JP2015206754A - Determination device and determination method - Google Patents

Determination device and determination method Download PDF

Info

Publication number
JP2015206754A
JP2015206754A JP2014089027A JP2014089027A JP2015206754A JP 2015206754 A JP2015206754 A JP 2015206754A JP 2014089027 A JP2014089027 A JP 2014089027A JP 2014089027 A JP2014089027 A JP 2014089027A JP 2015206754 A JP2015206754 A JP 2015206754A
Authority
JP
Japan
Prior art keywords
potential
measurement target
signal input
interface resistance
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014089027A
Other languages
Japanese (ja)
Other versions
JP6210929B2 (en
Inventor
匠 森
Takumi Mori
匠 森
佑貴 河室
Yuki Kawamuro
佑貴 河室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2014089027A priority Critical patent/JP6210929B2/en
Publication of JP2015206754A publication Critical patent/JP2015206754A/en
Application granted granted Critical
Publication of JP6210929B2 publication Critical patent/JP6210929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and easily determine whether or not two components are closely contacted with each other which are stacked to form a laminate and have different resistivities from each other.SOLUTION: A determination device includes: a measurement unit for measuring potentials V1-V3 at three measurement object regions Pv1-Pv3 of which separation distances Da1-Da3 from a signal input region Ps1 are different from one another, in a state where an electric signal is supplied to signal input regions Ps1, Ps2 on a surface S of an active material layer 102a which is included by a positive electrode 100a and has a higher resistivity than a metal foil 101a which is also included by the positive electrode 100a; and a processing unit for calculating potential differences M1, M2 between potentials V1, V2 at the measurement object regions Pv1, Pv2 and the potential V3 at the measurement object region Pv3 having the longest separation distance Da3 from the signal input region Ps1, for determining that the magnitude of an interface resistance meets a criterion when a comparison result between the potential differences M1, M2 meets specified conditions, and for determining that the magnitude of the interface resistance does not meet the criterion when the comparison result does not meet the specified conditions.

Description

本発明は、抵抗率が互いに異なる2つの構成体が積層された積層体における各構成体間の界面の界面抵抗の大きさが基準を満たすか否かを判定する判定装置および判定方法に関するものである。   The present invention relates to a determination apparatus and a determination method for determining whether or not the magnitude of the interface resistance between interfaces in a laminate in which two components having different resistivity are laminated satisfies a criterion. is there.

抵抗率が互いに異なる板状または膜状の複数の構成体が積層された積層体を用いる構造体として、リチウムイオン電池が知られている。このリチウムイオン電池は、金属箔の一面または両面に活物質を塗布して形成した活物質層で構成される電極(膜状の2つの構成体が積層された積層体)を複数重ねることによって作製される。この場合、リチウムイオン電池を構成する各電極の良否を判定する判定項目の1つとして、金属箔と活物質層との密着状態の良否がある。この密着状態の良否を判定する試験方法として、剥離試験(ピール試験)や碁盤目試験が知られている。剥離試験では、活物質層の表面に貼付した粘着テープを引き上げる際に金属箔から活物質層がどの程度引き剥がされるかを観察し、その観察結果から密着状態の良否を判定する。また、碁盤目試験では、例えば0.5mm程度のピッチで並べた複数の針を電極における活物質層の表面に所定の加重を加えて押し付けつつ表面に沿って直線的に移動させて活物質層を引っ掻き、次いで、電極を90°回動させて同様にして各針で活物質層を引っ掻く。続いて、引っ掻きによって生じた活物質層の剥離の程度を観察し、その観察結果から密着状態の良否を判定する。   A lithium ion battery is known as a structure using a laminate in which a plurality of plate-like or film-like constituents having different resistivity are laminated. This lithium ion battery is manufactured by stacking a plurality of electrodes (laminates obtained by laminating two film-like components) composed of an active material layer formed by applying an active material on one or both surfaces of a metal foil. Is done. In this case, as one of the determination items for determining the quality of each electrode constituting the lithium ion battery, there is a quality of the adhesion state between the metal foil and the active material layer. As a test method for determining the quality of the adhesion state, a peel test (peel test) and a cross-cut test are known. In the peel test, the extent to which the active material layer is peeled off from the metal foil when the pressure-sensitive adhesive tape affixed to the surface of the active material layer is pulled up is observed, and the quality of the adhesion state is determined from the observation result. In the cross cut test, for example, a plurality of needles arranged at a pitch of about 0.5 mm are linearly moved along the surface while applying a predetermined load to the surface of the active material layer in the electrode and pressing the active material layer. Then, the electrode is rotated 90 °, and the active material layer is scratched with each needle in the same manner. Subsequently, the degree of peeling of the active material layer caused by scratching is observed, and the quality of the adhesion state is determined from the observation result.

しかしながら、上記の剥離試験や碁盤目試験では、良否判定を試験者による観察で行っているため、判定結果に試験者の主観が入る余地があり、この結果、金属箔と活物質層との密着状態の良否判定を正確に行うことが困難であるという課題が存在する。また、剥離試験や碁盤目試験では、試験手順が煩雑で時間を要するため、試験効率が悪いという課題も存在する。発明者らは、これらの課題を解決する技術を検討した結果、金属箔と活物質層との界面の界面抵抗が小さいほど金属箔と活物質層との密着状態が良好であり、界面抵抗の大きさが十分に小さいか否か(予め決められた基準を満たすか否か)を正確かつ容易に行うことができれば、上記の課題を解決することが可能であることを見いだした。この場合、電極のような板状体の抵抗を測定する技術として、四探針法で抵抗(表面抵抗や体積固有抵抗)を測定する測定方法(例えば、特許第2833623号公報に開示されている測定方法)が知られており、この方法で界面の抵抗を測定する方法が考えられる。   However, in the above peel test and cross cut test, the pass / fail judgment is performed by the tester, so there is room for the tester's subjectivity to be included in the judgment result, and as a result, the adhesion between the metal foil and the active material layer There is a problem that it is difficult to accurately determine whether the state is good or bad. Further, in the peel test and the cross cut test, the test procedure is complicated and requires time, so that there is a problem that test efficiency is poor. As a result of examining the techniques for solving these problems, the inventors have found that the smaller the interface resistance of the interface between the metal foil and the active material layer, the better the adhesion between the metal foil and the active material layer, It has been found that the above problem can be solved if the size is sufficiently small (whether a predetermined criterion is satisfied) can be accurately and easily performed. In this case, as a technique for measuring the resistance of a plate-like body such as an electrode, it is disclosed in a measurement method (for example, Japanese Patent No. 2833623) that measures resistance (surface resistance or volume resistivity) by a four-probe method. Measurement method) is known, and a method of measuring the interface resistance by this method is conceivable.

特許第2833623号公報(第3−22頁、第1図)Japanese Patent No. 2833623 (page 3-22, Fig. 1)

ところが、従来から知られている四探針法では、上記した電極を構成する金属箔と活物質層との界面の抵抗を測定することが困難である。すなわち、四探針法は、測定原理上、単一の材料で形成された測定対象の抵抗を測定することを前提としている。このため、抵抗率が互いに異なる複数の構成体が積層された測定対象の体積固有抵抗を測定したときには、測定値が、測定対象全体としての平均的な体積固有抵抗の値であるのか、表面に近い部分の体積固有抵抗の値であるのかを特定することが困難である。したがって、四探針法によって金属箔と活物質層との界面の抵抗を測定することも困難である。このように、金属箔と活物質層との密着状態の良否を正確かつ容易に判定するのに不可欠である金属箔と活物質層との界面の抵抗を従来の四探針法で測定することは困難であり、これに代わる技術の開発が望まれている。   However, with the conventionally known four-probe method, it is difficult to measure the resistance at the interface between the metal foil constituting the electrode and the active material layer. That is, the four-probe method is premised on measuring the resistance of a measuring object formed of a single material on the measurement principle. For this reason, when measuring the volume resistivity of a measurement object in which a plurality of structures having different resistivity are laminated, whether the measurement value is the average volume resistivity value of the entire measurement object or not on the surface. It is difficult to specify whether it is the value of the volume resistivity in the near part. Therefore, it is also difficult to measure the resistance at the interface between the metal foil and the active material layer by the four-probe method. In this way, the resistance of the interface between the metal foil and the active material layer, which is indispensable for accurately and easily determining the quality of the adhesion state between the metal foil and the active material layer, is measured by the conventional four-point probe method. However, it is difficult to develop an alternative technology.

本発明は、かかる課題に鑑みてなされたものであり、抵抗率が互いに異なる2つの構成体が積層された積層体における各構成体の密着状態の良否を正確かつ容易に判定し得る判定装置および判定方法を提供することを主目的とする。   The present invention has been made in view of such a problem, and a determination device that can accurately and easily determine the quality of the close contact state of each component in a laminate in which two components having different resistivities are laminated, and The main purpose is to provide a judgment method.

上記目的を達成すべく請求項1記載の判定装置は、抵抗率が互いに異なる板状または膜状の2つの構成体が積層された積層体における当該各構成体間の界面の界面抵抗の大きさが予め決められた基準を満たすか否かを判定可能に構成され、前記積層体を構成する前記各構成体のうちの抵抗率が高い構成体の表面における2つの信号入力部位に電気信号を供給した状態で、前記各信号入力部位を結ぶ線分に直交しかつ前記各信号入力部位を通る2本の直線で挟んで区画した前記表面上の区画領域内の部位であって当該各信号入力部位のいずれか一方との間の離間距離が互いに異なる少なくとも3つの測定対象部位における電位を測定する電位測定処理を実行する測定部と、前記電位測定処理によって測定された前記各電位に基づいて前記界面抵抗の大きさが前記基準を満たすか否かを判定する判定処理を実行する処理部とを備え、前記処理部は、前記判定処理において、前記いずれか一方の信号入力部位との間の前記離間距離が最も長い前記測定対象部位を基準部位として当該基準部位における前記電位と当該基準部位を除く他の前記測定対象部位における前記電位との電位差をそれぞれ算出し、当該各電位差同士の比較結果が予め規定された規定条件を満たしたときに前記界面抵抗の大きさが前記基準を満たすと判定する処理、および前記規定条件を満たさないときに前記界面抵抗の大きさが前記基準を満たさないと判定する処理の少なくとも一方を実行する。   In order to achieve the above object, the determination apparatus according to claim 1 is configured such that the interface resistance of the interface between each component in a laminate in which two plate-like or film-like components having different resistivity are laminated. Is configured to be able to determine whether or not a predetermined criterion is satisfied, and an electric signal is supplied to two signal input portions on the surface of the structure having a high resistivity among the respective structures constituting the laminate In this state, each signal input part is a part in the partition area on the surface that is partitioned by two straight lines passing through the signal input parts and perpendicular to the line connecting the signal input parts. A measurement unit that performs a potential measurement process for measuring potentials in at least three measurement target portions having different separation distances from each other, and the interface based on each potential measured by the potential measurement process Resistance A processing unit that executes a determination process for determining whether or not the size of the signal satisfies the criterion, and the processing unit includes the separation distance between the signal input region and the signal input part in the determination process. Calculating the potential difference between the potential at the reference site and the potential at the other measurement target sites excluding the reference site, with the longest measurement target site as the reference site, and the comparison result between the potential differences is defined in advance. A process for determining that the magnitude of the interface resistance satisfies the standard when the specified condition is satisfied, and a process for determining that the magnitude of the interface resistance does not satisfy the standard when the specified condition is not satisfied Execute at least one of the following.

