JP2015210128A - Surface enhanced raman measurement method and surface enhanced raman measurement device - Google Patents

Surface enhanced raman measurement method and surface enhanced raman measurement device Download PDF

Info

Publication number
JP2015210128A
JP2015210128A JP2014090392A JP2014090392A JP2015210128A JP 2015210128 A JP2015210128 A JP 2015210128A JP 2014090392 A JP2014090392 A JP 2014090392A JP 2014090392 A JP2014090392 A JP 2014090392A JP 2015210128 A JP2015210128 A JP 2015210128A
Authority
JP
Japan
Prior art keywords
enhanced raman
electrodes
pair
electrode
nanoshell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014090392A
Other languages
Japanese (ja)
Other versions
JP6410290B2 (en
Inventor
明啓 山口
Akihiro Yamaguchi
明啓 山口
内海 裕一
Yuichi Uchiumi
裕一 内海
隆夫 福岡
Takao Fukuoka
隆夫 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hyogo
Original Assignee
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hyogo filed Critical University of Hyogo
Priority to JP2014090392A priority Critical patent/JP6410290B2/en
Publication of JP2015210128A publication Critical patent/JP2015210128A/en
Application granted granted Critical
Publication of JP6410290B2 publication Critical patent/JP6410290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface enhanced Raman measurement method and a surface enhanced Raman measurement device capable of easily forming a three-dimensional nano space and obtaining high detection sensitivity.SOLUTION: A nano-shell structure body 1 is generated in which a non-metal micro-particle 2 is covered by noble metal nano-particles 3. By applying an AC voltage between a pair of electrodes 7 to make the nano-shell structure body 1 and a measurement sample S perform dielectrophoresis, a mixture of the nano-shell structure body 1 and the measurement sample S is aggregated on or around at least one of the pair of electrodes 7. The surface enhanced Raman spectrum of the mixture aggregated on or around the electrode is measured.

Description

本発明は、表面増強ラマン測定方法および表面増強ラマン測定装置に関する。   The present invention relates to a surface enhanced Raman measuring method and a surface enhanced Raman measuring apparatus.

医療分析、環境分析、食衛生分析等の分野で微量分子を検出するための方法として、表面増強ラマン(Surface Enhanced Raman Scattering:SERS)効果を用いる方法が研究されている。表面増強ラマンを測定するために、貴金属のナノ粒子に囲まれた三次元ナノ空間が用いられる。所定領域に形成された三次元ナノ空間に測定試料を吸着させた上で当該測定試料(を含む三次元ナノ空間)に光を照射することで、表面増強ラマンスペクトルを測定することができる。すなわち、測定試料に含まれる所定の検出物質からのラマン散乱が三次元ナノ空間に存在する貴金属の表面プラズモンと吸着した分子との相互作用により増強されることにより、検出物質の検出が容易に行えるものである。   As a method for detecting trace molecules in fields such as medical analysis, environmental analysis, and food hygiene analysis, a method using the surface enhanced Raman scattering (SERS) effect has been studied. To measure surface enhanced Raman, a three-dimensional nanospace surrounded by noble metal nanoparticles is used. The surface-enhanced Raman spectrum can be measured by irradiating the measurement sample (including the three-dimensional nanospace) with light after adsorbing the measurement sample to the three-dimensional nanospace formed in the predetermined region. That is, the detection of the detection substance can be easily performed by enhancing the Raman scattering from the predetermined detection substance contained in the measurement sample by the interaction between the surface plasmon of the noble metal existing in the three-dimensional nanospace and the adsorbed molecule. Is.

このように、表面増強ラマン測定においては、三次元ナノ空間の安定的な形成が不可欠である。いままでに知られている三次元ナノ空間の形成態様としては、例えばコロイド粒子を利用して貴金属ナノ構造を形成するコロイド型の形成態様(例えば非特許文献1参照)や、基板上に予め三次元ナノ構造を形成するチップ型の形成態様(例えば非特許文献2参照)等が知られている。   Thus, stable formation of a three-dimensional nanospace is indispensable for surface-enhanced Raman measurement. As a formation mode of a three-dimensional nanospace known so far, for example, a colloid type formation mode in which a noble metal nanostructure is formed using colloidal particles (see, for example, Non-Patent Document 1), or a tertiary layer in advance on a substrate A chip-type formation mode (for example, see Non-Patent Document 2) for forming an original nanostructure is known.

M. Moskovits, “Surface-enhanced spectroscopy”, Rev. Mod. Phys. 57 (1985) 783.M. Moskovits, “Surface-enhanced spectroscopy”, Rev. Mod. Phys. 57 (1985) 783. T. Kondo, K. Nishio and H. Masuda, “Surface -Enhanced Raman Scattering in Multilayered Au Nanoparticles in Anodic Porous Alumina Matrix”, Appl. Phys. Exp. 2 (2009) 032001.T. Kondo, K. Nishio and H. Masuda, “Surface -Enhanced Raman Scattering in Multilayered Au Nanoparticles in Anodic Porous Alumina Matrix”, Appl. Phys. Exp. 2 (2009) 032001.

しかしながら、上記形成態様では、光照射領域における三次元ナノ空間の安定的な形成が十分にできない問題がある。例えばコロイド型の三次元ナノ空間を用いる場合、測定試料を流通させる流路内の光照射領域に当該コロイド型の三次元ナノ空間を固定するために、コロイド粒子を利用した貴金属ナノ構造を凝集剤と混合する工程が必要である。さらに、コロイド粒子により三次元ナノ空間を形成した後で流路形成を行う必要が生じる。このため、コロイド粒子により、流路の形成が複雑化する。また、流路形成時に既に形成されたコロイド粒子による三次元ナノ空間を破壊してしまうおそれもあり、光照射領域に凝集するコロイド粒子の量を定量的に制御することが難しい。また、例えばチップ型の三次元ナノ空間を用いる場合、形成されたナノ空間において表面増強ラマンが活性化する部位であるホットスポットの割合がコロイド型に比べて低いため、高い検出感度を得ることができないおそれがある。また、チップ型の三次元ナノ空間を用いる場合、測定試料を三次元ナノ空間に上から滴下して乾燥させるドロップアンドドライ法による測定が一般的である。より簡単な構成でより容易に測定するためには、溶液中での測定が好ましい。溶液中での表面増強ラマン散乱測定は、生体内の化学反応過程に直結するためバイオセンサーとしての活用が期待されている。また、環境分析においても、液体状態での分析は、その場検出や実際の化学反応過程に近い条件で分析が行えることから、溶液中での表面増強ラマン分光は非常に重要な測定技術であると考えられている。   However, in the above-described formation mode, there is a problem that the stable formation of the three-dimensional nanospace in the light irradiation region cannot be sufficiently performed. For example, when using a colloidal three-dimensional nanospace, a noble metal nanostructure using colloidal particles is used as an aggregating agent in order to fix the colloidal three-dimensional nanospace in the light irradiation region in the flow channel through which the measurement sample flows. And a process of mixing with is required. Furthermore, it is necessary to form a flow path after forming a three-dimensional nanospace with colloidal particles. For this reason, the formation of the flow path is complicated by the colloidal particles. In addition, there is a risk of destroying the three-dimensional nanospace formed by the colloidal particles already formed when the flow path is formed, and it is difficult to quantitatively control the amount of colloidal particles that aggregate in the light irradiation region. For example, when using a chip-type three-dimensional nanospace, a high detection sensitivity can be obtained because the ratio of hot spots, which are sites where surface-enhanced Raman is activated, is lower in the formed nanospace than in the colloid type. It may not be possible. In addition, when using a chip-type three-dimensional nanospace, measurement by a drop-and-dry method in which a measurement sample is dropped into the three-dimensional nanospace from the top and dried is common. In order to measure more easily with a simpler configuration, measurement in solution is preferred. Surface-enhanced Raman scattering measurement in solution is expected to be used as a biosensor because it is directly related to the chemical reaction process in the living body. Also in environmental analysis, surface-enhanced Raman spectroscopy in solution is a very important measurement technique because analysis in the liquid state can be performed under in-situ detection and conditions close to the actual chemical reaction process. It is believed that.

