to one of the magnetization fixed layers 3A and 3C, as shown in FIG. And antiparallel to the other. In order to perform write error detection based on the resistance between the electrodes 71 and 72 for the light modulation element 10E, for the spin injection magnetization switching element 5E, for example, the magnetization fixed layer 3C is replaced with a magnetic layer other than the TbFeCo layer 31, Furthermore, a configuration without the CoFe film 32C may be used (not shown). With such a configuration, the magnetization free layer 1C, the barrier layer 2A, and the magnetization fixed layer 3A are provided with the CoFe films 12A and 32A on both sides of the barrier layer 2A, so that the MR ratio is increased. Therefore, similarly to the spin-injection magnetization reversal element 5 shown in FIGS. 3C and 3D, the write error detection as to whether the magnetization reversal operation has been performed normally is performed by the resistance between the pair of electrodes 71 and 72. Can do.

スピン注入磁化反転素子5Eを備える光変調素子10Eは、第4実施形態に係るスピン注入磁化反転素子5D(図9参照)と同様にトランジスタを接続して、電流の消費が抑制された空間光変調器を構成することができる。具体的には、光変調素子10Eを配列した基板9Aに、MOSFETやソース線等の配線を形成されたSi基板を、水酸基接合等の常温接合により貼り合わせて、第2電極72でトランジスタのドレインに接続する(図示せず)。   The light modulation element 10E including the spin injection magnetization reversal element 5E is connected to a transistor in the same manner as the spin injection magnetization reversal element 5D (see FIG. 9) according to the fourth embodiment, and spatial light modulation with suppressed current consumption. Can be configured. Specifically, a Si substrate on which wiring such as a MOSFET or a source line is formed is bonded to a substrate 9A on which the light modulation elements 10E are arranged by room temperature bonding such as hydroxyl bonding, and the drain of the transistor is formed by the second electrode 72. (Not shown).

以上のように、本発明の第5実施形態に係るスピン注入磁化反転素子は、第4実施形態と同様に、2つの磁化固定層および1つの磁化自由層のそれぞれにおいてTb−Fe−Coからなる層が互いに異なる好適な保磁力を有しているので、安定した動作とすることができ、また、3つの磁性層に共通の材料が適用されているので、生産性がよい。さらに第5実施形態に係るスピン注入磁化反転素子は、第3実施形態およびその変形例と同様に、障壁層によらずに磁化自由層の保磁力が制御されているので、障壁層の厚さを磁化反転動作等に応じて設計することができる。   As described above, the spin-injection magnetization switching element according to the fifth embodiment of the present invention is made of Tb—Fe—Co in each of the two magnetization fixed layers and the one magnetization free layer, as in the fourth embodiment. Since the layers have suitable coercive forces different from each other, stable operation can be achieved, and productivity is good because a common material is applied to the three magnetic layers. Further, in the spin-injection magnetization switching element according to the fifth embodiment, the coercive force of the magnetization free layer is controlled regardless of the barrier layer, as in the third embodiment and the modifications thereof. Can be designed according to the magnetization reversal operation or the like.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below.

本発明に係るスピン注入磁化反転素子について、Tb−Fe−Coからなる層(TbFeCo層)をMgO膜上に成膜した場合の保磁力への効果を確認するために、下地膜を変えてTbFeCo膜を成膜したサンプルを作製して、TbFeCo層の磁気特性および磁気光学効果を観察した。詳しくは、熱酸化Si基板に、イオンビームスパッタリング法にて、厚さ2nm、5nmのMgO膜を成膜し、その上に連続して、組成がTb:24at%、Fe:62at%、Co:14at%の厚さ20nmのTbFeCo層を成膜した2種類のサンプルを作製した。また、比較例(参照例)として、下地膜を厚さ3nmのRu膜に替えたサンプルを作製した。   In order to confirm the effect on the coercive force of the spin injection magnetization switching element according to the present invention when a Tb—Fe—Co layer (TbFeCo layer) is formed on the MgO film, the base film is changed to change the TbFeCo. A sample with a film was prepared, and the magnetic characteristics and magneto-optical effect of the TbFeCo layer were observed. Specifically, an MgO film having a thickness of 2 nm and 5 nm is formed on a thermally oxidized Si substrate by an ion beam sputtering method, and the composition thereof is continuously Tb: 24 at%, Fe: 62 at%, Co: Two types of samples in which a 14 at% 20 nm thick TbFeCo layer was formed were prepared. Further, as a comparative example (reference example), a sample was prepared in which the base film was replaced with a Ru film having a thickness of 3 nm.