また、請求項2記載の判定装置は、請求項1記載の判定装置において、前記各測定対象部位は、隣接する測定対象部位同士の間隔が互いに等しくなるように設定されている。   According to a second aspect of the present invention, in the determination apparatus according to the first aspect, the measurement target parts are set such that the intervals between the adjacent measurement target parts are equal to each other.

また、請求項3記載の判定装置は、請求項1または2記載の判定装置において、前記各測定対象部位は、前記各信号入力部位を結ぶ前記線分上に設定されている。   According to a third aspect of the present invention, in the determination device according to the first or second aspect, each of the measurement target parts is set on the line segment connecting the signal input parts.

また、請求項4記載の判定装置は、請求項3記載の判定装置において、前記基準部位は、前記線分の中心部に設定されている。   According to a fourth aspect of the present invention, in the determination apparatus according to the third aspect, the reference portion is set at the center of the line segment.

また、請求項5記載の判定装置は、請求項1から4のいずれかに記載の判定装置において、前記処理部は、前記基準部位を除く他の2つの前記測定対象部位のうちの前記基準部位との間の離間距離が短い一方の測定対象部位における前記電位差を、当該2つの測定対象部位のうちの他方の測定対象部位における前記電位差で除算し、前記比較結果としての当該除算した除算値が予め決められた規定値よりも小さいときに前記規定条件を満たしたとする。   Moreover, the determination apparatus according to claim 5 is the determination apparatus according to any one of claims 1 to 4, wherein the processing unit is the reference part of the two other measurement target parts excluding the reference part. Is divided by the potential difference in the other measurement target part of the two measurement target parts, and the divided division value as the comparison result is It is assumed that the specified condition is satisfied when the value is smaller than a predetermined specified value.

また、請求項6記載の判定方法は、抵抗率が互いに異なる板状または膜状の2つの構成体が積層された積層体における当該各構成体間の界面の界面抵抗の大きさが予め決められた基準を満たすか否かを判定する判定方法であって、前記積層体を構成する前記各構成体のうちの抵抗率が高い構成体の表面における2つの信号入力部位に電気信号を供給した状態で、前記各信号入力部位を結ぶ線分に直交しかつ前記各信号入力部位を通る2本の直線で挟んで区画した前記表面上の区画領域内の部位であって当該各信号入力部位のいずれか一方との間の離間距離が互いに異なる少なくとも3つの測定対象部位における電位を測定する電位測定処理を実行し、前記電位測定処理によって測定した前記各電位に基づいて前記界面抵抗の大きさが前記基準を満たすか否かを判定する判定処理を実行し、前記判定処理において、前記いずれか一方の信号入力部位との間の前記離間距離が最も長い前記測定対象部位を基準部位として当該基準部位における前記電位と当該基準部位を除く他の前記測定対象部位における前記電位との電位差をそれぞれ算出し、当該各電位差同士の比較結果が予め規定された規定条件を満たしたときに前記界面抵抗の大きさが前記基準を満たすと判定する処理、および前記規定条件を満たさないときに前記界面抵抗の大きさが前記基準を満たさないと判定する処理の少なくとも一方を実行する。   In the determination method according to the sixth aspect, the magnitude of the interface resistance of the interface between each component in the laminate in which two plate-like or film-like components having different resistivities are laminated is determined in advance. A method for determining whether or not the above-mentioned criteria are satisfied, in which an electrical signal is supplied to two signal input portions on the surface of a constituent body having a high resistivity among the constituent bodies constituting the laminated body And each of the signal input parts is a part in the partition area on the surface partitioned by two straight lines passing through the signal input parts and orthogonal to a line segment connecting the signal input parts. Performing a potential measurement process for measuring potentials in at least three measurement target parts having different separation distances from each other, and determining the magnitude of the interface resistance based on the respective potentials measured by the potential measurement process. Standard A determination process is performed to determine whether or not the condition is satisfied, and in the determination process, the potential at the reference part is determined with the measurement target part having the longest separation distance from any one of the signal input parts as a reference part. And the potential difference between the potential in the other measurement target parts excluding the reference part and the comparison result between the potential differences satisfy the prescribed condition defined in advance. At least one of a process for determining that the standard is satisfied and a process for determining that the magnitude of the interface resistance does not satisfy the standard when the prescribed condition is not satisfied is executed.

請求項1記載の判定装置、および請求項6記載の判定方法では、積層体を構成する抵抗率が高い構成体の表面における2つの信号入力部位に電気信号を供給した状態で一方の信号入力部位との間の離間距離が互いに異なる少なくとも3つの測定対象部位における電位を測定し、一方の信号入力部位との間の離間距離が最も長い測定対象部位における電位と他の測定対象部位における電位との電位差を算出し、各電位差同士を比較した比較結果が規定条件を満たしたときに界面抵抗の大きさが予め決められた基準を満たすと判定処理、および規定条件を満たさないときに界面抵抗の大きさが基準を満たさないと判定する処理の少なくとも一方を実行する。このため、この判定装置および判定方法によれば、従来の測定方法では測定が困難な積層体の界面抵抗の測定値を用いることなく(界面抵抗の値を直接測定することなく)、直接測定することが可能な表面における電位を用いて、積層体における界面抵抗の大きさが予め決められた基準を満たすか否か(例えば、判定対象の積層体における界面抵抗の大きさが良品の積層体における界面抵抗の大きさ未満かまたは同程度であるか否か)を正確に判定することができる。このため、この判定装置および判定方法によれば、煩雑で時間を要する作業を伴う剥離試験や碁盤目試験とは異なり、積層体を構成する各構成体同士の密着状態の良否を、界面抵抗の大きさが予め決められた基準を満たすか否かの判定結果に基づいて短時間で正確かつ容易に判定することができる。   The determination apparatus according to claim 1 and the determination method according to claim 6, wherein one signal input portion is in a state where an electric signal is supplied to the two signal input portions on the surface of the structure having a high resistivity constituting the laminate. The potentials in at least three measurement target parts having different separation distances from each other are measured, and the potential in the measurement target part having the longest separation distance from one signal input part and the potential in the other measurement target part Calculates the potential difference and compares the potential differences with each other. When the comparison result satisfies the specified condition, the interface resistance is determined to satisfy a predetermined criterion. When the specified condition is not satisfied, the interface resistance is increased. At least one of the processes for determining that the value does not satisfy the criteria is executed. For this reason, according to the determination apparatus and the determination method, the measurement is performed directly without using the measured value of the interface resistance of the laminate, which is difficult to measure by the conventional measuring method (without directly measuring the value of the interface resistance). Whether or not the magnitude of the interface resistance in the laminate satisfies a predetermined criterion using the potential on the surface (for example, the magnitude of the interface resistance in the judgment target laminate is It is possible to accurately determine whether it is less than or equal to the magnitude of the interface resistance. For this reason, according to this determination apparatus and determination method, unlike the peeling test and the cross-cut test involving complicated and time-consuming work, whether or not the adhesion state of each component constituting the laminated body is good or bad is determined. The determination can be made accurately and easily in a short time based on the determination result of whether or not the size satisfies a predetermined criterion.

また、請求項2記載の判定装置では、隣接する測定対象部位同士の間隔が互いに等しくなるように各測定対象部位が設定されている。この場合、例えば、一対の測定対象部位の間隔が長く、他の一対の測定対象部位の間隔が短くなるように設定されているときには、界面抵抗が小さい良品の積層体における比較結果と、界面抵抗が大きい積層体における比較結果との差が生じ難くなる。これに対して、隣接する測定対象部位同士の間隔が互いに等しくなるように設定したときには、良品の積層体における比較結果と、界面抵抗が大きい積層体における比較結果との差が明確に生じる。このため、この判定装置によれば、積層体における界面抵抗の大きさが良否判定基準を満たすか否かの判定をより正確に行うことができる結果、積層体を構成する各構成体同士の密着状態の良否をより正確に判定することができる。   Moreover, in the determination apparatus according to claim 2, each measurement target part is set so that intervals between adjacent measurement target parts are equal to each other. In this case, for example, when the interval between a pair of measurement target parts is set to be long and the interval between the other pair of measurement target parts is set to be short, the comparison result and the interface resistance in a non-defective laminate having a low interface resistance are obtained. The difference with the comparison result in the large laminate is difficult to occur. On the other hand, when the intervals between the adjacent measurement target parts are set to be equal to each other, a difference between the comparison result in the non-defective laminate and the comparison result in the laminate having a large interface resistance is clearly generated. For this reason, according to this determination apparatus, as a result of being able to more accurately determine whether the magnitude of the interface resistance in the laminated body satisfies the pass / fail judgment criteria, the adhesion between the constituents constituting the laminated body The quality of the state can be determined more accurately.

また、請求項3記載の判定装置によれば、2つの信号入力部位を結ぶ線分上に各測定対象部位を設定したことにより、例えば、2つの信号入力部位を結ぶ線分以外の直線上に各測定対象部位を設定する構成や、各測定対象部位が1つの直線上に位置していない構成と比較して、一方の信号入力部位から測定対象部位までの離間距離に応じた電位の変化が明確に表れる。このため、この判定装置によれば、良品の積層体における比較結果と、界面抵抗が大きい積層体における比較結果との差がより確実に生じる結果、積層体における界面抵抗の大きさが良否判定基準を満たすか否かの判定をさらに正確に行うことができる。   Further, according to the determination device of claim 3, by setting each measurement target part on a line segment connecting two signal input parts, for example, on a straight line other than the line segment connecting two signal input parts Compared to a configuration in which each measurement target part is set or a configuration in which each measurement target part is not located on one straight line, a change in potential according to the separation distance from one signal input part to the measurement target part is It appears clearly. For this reason, according to this determination apparatus, the difference between the comparison result of the non-defective laminate and the comparison result of the laminate having a large interface resistance is more reliably generated. It is possible to more accurately determine whether or not the above is satisfied.