本発明は、以上のような課題を解決すべくなされたものであり、三次元ナノ空間を容易に形成し、かつ、高い検出感度を得ることができる表面増強ラマン測定方法および表面増強ラマン測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a surface-enhanced Raman measurement method and a surface-enhanced Raman measurement device capable of easily forming a three-dimensional nanospace and obtaining high detection sensitivity. The purpose is to provide.

本発明の一態様に係る表面増強ラマン測定方法は、非金属微粒子に貴金属のナノ粒子を被覆したナノシェル構造体を生成し、前記ナノシェル構造体と測定試料とを、一対の電極間に交流電圧を印加して誘電泳動させることにより、前記一対の電極うちの少なくとも一方の電極上または周囲において前記ナノシェル構造体および前記測定試料の混合物を凝集させ、前記電極上または周囲において凝集した前記混合物の表面増強ラマンスペクトルを測定するものである。   The surface-enhanced Raman measurement method according to one aspect of the present invention generates a nanoshell structure in which nonmetallic fine particles are coated with noble metal nanoparticles, and an alternating voltage is applied between the nanoshell structure and the measurement sample between a pair of electrodes. By applying and dielectrophoretically, the mixture of the nanoshell structure and the measurement sample is aggregated on or around at least one of the pair of electrodes, and the surface enhancement of the mixture aggregated on or around the electrode A Raman spectrum is measured.

上記方法によれば、ナノシェル構造体および測定試料を一対の電極を用いて誘電泳動させることにより、ナノシェル構造体および測定試料の混合物が一対の電極近傍に凝集される。したがって、特別な工程を要することなく高い検出感度を得ることができる三次元ナノ空間を所定の領域上に形成することができる。また、一対の電極に印加する交流電圧の周波数に応じて誘電泳動を容易に制御できるため、ナノシェル構造体による三次元ナノ空間を測定者の技量によらず容易かつ安定的に形成することができる。   According to the above method, the mixture of the nanoshell structure and the measurement sample is aggregated in the vicinity of the pair of electrodes by performing dielectrophoresis of the nanoshell structure and the measurement sample using the pair of electrodes. Accordingly, a three-dimensional nanospace capable of obtaining high detection sensitivity without requiring a special process can be formed on a predetermined region. In addition, since the dielectrophoresis can be easily controlled according to the frequency of the alternating voltage applied to the pair of electrodes, the three-dimensional nanospace by the nanoshell structure can be easily and stably formed regardless of the skill of the measurer. .

前記ナノシェル構造体の前記非金属微粒子は、所望の検出物質に応じて定められた官能基が接続されていてもよい。これにより、測定試料に複数の物質が含まれている場合であっても、測定対象となる物質を吸着し易い官能基をナノシェル構造体の非金属微粒子に接続することにより、所望の検出物質による表面増強ラマンスペクトルのみを優先的に計測することができる。   The non-metallic fine particles of the nanoshell structure may be connected with a functional group determined according to a desired detection substance. As a result, even if the measurement sample contains a plurality of substances, a functional group that easily adsorbs the substance to be measured is connected to the non-metallic fine particles of the nanoshell structure, thereby allowing a desired detection substance. Only the surface enhanced Raman spectrum can be preferentially measured.

前記一対の電極のそれぞれは、幹電極部と、前記幹電極部から延び、それぞれが互いに平行な複数の枝電極部と、を含む櫛歯電極構造を有し、前記一対の電極のうちの一方の電極における前記複数の枝電極部が、他方の電極における前記複数の枝電極部間に配置されていてもよい。一対の電極として櫛歯電極構造を採用することにより、ナノシェル構造体をより安定的に電極上または周囲に凝集させることができる。   Each of the pair of electrodes has a comb electrode structure including a stem electrode portion and a plurality of branch electrode portions extending from the stem electrode portion and parallel to each other, and one of the pair of electrodes The plurality of branch electrode portions in one electrode may be arranged between the plurality of branch electrode portions in the other electrode. By adopting a comb electrode structure as the pair of electrodes, the nanoshell structure can be more stably aggregated on or around the electrodes.

前記非金属微粒子は、ポリスチレンであり、前記貴金属は、金であってもよい。   The non-metallic fine particles may be polystyrene, and the noble metal may be gold.

本発明の他の態様に係る表面増強ラマン測定装置は、非金属微粒子に貴金属のナノ粒子を被覆したナノシェル構造体を含む溶液を収納する収納部と、前記収納部内に配置された一対の電極と、前記一対の電極近傍の所定領域に所定の光を照射する光照射部と、前記所定領域で生じる表面増強ラマンスペクトルを測定する測定部と、制御部と、を備え、前記制御部は、前記収納部に前記ナノシェル構造体および測定試料を収納した状態で、前記一対の電極間に所定の周波数を有する交流電圧を印加して前記ナノシェル構造体と前記測定試料とを誘電泳動させることにより、前記一対の電極のうちの少なくとも一方の電極上または周囲において前記ナノシェル構造体および前記測定試料の混合物を凝集させるように構成されたものである。   A surface-enhanced Raman measurement apparatus according to another aspect of the present invention includes a storage unit that stores a solution including a nanoshell structure in which noble metal nanoparticles are coated on non-metallic fine particles, and a pair of electrodes disposed in the storage unit. A light irradiation unit that irradiates a predetermined region in the vicinity of the pair of electrodes with a predetermined light, a measurement unit that measures a surface-enhanced Raman spectrum generated in the predetermined region, and a control unit, and the control unit includes: In a state in which the nanoshell structure and the measurement sample are stored in the storage portion, an alternating voltage having a predetermined frequency is applied between the pair of electrodes to cause dielectrophoresis between the nanoshell structure and the measurement sample. The mixture of the nanoshell structure and the measurement sample is aggregated on or around at least one of the pair of electrodes.

上記構成によれば、ナノシェル構造体および測定試料を収納部内で一対の電極を用いて誘電泳動させることにより、ナノシェル構造体および測定試料の混合物が一対の電極近傍に凝集される。当該混合物が凝集された領域に光照射部からの光を照射することにより、ナノシェル構造体表面に吸着した検出物質によって表面増強ラマンスペクトルが発生し、これを測定部で計測することにより、測定試料中の検出物質が計測される。このように、ナノシェル構造体を誘電泳動により一対の電極近傍に凝集させることにより、特別な工程を要することなく高い検出感度を得ることができる三次元ナノ空間を収納部内の所定の領域上に形成することができる。また、一対の電極に印加する交流電圧の周波数に応じて誘電泳動を容易に制御できるため、ナノシェル構造体による三次元ナノ空間を測定者の技量によらず容易かつ安定的に形成することができる。   According to the above configuration, the mixture of the nanoshell structure and the measurement sample is aggregated in the vicinity of the pair of electrodes by dielectrophoresis of the nanoshell structure and the measurement sample using the pair of electrodes in the storage unit. By irradiating the region where the mixture is agglomerated with light from the light irradiation part, a surface enhanced Raman spectrum is generated by the detection substance adsorbed on the surface of the nanoshell structure, and by measuring this in the measurement part, a measurement sample is obtained. The detected substance is measured. In this way, the nanoshell structure is agglomerated in the vicinity of the pair of electrodes by dielectrophoresis, thereby forming a three-dimensional nanospace on a predetermined region in the storage unit that can obtain high detection sensitivity without requiring a special process. can do. In addition, since the dielectrophoresis can be easily controlled according to the frequency of the alternating voltage applied to the pair of electrodes, the three-dimensional nanospace by the nanoshell structure can be easily and stably formed regardless of the skill of the measurer. .