作製した各サンプルについて、レーザー光を用いた偏光変調法にてカー回転角を測定し、印加磁界による磁化反転を観察した。詳しくは、まず、作製したサンプルに、初期化磁界−10kOeを印加して、TbFeCo層の磁化方向を下向きに揃えた。そして、波長780nmのレーザー光を入射角30°で入射して、サンプルからの反射光の偏光の向き(カー回転角)を、垂直磁界Kerr効果測定装置で測定しながら、初期化磁界と反対方向の磁界H(>0)をその大きさ(絶対値)を、漸増させながら印加して、偏光の向きの変化を観察した。さらに反対方向の磁界H(<0)を印加して、同様に偏光の向きの変化を観察した。   About each produced sample, the Kerr rotation angle was measured by the polarization modulation method using a laser beam, and the magnetization reversal by the applied magnetic field was observed. Specifically, first, an initialization magnetic field of −10 kOe was applied to the manufactured sample, and the magnetization direction of the TbFeCo layer was aligned downward. Then, a laser beam having a wavelength of 780 nm is incident at an incident angle of 30 °, and the direction of polarization (Kerr rotation angle) of the reflected light from the sample is measured with the vertical magnetic field Kerr effect measuring device, while being in the direction opposite to the initialization magnetic field. The magnetic field H (> 0) was applied while gradually increasing its magnitude (absolute value), and the change in the direction of polarization was observed. Further, a magnetic field H (<0) in the opposite direction was applied, and the change in the polarization direction was observed in the same manner.

各サンプルで測定したカー回転角の磁場(印加磁界)依存性を磁化曲線として、実施例(下地:厚さ2nm、5nmのMgO膜)を図14(a)、(b)に、比較例(下地:Ru膜)を図14(c)に示す。また、磁化曲線から、偏光の向きが変化したときの正負それぞれの印加磁界Hを得て、絶対値の平均を算出して保磁力Hcとした。   The magnetic field (applied magnetic field) dependence of the Kerr rotation angle measured for each sample is taken as a magnetization curve, and the examples (underlying: 2 nm thick, 5 nm MgO films) are shown in FIGS. FIG. 14C shows the underlying layer: Ru film. In addition, the applied magnetic field H, which is positive and negative when the direction of polarized light is changed, is obtained from the magnetization curve, and the average of absolute values is calculated as the coercive force Hc.

図14(a)、(b)に示すように、MgO膜を下地に設けることにより、TbFeCo層の保磁力がRu膜上に成膜したもの(図14(c)参照)に比べて小さかった。具体的には、保磁力Hcが、比較例の4.89kOeに対して、実施例は、厚さ2nmのMgO膜で3.82kOe、厚さ5nmのMgO膜で3.92kOeであった。また、図14(a)、(b)に示すように、保磁力が小さくても垂直磁気異方性を維持した。   As shown in FIGS. 14A and 14B, by providing the MgO film on the base, the coercive force of the TbFeCo layer was smaller than that formed on the Ru film (see FIG. 14C). . Specifically, the coercive force Hc was 3.82 kOe in the MgO film having a thickness of 2 nm and 3.92 kOe in the MgO film having a thickness of 5 nm, compared to 4.89 kOe in the comparative example. Further, as shown in FIGS. 14A and 14B, the perpendicular magnetic anisotropy was maintained even if the coercive force was small.