また、請求項4記載の判定装置では、基準部位が2つの信号入力部位を結ぶ線分の中心部に設定されている。この場合、2つの信号入力部位を結ぶ線分上に各測定対象部位を設定したときには、この線分の中心部に近い測定対象部位ほど、一方の信号入力部位から測定対象部位までの離間距離の変化に対する測定対象部位における電位の変化の比率が小さくなる。また、この特性は、界面抵抗が大きい積層体よりも界面抵抗が小さい積層体の方が顕著である。このため、この判定装置によれば、界面抵抗が小さい良品の積層体における比較結果と、界面抵抗が大きい積層体における比較結果との差がさらに明確に生じる結果、積層体における界面抵抗の大きさが良否判定基準を満たすか否かの判定を一層正確に行うことができる。   In the determination apparatus according to the fourth aspect, the reference part is set at the center of the line segment connecting the two signal input parts. In this case, when each measurement target part is set on a line segment connecting two signal input parts, the measurement target part closer to the center part of the line segment has a separation distance from one signal input part to the measurement target part. The ratio of the change in potential at the measurement target site with respect to the change becomes small. Further, this characteristic is more remarkable in a laminate having a low interface resistance than in a laminate having a high interface resistance. For this reason, according to this determination apparatus, the difference between the comparison result of the non-defective laminate having the low interface resistance and the comparison result of the laminate having the high interface resistance is further clearly generated. Can more accurately determine whether or not the quality criterion is satisfied.

また、請求項5記載の判定装置では、基準部位との間の離間距離が短い測定対象部位における電位差を、測定対象部位との間の離間距離が長い測定対象部位における電位差で除算した値が規定値よりも小さいときに規定条件を満たしたとする。このため、この判定装置によれば、簡易な演算処理で判定処理を行うことができるため、界面抵抗の大きさが良否判定基準を満たすか否かの判定を短時間で行うことができる。   Further, in the determination device according to claim 5, a value obtained by dividing the potential difference in the measurement target portion having a short separation distance from the reference portion by the potential difference in the measurement target portion having a long separation distance from the measurement target portion is defined. It is assumed that the specified condition is satisfied when the value is smaller than the value. For this reason, according to this determination apparatus, since determination processing can be performed with simple arithmetic processing, it can be determined in a short time whether the magnitude of the interface resistance satisfies the pass / fail criterion.

判定装置1の構成を示す構成図である。1 is a configuration diagram illustrating a configuration of a determination device 1; リチウムイオン電池200の断面の構成を示す構成図である。2 is a configuration diagram showing a cross-sectional configuration of a lithium ion battery 200. FIG. 判定方法を説明する第1の説明図である。It is the 1st explanatory view explaining the judging method. 判定方法を説明する第2の説明図である。It is the 2nd explanatory view explaining a judgment method. 判定方法を説明する第3の説明図である。It is the 3rd explanatory view explaining a judgment method. 判定方法を説明する第4の説明図である。It is the 4th explanatory view explaining the judgment method. 判定処理50のフローチャートである。5 is a flowchart of a determination process 50.

以下、判定装置および判定方法の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a determination apparatus and a determination method will be described with reference to the accompanying drawings.

最初に、判定装置の一例としての図1に示す判定装置1の構成について説明する。判定装置1は、例えば、図2に示すリチウムイオン電池200の正極100aおよび負極100b(いずれも「積層体」に相当し、以下、正極100aおよび負極100bを区別しないときには「電極100」ともいう)を構成する各構成体間の界面の界面抵抗の大きさが予め決められた基準(後述する良否判定基準)を満たすか否かを判定可能に構成されている。   First, the configuration of the determination apparatus 1 shown in FIG. 1 as an example of the determination apparatus will be described. The determination device 1 is, for example, the positive electrode 100a and the negative electrode 100b of the lithium ion battery 200 shown in FIG. 2 (both correspond to “stacked body”, and hereinafter also referred to as “electrode 100” when the positive electrode 100a and the negative electrode 100b are not distinguished). It is configured to be able to determine whether or not the magnitude of the interface resistance of the interface between the constituents constituting each of the components satisfies a predetermined criterion (good / bad determination criterion described later).

ここで、リチウムイオン電池200は、図2に示すように、一例として、正極100aと負極100bとを、各電極100間にセパレータ110を挟んで重ね合わせて構成されている。なお、同図では、リチウムイオン電池200の構成を概略的に図示しているため、各電極100や各セパレータ110が収容される筐体等の図示を省略している。   Here, as shown in FIG. 2, for example, the lithium ion battery 200 is configured by stacking a positive electrode 100 a and a negative electrode 100 b with a separator 110 interposed between the electrodes 100. In the drawing, the configuration of the lithium ion battery 200 is schematically illustrated, and therefore, the illustration of the casing and the like in which each electrode 100 and each separator 110 are accommodated is omitted.

正極100aおよび負極100bは、抵抗率が互いに異なる板状または膜状の2つの構成体が積層されてそれぞれ構成されている。具体的には、正極100aは、図2に示すように、一例として、アルミニウムで膜状に形成された構成体(抵抗率が低い構成体)としての金属箔101aと、金属箔101aの一面に活物質としてのコバルト酸リチウムを塗布することで膜状に形成された構成体(抵抗率が高い構成体)としての活物質層102aとを備えて構成されている。この場合、金属箔101aと活物質層102aとが密着しているほど高機能であることが知られている。また、金属箔101aと活物質層102aの界面103aの界面抵抗が小さいほど密着状態が良好である(密着が高い)ことが発明者らの研究結果から明らかとなっている。   The positive electrode 100a and the negative electrode 100b are configured by laminating two plate-like or film-like structures having different resistivities. Specifically, as illustrated in FIG. 2, the positive electrode 100 a includes, as an example, a metal foil 101 a as a structure (a structure having low resistivity) formed in a film shape with aluminum, and a metal foil 101 a on one surface. An active material layer 102a as a structure (a structure having high resistivity) formed in a film shape by applying lithium cobalt oxide as an active material is provided. In this case, it is known that the metal foil 101a and the active material layer 102a have higher functions as they are in close contact with each other. Moreover, it is clear from the research results of the inventors that the smaller the interface resistance of the interface 103a between the metal foil 101a and the active material layer 102a, the better the adhesion state (high adhesion).

負極100bは、図2に示すように、一例として、銅で膜状に形成された構成体(抵抗率が低い構成体)としての金属箔101b(以下、上記した正極100aの金属箔101aと金属箔101bとを区別しないときには「金属箔101」ともいう)と、金属箔101bの一面または両面(この例では、一面)に活物質としてのカーボンを塗布することで膜状に形成された構成体(抵抗率が高い構成体)としての活物質層102b(以下、上記した正極100aの活物質層102aと活物質層102bとを区別しないときには「活物質層102」ともいう)とを備えて構成されている。この負極100bにおいても、正極100aと同様にして、金属箔101bと活物質層102bとが密着しているほど高機能であり、金属箔101bと活物質層102bとの界面103b(以下、正極100aの活物質層102aと界面103bとを区別しないときには「界面103」ともいう)の界面抵抗が小さいほど密着状態が良好である(密着が高い)ことが発明者らの研究結果から明らかとなっている。   As shown in FIG. 2, the negative electrode 100b includes, as an example, a metal foil 101b (hereinafter referred to as a metal foil 101a of the positive electrode 100a and a metal foil) as a structure (a structure having low resistivity) formed of copper. When the foil 101b is not distinguished, it is also referred to as “metal foil 101”) and a structure formed into a film by applying carbon as an active material to one or both surfaces (in this example, one surface) of the metal foil 101b. An active material layer 102b (hereinafter referred to as “active material layer 102” when the active material layer 102a and the active material layer 102b of the positive electrode 100a are not distinguished from each other) Has been. Similarly to the positive electrode 100a, the negative electrode 100b has a higher function as the metal foil 101b and the active material layer 102b are in close contact with each other. The interface 103b between the metal foil 101b and the active material layer 102b (hereinafter referred to as the positive electrode 100a). From the research results of the inventors, the smaller the interface resistance of the active material layer 102a and the interface 103b, the better the adhesion (the higher the adhesion). Yes.

セパレータ110は、正極100aおよび負極100bを隔離して短絡を防止すると共に、空孔内に電解液を保持して電極100間におけるリチウムイオンの通路を形成する機能を有する部材であって、一例として、ポリエチレン等のポリオレフィン系樹脂で形成された多孔質膜 (フィルム)で構成されている。   The separator 110 is a member that has a function of isolating the positive electrode 100a and the negative electrode 100b to prevent a short circuit and holding an electrolytic solution in the pores to form a lithium ion passage between the electrodes 100. It is composed of a porous film (film) formed of a polyolefin resin such as polyethylene.

一方、判定装置1は、図1に示すように、測定部11、処理部12、プローブユニット13、記憶部14および表示部15を備えて構成されている。   On the other hand, the determination apparatus 1 includes a measurement unit 11, a processing unit 12, a probe unit 13, a storage unit 14, and a display unit 15, as shown in FIG.

測定部11は、図外の電源部および電圧検出部を備えて構成され、図3,4に示すように、電極100(活物質層102)の表面Sにおける2つの信号入力部位Ps1,Ps2にプローブユニット13を介して測定用の電気信号(一例として、直流定電流)を供給した状態で、表面Sにおける3つ(少なくとも3つの一例)の測定対象部位Pv1〜Pv3(両図参照:以下、区別しないときには「測定対象部位Pv」ともいう)の電位V1〜電位V3(以下、区別しないときには「電位V」ともいう)を測定する電位測定処理を実行する。   The measurement unit 11 includes a power supply unit and a voltage detection unit that are not shown in the figure. As shown in FIGS. 3 and 4, the measurement unit 11 includes two signal input parts Ps 1 and Ps 2 on the surface S of the electrode 100 (active material layer 102). In a state where an electrical signal for measurement (as an example, direct current constant current) is supplied via the probe unit 13, three (at least three examples) measurement target sites Pv1 to Pv3 on the surface S (see both figures: When not distinguished, a potential measurement process for measuring the potential V1 to the potential V3 (also referred to as “potential V” when not distinguished) of “measurement target site Pv” is executed.

ここで、信号入力部位Ps1,Ps2は、図3,4に示すように、電極100を構成する各構成体(金属箔101および活物質層102)のうちの抵抗率が高い方の構成体である活物質層102の表面Sに設定されている。また、測定対象部位Pv1〜Pv3は、図4に示すように、信号入力部位Ps1,Ps2を結ぶ線分Laに直交しかつ各信号入力部位Ps1,Ps2をそれぞれ通る2本の直線Ls1,Ls2で挟んで区画した表面S上の区画領域T内に設定されている。具体的には、各測定対象部位Pv1〜Pv3は、区画領域T内の部位であって、信号入力部位Ps1(信号入力部位Ps1,Ps2のいずれか一方の一例としてのソース側(正極側)の信号入力部位Ps)との間の離間距離(直線距離)Da1〜Da3(以下、区別しないときには「離間距離Da」ともいう)が互いに異なる部位に設定されている。   Here, as shown in FIGS. 3 and 4, the signal input portions Ps <b> 1 and Ps <b> 2 are components having higher resistivity among the components (the metal foil 101 and the active material layer 102) constituting the electrode 100. The surface S of the active material layer 102 is set. Further, as shown in FIG. 4, the measurement target parts Pv1 to Pv3 are two straight lines Ls1 and Ls2 that are orthogonal to the line segment La connecting the signal input parts Ps1 and Ps2 and pass through the signal input parts Ps1 and Ps2, respectively. It is set in a partitioned region T on the surface S partitioned by sandwiching. Specifically, each of the measurement target parts Pv1 to Pv3 is a part in the partition region T, and the signal input part Ps1 (the source side (positive electrode side) as one example of the signal input parts Ps1 and Ps2). Separation distances (linear distances) Da1 to Da3 (hereinafter also referred to as “separation distance Da” when not distinguished from each other) with respect to the signal input part Ps) are set to different parts.