前記制御部は、前記一対の電極に印加する交流電圧の周波数を変更することにより前記ナノシェル構造体および前記測定試料の混合物を凝集させる位置を制御可能に構成されてもよい。制御部により一対の電極に印加する交流電圧の周波数を変更することで、一対の電極近傍に凝集されるナノシェル構造体を容易に制御することができる。   The control unit may be configured to be able to control a position where the mixture of the nanoshell structure and the measurement sample is aggregated by changing a frequency of an alternating voltage applied to the pair of electrodes. The nanoshell structure aggregated in the vicinity of the pair of electrodes can be easily controlled by changing the frequency of the alternating voltage applied to the pair of electrodes by the control unit.

本発明は以上に説明したように構成され、三次元ナノ空間を容易に形成し、かつ、高い検出感度を得ることができるという効果を奏する。   The present invention is configured as described above, and has an effect that a three-dimensional nanospace can be easily formed and high detection sensitivity can be obtained.

図1は本発明の一実施形態に係る表面増強ラマン測定方法に用いられるナノシェル構造体の概要を示す概念図である。FIG. 1 is a conceptual diagram showing an outline of a nanoshell structure used in a surface enhanced Raman measurement method according to an embodiment of the present invention. 図2は図1に示すナノシェル構造体のSEM画像を示す図である。FIG. 2 is a view showing an SEM image of the nanoshell structure shown in FIG. 図3は図1に示すナノシェル構造体を用いた表面増強ラマン測定装置の概略構成を示す模式図である。FIG. 3 is a schematic diagram showing a schematic configuration of a surface enhanced Raman measuring apparatus using the nanoshell structure shown in FIG. 図4は交流電圧を印加した電極近傍にナノシェル構造体が凝集する様子を示す図である。図4(a)は、電極への電圧印加前の様子を示し、図4(b)は、電極への電圧印加後の様子を示す。FIG. 4 is a diagram illustrating a state in which the nanoshell structure aggregates in the vicinity of the electrode to which an AC voltage is applied. FIG. 4A shows a state before voltage application to the electrode, and FIG. 4B shows a state after voltage application to the electrode. 図5は電極に印加する交流電圧の周波数変化によるナノシェル構造体の凝集態様の変化を示す図である。FIG. 5 is a diagram showing a change in the aggregation mode of the nanoshell structure due to a change in the frequency of the AC voltage applied to the electrode. 図6は一対の電極のより具体的な構成例を示す平面図である。FIG. 6 is a plan view showing a more specific configuration example of a pair of electrodes. 図7は本実施例における測定に利用した装置の概要を示す図である。図7(a)は側面図であり、図7(b)は平面図である。FIG. 7 is a diagram showing an outline of an apparatus used for measurement in the present embodiment. FIG. 7A is a side view, and FIG. 7B is a plan view. 図8は図7に示す装置を用いて測定した表面増強ラマンスペクトルを示すグラフである。FIG. 8 is a graph showing a surface enhanced Raman spectrum measured using the apparatus shown in FIG. 図9は図7に示す装置を用いて測定した表面増強ラマンスペクトルの測定試料の濃度による変化を示すグラフである。FIG. 9 is a graph showing changes in the surface-enhanced Raman spectrum measured using the apparatus shown in FIG. 7 depending on the concentration of the measurement sample. 図10は図9に示すグラフにおける各濃度の1600cm−1での表面増強ラマンスペクトルのラマン強度を示すグラフである。FIG. 10 is a graph showing the Raman intensity of the surface enhanced Raman spectrum at 1600 cm −1 for each concentration in the graph shown in FIG. 9.

以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.

図1は本発明の一実施形態に係る表面増強ラマン測定方法に用いられるナノシェル構造体の概要を示す概念図であり、図2は図1に示すナノシェル構造体のSEM画像を示す図である。図1に示すように、本実施形態における表面増強ラマン測定に用いるナノシェル構造体1は、非金属微粒子2に貴金属のナノ粒子3を被覆した構造を有している。非金属微粒子2は、例えばポリスチレン粒子である。また、非金属微粒子2に被覆される貴金属のナノ粒子3は、例えばコロイド状の金粒子である。さらに、非金属微粒子2には、官能基4が接続されている。官能基4は、所望の検出物質に応じて定められる。例えば、検出物質が4bpy(4, 4’-ビピリジン:4, 4’-bipyridine)である場合、官能基4は、例えばアミジン(amidine)が用いられる。なお、図1は見易くするため各分子の縮尺は正確ではない。   FIG. 1 is a conceptual diagram showing an outline of a nanoshell structure used in a surface-enhanced Raman measurement method according to an embodiment of the present invention, and FIG. 2 is a diagram showing an SEM image of the nanoshell structure shown in FIG. As shown in FIG. 1, a nanoshell structure 1 used for surface-enhanced Raman measurement in this embodiment has a structure in which noble metal nanoparticles 2 are coated with noble metal nanoparticles 3. The nonmetallic fine particles 2 are, for example, polystyrene particles. The noble metal nanoparticles 3 covered with the non-metallic fine particles 2 are, for example, colloidal gold particles. Furthermore, a functional group 4 is connected to the nonmetallic fine particles 2. The functional group 4 is determined according to a desired detection substance. For example, when the detection substance is 4 bpy (4, 4'-bipyridine: 4, 4'-bipyridine), the functional group 4 is, for example, amidine. Note that the scale of each molecule is not accurate for the sake of clarity in FIG.

本実施形態におけるナノシェル構造体の作製方法について以下説明する。官能基4としてアミジンが接続されたポリスチレンの非金属微粒子2を用意する。例えば、このポリスチレンの粒子径は1000nm、粒子個数は7.28×10個/μlである。さらに、貴金属のナノ粒子3として金のナノ粒子(コロイド粒子)を用意する。例えば金のナノ粒子の粒子径は20nm、粒子個数は1.17×10個/μlである。 A method for producing the nanoshell structure in the present embodiment will be described below. Polystyrene nonmetallic fine particles 2 to which amidine is connected as a functional group 4 are prepared. For example, the particle diameter of this polystyrene is 1000 nm, and the number of particles is 7.28 × 10 7 particles / μl. Further, gold nanoparticles (colloid particles) are prepared as the noble metal nanoparticles 3. For example, the gold nanoparticles have a particle size of 20 nm and a number of particles of 1.17 × 10 9 particles / μl.

この金のナノ粒子を予め50倍に濃縮する。この結果、金のナノ粒子の粒子個数は5.85×1010μlとなる。この後、非金属微粒子2と貴金属のナノ粒子3とを混合し、非金属微粒子2に貴金属のナノ粒子3が被覆されたナノシェル構造体1を形成する。非金属微粒子2は、表面がプラスにチャージされている一方、貴金属のナノ粒子3は、表面がマイナスにチャージされている。したがって、これらを混合すると両者の間でクーロン力およびファンデルワールス力が働き、非金属微粒子2の表面に貴金属のナノ粒子3が吸着し、被膜される。なお、非金属微粒子2は、官能基4によってチャージ状態を制御することができる。また、貴金属のナノ粒子3は、その作製過程においてチャージ状態を制御することができる。 The gold nanoparticles are concentrated 50 times in advance. As a result, the number of gold nanoparticles is 5.85 × 10 10 μl. Thereafter, the non-metallic fine particles 2 and the noble metal nanoparticles 3 are mixed to form the nanoshell structure 1 in which the non-metallic fine particles 2 are coated with the noble metal nanoparticles 3. The surface of the non-metallic fine particles 2 is positively charged, while the surface of the noble metal nanoparticles 3 is negatively charged. Therefore, when these are mixed, Coulomb force and van der Waals force act between them, and the noble metal nanoparticles 3 are adsorbed on the surface of the nonmetallic fine particles 2 to be coated. The non-metallic fine particles 2 can control the charge state by the functional groups 4. Further, the charge state of the noble metal nanoparticles 3 can be controlled in the production process.