次に、MgO膜を中間層(障壁層)とし、その上下にTb−Fe−Coからなる層(TbFeCo層)を磁化自由層、磁化固定層として備えるTMR素子を模擬したサンプルを作製して、上下それぞれのTbFeCo層の磁気特性および磁気光学効果を観察した。熱酸化Si基板に、表1に示すように下地金属膜から保護膜までの材料を、下から順にイオンビームスパッタリング法にて連続して成膜、積層してサンプルとした(成形加工なし)。このサンプルについて、前記のTbFeCo層の単層のサンプルと同様にカー回転角を測定し、印加磁界による磁化反転を観察した。測定したカー回転角の磁場(印加磁界)依存性を磁化曲線として、図15に示す。   Next, a sample simulating a TMR element having an MgO film as an intermediate layer (barrier layer) and layers (TbFeCo layer) made of Tb-Fe-Co as upper and lower layers as a magnetization free layer and a magnetization fixed layer is prepared, The magnetic properties and magneto-optical effects of the upper and lower TbFeCo layers were observed. On the thermally oxidized Si substrate, as shown in Table 1, materials from the base metal film to the protective film were successively formed and laminated by ion beam sputtering from the bottom in order to obtain a sample (no molding process). For this sample, the Kerr rotation angle was measured in the same manner as the single layer sample of the TbFeCo layer, and the magnetization reversal due to the applied magnetic field was observed. FIG. 15 shows the dependence of the measured Kerr rotation angle on the magnetic field (applied magnetic field) as a magnetization curve.

Figure 2015213125
Figure 2015213125

図15に示すように、中間層(障壁層)としてMgO膜を設けると、同じTbFeCo層を備えていても、Ru膜を下地とする障壁層の下側の磁化固定層に対して、MgO膜の上の磁化自由層は保磁力が小さかった。具体的には、保磁力Hcが、磁化固定層の約3.4kOeに対して、磁化自由層は1.25kOeであった。この保磁力の差は、厚さによる依存性を上回るものであるといえる。   As shown in FIG. 15, when an MgO film is provided as an intermediate layer (barrier layer), even if the same TbFeCo layer is provided, the MgO film is opposed to the magnetization fixed layer below the barrier layer with the Ru film as a base. The coercive force of the magnetization free layer above was small. Specifically, the coercive force Hc is about 3.4 kOe for the magnetization fixed layer, and 1.25 kOe for the magnetization free layer. It can be said that this difference in coercive force exceeds the dependence on thickness.

10,10A,10B,10C,10E 光変調素子
10D 磁気抵抗効果素子
1,1A,1B,1C 磁化自由層
11 TbFeCo層(Tb−Fe−Coからなる層)
11A 磁性層
12 CoFe膜(磁性金属膜)
12A CoFe膜
2,2A 障壁層(中間層、MgO膜)
2B 中間層
3,3A,3B,3C 磁化固定層
31 TbFeCo層(Tb−Fe−Coからなる層)
32 CoFe膜
32A,32C CoFe膜(磁性金属膜)
41,41A 下地金属膜
42 MgO膜
43,43A 保護膜
5,5A,5B,5C,5D,5E スピン注入磁化反転素子
6,6A,6B,6C 下部電極
7,7A 上部電極
8,8B,8C 絶縁層
9,9A 基板
10, 10A, 10B, 10C, 10E Light modulation element 10D Magnetoresistive effect element 1, 1A, 1B, 1C Magnetization free layer 11 TbFeCo layer (layer made of Tb-Fe-Co)
11A Magnetic layer 12 CoFe film (magnetic metal film)
12A CoFe film 2,2A barrier layer (intermediate layer, MgO film)
2B Intermediate layer 3, 3A, 3B, 3C Magnetization fixed layer 31 TbFeCo layer (layer made of Tb-Fe-Co)
32 CoFe film 32A, 32C CoFe film (magnetic metal film)
41, 41A Underlying metal film 42 MgO film 43, 43A Protective film 5, 5A, 5B, 5C, 5D, 5E Spin transfer magnetization reversal element 6, 6A, 6B, 6C Lower electrode 7, 7A Upper electrode 8, 8B, 8C Insulation Layer 9, 9A substrate

Claims (7)