この場合、測定対象部位Pv1〜Pv3は、図4に示すように、一例として、上記した線分La上に設定されている。また、この例では、測定対象部位Pv1〜Pv3は、隣接する測定対象部位Pv同士の間隔Db1,Db2(以下、区別しないときには「間隔Db」ともいう)が互いに等しくなるように設定されている。また、この例では、信号入力部位Ps1との間の離間距離Daが最も長い測定対象部位Pv3(以下、この測定対象部位Pv3を「基準部位」ともいう)が、線分Laの中心部に設定されている。   In this case, the measurement target parts Pv1 to Pv3 are set on the above-described line segment La as an example, as shown in FIG. Further, in this example, the measurement target parts Pv1 to Pv3 are set so that the intervals Db1 and Db2 between the adjacent measurement target parts Pv (hereinafter also referred to as “interval Db” when not distinguished) are equal to each other. In this example, the measurement target part Pv3 having the longest separation distance Da from the signal input part Ps1 (hereinafter, this measurement target part Pv3 is also referred to as “reference part”) is set at the center of the line segment La. Has been.

処理部12は、測定部11を制御して電位測定処理を実行させる。また、処理部12は、記憶部14を制御して測定部11によって測定された電位Vを記憶させる。また、処理部12は、後述する判定処理50(図7参照)を実行して、電極100における金属箔101と活物質層102との界面103の界面抵抗の大きさが予め決められた良否判定基準を満たすか否かを判定し、判定結果を表示部15に表示させる。この場合、良否判定基準は、金属箔101と活物質層102との密着状態が良好であるか否かを判定するための基準であって、一例として、「判定対象の電極100における界面抵抗の大きさが、良品の電極100における界面抵抗の大きさ以下」との基準が良否判定基準として予め決められている。   The processing unit 12 controls the measurement unit 11 to execute a potential measurement process. In addition, the processing unit 12 controls the storage unit 14 to store the potential V measured by the measurement unit 11. Moreover, the process part 12 performs the determination process 50 (refer FIG. 7) mentioned later, and the quality determination by which the magnitude | size of the interface resistance of the interface 103 of the metal foil 101 in the electrode 100 and the active material layer 102 was decided beforehand is carried out. It is determined whether or not the criterion is satisfied, and the determination result is displayed on the display unit 15. In this case, the quality determination criterion is a criterion for determining whether or not the adhesion state between the metal foil 101 and the active material layer 102 is satisfactory. A criterion that “the size is equal to or less than the size of the interface resistance of the non-defective electrode 100” is determined in advance as a quality determination criterion.

ここで、抵抗率が互いに異なる複数の構成体間の界面の界面抵抗を従来の測定方法で測定するのが困難なため、界面103の界面抵抗の大きさが上記した良否判定基準を満たすか否かを界面抵抗の測定値から判定するのは困難である。そこで、発明者は、界面抵抗を直接測定することなく(界面抵抗の測定値を用いることなく)、直接測定することが可能な他の測定量としての表面Sの電位Vを用いて、界面103の界面抵抗の大きさが良否判定基準を満たすか否かを判定する判定方法を開発した。   Here, since it is difficult to measure the interfacial resistance between a plurality of constituents having different resistivities by the conventional measurement method, whether or not the size of the interfacial resistance of the interface 103 satisfies the above pass / fail judgment criteria. It is difficult to determine this from the measured value of the interface resistance. Therefore, the inventor uses the potential V of the surface S as another measurement quantity that can be directly measured without directly measuring the interface resistance (without using the measured value of the interface resistance). Has developed a method for judging whether the size of the interface resistance of the material satisfies the acceptance criteria.

この判定方法では、図5,6に示すように、上記した基準部位としての測定対象部位Pv3における電位V3と測定対象部位Pv1における電位V1との電位差M1、および測定対象部位Pv3における電位V3と測定対象部位Pv2における電位V2との電位差M2(以下、電位差M1,M2を区別しないときには「電位差M」ともいう)を算出し、電位差M1,M2同士の比較結果が予め規定された規定条件を満たしたときに界面103の界面抵抗の大きさが良否判定基準を満たすと判定する。   In this determination method, as shown in FIGS. 5 and 6, the potential difference M1 between the potential V3 at the measurement target site Pv3 as the reference site and the potential V1 at the measurement target site Pv1, and the potential V3 at the measurement target site Pv3 and measurement. A potential difference M2 from the potential V2 at the target site Pv2 (hereinafter, also referred to as “potential difference M” when the potential differences M1 and M2 are not distinguished from each other) is calculated, and the comparison result between the potential differences M1 and M2 satisfies a predetermined regulation condition. Sometimes, it is determined that the magnitude of the interface resistance of the interface 103 satisfies the acceptance criteria.

より具体的には、図5,6に示すように、基準部位としての測定対象部位Pv3を除く測定対象部位Pv(この例では、測定対象部位Pv1,Pv2)のうちの、測定対象部位Pv3との間の離間距離(直線距離)が短い測定対象部位Pv(この例では、離間距離Dc2が離間距離Dc1よりも短い測定対象部位Pv2:「一方の測定対象部位」)における電位差M2を、測定対象部位Pv3との間の離間距離が長い測定対象部位Pv(この例では、離間距離Dc1が離間距離Dc2よりも長い測定対象部位Pv1:「他方の測定対象部位」)における電位差M1で除算する。また、比較結果としての除算値Q(M2/M1)が予め決められた規定値kよりも小さいとき(Q<kのとき)に規定条件を満たしたとして、界面103の界面抵抗の大きさが良否判定基準を満たすと判定する。   More specifically, as shown in FIGS. 5 and 6, the measurement target part Pv3 in the measurement target parts Pv (in this example, the measurement target parts Pv1 and Pv2) excluding the measurement target part Pv3 as the reference part, and The potential difference M2 in the measurement target part Pv (the measurement target part Pv2 in which the separation distance Dc2 is shorter than the separation distance Dc1 in this example: “one measurement target part”) is short. Divide by the potential difference M1 in the measurement target part Pv having a long separation distance from the part Pv3 (in this example, the measurement target part Pv1: “the other measurement target part” where the separation distance Dc1 is longer than the separation distance Dc2). Also, assuming that the prescribed condition is satisfied when the divided value Q (M2 / M1) as a comparison result is smaller than a predetermined value k (when Q <k), the size of the interface resistance of the interface 103 is It is determined that the pass / fail criterion is satisfied.

上記した判定方法の判定原理を説明する。まず、界面103の界面抵抗が大きいときには、図5の上図に示すように、活物質層102から金属箔101には測定用の電気信号があまり流れず、電気信号が主として活物質層102内を流れることとなる。このときには、同図の下図に示すように、測定対象部位Pvが信号入力部位Ps1から遠ざかる(信号入力部位Ps1と測定対象部位Pvとの間の離間距離Daが長くなる)のに従い、離間距離Daの変化に対する電位Vの変化の比率が大きくは変わらない状態で電位Vが徐々に低くなる。   The determination principle of the above determination method will be described. First, when the interface resistance of the interface 103 is large, as shown in the upper diagram of FIG. 5, an electrical signal for measurement does not flow so much from the active material layer 102 to the metal foil 101, and the electrical signal is mainly in the active material layer 102. Will flow. At this time, as shown in the lower diagram of the figure, the separation distance Da increases as the measurement target part Pv moves away from the signal input part Ps1 (the separation distance Da between the signal input part Ps1 and the measurement target part Pv increases). The potential V gradually decreases in a state where the ratio of the change in the potential V to the change in does not change greatly.

一方、界面103の界面抵抗が小さいときには、図6の上図に示すように、界面103を介して活物質層102から金属箔101に測定用の電気信号が流れ易いため、電気信号が主として金属箔101内を流れることとなる。このときには、同図の下図に示すように、信号入力部位Ps1に近い測定対象部位Pvでは、離間距離Daの変化に対して電位Vが大きく変化し、測定対象部位Pv3の近傍(信号入力部位Ps1,Ps2の中点)では、離間距離Daの変化に対して電位Vが僅かしか変化しない状態、つまり離間距離Daの変化に対する電位Vの変化の比率が小さい状態となる。   On the other hand, when the interface resistance of the interface 103 is small, as shown in the upper diagram of FIG. 6, an electrical signal for measurement easily flows from the active material layer 102 to the metal foil 101 through the interface 103, so that the electrical signal is mainly a metal It will flow through the foil 101. At this time, as shown in the lower diagram of the figure, in the measurement target part Pv close to the signal input part Ps1, the potential V greatly changes with respect to the change in the separation distance Da, and in the vicinity of the measurement target part Pv3 (signal input part Ps1). , Ps2 (midpoint), the potential V changes only slightly with respect to the change in the separation distance Da, that is, the ratio of the change in the potential V with respect to the change in the separation distance Da is small.

ここで、界面103の界面抵抗が大きいときの測定対象部位Pv2における電位差M2を測定対象部位Pv1における電位差M1で除算した除算値Q(以下、界面103の界面抵抗が大きいときの除算値Qを「除算値Q1」ともいう)と、界面103の界面抵抗が小さいときの測定対象部位Pv2における電位差M2を測定対象部位Pv1における電位差M1で除算した除算した除算値Q(以下、界面103の界面抵抗が小さいときの除算値Qを「除算値Q2」ともいう)とを比較すると、除算値Q1の方が除算値Q2よりも大きいことが、図5,6から明らかである。このことから、界面103の界面抵抗が小さいほど除算値Qが小さい(界面抵抗が大きいほど除算値Qが大きい)ことが理解される。そして、このことから、例えば、複数の良品の正極100aについて測定した電位Vから算出した各除算値Qの最大値を規定値kとして予め規定し、判定対象の電極100における除算値Qがこの規定値kよりも小さいか否か(若しくは、規定値k以下か否か)を判定することで、界面抵抗の大きさが良否判定基準を満たすか否かを判定することができることが理解される。   Here, a division value Q obtained by dividing the potential difference M2 at the measurement target site Pv2 when the interface resistance of the interface 103 is large by the potential difference M1 at the measurement target site Pv1 (hereinafter, a division value Q when the interface resistance of the interface 103 is large is expressed as “ Divided value Q1 ”) and the divided value Q obtained by dividing the potential difference M2 at the measurement target site Pv2 when the interface resistance of the interface 103 is small by the potential difference M1 at the measurement target site Pv1 (hereinafter, the interface resistance of the interface 103 is When the division value Q when it is small is also referred to as “division value Q2”, it is clear from FIGS. 5 and 6 that the division value Q1 is larger than the division value Q2. From this, it is understood that the division value Q is smaller as the interface resistance of the interface 103 is smaller (the division value Q is larger as the interface resistance is larger). From this, for example, the maximum value of each divided value Q calculated from the potential V measured for a plurality of non-defective positive electrodes 100a is defined in advance as a defined value k, and the divided value Q in the determination target electrode 100 is defined as this defined value. It is understood that it can be determined whether or not the magnitude of the interface resistance satisfies the pass / fail criterion by determining whether or not it is smaller than the value k (or whether or not it is equal to or less than the specified value k).