被覆率に応じて非金属微粒子2と貴金属のナノ粒子3との混合比が適宜調整される。被覆率100%の場合、図1に示すように、1つのポリスチレン粒子に対して複数層の金のナノ粒子を被覆する必要があり、結果として約25000個の金のナノ粒子が必要となる。このため、例えば被覆率100%のナノシェル構造体1を形成するために、ポリスチレンに対する金の混合比をAu/PS=100/1とする。なお、被覆率は、複数のナノ粒子3により形成されるナノ粒子間ギャップとナノシェル構造体1に吸着する検出物質との関係に応じて適宜設定される。また、貴金属のナノ粒子3の粒子個数が少ないと非金属微粒子2同士が凝集するため、貴金属のナノ粒子3の混合率は被覆率に基づいて計算される理論値より多くなるようにすることが好ましい。これにより、1つの非金属微粒子2に複数層の貴金属のナノ粒子3が被覆され、検出物質が吸着するホットスポットの数を増やしたり、ナノシェル構造体1をより安定的に形成することができる。   The mixing ratio of the nonmetallic fine particles 2 and the noble metal nanoparticles 3 is appropriately adjusted according to the coverage. When the coverage is 100%, as shown in FIG. 1, it is necessary to coat a plurality of layers of gold nanoparticles on one polystyrene particle, and as a result, about 25000 gold nanoparticles are required. For this reason, for example, in order to form the nanoshell structure 1 with a coverage of 100%, the mixing ratio of gold to polystyrene is set to Au / PS = 100/1. The coverage is appropriately set according to the relationship between the gap between nanoparticles formed by the plurality of nanoparticles 3 and the detection substance adsorbed on the nanoshell structure 1. Further, when the number of the noble metal nanoparticles 3 is small, the non-metallic fine particles 2 are aggregated, so that the mixing ratio of the noble metal nanoparticles 3 is set to be larger than the theoretical value calculated based on the coverage. preferable. Thus, a single non-metallic fine particle 2 is coated with a plurality of layers of noble metal nanoparticles 3, and the number of hot spots to which the detection substance is adsorbed can be increased, or the nanoshell structure 1 can be formed more stably.

なお、非金属微粒子2は、ポリスチレンに限られない。例えば、非金属微粒子2として、シリカ(SiO2)、アルミナ(Al2O3)、カーボン、フラーレン、グラファイト、酸化チタン(TiO2)、チタン酸バリウム(BaTiO3)、チタン酸鉛PbTiO3、ヒドロキシアパタイト、ポリマーラテックス、シリコン(Si)、ゲルマニウム(Ge)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、ダイアモンド、ポリメタクリル酸メチル樹脂(PMMA)等を採用可能である。また、貴金属のナノ粒子3も金粒子に限られない。例えば、銀や銅等の粒子も採用可能である。 The nonmetallic fine particles 2 are not limited to polystyrene. For example, as the non-metallic fine particles 2, silica (SiO 2 ), alumina (Al 2 O 3 ), carbon, fullerene, graphite, titanium oxide (TiO 2 ), barium titanate (BaTiO 3 ), lead titanate PbTiO 3 , hydroxy Apatite, polymer latex, silicon (Si), germanium (Ge), calcium oxide (CaO), magnesium oxide (MgO), diamond, polymethyl methacrylate resin (PMMA), etc. can be employed. Also, the noble metal nanoparticles 3 are not limited to gold particles. For example, particles such as silver and copper can be used.

また、官能基4は、アミジンに限られない。例えば、官能基4として、Poly(anetholesulfonic acid, sodium salt)、Poly(sodium 4-styrenesulfonate)、Poly(4-styrenesulfonic acid), Poly(allylamine hydrocholoride)、Poly(diallydimethylammonium chloride)、ポリエチレンイミン(Polyethylenimine)、ポリエチレングリコール(Poly(ethyleneglycol)、PEG)、PEG-aniIgG、ポリ(γ-メチル-L-グルタメート-co-L-グルタミン酸)、ポリ(N-イソプロピルアクリルアミド)(PNIPAM)、bis-4,4’-(dithiobutylbenzeyl)-N,N,N’,N’-tetraethylamine(TBA)、ペプチド鎖、DNAまたはRNA、レドックス反応を起こす官能基を接続したDNAまたはRNA、チオール基等を採用可能である。例えば、刺激応答性のポリペプチドは、周囲の条件により、α―へリックス構造、βシート構造、ランダムコイル構造をとることが知られており、周囲にある環境との相互作用による表面増強ラマンスペクトルの変化が期待される。   The functional group 4 is not limited to amidine. For example, as functional group 4, Poly (anetholesulfonic acid, sodium salt), Poly (sodium 4-styrenesulfonate), Poly (4-styrenesulfonic acid), Poly (allylamine hydrocholoride), Poly (diallydimethylammonium chloride), polyethyleneimine (Polyethylenimine), Polyethylene glycol (Poly (ethyleneglycol), PEG), PEG-aniIgG, poly (γ-methyl-L-glutamate-co-L-glutamic acid), poly (N-isopropylacrylamide) (PNIPAM), bis-4,4'- It is possible to employ (dithiobutylbenzeyl) -N, N, N ′, N′-tetraethylamine (TBA), peptide chain, DNA or RNA, DNA or RNA to which a functional group causing a redox reaction is connected, a thiol group, or the like. For example, stimuli-responsive polypeptides are known to have an α-helix structure, a β-sheet structure, or a random coil structure, depending on the surrounding conditions, and a surface-enhanced Raman spectrum due to interaction with the surrounding environment. Is expected to change.

上記非金属微粒子2および官能基4を適宜組み合わせることにより、ナノシェル構造体1を形成することができる。例えば、上記ポリスチレンにアミジンが接続されたナノシェル構造体1の他に、負帯電のシリカにカチオン性高分子電解質であるポリエチレンイミンが接続されたナノシェル構造体1を形成することができる。   The nanoshell structure 1 can be formed by appropriately combining the non-metallic fine particles 2 and the functional groups 4. For example, in addition to the nanoshell structure 1 in which amidine is connected to polystyrene, the nanoshell structure 1 in which polyethyleneimine that is a cationic polymer electrolyte is connected to negatively charged silica can be formed.