垂直磁気異方性を有する磁化固定層と垂直磁気異方性を有する磁化自由層との間に、中間層を積層してなるスピン注入磁化反転素子であって、
前記磁化自由層はTb−Fe−Coからなる層を備え、
前記Tb−Fe−Coからなる層が、MgO膜に積層されていることを特徴とするスピン注入磁化反転素子。
A spin-injection magnetization reversal element in which an intermediate layer is laminated between a magnetization fixed layer having perpendicular magnetic anisotropy and a magnetization free layer having perpendicular magnetic anisotropy,
The magnetization free layer includes a layer made of Tb-Fe-Co,
A spin-injection magnetization reversal element, wherein the layer made of Tb-Fe-Co is laminated on an MgO film.
垂直磁気異方性を有する磁化自由層、MgO膜からなる中間層、垂直磁気異方性を有する磁化固定層の順に積層してなるスピン注入磁化反転素子であって、
前記磁化固定層は、Tb−Fe−Coからなる層を備え、前記Tb−Fe−Coからなる層と前記中間層との間にCo−FeまたはCo−Fe−Bからなる磁性金属膜をさらに備えることを特徴とするスピン注入磁化反転素子。
A spin-injection magnetization reversal element in which a magnetization free layer having perpendicular magnetic anisotropy, an intermediate layer made of MgO film, and a magnetization fixed layer having perpendicular magnetic anisotropy are laminated in this order,
The magnetization fixed layer includes a layer made of Tb—Fe—Co, and further includes a magnetic metal film made of Co—Fe or Co—Fe—B between the layer made of Tb—Fe—Co and the intermediate layer. A spin-injection magnetization reversal element comprising:
前記磁化自由層の上に、2以上の前記磁化固定層が面内方向に互いに離間して設けられていることを特徴とする請求項1または請求項2に記載のスピン注入磁化反転素子。   3. The spin injection magnetization reversal element according to claim 1, wherein two or more magnetization fixed layers are provided on the magnetization free layer so as to be spaced apart from each other in an in-plane direction. 前記磁化自由層が前記中間層の上に設けられ、
前記MgO膜を前記中間層とすることを特徴とする請求項1に記載のスピン注入磁化反転素子。
The magnetization free layer is provided on the intermediate layer;
The spin injection magnetization reversal element according to claim 1, wherein the MgO film is the intermediate layer.
前記磁化自由層が前記中間層の下に設けられ、
前記Tb−Fe−Coからなる層の側面が、一対の電極の一方に接続されることを特徴とする請求項1に記載のスピン注入磁化反転素子。
The magnetization free layer is provided under the intermediate layer;
The spin transfer magnetization switching element according to claim 1, wherein a side surface of the Tb—Fe—Co layer is connected to one of a pair of electrodes.
前記磁化固定層および前記磁化自由層は、Tb−Fe−Coからなる層を備えることを特徴とする請求項1ないし請求項5のいずれか一項に記載のスピン注入磁化反転素子。   The spin injection magnetization reversal element according to any one of claims 1 to 5, wherein the magnetization fixed layer and the magnetization free layer include a layer made of Tb-Fe-Co. 入射した光の偏光の向きを変化させて出射する光変調素子であることを特徴とする請求項1ないし請求項6のいずれか一項に記載のスピン注入磁化反転素子。   The spin injection magnetization reversal element according to any one of claims 1 to 6, wherein the spin injection magnetization reversal element is a light modulation element that emits light while changing a polarization direction of incident light.
JP2014095276A 2014-05-02 2014-05-02 Spin injection magnetization reversal element Pending JP2015213125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014095276A JP2015213125A (en) 2014-05-02 2014-05-02 Spin injection magnetization reversal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014095276A JP2015213125A (en) 2014-05-02 2014-05-02 Spin injection magnetization reversal element

Publications (1)

Publication Number Publication Date
JP2015213125A true JP2015213125A (en) 2015-11-26

Family

ID=54697241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014095276A Pending JP2015213125A (en) 2014-05-02 2014-05-02 Spin injection magnetization reversal element

Country Status (1)