プローブユニット13は、複数のプローブ31と、プローブ31を支持する支持部32とを備えて構成されている。この場合、プローブユニット13は、図3に示すように、一例として、各信号入力部位Ps1,Ps2に接触させる2本のプローブ31、および各測定対象部位Pv1〜Pv3に接触させる3本のプローブ31の合計5本のプローブ31を備えている。   The probe unit 13 includes a plurality of probes 31 and a support portion 32 that supports the probes 31. In this case, as shown in FIG. 3, the probe unit 13 includes, as an example, two probes 31 that are brought into contact with the signal input parts Ps1 and Ps2, and three probes 31 that are brought into contact with the measurement target parts Pv1 to Pv3. A total of five probes 31 are provided.

記憶部14は、処理部12の制御に従い、測定部11によって測定された電位Vを記憶する。また、記憶部14は、処理部12によって実行される判定処理50において用いられる予め規定された規定値kを記憶する。この場合、良品の電極100に対して上記した電位測定処理を実行して測定した各電位Vから求めた除算値Q(M2/M1)の値を規定値kとして規定することもできるし、電極100を構成する金属箔101および活物質層102の物性を示すパラメータを用いて計算式から計算した値を規定値kとして規定することもできる。   The storage unit 14 stores the potential V measured by the measurement unit 11 according to the control of the processing unit 12. In addition, the storage unit 14 stores a predefined value k that is used in the determination process 50 executed by the processing unit 12. In this case, the value of the division value Q (M2 / M1) obtained from each potential V measured by performing the above-described potential measurement process on the non-defective electrode 100 can be defined as the defined value k. The value calculated from the calculation formula using the parameters indicating the physical properties of the metal foil 101 and the active material layer 102 constituting 100 can be specified as the specified value k.

表示部15は、処理部12の制御に従い、判定処理50において処理部12によって行われる界面抵抗の大きさが良否判定基準を満たすか否かの判定結果を表示する。   The display unit 15 displays a determination result as to whether or not the magnitude of the interface resistance performed by the processing unit 12 in the determination processing 50 satisfies the pass / fail criterion according to the control of the processing unit 12.

次に、判定装置1を用いて、図2に示すリチウムイオン電池200の各電極100を構成する構成体としての金属箔101と活物質層102との界面103の界面抵抗の大きさが予め決められた基準値よりも小さいか否か(言い換えれば、大きいか否か)を判定する判定方法について説明する。なお、複数の良品の正極100aについて測定した各測定対象部位Pvにおける電位Vから算出した各除算値Qの最大値が規定値kとして規定されて、記憶部14に記憶されているものとする。   Next, using the determination device 1, the magnitude of the interface resistance of the interface 103 between the metal foil 101 and the active material layer 102 that constitutes each electrode 100 of the lithium ion battery 200 shown in FIG. A determination method for determining whether or not (in other words, whether or not it is larger) than the given reference value will be described. It is assumed that the maximum value of each division value Q calculated from the potential V at each measurement target site Pv measured for a plurality of non-defective positive electrodes 100a is defined as the defined value k and stored in the storage unit 14.

まず、正極100aを判定対象とするときには、図3に示すように、正極100aを載置台300の上に載置する。この場合、正極100aを構成する各構成体のうちの抵抗率が高い方の構成体である活物質層102aを上向きにした状態で載置する。次いで、各プローブ31の先端部を下向きにした状態のプローブユニット13を正極100aにおける活物質層102aの上に載置する。この際に、同図に示すように、活物質層102aの表面Sにおける信号入力部位Ps1,Ps2および測定対象部位Pv1〜Pv3に各プローブ31の先端部がそれぞれ接触する。   First, when the positive electrode 100a is a determination target, the positive electrode 100a is mounted on the mounting table 300 as shown in FIG. In this case, the active material layer 102a, which is the component having the higher resistivity among the components constituting the positive electrode 100a, is placed in an upward state. Next, the probe unit 13 with the tip of each probe 31 facing downward is placed on the active material layer 102a in the positive electrode 100a. At this time, as shown in the figure, the tips of the probes 31 are in contact with the signal input portions Ps1 and Ps2 and the measurement target portions Pv1 to Pv3 on the surface S of the active material layer 102a.

続いて、図外の操作部を操作して測定の開始を指示する。これに応じて、処理部12が、図7に示す判定処理50を実行する。この判定処理50では、処理部12は、測定部11に対して電位測定処理の実行を指示する(ステップ51)。   Subsequently, the start of measurement is instructed by operating the operation unit (not shown). In response to this, the processing unit 12 executes the determination process 50 shown in FIG. In the determination process 50, the processing unit 12 instructs the measurement unit 11 to execute a potential measurement process (step 51).

この電位測定処理では、測定部11は、図外の電源部から測定用の電気信号(一例として、直流定電流)を出力させる。この際に、プローブユニット13のプローブ31を介して電気信号が正極100aの活物質層102aの表面Sにおける信号入力部位Ps1,Ps2間に供給される。次いで、測定部11は、表面Sにおける各測定対象部位Pv1〜Pv3の電位V(信号入力部位Ps2と各測定対象部位Pvとの間の電位差)を電圧検出部によって検出し、その電位V(電位Vを示すデータ)を処理部12に出力する。続いて、処理部12は、電位Vを記憶部14に記憶させる。   In this potential measurement process, the measurement unit 11 outputs an electric signal for measurement (DC constant current as an example) from a power supply unit (not shown). At this time, an electrical signal is supplied between the signal input portions Ps1 and Ps2 on the surface S of the active material layer 102a of the positive electrode 100a through the probe 31 of the probe unit 13. Next, the measurement unit 11 detects the potential V of each measurement target site Pv1 to Pv3 on the surface S (potential difference between the signal input site Ps2 and each measurement target site Pv) by the voltage detection unit, and the potential V (potential) Data indicating V) is output to the processing unit 12. Subsequently, the processing unit 12 stores the potential V in the storage unit 14.

次いで、処理部12は、測定対象部位Pv3(基準部位)における電位V3と測定対象部位Pv1における電位V1との電位差M1、および測定対象部位Pv3における電位V3と測定対象部位Pv2における電位V2との電位差M2を算出する(ステップ52)。   Next, the processing unit 12 determines the potential difference M1 between the potential V3 at the measurement target site Pv3 (reference site) and the potential V1 at the measurement target site Pv1, and the potential difference between the potential V3 at the measurement target site Pv3 and the potential V2 at the measurement target site Pv2. M2 is calculated (step 52).

続いて、処理部12は、測定対象部位Pv2(測定対象部位Pv3を除く各測定対象部位Pvのうちの測定対象部位Pv3との間の離間距離Dcが短い測定対象部位Pv)における電位差M2を、測定対象部位Pv1(測定対象部位Pv3を除く各測定対象部位Pvのうちの測定対象部位Pv3との間の離間距離Dcが長い測定対象部位Pv)における電位差M1で除算した除算値Qを求める。次いで、処理部12は、記憶部14から規定値kを読み出して、除算値Qが規定値kよりも小さいか否かを判別する(ステップ53)。   Subsequently, the processing unit 12 calculates the potential difference M2 in the measurement target part Pv2 (measurement target part Pv having a short separation distance Dc from the measurement target part Pv3 among the measurement target parts Pv excluding the measurement target part Pv3). A division value Q obtained by dividing by the potential difference M1 at the measurement target part Pv1 (measurement target part Pv having a long separation distance Dc from the measurement target part Pv3 among the measurement target parts Pv excluding the measurement target part Pv3) is obtained. Next, the processing unit 12 reads the specified value k from the storage unit 14 and determines whether or not the division value Q is smaller than the specified value k (step 53).

ここで、上記したように、界面103の界面抵抗が小さいほど除算値Qが小さい(界面抵抗が大きいほど除算値Qが大きい)ため、判定対象の正極100aについての除算値Qが、良品の正極100aについて測定した電位Vから算出した除算値Qとしての規定値kよりも小さいとき(予め規定された規定条件を満たしたとき)には、判定対象の正極100aの界面抵抗の大きさが良品の正極100aの界面抵抗の大きさよりも小さいとの良否判定基準を満たしている。このため、処理部12は、ステップ53において、除算値Qが規定値kよりも小さい(Q<kである)と判別したときには、判定対象の正極100aの界面抵抗の大きさが良否判定基準を満たしている(具体的には、判定対象の正極100aの界面抵抗が良品の正極100aの界面抵抗よりも小さいかまたは同程度)と判定する(ステップ54)。続いて、処理部12は、判定結果を表示部15に表示させて(ステップ56)、この判定処理50を終了する。   Here, as described above, the smaller the interface resistance of the interface 103, the smaller the divided value Q (the larger the interface resistance, the larger the divided value Q). Therefore, the divided value Q for the positive electrode 100a to be determined is When the prescribed value k as the division value Q calculated from the potential V measured with respect to 100a is smaller (when the prescribed condition defined in advance is satisfied), the magnitude of the interface resistance of the positive electrode 100a to be judged is good. Satisfies the quality criterion of being smaller than the interface resistance of the positive electrode 100a. For this reason, when the processing unit 12 determines in step 53 that the division value Q is smaller than the specified value k (Q <k), the magnitude of the interface resistance of the positive electrode 100a to be determined satisfies the pass / fail criterion. It is determined that it satisfies the condition (specifically, the interface resistance of the positive electrode 100a to be determined is smaller than or equal to the interface resistance of the non-defective positive electrode 100a) (step 54). Subsequently, the processing unit 12 displays the determination result on the display unit 15 (step 56), and ends the determination processing 50.