図3は図1に示すナノシェル構造体を用いた表面増強ラマン測定装置の概略構成を示す模式図である。図3に示すように、本実施形態の表面増強ラマン測定装置5は、図1に示すナノシェル構造体1を含む溶液を収納する収納部6と、収納部6内に配置された一対の電極7と、一対の電極7近傍の所定領域に所定の光を照射する光照射部8と、所定領域で生じる表面増強ラマンスペクトルを測定する測定部9と、制御部10と、を備えている。収納部6には、ナノシェル構造体1および測定試料Sを含む溶液が収納される。この溶液の溶媒は例えば超純水等、表面増強ラマンに影響を与えない液体が用いられる。光照射部8は、例えば近赤外の波長を有するレーザ(例えば785nmの波長を有し、出力30mWのレーザ)等が適用できる。測定部9は、例えば顕微ラマン分光器等のラマン分光器等が適用できる。   FIG. 3 is a schematic diagram showing a schematic configuration of a surface enhanced Raman measuring apparatus using the nanoshell structure shown in FIG. As shown in FIG. 3, the surface-enhanced Raman measurement device 5 of the present embodiment includes a storage unit 6 that stores a solution containing the nanoshell structure 1 shown in FIG. 1, and a pair of electrodes 7 that are disposed in the storage unit 6. A light irradiation unit 8 that irradiates a predetermined region near the pair of electrodes 7 with a predetermined light, a measurement unit 9 that measures a surface enhanced Raman spectrum generated in the predetermined region, and a control unit 10. The storage unit 6 stores a solution containing the nanoshell structure 1 and the measurement sample S. As the solvent of this solution, a liquid that does not affect the surface-enhanced Raman, such as ultrapure water, is used. As the light irradiation unit 8, for example, a laser having a near infrared wavelength (for example, a laser having a wavelength of 785 nm and an output of 30 mW) can be applied. As the measurement unit 9, for example, a Raman spectrometer such as a microscopic Raman spectrometer can be applied.

制御部10は、一対の電極7への交流電圧の印加の実行を制御するよう構成される。さらに、制御部10は、交流電圧の周波数を設定可能に構成される。制御部10は、マイクロコンピュータ等が適用できる。制御部10は、収納部6にナノシェル構造体1および測定試料Sを収納した状態で、一対の電極7間に所定の周波数を有する交流電圧を印加することにより、ナノシェル構造体1と測定試料Sとを誘電泳動させる。これにより、一対の電極7のうちの少なくとも一方の電極上または周囲においてナノシェル構造体1および測定試料Sの混合物が凝集する。   The controller 10 is configured to control execution of application of an alternating voltage to the pair of electrodes 7. Furthermore, the control part 10 is comprised so that the frequency of an alternating voltage can be set. A microcomputer or the like can be applied to the control unit 10. The control unit 10 applies an alternating voltage having a predetermined frequency between the pair of electrodes 7 in a state where the nanoshell structure 1 and the measurement sample S are stored in the storage unit 6, whereby the nanoshell structure 1 and the measurement sample S are applied. And dielectrophoresis. Thereby, the mixture of the nanoshell structure 1 and the measurement sample S aggregates on or around at least one of the pair of electrodes 7.

一対の電極7近傍におけるナノシェル構造体1および測定試料Sの混合物の凝集態様は、測定試料Sの電気的特性と一対の電極7へ印加する交流電圧の周波数とに関連して変化する。図4は交流電圧を印加した電極近傍にナノシェル構造体が凝集する様子を示す図である。図4(a)は、電極への電圧印加前の様子を示し、図4(b)は、電極への電圧印加後の様子を示す。何れの図においても明るい部分が電極7であり、電極7上の黒い影がナノシェル構造体1である。図4(a)に示す状態から100kHzの交流電圧を電極7に印加すると、図4(b)に示すように、ナノシェル構造体1が電気泳動により泳動し、電極7上の中央部にナノシェル構造体1が凝集する様子が観察できる。   The aggregation mode of the mixture of the nanoshell structure 1 and the measurement sample S in the vicinity of the pair of electrodes 7 changes in relation to the electrical characteristics of the measurement sample S and the frequency of the alternating voltage applied to the pair of electrodes 7. FIG. 4 is a diagram illustrating a state in which the nanoshell structure aggregates in the vicinity of the electrode to which an AC voltage is applied. FIG. 4A shows a state before voltage application to the electrode, and FIG. 4B shows a state after voltage application to the electrode. In each figure, the bright part is the electrode 7, and the black shadow on the electrode 7 is the nanoshell structure 1. When an alternating voltage of 100 kHz is applied to the electrode 7 from the state shown in FIG. 4A, the nanoshell structure 1 migrates by electrophoresis as shown in FIG. It can be observed that the body 1 aggregates.

さらに、制御部10は、一対の電極7に印加する交流電圧の周波数を変更することによりナノシェル構造体1および測定試料Sの混合物を凝集させる位置を制御可能に構成される。図5は電極に印加する交流電圧の周波数変化によるナノシェル構造体の凝集態様の変化を示す図である。図5においても明るい部分が電極7であり、電極7上の黒い影がナノシェル構造体1である。ナノシェル構造体1は上述したポリスチレンに金ナノ粒子が被覆されたものを使用した。   Furthermore, the control unit 10 is configured to be able to control the position at which the mixture of the nanoshell structure 1 and the measurement sample S is aggregated by changing the frequency of the alternating voltage applied to the pair of electrodes 7. FIG. 5 is a diagram showing a change in the aggregation mode of the nanoshell structure due to a change in the frequency of the AC voltage applied to the electrode. In FIG. 5, the bright portion is the electrode 7, and the black shadow on the electrode 7 is the nanoshell structure 1. As the nanoshell structure 1, the above-described polystyrene coated with gold nanoparticles was used.

図5の状態aは、電極7への電圧印加前の状態を示している。状態aにおいては、ナノシェル構造体1は電極7の両端部に位置している。まず、電極7に1KHzの交流電圧を印加すると、状態bに示すように、電極7の両端部に位置していたナノシェル構造体1が電極7の中央部に向かって誘電泳動し、最終的に状態cに示すように、電極7の中央部にナノシェル構造体1が凝集する。状態cから電極7に印加する交流電圧の周波数を10KHzに変更すると、状態dに示すように、電極7の中央部に凝集していたナノシェル構造体1が電極7の一端部に向かって誘電泳動し、最終的に状態eに示すように、電極7の一端部においてナノシェル構造体1が凝集する。状態eから再び電極7に印加する交流電圧の周波数を1KHzに戻すと、ナノシェル構造体1が電極7の中央部に向かって誘電泳動し、最終的には状態cと同様に電極7の中央部においてナノシェル構造体1が凝集する。   The state a in FIG. 5 shows a state before voltage application to the electrode 7. In the state a, the nanoshell structure 1 is located at both ends of the electrode 7. First, when an alternating voltage of 1 KHz is applied to the electrode 7, as shown in the state b, the nanoshell structure 1 located at both ends of the electrode 7 undergoes dielectrophoresis toward the center of the electrode 7, and finally As shown in state c, the nanoshell structure 1 aggregates at the center of the electrode 7. When the frequency of the alternating voltage applied to the electrode 7 from state c is changed to 10 KHz, the nanoshell structure 1 aggregated at the center of the electrode 7 is dielectrophoresised toward one end of the electrode 7 as shown in state d. Finally, as shown in state e, the nanoshell structure 1 aggregates at one end of the electrode 7. When the frequency of the AC voltage applied to the electrode 7 again from state e is returned to 1 KHz, the nanoshell structure 1 undergoes dielectrophoresis toward the center of the electrode 7, and finally the center of the electrode 7 as in the state c. The nanoshell structure 1 is agglomerated.

このように、制御部10により一対の電極に印加する交流電圧の周波数を変更することで、一対の電極7近傍に凝集されるナノシェル構造体1を容易に制御することができる。   Thus, the nanoshell structure 1 aggregated in the vicinity of the pair of electrodes 7 can be easily controlled by changing the frequency of the alternating voltage applied to the pair of electrodes by the control unit 10.