Country Link
JP (1) JP2015213125A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234454A (en) * 2001-12-20 2003-08-22 Hewlett Packard Co <Hp> Magnetic memory device having soft magnetic reference layer
JP2008186861A (en) * 2007-01-26 2008-08-14 Toshiba Corp Magnetoresistive element and magnetic memory
WO2010026831A1 (en) * 2008-09-03 2010-03-11 富士電機ホールディングス株式会社 Magnetic memory element and storage device using same
JP2010060586A (en) * 2008-09-01 2010-03-18 Nippon Hoso Kyokai <Nhk> Optical modulating element and space light modulator
JP2012088667A (en) * 2010-10-22 2012-05-10 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator using the same
JP2012230143A (en) * 2011-04-22 2012-11-22 Nippon Hoso Kyokai <Nhk> Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP2012252204A (en) * 2011-06-03 2012-12-20 Nippon Hoso Kyokai <Nhk> Optical modulation element and spatial optical modulator
JP2013219375A (en) * 2008-12-22 2013-10-24 Fuji Electric Co Ltd Magnetoresistive element and storage device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234454A (en) * 2001-12-20 2003-08-22 Hewlett Packard Co <Hp> Magnetic memory device having soft magnetic reference layer
JP2008186861A (en) * 2007-01-26 2008-08-14 Toshiba Corp Magnetoresistive element and magnetic memory
JP2010060586A (en) * 2008-09-01 2010-03-18 Nippon Hoso Kyokai <Nhk> Optical modulating element and space light modulator
WO2010026831A1 (en) * 2008-09-03 2010-03-11 富士電機ホールディングス株式会社 Magnetic memory element and storage device using same
JP2013219375A (en) * 2008-12-22 2013-10-24 Fuji Electric Co Ltd Magnetoresistive element and storage device using the same
JP2012088667A (en) * 2010-10-22 2012-05-10 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator using the same
JP2012230143A (en) * 2011-04-22 2012-11-22 Nippon Hoso Kyokai <Nhk> Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP2012252204A (en) * 2011-06-03 2012-12-20 Nippon Hoso Kyokai <Nhk> Optical modulation element and spatial optical modulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
町田賢司 他: "トンネル磁気抵抗効果を用いたスピン注入型空間光変調器の研究〜低消費電力の立体テレビを目指して〜", NHK技研 R&D, JPN7018000275, March 2013 (2013-03-01), pages 51 - 60, ISSN: 0003729883 *

Similar Documents

Publication Publication Date Title
KR102353406B1 (en) Magnetic devices including magnetic junctions having tilted easy axes and enhanced damping programmable using spin orbit torque
US9356230B2 (en) Perpendicular magnetization storage element and storage device
JP5567969B2 (en) Light modulator and spatial light modulator using the same
KR20180104539A (en) Magnetic junction, method for providing the magnetic junction and magnetic memory
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
KR102412195B1 (en) Magnetic junction, magnetic memory and method for providing magnetic junction
JP2011100790A (en) Magnetoresistive element structure, magnetic random access memory, and spatial light modulator
JP6017190B2 (en) Manufacturing method of light modulation element
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP5679690B2 (en) Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same
JP2014175429A (en) Spin injection magnetization reversal element
JP2015173186A (en) spin injection magnetization reversal element
JP2014110356A (en) Spin injection magnetization reversal element
JP6017165B2 (en) Spatial light modulator
KR102300702B1 (en) Low moment free layer magnetic junctions usable in spin transfer torque applications and methods for providing the same
JP5054639B2 (en) Light modulator and spatial light modulator
JP6329384B2 (en) Spin injection magnetization reversal element
JP5567970B2 (en) Light modulator and spatial light modulator using the same
JP2011180355A (en) Optical modulation element and spatial light modulator
JP5581171B2 (en) Light modulator and spatial light modulator using the same
JP5249876B2 (en) Reflective spatial light modulator
JP2015213125A (en) Spin injection magnetization reversal element
KR102480077B1 (en) Magnetic junction residing on a substrate and usable in a magnetic device and fabricating method thereof
JP5281522B2 (en) Spatial light modulator
JP6741453B2 (en) Light modulator, spatial light modulator, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821