一方、上記したステップ53において、判定対象の正極100aについての除算値Qが規定値k以上(Q≧kである)と判別したとき(予め規定された規定条件を満たしていないとき)には、判定対象の正極100aの界面抵抗の大きさが良否判定基準を満たしていない(具体的には、判定対象の正極100aの界面抵抗が良品の正極100aの界面抵抗よりも大きい)と判定する(ステップ55)。次いで、処理部12は、判定結果を表示部15に表示させて(ステップ56)、この判定処理50を終了する。   On the other hand, when it is determined in step 53 described above that the divided value Q for the positive electrode 100a to be determined is equal to or greater than the specified value k (Q ≧ k) (when the specified condition is not satisfied in advance), It is determined that the size of the interface resistance of the positive electrode 100a to be determined does not satisfy the pass / fail criterion (specifically, the interface resistance of the positive electrode 100a to be determined is larger than the interface resistance of the non-defective positive electrode 100a) (step) 55). Next, the processing unit 12 displays the determination result on the display unit 15 (step 56), and ends the determination processing 50.

次に、負極100bを判定対象とするときには、活物質層102bを上向きにした状態の負極100bを載置台300の上に載置する。続いて、正極100aを判定対象とした上記の手順と同様にして、負極100bの上にプローブユニット13を載置し、次いで、図外の操作部を操作して測定の開始を指示する。これに応じて、処理部12が、上記した判定処理50を実行する。この際に、処理部12は、上記した各処理(各ステップ)を実行して負極100bにおける界面抵抗の大きさが良否判定基準を満たすか否かを判定し、その結果を表示部15に表示させる。   Next, when the negative electrode 100b is a determination target, the negative electrode 100b with the active material layer 102b facing upward is placed on the mounting table 300. Subsequently, the probe unit 13 is placed on the negative electrode 100b in the same manner as described above for the positive electrode 100a as a determination target, and then the start of measurement is instructed by operating the operation unit (not shown). In response to this, the processing unit 12 executes the determination process 50 described above. At this time, the processing unit 12 determines whether or not the magnitude of the interface resistance in the negative electrode 100b satisfies the pass / fail judgment criteria by executing the above-described processing (each step), and displays the result on the display unit 15. Let

このように、この判定装置1および判定方法では、電極100を構成する抵抗率が高い構成体としての活物質層102の表面Sにおける2つの信号入力部位Psに電気信号を供給した状態で一方の信号入力部位Psとの間の離間距離Daが互いに異なる3つの測定対象部位Pvにおける電位Vを測定し、一方の信号入力部位Psとの間の離間距離Daが最も長い測定対象部位Pvにおける電位Vと他の測定対象部位Pvにおける電位Vとの電位差M1,M2を算出し、電位差M1,M2同士を比較した比較結果が規定条件を満たしたときに界面抵抗の大きさが良否判定基準を満たすと判定する。このため、この判定装置1および判定方法によれば、従来の測定方法では測定が困難な電極100の界面抵抗の測定値を用いることなく(界面抵抗の値を直接測定することなく)、直接測定することが可能な表面Sにおける電位Vを用いて、電極100における界面抵抗の大きさが良否判定基準を満たすか否か(判定対象の電極100における界面抵抗の大きさが良品の電極100における界面抵抗の大きさ未満かまたは同程度であるか否か)を正確に判定することができる。このため、この判定装置1および判定方法によれば、煩雑で時間を要する作業を伴う剥離試験や碁盤目試験とは異なり、金属箔101と活物質層102との密着状態の良否を、界面抵抗の大きさが良否判定基準を満たすか否かの判定結果に基づいて短時間で正確かつ容易に判定することができる。   As described above, in the determination apparatus 1 and the determination method, one electric signal is supplied to the two signal input portions Ps on the surface S of the active material layer 102 as a structure having a high resistivity constituting the electrode 100. The potential V at three measurement target parts Pv having different separation distances Da from the signal input part Ps is measured, and the potential V at the measurement target part Pv having the longest separation distance Da from one signal input part Ps is measured. And when the comparison result of comparing the potential differences M1 and M2 satisfies the specified condition, the interface resistance magnitude satisfies the pass / fail judgment criteria. judge. Therefore, according to the determination apparatus 1 and the determination method, the measurement is performed directly without using the measurement value of the interface resistance of the electrode 100 that is difficult to measure by the conventional measurement method (without directly measuring the value of the interface resistance). Whether or not the magnitude of the interface resistance in the electrode 100 satisfies the pass / fail judgment standard using the potential V on the surface S that can be determined (the interface resistance in the electrode 100 that is judged to be good is the magnitude of the interface resistance in the electrode 100 to be judged) It is possible to accurately determine whether the resistance is less than or equal to the magnitude. For this reason, according to the determination apparatus 1 and the determination method, unlike the peeling test and the cross-cut test that involve complicated and time-consuming work, whether or not the adhesion state between the metal foil 101 and the active material layer 102 is good or bad is determined. Can be determined accurately and easily in a short time based on the determination result of whether or not the size satisfies the pass / fail criterion.

また、この判定装置1および判定方法では、隣接する測定対象部位Pv同士の間隔Dbが互いに等しくなるように各測定対象部位Pvが設定されている。この場合、例えば、測定対象部位Pv1,Pv2の間隔Db1が長く、測定対象部位Pv2,Pv3の間隔Db2が短くなるように設定されているときには、界面103の界面抵抗が小さい良品の電極100における比較結果としての除算値Q(M2/M1)と、界面103の界面抵抗が大きい電極100における比較結果としての除算値Q(M2/M1)との差が生じ難くなる。また、例えば、測定対象部位Pv1,Pv2の間隔Db1が短く、測定対象部位Pv2,Pv3の間隔Db2が長くなるように設定されているときにも、界面103の界面抵抗が小さい良品の電極100における除算値Q(比較結果)と、界面103の界面抵抗が大きい電極100における除算値Q(比較結果)との差が生じ難くなる。これに対して、隣接する測定対象部位Pv同士の間隔Dbが互いに等しくなるように設定したときには、良品の電極100における除算値Q(比較結果)と、界面103の界面抵抗が大きい電極100における除算値Q(比較結果)との差が明確に生じる。このため、この判定装置1および判定方法によれば、電極100における界面抵抗の大きさが良否判定基準を満たすか否かの判定をより正確に行うことができる結果、金属箔101と活物質層102との密着状態の良否をより正確に判定することができる。   In the determination apparatus 1 and the determination method, each measurement target site Pv is set so that the interval Db between the adjacent measurement target sites Pv is equal to each other. In this case, for example, when the distance Db1 between the measurement target parts Pv1 and Pv2 is set long and the distance Db2 between the measurement target parts Pv2 and Pv3 is set short, the comparison is performed on the non-defective electrode 100 having a low interface resistance at the interface 103. A difference between the resulting divided value Q (M2 / M1) and the divided value Q (M2 / M1) as a comparison result in the electrode 100 having a large interface resistance at the interface 103 is less likely to occur. Further, for example, even when the distance Db1 between the measurement target parts Pv1 and Pv2 is short and the distance Db2 between the measurement target parts Pv2 and Pv3 is set to be long, the non-defective electrode 100 in which the interface resistance of the interface 103 is small is set. A difference between the division value Q (comparison result) and the division value Q (comparison result) at the electrode 100 having a large interface resistance at the interface 103 is less likely to occur. On the other hand, when the distances Db between the adjacent measurement target parts Pv are set to be equal to each other, the division value Q (comparison result) in the non-defective electrode 100 and the division in the electrode 100 where the interface resistance of the interface 103 is large. A difference from the value Q (comparison result) clearly occurs. For this reason, according to the determination apparatus 1 and the determination method, it is possible to more accurately determine whether the magnitude of the interface resistance in the electrode 100 satisfies the pass / fail criterion, and as a result, the metal foil 101 and the active material layer The quality of the close contact state with 102 can be determined more accurately.

また、この判定装置1および判定方法によれば、信号入力部位Ps1,Ps2を結ぶ線分La上に各測定対象部位Pvを設定したことにより、例えば、線分La以外の直線上に各測定対象部位Pvを設定する構成および方法や、各測定対象部位Pvが1つの直線上に位置していない構成および方法と比較して、信号入力部位Ps1からの離間距離Daに応じた電位Vの変化が明確に表れる。このため、この判定装置1および判定方法によれば、良品の電極100における除算値Qと、界面103の界面抵抗が大きい電極100における除算値Qとの差がより確実に生じる結果、電極100における界面抵抗の大きさが良否判定基準を満たすか否かの判定をさらに正確に行うことができる。   Moreover, according to this determination apparatus 1 and the determination method, by setting each measurement target part Pv on the line segment La connecting the signal input parts Ps1 and Ps2, for example, each measurement target on a straight line other than the line segment La Compared to the configuration and method for setting the site Pv and the configuration and method for not measuring each measurement target site Pv on one straight line, the potential V changes according to the separation distance Da from the signal input site Ps1. It appears clearly. Therefore, according to the determination apparatus 1 and the determination method, the difference between the division value Q in the non-defective electrode 100 and the division value Q in the electrode 100 having a large interface resistance of the interface 103 is more reliably generated. It is possible to more accurately determine whether the magnitude of the interface resistance satisfies the pass / fail criterion.

また、この判定装置1および判定方法では、基準部位としての測定対象部位Pvが線分Laの中心部に設定されている。この場合、各測定対象部位Pvを線分La上に設定したときには、線分Laの中心部に近い測定対象部位Pvほど、信号入力部位Ps1から測定対象部位Pvまでの離間距離Daの変化に対する測定対象部位Pvにおける電位Vの変化の比率が小さくなる。また、この特性は、界面抵抗が大きい電極100よりも界面抵抗が小さい電極100の方が顕著である。このため、この判定装置1および判定方法によれば、界面103の界面抵抗が小さい良品の電極100における比較結果としての除算値Q(M2/M1)と、界面103の界面抵抗が大きい電極100における比較結果としての除算値Q(M2/M1)との差がさらに明確に生じる結果、電極100における界面抵抗の大きさが良否判定基準を満たすか否かの判定を一層正確に行うことができる。   In the determination apparatus 1 and the determination method, the measurement target part Pv as the reference part is set at the center of the line segment La. In this case, when each measurement target part Pv is set on the line segment La, the measurement target part Pv closer to the center of the line segment La is measured with respect to the change in the separation distance Da from the signal input part Ps1 to the measurement target part Pv. The change rate of the potential V at the target site Pv is reduced. Further, this characteristic is more remarkable in the electrode 100 having a low interface resistance than in the electrode 100 having a high interface resistance. Therefore, according to the determination apparatus 1 and the determination method, the division value Q (M2 / M1) as a comparison result in the non-defective electrode 100 having the small interface resistance of the interface 103 and the electrode 100 having the large interface resistance of the interface 103 are used. As a result of the difference between the division value Q (M2 / M1) as the comparison result more clearly, it is possible to more accurately determine whether the magnitude of the interface resistance in the electrode 100 satisfies the pass / fail criterion.