上記構成の表面増強ラマン測定装置5によれば、ナノシェル構造体1および測定試料Sを収納部6内で一対の電極7を用いて誘電泳動させることにより、ナノシェル構造体1および測定試料Sの混合物が一対の電極7近傍に凝集される。この際、ナノシェル構造体1に測定試料Sが吸着される。当該混合物が凝集された領域に光照射部8からの光を照射することにより、ナノシェル構造体1の表面に吸着した検出物質によって表面増強ラマンスペクトルが発生し、これを測定部8で計測することにより、測定試料S中の検出物質が計測される。   According to the surface-enhanced Raman measurement device 5 having the above-described configuration, the mixture of the nanoshell structure 1 and the measurement sample S is obtained by dielectrophoresis of the nanoshell structure 1 and the measurement sample S using the pair of electrodes 7 in the storage unit 6. Are aggregated in the vicinity of the pair of electrodes 7. At this time, the measurement sample S is adsorbed on the nanoshell structure 1. By irradiating the region where the mixture is aggregated with light from the light irradiation unit 8, a surface enhanced Raman spectrum is generated by the detection substance adsorbed on the surface of the nanoshell structure 1, and this is measured by the measurement unit 8. Thus, the detection substance in the measurement sample S is measured.

すなわち、本実施形態によれば、三次元ナノ空間を所定の位置に予め固定された構造物とするのではなく、測定試料Sを吸着し得るナノシェル構造体1を電極7に印加される交流電圧を用いて誘電泳動させることにより、当該電極7の近傍に三次元的に凝集させることにより、電極7の近傍に三次元ナノ空間が構築される。   That is, according to the present embodiment, the AC voltage applied to the electrode 7 is not the structure in which the three-dimensional nanospace is fixed in advance at a predetermined position, but the nanoshell structure 1 that can adsorb the measurement sample S. A three-dimensional nanospace is constructed in the vicinity of the electrode 7 by agglomerating three-dimensionally in the vicinity of the electrode 7 by performing dielectrophoresis using.

したがって、誘電泳動を利用してナノシェル構造体1を電極7上またはその周囲に凝集させることにより、特別な工程を要することなく高い検出感度を得ることができる三次元ナノ空間を収納部6内の所定の領域(すなわち、光照射部8による光照射領域)上に形成することができる。また、一対の電極7に印加する交流電圧の周波数に応じて誘電泳動を容易に制御できるため、ナノシェル構造体1による三次元ナノ空間を測定者の技量によらず容易かつ安定的に形成することができる。   Therefore, by aggregating the nanoshell structure 1 on or around the electrode 7 using dielectrophoresis, a three-dimensional nanospace capable of obtaining high detection sensitivity without requiring a special process is formed in the storage unit 6. It can be formed on a predetermined region (that is, a light irradiation region by the light irradiation unit 8). In addition, since the dielectrophoresis can be easily controlled according to the frequency of the alternating voltage applied to the pair of electrodes 7, the three-dimensional nanospace by the nanoshell structure 1 can be easily and stably formed regardless of the skill of the measurer. Can do.

なお、周波数に加えて電極7に印加される電圧または電流の大きさを変えることによって、電極7に凝集するナノシェル構造体1の位置をより複雑に制御することも可能である。   Note that the position of the nanoshell structure 1 that aggregates on the electrode 7 can be controlled more complicatedly by changing the magnitude of the voltage or current applied to the electrode 7 in addition to the frequency.

図6は一対の電極7のより具体的な構成例を示す平面図である。図6に示す例において、一対の電極7のそれぞれは、幹電極部11と、幹電極部11から延び、それぞれが互いに平行な複数の枝電極部12と、を含む櫛歯電極構造を有している。一対の電極7のうちの一方の電極における複数の枝電極部12が、他方の電極における複数の枝電極部12間に配置される。一対の電極7として上記のような櫛歯電極構造を採用することにより、ナノシェル構造体1をより安定的に電極上または周囲に凝集させることができる。枝電極部11の幅は例えば50〜150μmである。一対の電極7の作製方法は、例えばガラス製の収納部6上に、フォトレジストを塗布し、電極形成用のマスクを用いてフォトレジストを露光及び現像し、その上にクロム(Cr)等の密着層および金(Au)等の導電層をそれぞれスパッタにより形成した上で、フォトレジストならびにフォトレジスト上の密着層および導電層を除去することにより、櫛歯状の電極構造を形成する。   FIG. 6 is a plan view showing a more specific configuration example of the pair of electrodes 7. In the example shown in FIG. 6, each of the pair of electrodes 7 has a comb electrode structure including a stem electrode portion 11 and a plurality of branch electrode portions 12 extending from the stem electrode portion 11 and parallel to each other. ing. A plurality of branch electrode portions 12 in one electrode of the pair of electrodes 7 are disposed between the plurality of branch electrode portions 12 in the other electrode. By adopting the above-described comb electrode structure as the pair of electrodes 7, the nanoshell structure 1 can be more stably aggregated on or around the electrodes. The width of the branch electrode portion 11 is, for example, 50 to 150 μm. For example, a pair of electrodes 7 is manufactured by applying a photoresist on a glass housing 6, exposing and developing the photoresist using a mask for forming an electrode, and forming chromium (Cr) or the like thereon. An adhesion layer and a conductive layer such as gold (Au) are formed by sputtering, and then the photoresist and the adhesion layer and the conductive layer on the photoresist are removed to form a comb-like electrode structure.

<実施例>
以下に、ナノシェル構造体1を誘電泳動を用いて電極近傍に凝集させることによる表面増強ラマン測定の効果についての評価実験の結果を示す。図7は本実施例における測定に利用した装置の概要を示す図である。図7(a)は側面図であり、図7(b)は平面図である。図7に示すように、本実施例においては、櫛歯電極構造を有する一対の電極7をスライドガラス13上に作製し、当該電極7の設置領域を含むスライドガラス13の所定領域上に、超純水にナノシェル構造体1および測定試料Sの混合物を含む溶液を滴下した。さらに、混合物を含む溶液が乾燥によって濃度変化しないようにカバー部材14で所定領域を覆った。なお、本実施例において、ナノシェル構造体1として、上記実施形態で示したポリスチレンに金のナノ粒子が被覆されたものを使用し、測定試料Sとして、1mMの4bpyを使用した。ナノシェル構造体1と測定試料Sとは、ナノシェル構造体:4bpy=4:1となるように混合した。混合物の滴下量は10μlとした。カバー部材14はPDMS(poly(dimethylsiloxane))で作製した。図7(b)に示すように、誘電泳動が生じる電極7上の領域A1と電極7がない領域A2とにそれぞれ光を照射して表面増強ラマンスペクトルを計測した。
<Example>
Below, the result of the evaluation experiment about the effect of the surface enhancement Raman measurement by aggregating the nanoshell structure 1 in the electrode vicinity using dielectrophoresis is shown. FIG. 7 is a diagram showing an outline of an apparatus used for measurement in the present embodiment. FIG. 7A is a side view, and FIG. 7B is a plan view. As shown in FIG. 7, in this embodiment, a pair of electrodes 7 having a comb electrode structure is produced on a slide glass 13, and a super region is formed on a predetermined region of the slide glass 13 including the installation region of the electrode 7. A solution containing the mixture of the nanoshell structure 1 and the measurement sample S was dropped into pure water. Furthermore, the cover member 14 covered a predetermined area so that the concentration of the solution containing the mixture did not change due to drying. In this example, as the nanoshell structure 1, the polystyrene shown in the above embodiment coated with gold nanoparticles was used, and 1 mM of 4 bpy was used as the measurement sample S. The nanoshell structure 1 and the measurement sample S were mixed so that the nanoshell structure: 4 bpy = 4: 1. The dropping amount of the mixture was 10 μl. The cover member 14 was made of PDMS (poly (dimethylsiloxane)). As shown in FIG. 7B, the surface-enhanced Raman spectrum was measured by irradiating the region A1 on the electrode 7 where the dielectrophoresis occurs and the region A2 without the electrode 7 respectively.

図8は図7に示す装置を用いて測定した表面増強ラマンスペクトルを示すグラフである。図8に示すように、電極7上の領域A1においては、電極7がない領域A2に比べて4bpyに由来するシャープなスペクトルが得られた。したがって、ナノシェル構造体1および測定試料Sの混合物の誘電泳動により、電極7上の領域において粒子の凝集が生じ、表面増強ラマンスペクトルの感度が高くなったことが示された。   FIG. 8 is a graph showing a surface enhanced Raman spectrum measured using the apparatus shown in FIG. As shown in FIG. 8, in the region A1 on the electrode 7, a sharp spectrum derived from 4 bpy was obtained compared to the region A2 without the electrode 7. Therefore, it was shown that by the dielectrophoresis of the mixture of the nanoshell structure 1 and the measurement sample S, particles were aggregated in the region on the electrode 7 and the sensitivity of the surface enhanced Raman spectrum was increased.

さらに、測定試料Sである4bpyの濃度を低くして同様に表面増強ラマンスペクトルを計測した。図9は図7に示す装置を用いて測定した表面増強ラマンスペクトルの測定試料の濃度による変化を示すグラフである。図9は(1)が100nMのときのスペクトルを示し、(2)が10nMのときのスペクトルを示し、(3)が1nMの時のスペクトルを示し、(4)が100pMの時のスペクトルを示す。また、比較例として測定試料Sが存在しない場合(超純水のみの場合)に計測されたスペクトルを破線で示す。また、図10は図9に示すグラフにおける各濃度の1600cm−1での表面増強ラマンスペクトルのラマン強度を示すグラフである。 Further, the surface-enhanced Raman spectrum was measured in the same manner by reducing the concentration of 4 bpy as the measurement sample S. FIG. 9 is a graph showing the change of the surface-enhanced Raman spectrum measured using the apparatus shown in FIG. 7 depending on the concentration of the measurement sample. FIG. 9 shows the spectrum when (1) is 100 nM, (2) shows the spectrum when 10 nM, (3) shows the spectrum when 1 nM, and (4) shows the spectrum when 100 pM. . Moreover, the spectrum measured when the measurement sample S does not exist as a comparative example (in the case of only ultrapure water) is indicated by a broken line. FIG. 10 is a graph showing the Raman intensity of the surface enhanced Raman spectrum at each concentration of 1600 cm −1 in the graph shown in FIG. 9.

図9に示すように、4bpyに由来する1600cm−1の表面増強ラマンスペクトルは、検体濃度が100pMであっても確認できている。図10に示すように、測定試料Sが存在しない場合に測定される1600cm−1における表面増強ラマンスペクトルのラマン強度は、約20である一方、測定試料Sが存在する場合に測定される1600cm−1における表面増強ラマンスペクトルのラマン強度は、最も低い濃度(100pM)であっても約150以上あった。測定試料Sが存在しない場合のラマン強度(図9の破線で示すスペクトル分布)はノイズとみなせるので、100pMの測定試料Sであっても、当該ノイズより十分大きい強度を検出することができ、測定試料Sが4bpyであることを十分に同定可能と言える。 As shown in FIG. 9, the surface enhanced Raman spectrum of 1600 cm −1 derived from 4 bpy was confirmed even when the analyte concentration was 100 pM. As shown in FIG. 10, the Raman intensity of the surface-enhanced Raman spectrum at 1600 cm −1 measured in the absence of the measurement sample S is about 20, whereas 1600 cm measured in the presence of the measurement sample S. The Raman intensity of the surface enhanced Raman spectrum at 1 was about 150 or higher even at the lowest concentration (100 pM). Since the Raman intensity (spectral distribution indicated by the broken line in FIG. 9) in the absence of the measurement sample S can be regarded as noise, even with the measurement sample S of 100 pM, an intensity sufficiently larger than the noise can be detected and measured. It can be said that the sample S can be sufficiently identified as 4 bpy.

以上より、本実施例の測定装置において、測定試料Sにおける検出物が非常に低い濃度であっても、表面増強ラマンスペクトルを計測することが可能であることが示された。したがって、本実施例の測定装置において表面増強ラマンスペクトルを高感度に測定できることが示される結果となった。   From the above, it was shown that the surface-enhanced Raman spectrum can be measured in the measurement apparatus of the present example even when the detected substance in the measurement sample S has a very low concentration. Therefore, it was shown that the surface-enhanced Raman spectrum can be measured with high sensitivity in the measurement apparatus of this example.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various improvements, changes, and modifications can be made without departing from the spirit of the present invention.

本発明の表面増強ラマン測定方法および表面増強ラマン測定装置は、三次元ナノ空間を容易に形成し、かつ、高い検出感度を得るために有用である。   The surface-enhanced Raman measurement method and surface-enhanced Raman measurement apparatus of the present invention are useful for easily forming a three-dimensional nanospace and obtaining high detection sensitivity.

1 ナノシェル構造体
2 非金属微粒子
3 ナノ粒子
4 官能基
5 表面増強ラマン測定装置
6 収納部
7 電極
8 光照射部
9 測定部
10 制御部
11 幹電極部
12 枝電極部
DESCRIPTION OF SYMBOLS 1 Nanoshell structure 2 Nonmetallic fine particle 3 Nanoparticle 4 Functional group 5 Surface enhancement Raman measuring apparatus 6 Storage part 7 Electrode 8 Light irradiation part 9 Measurement part 10 Control part 11 Trunk electrode part 12 Branched electrode part

Claims (6)