また、この判定装置1および判定方法では、基準部位としての測定対象部位Pv3との間の離間距離Dcが短い測定対象部位Pv2における電位差M2を、測定対象部位Pv3との間の離間距離Dcが長い測定対象部位Pv1における電位差M1で除算した除算値Qが規定値kよりも小さいときに規定条件を満たしたとする。このため、この判定装置1および判定方法によれば、簡易な演算処理で判定処理を行うことができるため、界面抵抗の大きさが良否判定基準を満たすか否かの判定を短時間で行うことができる。   Further, in the determination apparatus 1 and the determination method, the potential difference M2 in the measurement target part Pv2 having a short separation distance Dc from the measurement target part Pv3 as the reference part is long, and the separation distance Dc from the measurement target part Pv3 is long. It is assumed that the specified condition is satisfied when the divided value Q divided by the potential difference M1 in the measurement target part Pv1 is smaller than the specified value k. For this reason, according to the determination apparatus 1 and the determination method, since the determination process can be performed with a simple arithmetic process, it is determined in a short time whether or not the magnitude of the interface resistance satisfies the pass / fail criterion. Can do.

なお、判定装置、判定方法および判定対象は、上記の構成、方法および判定対象に限定されない。例えば、上記の例では、膜状または板状の一例としての膜状に形成された金属箔101を有する電極100を判定対象としているが、膜状の金属箔101に代えて、板状の金属板を用いた電極を判定対象とすることもできる。また、上記の例では、膜状または板状の一例としての膜状に形成された活物質層102を有する電極100を判定対象としているが、膜状の活物質層102に代えて、板状の活物質層を有する電極を判定対象とすることもできる。また、上記したリチウムイオン電池200の電極100以外に、抵抗率が互いに異なる板状または膜状の2つの構成体が積層された各種の積層体を判定対象とすることができる。   Note that the determination device, the determination method, and the determination target are not limited to the above configuration, method, and determination target. For example, in the above example, the electrode 100 having the metal foil 101 formed in a film shape as an example of a film shape or a plate shape is a determination target, but instead of the film metal foil 101, a plate-shaped metal is used. An electrode using a plate can also be a determination target. Further, in the above example, the electrode 100 having the active material layer 102 formed in a film shape as an example of a film shape or a plate shape is a determination target, but instead of the film active material layer 102, a plate shape An electrode having an active material layer can be determined. Further, in addition to the electrode 100 of the lithium ion battery 200 described above, various laminates in which two plate-like or membrane-like constituents having different resistivity are laminated can be determined.

また、判定処理50において、除算値Qが規定値kよりも小さいと判別したとき(各電位差同士の比較結果が規定条件を満たしたとき)に界面抵抗の大きさが良否判定基準を満たしていると判定する処理(上記したステップ53,54の処理)、および除算値Qが規定値k以上であると判別したとき(各電位差同士の比較結果が規定条件を満たさないとき)に界面抵抗の大きさが良否判定基準を満たしていないと判定する処理(上記したステップ53,55の処理)の双方を実行する例について上記したが、これら2つの処理の一方のみを実行する構成および方法を採用することもできる。   Further, in the determination process 50, when it is determined that the division value Q is smaller than the specified value k (when the comparison result of each potential difference satisfies the specified condition), the magnitude of the interface resistance satisfies the pass / fail criterion. The interface resistance is large when it is determined that the division value Q is equal to or greater than the specified value k (when the comparison result between the potential differences does not satisfy the specified condition). As described above, the example of executing both of the processes for determining that the quality does not satisfy the pass / fail judgment criteria (the processes of steps 53 and 55 described above) is adopted, but a configuration and a method for executing only one of these two processes are employed. You can also.

また、複数の良品の正極100aについて測定した電位Vから算出した各除算値Qの最大値を規定値kとして規定した例について上記したが、各除算値Qの最小値や各除算値Qの平均値を規定値kとして規定することもできる。また、1つの良品の正極100aについて測定した電位Vから算出した除算値Qを規定値kとして規定することもできる。さらに、複数の良品の正極100aについて算出した除算値Qの最大値、最小値および平均値、並びに1つの良品の正極100aについて算出した除算値Qのいずれか1つ以上に基づいて任意の値を規定値kとして規定することもできる。   Further, the example in which the maximum value of each divided value Q calculated from the potential V measured for a plurality of non-defective positive electrodes 100a is defined as the defined value k has been described above, but the minimum value of each divided value Q and the average of each divided value Q are described above. The value can also be specified as a specified value k. The division value Q calculated from the potential V measured for one good positive electrode 100a can also be defined as the defined value k. Furthermore, an arbitrary value is set based on any one or more of the maximum value, the minimum value, and the average value of the division value Q calculated for the plurality of non-defective positive electrodes 100a and the division value Q calculated for one positive electrode 100a. It can also be specified as a specified value k.

また、電位差M2を電位差M1で除算した除算値Qが規定値k未満のときに規定条件を満たしたとする例について上記したが、この判定方法は一例であって、他の判定方法を採用することもできる。例えば、除算値Qが規定値k以下のときに規定条件を満たしたとする構成および方法を採用することもできる。また、電位差M1を電位差M2で除算した除算値が規定値kの逆数以上のとき(または、逆数を超えるとき)に規定条件を満たしたとする構成および方法を採用することもできる。さらに、電位差M1から電位差M2を差し引いた差分値が予め規定された規定値以上のとき(または、規定値を超えるとき)に規定条件を満たしたとする構成および方法や、電位差M2から電位差M1を差し引いた差分値が予め規定された規定値未満のとき(または、規定値以下のとき)に規定条件を満たしたとする構成および方法を採用することもできる。   Further, the example in which the specified condition is satisfied when the divided value Q obtained by dividing the potential difference M2 by the potential difference M1 is less than the specified value k has been described above. However, this determination method is an example, and other determination methods should be adopted. You can also. For example, it is possible to adopt a configuration and a method that satisfy the specified condition when the division value Q is equal to or less than the specified value k. Further, it is possible to adopt a configuration and a method in which the specified condition is satisfied when the divided value obtained by dividing the potential difference M1 by the potential difference M2 is equal to or larger than the reciprocal of the specified value k (or exceeds the reciprocal). Further, a configuration and method in which the prescribed condition is satisfied when the difference value obtained by subtracting the potential difference M2 from the potential difference M1 is equal to or greater than a prescribed value (or exceeds the prescribed value), or the potential difference M1 is subtracted from the potential difference M2. It is also possible to adopt a configuration and method in which the prescribed condition is satisfied when the difference value is less than the prescribed value (or less than the prescribed value).

また、3つの測定対象部位Pvを設定する例について上記したが、4つ以上の測定対象部位Pvを設定して、各測定対象部位Pvにおける電
位差M同士の比較結果が規定条件を満たすか否かに基づいて界面抵抗の大きさが基準を満たすか否かを判定する構成および方法を採用することもできる。
In addition, although an example in which three measurement target parts Pv are set has been described above, whether or not four or more measurement target parts Pv are set and the comparison result between the potential differences M in each measurement target part Pv satisfies a specified condition. It is also possible to employ a configuration and method for determining whether the magnitude of the interface resistance satisfies the standard based on the above.

また、信号入力部位Ps1,Ps2を結ぶ線分La上に各測定対象部位Pvを設定した例について上記したが、例えば、信号入力部位Ps1を通る直線であって、線分La以外の直線上に各測定対象部位Pvを設定する構成および方法を採用することもできる。また、各測定対象部位Pvが1つの直線上に設定されていない構成および方法を採用することもできる。   In addition, the example in which each measurement target part Pv is set on the line segment La connecting the signal input parts Ps1 and Ps2 has been described above. For example, a straight line passing through the signal input part Ps1 and on a straight line other than the line segment La A configuration and a method for setting each measurement target site Pv can also be adopted. In addition, a configuration and method in which each measurement target part Pv is not set on one straight line can be adopted.

また、ソース側(正極側)の信号入力部位Ps1を、測定対象部位Pvを設定する際の離間距離Daの基点とする(いずれか一方の信号入力部位Psとする)例について上記したが、ドレイン側(負極側)の信号入力部位Ps2を基点とする(いずれか一方の信号入力部位Psとする)構成および方法を採用することもできる。   Moreover, although the signal input part Ps1 on the source side (positive electrode side) is the base point of the separation distance Da when setting the measurement target part Pv (described as one of the signal input parts Ps), the drain is described above. It is also possible to adopt a configuration and method using the signal input portion Ps2 on the side (negative electrode side) as a base point (set as one of the signal input portions Ps).

また、測定用の電気信号として直流定電流を用いる例について上記したが、電流測定部を備えて電流値を測定可能な構成および方法を採用するときには、直流定電流に代えて直流電流を用いることもできる。また、直流電流に代えて、交流電流(一例として、交流定電流)を用いる構成および方法を採用することもできる。   In addition, although an example using a DC constant current as an electrical signal for measurement has been described above, when a configuration and method that includes a current measurement unit and can measure a current value are used, a DC current is used instead of the DC constant current. You can also. Moreover, it can replace with a direct current and the structure and method using an alternating current (an alternating current constant current as an example) can also be employ | adopted.

1 判定装置
11 測定部
12 処理部
100a 正極
100b 負極
101a,101b 金属箔
102a,102b 活物質層
Da1〜Da3,Dc1,Dc2 離間距離
Db1,Db2 間隔
k 規定値
La 線分
Ps1,Ps2 信号入力部位
Pv1〜Pv3 測定対象部位
Q,Q1,Q2 除算値
DESCRIPTION OF SYMBOLS 1 Determination apparatus 11 Measurement part 12 Processing part 100a Positive electrode 100b Negative electrode 101a, 101b Metal foil 102a, 102b Active material layer Da1-Da3, Dc1, Dc2 Separation distance Db1, Db2 Interval k Specified value La Line segment Ps1, Ps2 Signal input part Pv1 ~ Pv3 measurement target part Q, Q1, Q2 Divide value

Claims (6)