非金属微粒子に貴金属のナノ粒子を被覆したナノシェル構造体を生成し、
前記ナノシェル構造体と測定試料とを、一対の電極間に交流電圧を印加して誘電泳動させることにより、前記一対の電極うちの少なくとも一方の電極上または周囲において前記ナノシェル構造体および前記測定試料の混合物を凝集させ、
前記電極上または周囲において凝集した前記混合物の表面増強ラマンスペクトルを測定する、表面増強ラマン測定方法。
Produce a nanoshell structure with non-metallic fine particles coated with noble metal nanoparticles,
The nanoshell structure and the measurement sample are subjected to dielectrophoresis by applying an alternating voltage between a pair of electrodes, so that the nanoshell structure and the measurement sample are placed on or around at least one of the pair of electrodes. Agglomerate the mixture,
A surface-enhanced Raman measurement method, wherein a surface-enhanced Raman spectrum of the mixture aggregated on or around the electrode is measured.
前記ナノシェル構造体の前記非金属微粒子は、所望の検出物質に応じて定められた官能基が接続されている、請求項1に記載の表面増強ラマン測定方法。   The surface-enhanced Raman measurement method according to claim 1, wherein the non-metallic fine particles of the nanoshell structure are connected to a functional group determined according to a desired detection substance. 前記一対の電極のそれぞれは、幹電極部と、前記幹電極部から延び、それぞれが互いに平行な複数の枝電極部と、を含む櫛歯電極構造を有し、前記一対の電極のうちの一方の電極における前記複数の枝電極部が、他方の電極における前記複数の枝電極部間に配置される、請求項1または2に記載の表面増強ラマン測定方法。   Each of the pair of electrodes has a comb electrode structure including a stem electrode portion and a plurality of branch electrode portions extending from the stem electrode portion and parallel to each other, and one of the pair of electrodes The surface-enhanced Raman measurement method according to claim 1, wherein the plurality of branch electrode portions of the other electrode are disposed between the plurality of branch electrode portions of the other electrode. 前記非金属微粒子は、ポリスチレンであり、前記貴金属は、金である、請求項1から3の何れかに記載の表面増強ラマン測定方法。   The surface-enhanced Raman measurement method according to claim 1, wherein the non-metallic fine particles are polystyrene and the noble metal is gold. 非金属微粒子に貴金属のナノ粒子を被覆したナノシェル構造体を含む溶液を収納する収納部と、
前記収納部内に配置された一対の電極と、
前記一対の電極近傍の所定領域に所定の光を照射する光照射部と、
前記所定領域で生じる表面増強ラマンスペクトルを測定する測定部と、
制御部と、を備え、
前記制御部は、前記収納部に前記ナノシェル構造体および測定試料を収納した状態で、前記一対の電極間に所定の周波数を有する交流電圧を印加して前記ナノシェル構造体と前記測定試料とを誘電泳動させることにより、前記一対の電極のうちの少なくとも一方の電極上または周囲において前記ナノシェル構造体および前記測定試料の混合物を凝集させるように構成された、表面増強ラマン測定装置。
A storage section for storing a solution including a nanoshell structure in which non-metallic fine particles are coated with noble metal nanoparticles;
A pair of electrodes disposed in the housing;
A light irradiation unit that irradiates a predetermined region in the vicinity of the pair of electrodes with predetermined light;
A measurement unit for measuring a surface enhanced Raman spectrum generated in the predetermined region;
A control unit,
The control unit applies an alternating voltage having a predetermined frequency between the pair of electrodes in a state where the nanoshell structure and the measurement sample are stored in the storage unit, thereby dielectrically connecting the nanoshell structure and the measurement sample. A surface-enhanced Raman measurement device configured to aggregate the mixture of the nanoshell structure and the measurement sample on or around at least one of the pair of electrodes by performing electrophoresis.
前記制御部は、前記一対の電極に印加する交流電圧の周波数を変更することにより前記ナノシェル構造体および前記測定試料の混合物を凝集させる位置を制御可能に構成される、請求項5に記載の表面増強ラマン測定装置。

The surface according to claim 5, wherein the control unit is configured to be able to control a position at which the mixture of the nanoshell structure and the measurement sample is aggregated by changing a frequency of an alternating voltage applied to the pair of electrodes. Enhanced Raman measurement device.

JP2014090392A 2014-04-24 2014-04-24 Surface enhanced Raman measuring method and surface enhanced Raman measuring apparatus Active JP6410290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014090392A JP6410290B2 (en) 2014-04-24 2014-04-24 Surface enhanced Raman measuring method and surface enhanced Raman measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090392A JP6410290B2 (en) 2014-04-24 2014-04-24 Surface enhanced Raman measuring method and surface enhanced Raman measuring apparatus

Publications (2)

Publication Number Publication Date
JP2015210128A true JP2015210128A (en) 2015-11-24
JP6410290B2 JP6410290B2 (en) 2018-10-24

Family

ID=54612432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090392A Active JP6410290B2 (en) 2014-04-24 2014-04-24 Surface enhanced Raman measuring method and surface enhanced Raman measuring apparatus

Country Status (1)

Country Link
JP (1) JP6410290B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245434A (en) * 1999-03-01 2000-09-12 Matsushita Electric Ind Co Ltd Device for measuring number of microorganism
JP2005507500A (en) * 2001-11-02 2005-03-17 ユニバーシティ オブ ストラスクライド Detection of microfluids by surface-enhanced resonance Raman scattering
US20060219939A1 (en) * 2004-12-03 2006-10-05 Nano Science Diagnostic, Inc. Method and apparatus for low quantity detection of bioparticles in small sample volumes
WO2010092773A1 (en) * 2009-02-10 2010-08-19 パナソニック株式会社 Device and method for measuring fine particles
US20100297686A1 (en) * 2009-05-21 2010-11-25 Drexel University Devices for intracellular surface-enhanced raman spectroscopy
JP2011519018A (en) * 2008-03-11 2011-06-30 アイティーアイ・スコットランド・リミテッド Analyte detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245434A (en) * 1999-03-01 2000-09-12 Matsushita Electric Ind Co Ltd Device for measuring number of microorganism
JP2005507500A (en) * 2001-11-02 2005-03-17 ユニバーシティ オブ ストラスクライド Detection of microfluids by surface-enhanced resonance Raman scattering
US20060219939A1 (en) * 2004-12-03 2006-10-05 Nano Science Diagnostic, Inc. Method and apparatus for low quantity detection of bioparticles in small sample volumes
JP2011519018A (en) * 2008-03-11 2011-06-30 アイティーアイ・スコットランド・リミテッド Analyte detection
WO2010092773A1 (en) * 2009-02-10 2010-08-19 パナソニック株式会社 Device and method for measuring fine particles
US20100297686A1 (en) * 2009-05-21 2010-11-25 Drexel University Devices for intracellular surface-enhanced raman spectroscopy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROLANDO PE'REZ-PINEIRO, MIGUEL A. CORREA-DUARTE, VERONICA SALGUEIRINO AND RAMON A. ALVAREZ-PUEBLA: "SERS assisted ultra-fast peptidic screening: a new tool for drug discovery", NANOSCALE, vol. Volume 4, Number 1, JPN6018006043, 7 January 2012 (2012-01-07), UK, pages 113 - 116, ISSN: 0003745229 *

Also Published As

Publication number Publication date
JP6410290B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
Barik et al. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules
He et al. Micrometer-scale ion current rectification at polyelectrolyte brush-modified micropipets
Yang et al. Self-assembly of large gold nanoparticles for surface-enhanced Raman spectroscopy
Nakano et al. Protein dielectrophoresis: advances, challenges, and applications
Ivanov et al. Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis
Rance et al. van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures
Schlücker Surface‐Enhanced raman spectroscopy: Concepts and chemical applications
Lin et al. Visualized SERS imaging of single molecule by Ag/black phosphorus nanosheets
Zhao et al. Methods for describing the electromagnetic properties of silver and gold nanoparticles
Wijenayaka et al. Improved parametrization for extended Derjaguin, Landau, Verwey, and Overbeek predictions of functionalized gold nanosphere stability
Wolosiuk et al. Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability
Phan et al. Impacts of pH and intermolecular interactions on surface-enhanced Raman scattering chemical enhancements
Convertino et al. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection
Mitoma et al. Photo-oxidation of graphene in the presence of water
Lu et al. Importance of tilt angles of adsorbed aromatic molecules on nanoparticle rattle SERS substrates
Esmaeilzadeh et al. Fabrication of undoped-TiO2 nanostructure-based NO2 high temperature gas sensor using low frequency AC electrophoretic deposition method
Kwasnieski et al. Alkyl-nitrile adlayers as probes of plasmonically induced electric fields
Zhu et al. Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes
de Barros et al. Dynamic behavior of surface-enhanced raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions
JP2014010154A (en) Surface enhanced raman spectroscopic analysis(sers) substrate, method for manufacturing the same and biosensor using the same and micro channel device using the same
Choi et al. Optical sensitivity comparison of multiblock gold–silver nanorods toward biomolecule detection: quadrupole surface plasmonic detection of dopamine
JP6536931B2 (en) Surface enhanced Raman measuring method and surface enhanced Raman measuring apparatus
Cao et al. Measuring nanoparticle polarizability using fluorescence microscopy
Wang et al. Electrochemical seed-mediated growth of surface-enhanced Raman scattering active Au (111)-like nanoparticles on indium tin oxide electrodes
Tsutsui et al. Field effect control of translocation dynamics in surround-gate nanopores

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180920

R150 Certificate of patent or registration of utility model

Ref document number: 6410290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250