抵抗率が互いに異なる板状または膜状の2つの構成体が積層された積層体における当該各構成体間の界面の界面抵抗の大きさが予め決められた基準を満たすか否かを判定可能に構成され、
前記積層体を構成する前記各構成体のうちの抵抗率が高い構成体の表面における2つの信号入力部位に電気信号を供給した状態で、前記各信号入力部位を結ぶ線分に直交しかつ前記各信号入力部位を通る2本の直線で挟んで区画した前記表面上の区画領域内の部位であって当該各信号入力部位のいずれか一方との間の離間距離が互いに異なる少なくとも3つの測定対象部位における電位を測定する電位測定処理を実行する測定部と、
前記電位測定処理によって測定された前記各電位に基づいて前記界面抵抗の大きさが前記基準を満たすか否かを判定する判定処理を実行する処理部とを備え、
前記処理部は、前記判定処理において、前記いずれか一方の信号入力部位との間の前記離間距離が最も長い前記測定対象部位を基準部位として当該基準部位における前記電位と当該基準部位を除く他の前記測定対象部位における前記電位との電位差をそれぞれ算出し、当該各電位差同士の比較結果が予め規定された規定条件を満たしたときに前記界面抵抗の大きさが前記基準を満たすと判定する処理、および前記規定条件を満たさないときに前記界面抵抗の大きさが前記基準を満たさないと判定する処理の少なくとも一方を実行する判定装置。
It is possible to determine whether the magnitude of the interface resistance at the interface between each component in a laminate in which two plate-like or film-like components having different resistivity are laminated satisfies a predetermined criterion. Configured,
In a state in which an electric signal is supplied to two signal input portions on the surface of the constituent body having a high resistivity among the respective constituent members constituting the laminated body, and orthogonal to a line segment connecting the signal input portions, and At least three objects to be measured, each of which is a part in the partitioned region on the surface that is partitioned by two straight lines passing through each signal input part, and different from each other in distance from each of the signal input parts A measurement unit for performing a potential measurement process for measuring a potential at a site;
A processing unit that executes a determination process for determining whether the magnitude of the interface resistance satisfies the reference based on each potential measured by the potential measurement process,
In the determination process, the processing unit uses the measurement target part having the longest separation distance from any one of the signal input parts as a reference part, and removes the potential in the reference part and the reference part. A process of calculating a potential difference with the potential at the measurement target part, and determining that the magnitude of the interface resistance satisfies the criterion when a comparison result between the potential differences satisfies a predetermined condition. And a determination apparatus that executes at least one of processes for determining that the magnitude of the interface resistance does not satisfy the reference when the prescribed condition is not satisfied.
前記各測定対象部位は、隣接する測定対象部位同士の間隔が互いに等しくなるように設定されている請求項1記載の判定装置。   The determination apparatus according to claim 1, wherein each measurement target part is set so that intervals between adjacent measurement target parts are equal to each other. 前記各測定対象部位は、前記各信号入力部位を結ぶ前記線分上に設定されている請求項1または2記載の判定装置。   The determination apparatus according to claim 1, wherein each measurement target part is set on the line segment connecting the signal input parts. 前記基準部位は、前記線分の中心部に設定されている請求項3記載の判定装置。   The determination apparatus according to claim 3, wherein the reference portion is set at a central portion of the line segment. 前記処理部は、前記基準部位を除く他の2つの前記測定対象部位のうちの前記基準部位との間の離間距離が短い一方の測定対象部位における前記電位差を、当該2つの測定対象部位のうちの他方の測定対象部位における前記電位差で除算し、前記比較結果としての当該除算した除算値が予め決められた規定値よりも小さいときに前記規定条件を満たしたとする請求項1から4のいずれかに記載の判定装置。   The processing unit calculates the potential difference in one measurement target part having a short separation distance from the reference part among the two other measurement target parts other than the reference part, of the two measurement target parts. 5. The division according to claim 1, wherein the prescribed condition is satisfied when the divided value obtained as a result of the comparison is smaller than a predetermined prescribed value. Determining device according to. 抵抗率が互いに異なる板状または膜状の2つの構成体が積層された積層体における当該各構成体間の界面の界面抵抗の大きさが予め決められた基準を満たすか否かを判定する判定方法であって、
前記積層体を構成する前記各構成体のうちの抵抗率が高い構成体の表面における2つの信号入力部位に電気信号を供給した状態で、前記各信号入力部位を結ぶ線分に直交しかつ前記各信号入力部位を通る2本の直線で挟んで区画した前記表面上の区画領域内の部位であって当該各信号入力部位のいずれか一方との間の離間距離が互いに異なる少なくとも3つの測定対象部位における電位を測定する電位測定処理を実行し、
前記電位測定処理によって測定した前記各電位に基づいて前記界面抵抗の大きさが前記基準を満たすか否かを判定する判定処理を実行し、
前記判定処理において、前記いずれか一方の信号入力部位との間の前記離間距離が最も長い前記測定対象部位を基準部位として当該基準部位における前記電位と当該基準部位を除く他の前記測定対象部位における前記電位との電位差をそれぞれ算出し、当該各電位差同士の比較結果が予め規定された規定条件を満たしたときに前記界面抵抗の大きさが前記基準を満たすと判定する処理、および前記規定条件を満たさないときに前記界面抵抗の大きさが前記基準を満たさないと判定する処理の少なくとも一方を実行する判定方法。
Judgment to determine whether or not the size of the interface resistance of each interface in a laminate in which two plate-like or film-like components having different resistivity are laminated satisfies a predetermined criterion A method,
In a state in which an electric signal is supplied to two signal input portions on the surface of the constituent body having a high resistivity among the respective constituent members constituting the laminated body, and orthogonal to a line segment connecting the signal input portions, and At least three objects to be measured, each of which is a part in the partitioned region on the surface that is partitioned by two straight lines passing through each signal input part, and different from each other in distance from each of the signal input parts Execute the potential measurement process to measure the potential at the site,
Performing a determination process for determining whether or not the magnitude of the interface resistance satisfies the reference based on each potential measured by the potential measurement process;
In the determination process, with the measurement target part having the longest separation distance from any one of the signal input parts as a reference part, the potential in the reference part and the other measurement target parts excluding the reference part Calculating a potential difference from each of the potentials, and determining that the magnitude of the interface resistance satisfies the criterion when a comparison result between the potential differences satisfies a predefined regulation condition; and the regulation condition A determination method for executing at least one of processes for determining that the magnitude of the interface resistance does not satisfy the reference when not satisfied.
JP2014089027A 2014-04-23 2014-04-23 Determination apparatus and determination method Expired - Fee Related JP6210929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014089027A JP6210929B2 (en) 2014-04-23 2014-04-23 Determination apparatus and determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014089027A JP6210929B2 (en) 2014-04-23 2014-04-23 Determination apparatus and determination method

Publications (2)

Publication Number Publication Date
JP2015206754A true JP2015206754A (en) 2015-11-19
JP6210929B2 JP6210929B2 (en) 2017-10-11

Family

ID=54603636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014089027A Expired - Fee Related JP6210929B2 (en) 2014-04-23 2014-04-23 Determination apparatus and determination method

Country Status (1)

Country Link
JP (1) JP6210929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027311A (en) * 2014-04-14 2016-02-18 日置電機株式会社 Measuring apparatus, and measuring method
WO2018016528A1 (en) * 2016-07-20 2018-01-25 Necエナジーデバイス株式会社 Electrode for lithium ion batteries, and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102663792B1 (en) 2018-10-30 2024-05-03 주식회사 엘지에너지솔루션 Method for Determining Dispersibility of Electrode Material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150162A (en) * 2003-11-11 2005-06-09 Denso Corp Circuit board and method for measuring interface resistance using the same
JP2009229373A (en) * 2008-03-25 2009-10-08 Kri Inc Evaluation implement for electron conductivity
JP2011159639A (en) * 2011-05-23 2011-08-18 Toyota Motor Corp Electrode body, method for manufacturing the same, and lithium ion secondary battery
WO2012070217A1 (en) * 2010-11-22 2012-05-31 パナソニック株式会社 Spin injection electrode production method
JP2013008816A (en) * 2011-06-24 2013-01-10 Panasonic Corp Concentrating solar cell and manufacturing method thereof
US20130035606A1 (en) * 2012-10-09 2013-02-07 Wichner Brian D Multi-Wave Signals to Reduce Effects of Electrode Variability
JP2013109853A (en) * 2011-11-17 2013-06-06 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
JP2013200961A (en) * 2012-03-23 2013-10-03 Toppan Printing Co Ltd All solid lithium ion secondary battery and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150162A (en) * 2003-11-11 2005-06-09 Denso Corp Circuit board and method for measuring interface resistance using the same
JP2009229373A (en) * 2008-03-25 2009-10-08 Kri Inc Evaluation implement for electron conductivity
WO2012070217A1 (en) * 2010-11-22 2012-05-31 パナソニック株式会社 Spin injection electrode production method
JP2011159639A (en) * 2011-05-23 2011-08-18 Toyota Motor Corp Electrode body, method for manufacturing the same, and lithium ion secondary battery
JP2013008816A (en) * 2011-06-24 2013-01-10 Panasonic Corp Concentrating solar cell and manufacturing method thereof
JP2013109853A (en) * 2011-11-17 2013-06-06 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
JP2013200961A (en) * 2012-03-23 2013-10-03 Toppan Printing Co Ltd All solid lithium ion secondary battery and manufacturing method thereof
US20130035606A1 (en) * 2012-10-09 2013-02-07 Wichner Brian D Multi-Wave Signals to Reduce Effects of Electrode Variability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027311A (en) * 2014-04-14 2016-02-18 日置電機株式会社 Measuring apparatus, and measuring method
WO2018016528A1 (en) * 2016-07-20 2018-01-25 Necエナジーデバイス株式会社 Electrode for lithium ion batteries, and lithium ion battery
JPWO2018016528A1 (en) * 2016-07-20 2019-05-09 Necエナジーデバイス株式会社 Lithium-ion battery electrode and lithium-ion battery

Also Published As

Publication number Publication date
JP6210929B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6472664B2 (en) Measuring apparatus and measuring method
JP6210929B2 (en) Determination apparatus and determination method
CN101292166B (en) Insulation inspecting device and insulation inspecting method
JP5723298B2 (en) Method for confirming stability of electrical system and method for controlling electrical system
US20150219728A1 (en) Method and device for measuring various parameters of membrane electrode assembly in fuel cell
CN103376278B (en) A kind of method detecting lithium ion battery tab welding firmness
CN104155524B (en) Detection method for quality of lithium battery pole piece
CN111487553A (en) Method and device for evaluating consistency of battery monomer
JP5288166B2 (en) Battery impedance evaluation method and impedance evaluation apparatus
CN114919255B (en) Flexible copper-clad plate and printed circuit board
JP6559868B2 (en) Measuring apparatus and measuring method
KR20130074761A (en) Inspecting method and inspecting system
JP2016001195A (en) Method and system for inspection
JP5445958B2 (en) Battery evaluation apparatus and battery evaluation method
JP5152629B2 (en) Method and apparatus for measuring impedance of fuel cell
JP5899961B2 (en) Insulation inspection device and insulation inspection method
CN106324349B (en) A kind of electric durability energy test method and system
JP5604839B2 (en) Substrate inspection method and substrate inspection apparatus
JP6358920B2 (en) Contact state determination device, secondary battery inspection device, and contact state determination method
KR20150054295A (en) Scratch test apparatus and adhesion measurement methods of thin film using the same
JP5625941B2 (en) Resistance measuring device and resistance measuring method
CN209027492U (en) A kind of lithium battery plastic stent detection device
JP2005044716A (en) Fuel cell inspection device and method
JP6912725B2 (en) Deformation detection method, deformation detection device and deformation detection program
JP5370717B2 (en) Impedance characteristic evaluation method and impedance characteristic evaluation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6210929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees