JP2015206323A - valve device - Google Patents

valve device Download PDF

Info

Publication number
JP2015206323A
JP2015206323A JP2014088378A JP2014088378A JP2015206323A JP 2015206323 A JP2015206323 A JP 2015206323A JP 2014088378 A JP2014088378 A JP 2014088378A JP 2014088378 A JP2014088378 A JP 2014088378A JP 2015206323 A JP2015206323 A JP 2015206323A
Authority
JP
Japan
Prior art keywords
valve
passage
upstream end
intake
valve passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014088378A
Other languages
Japanese (ja)
Other versions
JP6260430B2 (en
Inventor
徳幸 稲垣
Noriyuki Inagaki
徳幸 稲垣
考司 橋本
Koji Hashimoto
考司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014088378A priority Critical patent/JP6260430B2/en
Priority to DE102015105636.4A priority patent/DE102015105636A1/en
Publication of JP2015206323A publication Critical patent/JP2015206323A/en
Application granted granted Critical
Publication of JP6260430B2 publication Critical patent/JP6260430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1005Details of the flap
    • F02D9/101Special flap shapes, ribs, bores or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Lift Valve (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously achieve reduction of pressure loss and shortening of a valve passage 23.SOLUTION: In an intake throttle valve 2, a valve element 26 is inclined to a flow line direction of a valve passage 23 in fully closed. To improve fuel consumption, an inner diameter dimension Da of an inlet duct 21 is determined to be larger than an inner diameter dimension Dh of the valve passage 23. A tapered face B expanded toward an intake upstream side, is disposed inside of an upstream end of the valve passage 23 to suppress pressure loss due to difference in level X, but the tapered face B is not disposed within an upstream end close-up range β where the valve upstream end α is closed up in fully closed. As the tapered face B is not disposed in the upstream end close-up range β, the close-up in fully closed can be secured even when the valve passage 23 is shortened to the valve upstream end α in fully closed. Further as the tapered face B is disposed in the other range excluding the upstream end close-up range β, increase of pressure loss due to difference in level A can be suppressed. That is, both of the reduction of the pressure loss by the tapered face B and the shortening of the valve passage 23 can be simultaneously achieved.

Description

本発明は、全閉時に弁体がバルブ通路の流線方向(流体の流れ方向に沿うバルブ通路の中心線)に対して傾斜するバルブ装置に関する。   The present invention relates to a valve device in which a valve body is inclined with respect to a flow line direction of a valve passage (a center line of a valve passage along a fluid flow direction) when fully closed.

(従来技術)
全閉時に弁体がバルブ通路の流線方向に対して傾斜するバルブ装置の具体例を、図3を参照して説明する。なお、以下では、後述する実施例と同一機能物に同一符合を付すものである。
図3に示すバルブ装置は、低圧EGR調整弁12(低圧EGRバルブ)と組み合わされる吸気絞り弁2であり、図3(a)に示すように、全閉時に弁体26がバルブ通路23の流線方向に対して傾斜する(例えば、特許文献1参照)。
(Conventional technology)
A specific example of the valve device in which the valve body is inclined with respect to the streamline direction of the valve passage when fully closed will be described with reference to FIG. In addition, below, the same code | symbol is attached | subjected to the same function thing as the Example mentioned later.
The valve device shown in FIG. 3 is an intake throttle valve 2 combined with a low pressure EGR regulating valve 12 (low pressure EGR valve). As shown in FIG. 3A, the valve body 26 flows in the valve passage 23 when fully closed. It inclines with respect to the line direction (for example, refer patent document 1).

(背景技術1)
燃費の向上を行う目的でエンジンに吸い込まれる吸気の圧力損失を低減を図るべく、吸気ダクトの内径を大きく設ける場合がある。即ち、入口ダクト21の下流端の内径寸法Daを、バルブ通路23の流体上流端の内径寸法Dhより大きく設ける場合がある。すると、入口ダクト21とバルブ通路23との接続箇所に径差による段差Aが生じてしまい、段差Aによって圧力損失が大きくなってしまう。
そこで、段差Aによる圧力損失を回避する目的で、バルブ通路23の流体上流端の内側に全周に亘るテーパ面B(符号、図1参照)を設けることが考えられる。
(Background Technology 1)
In order to reduce the pressure loss of the intake air sucked into the engine for the purpose of improving the fuel consumption, the intake duct may have a large inner diameter. That is, the inner diameter dimension Da at the downstream end of the inlet duct 21 may be provided larger than the inner diameter dimension Dh at the fluid upstream end of the valve passage 23. As a result, a step A due to a difference in diameter occurs at the connection portion between the inlet duct 21 and the valve passage 23, and the pressure loss increases due to the step A.
Therefore, in order to avoid pressure loss due to the step A, it is conceivable to provide a tapered surface B (reference numeral, see FIG. 1) over the entire circumference inside the fluid upstream end of the valve passage 23.

(背景技術2)
一方、吸気絞り弁2には、車両搭載上の制約等から小型化の要求がある。具体的には、バルブ通路23の長さ寸法Lの短縮要求があり、図3(a)に示すように、全閉時における弁体26のバルブ上流端αまでバルブ通路23を短縮することが望まれる。
しかし、全閉時のバルブ上流端αまでバルブ通路23を短縮してテーパ面Bを設けると、バルブ上流端αのシール範囲とテーパ面Bが重複し、全閉時の締め切りが成立しなくなってしまう。即ち、全閉時のバルブ上流端αまでバルブ通路23を短縮すると、圧力損失の低減を図るためのテーパ面Bを設けることができなくなってしまう。
(Background Technology 2)
On the other hand, the intake throttle valve 2 is required to be downsized due to restrictions on mounting on the vehicle. Specifically, there is a request for shortening the length dimension L of the valve passage 23, and as shown in FIG. 3A, the valve passage 23 may be shortened to the valve upstream end α of the valve body 26 when fully closed. desired.
However, if the valve passage 23 is shortened to the valve upstream end α when fully closed and the tapered surface B is provided, the sealing range of the valve upstream end α and the taper surface B overlap, and the deadline when fully closed is not established. End up. That is, if the valve passage 23 is shortened to the valve upstream end α when fully closed, the tapered surface B for reducing the pressure loss cannot be provided.

(問題点)
このように、圧力損失の低減のためにテーパ面Bを設けるとバルブ通路23の短縮化が困難になってしまい、バルブ通路23の短縮化のために全閉時のバルブ上流端αまでバルブ通路23を短縮するとテーパ面Bを設けることができなくなるという二律背反が生じてしまう。
(problem)
Thus, if the tapered surface B is provided to reduce the pressure loss, it becomes difficult to shorten the valve passage 23. To shorten the valve passage 23, the valve passage reaches the valve upstream end α when fully closed. If 23 is shortened, a contradiction arises that the tapered surface B cannot be provided.

特開2011−032929号公報JP 2011-032929 A

本発明は、上記問題点に鑑みてなされたものであり、その目的は、「圧力損失の低減のためにテーパ面を設ける」ことと、「バルブ通路(23)の短縮化を図りつつ全閉時の締め切りを確保する」ことの両立が可能なバルブ装置の提供にある。   The present invention has been made in view of the above problems, and its purpose is to “provide a tapered surface for reducing pressure loss” and “fully close the valve passage (23) while shortening it”. It is to provide a valve device capable of coexistence of “securing time deadline”.

バルブ装置は、全閉時に弁体(26)がバルブ通路(23)の流線方向に対して傾斜する。また、入口ダクト(21)の内径寸法(Da)が、バルブ通路(23)の内径寸法(Dh)より大きく設けられる。
そして、本発明は、バルブ通路(23)の流体上流端の内側に、流体上流側に向かって拡径するテーパ面(B)を設ける。ただし、本発明は、バルブ通路(23)の流体上流端の内側であっても、全閉時にバルブ上流端(α)が締め切る上流端締切範囲(β)にはテーパ面(B)を設けないことを特徴としている。
In the valve device, the valve body (26) is inclined with respect to the streamline direction of the valve passage (23) when fully closed. Further, the inner diameter dimension (Da) of the inlet duct (21) is larger than the inner diameter dimension (Dh) of the valve passage (23).
And this invention provides the taper surface (B) which diameter-expands toward the fluid upstream side inside the fluid upstream end of the valve channel | path (23). However, the present invention does not provide a tapered surface (B) in the upstream end closing range (β) that the valve upstream end (α) closes when fully closed, even inside the fluid upstream end of the valve passage (23). It is characterized by that.

バルブ通路(23)の流体上流端のうち、上流端締切範囲(β)にはテーパ面(B)を設けないため、全閉時のバルブ上流端(α)までバルブ通路(23)を短縮しても全閉時の締め切りを確保することができる。
また、バルブ通路(23)の流体上流端のうち、上流端締切範囲(β)を除く他の範囲にテーパ面(B)を設けるため、段差(A)による圧力損失の増加をテーパ面(B)によって抑えることができる。
このように、本発明を採用することにより、「圧力損失の低減のためにテーパ面(B)を設ける」ことと、「バルブ通路(23)の短縮化を図りつつ全閉時の締め切りを確保する」ことの両立を図ることができる。即ち、本発明のバルブ装置は、「テーパ面(B)による圧力損失の低減」と「バルブ通路(23)の短縮化」の両立を達成できる。
Since the taper surface (B) is not provided in the upstream end cut-off range (β) of the fluid upstream end of the valve passage (23), the valve passage (23) is shortened to the valve upstream end (α) when fully closed. However, the deadline when fully closed can be secured.
Further, since the tapered surface (B) is provided in the range other than the upstream end cut-off range (β) in the fluid upstream end of the valve passage (23), an increase in pressure loss due to the step (A) is reduced. ).
As described above, by adopting the present invention, “a tapered surface (B) is provided to reduce pressure loss” and “the valve passage (23) is shortened while ensuring a deadline when fully closed. Can be balanced. That is, the valve device of the present invention can achieve both “reduction of pressure loss due to the tapered surface (B)” and “shortening of the valve passage (23)”.

(a)シャフトの軸方向から見た低圧EGRバルブユニットの概略断面図、(b)バルブ通路の流線方向から見た低圧EGRバルブユニットの外観図である(実施例1)。(A) It is a schematic sectional drawing of the low pressure EGR valve unit seen from the axial direction of the shaft, (b) It is an external view of the low pressure EGR valve unit seen from the streamline direction of the valve passage (Example 1). エンジン吸排気システムの概略説明図である(実施例1)。It is a schematic explanatory drawing of an engine intake / exhaust system (Example 1). (a)シャフトの軸方向から見た低圧EGRバルブユニットの概略断面図、(b)バルブ通路の流線方向から見た低圧EGRバルブユニットの外観図である(背景技術)。(A) It is a schematic sectional drawing of the low pressure EGR valve unit seen from the axial direction of the shaft, (b) It is an external view of the low pressure EGR valve unit seen from the streamline direction of the valve passage (background art).

発明を実施するための形態を以下の実施例において説明する。   Modes for carrying out the invention will be described in the following examples.

本発明を低圧EGR装置の吸気絞り弁に適用した具体的な一例(実施例)を、図面を参照して説明する。なお、以下の実施例は具体的な一例を開示するものであって、本発明が実施例に限定されないことは言うまでもない。   A specific example (example) in which the present invention is applied to an intake throttle valve of a low pressure EGR device will be described with reference to the drawings. The following examples disclose specific examples, and it goes without saying that the present invention is not limited to the examples.

[実施例1]
図1、図2を参照して実施例1を説明する。
この実施例1は、本発明をエンジン吸排気システムにおける低圧EGR装置1の吸気絞り弁2に適用したものであり、エンジン吸排気システムには、低圧EGR装置1とは別に、高圧EGR装置3が設けられる。
[Example 1]
A first embodiment will be described with reference to FIGS.
In the first embodiment, the present invention is applied to an intake throttle valve 2 of a low pressure EGR device 1 in an engine intake / exhaust system. The engine intake / exhaust system includes a high pressure EGR device 3 separately from the low pressure EGR device 1. Provided.

高圧EGR装置3は、高排気圧範囲(DPFや触媒による排気抵抗部4の排気上流側など、高い排気圧が発生する範囲)の排気通路5の内部と、高吸気負圧発生範囲(スロットルバルブ6の吸気下流側など、高い吸気負圧が発生する範囲)の吸気通路7の内部とを接続して、多量のEGRガスをエンジン8へ戻すことを得意とする排気ガス再循環装置である。   The high pressure EGR device 3 includes a high exhaust pressure range (a range in which high exhaust pressure is generated, such as an exhaust upstream side of the exhaust resistance portion 4 by a DPF or a catalyst), and a high intake negative pressure generation range (throttle valve). 6 is an exhaust gas recirculation device that is good at returning a large amount of EGR gas to the engine 8 by connecting to the inside of the intake passage 7 in a range where high intake negative pressure is generated, such as the intake downstream side of FIG.

一方、低圧EGR装置1は、低排気圧範囲(排気抵抗部4の排気下流側など、低い排気圧が発生する範囲)の排気通路5の内部と、低吸気負圧発生範囲(スロットルバルブ6の吸気上流側で、低い吸気負圧が発生する範囲)の吸気通路7の内部とを接続して、少量のEGRガスをエンジン8に戻すことを得意とする排気ガス再循環装置である。   On the other hand, the low-pressure EGR device 1 includes the inside of the exhaust passage 5 in a low exhaust pressure range (a range where a low exhaust pressure is generated, such as the exhaust downstream side of the exhaust resistance portion 4), and a low intake negative pressure generation range (a throttle valve 6). This is an exhaust gas recirculation device that is good at returning a small amount of EGR gas to the engine 8 by connecting the inside of the intake passage 7 in a range where a low intake negative pressure is generated on the intake upstream side.

低圧EGR装置1は、排気ガスの一部をEGRガスとして吸気通路7の吸気上流側に戻す低圧EGR流路11を備えている。この低圧EGR流路11には、低圧EGR流路11の開度を調整することでEGRガスの流量調整を行なう低圧EGR調整弁12の他に、吸気側に戻されるEGRガスの冷却を行なう低圧EGRクーラ13が設けられている。
また、低圧EGR装置1は、吸気通路7(具体的には、後述するバルブ通路23)と低圧EGR流路11の合流部に吸気負圧を発生させるための吸気絞り弁2を設けている。
The low-pressure EGR device 1 includes a low-pressure EGR passage 11 that returns a part of the exhaust gas to the intake upstream side of the intake passage 7 as EGR gas. In addition to the low pressure EGR adjustment valve 12 that adjusts the flow rate of the EGR gas by adjusting the opening degree of the low pressure EGR flow path 11, the low pressure EGR flow path 11 includes a low pressure that cools the EGR gas returned to the intake side. An EGR cooler 13 is provided.
Further, the low pressure EGR device 1 is provided with an intake throttle valve 2 for generating an intake negative pressure at a junction of the intake passage 7 (specifically, a valve passage 23 described later) and the low pressure EGR flow path 11.

低圧EGR装置1は、低排気圧範囲のEGRガスを、低吸気負圧発生範囲に戻すものであるため、少量のEGRガスをエンジン8に戻すことを得意とする。しかるに、低圧EGR装置1を用いて多量のEGRガスをエンジン8へ戻したい運転領域が存在しても、低吸気負圧発生範囲にEGRガスを戻す構造の低圧EGR装置1では多量のEGRガスをエンジン8へ戻すことが困難である。
そこで、低圧EGR装置1は、吸気通路7のうち、EGRガスを戻す箇所(吸気通路7と低圧EGR流路11の合流箇所)に吸気負圧を発生させるための吸気絞り弁2を設けており、低圧EGR装置1において大きなEGR量を得たい運転領域では、吸気絞り弁2を閉じる方向(吸気負圧が発生する方向)に開度制御することで、低圧EGR装置1において多量のEGRガスを吸気通路7へ導くことを可能にしている。
The low-pressure EGR device 1 is good at returning a small amount of EGR gas to the engine 8 because it returns EGR gas in the low exhaust pressure range to the low intake negative pressure generation range. However, even if there is an operation region in which a large amount of EGR gas is desired to be returned to the engine 8 using the low pressure EGR device 1, the low pressure EGR device 1 having a structure for returning the EGR gas to the low intake negative pressure generation range is capable of supplying a large amount of EGR gas. It is difficult to return to the engine 8.
Therefore, the low-pressure EGR device 1 is provided with an intake throttle valve 2 for generating an intake negative pressure at a portion of the intake passage 7 where the EGR gas is returned (confluence portion of the intake passage 7 and the low-pressure EGR flow path 11). In the operation region where it is desired to obtain a large EGR amount in the low pressure EGR device 1, a large amount of EGR gas is generated in the low pressure EGR device 1 by controlling the opening degree in the direction in which the intake throttle valve 2 is closed (the direction in which intake negative pressure is generated). It is possible to guide to the intake passage 7.

低圧EGR装置1は、低圧EGR調整弁12と吸気絞り弁2を組み合わせた低圧EGRバルブユニットUを備える。
この低圧EGRバルブユニットUには、低圧EGR調整弁12を駆動する1つの電動アクチュエータ14と、この電動アクチュエータ14の出力特性を変化させて吸気絞り弁2を駆動するリンク装置15とを備え、リンク装置15を介して伝達された電動アクチュエータ14の出力によって吸気絞り弁2を駆動するように設けられている。
The low pressure EGR device 1 includes a low pressure EGR valve unit U in which a low pressure EGR adjustment valve 12 and an intake throttle valve 2 are combined.
The low pressure EGR valve unit U includes one electric actuator 14 that drives the low pressure EGR adjustment valve 12 and a link device 15 that drives the intake throttle valve 2 by changing the output characteristics of the electric actuator 14. The intake throttle valve 2 is driven by the output of the electric actuator 14 transmitted through the device 15.

電動アクチュエータ14は、通電により回転出力を発生する電動モータ(例えば、DCモータ)と、この電動モータの回転を減速して出力トルクを増大させる歯車減速装置とを組み合わせたものである。
リンク装置15には、電動アクチュエータ14の出力特性を変化させて吸気絞り弁2へ伝達する特性変換部(カム溝等)が設けられており、低圧EGR調整弁12が所定開度より大きくなってから低圧EGR調整弁12の開度アップに連動させて吸気絞り弁2の開度を小さくするように設けられている。
The electric actuator 14 is a combination of an electric motor (for example, a DC motor) that generates a rotational output when energized, and a gear reduction device that decelerates the rotation of the electric motor to increase the output torque.
The link device 15 is provided with a characteristic conversion unit (cam groove or the like) that changes the output characteristic of the electric actuator 14 and transmits it to the intake throttle valve 2 so that the low pressure EGR adjustment valve 12 becomes larger than a predetermined opening. In other words, the opening degree of the intake throttle valve 2 is decreased in conjunction with the opening degree increase of the low pressure EGR adjustment valve 12.

吸気絞り弁2(バルブ装置の一例)は、吸気通路7をなす吸気ダクトの途中に配置される。
即ち、図1(a)に示すように、吸気絞り弁2は、吸気絞り弁2に吸気を導く入口ダクト21(吸気上流側の相手ダクト)と、吸気絞り弁2を通過した吸気が流れる出口ダクト22(吸気下流側の相手ダクト)との間に配置される。そして、吸気絞り弁2は、吸気絞り弁2内において吸気が導かれるバルブ通路23の開度を絞ることによって、「バルブ通路23(吸気通路7の一部)」と、このバルブ通路23にEGRガスを導く「低圧EGR流路11」との合流部に吸気負圧を発生させる。
The intake throttle valve 2 (an example of a valve device) is disposed in the middle of the intake duct that forms the intake passage 7.
That is, as shown in FIG. 1A, the intake throttle valve 2 includes an inlet duct 21 (an opposite duct on the intake upstream side) that guides intake air to the intake throttle valve 2 and an outlet through which intake air that has passed through the intake throttle valve 2 flows. It arrange | positions between the ducts 22 (the other duct on the intake downstream side). Then, the intake throttle valve 2 reduces the opening of the valve passage 23 through which intake air is guided in the intake throttle valve 2, thereby “valve passage 23 (part of the intake passage 7)” and EGR in the valve passage 23. An intake negative pressure is generated at the junction with the “low pressure EGR flow path 11” for guiding the gas.

低圧EGRバルブユニットUには、低圧EGR調整弁12を全閉位置へ戻し、吸気絞り弁2を全開位置へ戻すリターンスプリングが設けられるとともに、吸気絞り弁2を最大開度で停止させるストッパ手段が設けられている。
これにより、電動アクチュエータ14の通電停止時(電動モータの通電停止時)に、低圧EGR調整弁12が全閉位置に戻されるとともに、吸気絞り弁2が全開位置に戻される。
The low pressure EGR valve unit U is provided with a return spring for returning the low pressure EGR adjustment valve 12 to the fully closed position and returning the intake throttle valve 2 to the fully open position, and stopper means for stopping the intake throttle valve 2 at the maximum opening degree. Is provided.
As a result, when the electric actuator 14 is de-energized (when the electric motor is de-energized), the low pressure EGR adjustment valve 12 is returned to the fully closed position, and the intake throttle valve 2 is returned to the fully open position.

吸気絞り弁2は、
・内面形状が円筒形状のバルブ通路23が形成されるハウジング24と、
・このハウジング24に対して回動自在に支持されるシャフト25と、
・このシャフト25に設けられてバルブ通路23のの開閉および開度調整を行う弁体26と、
を備えて構成される。
The intake throttle valve 2 is
A housing 24 in which a valve passage 23 having a cylindrical inner surface is formed;
A shaft 25 that is rotatably supported with respect to the housing 24;
A valve body 26 provided on the shaft 25 for opening and closing the valve passage 23 and adjusting the opening;
It is configured with.

弁体26は、バルブ通路23内においてシャフト25にネジ、カシメ、溶接等で固定されて、シャフト25と一体に回動するバタフライバルブである。具体的に、弁体26は、外径形状が楕円形状を呈するものであり、図1(a)に示すように、全閉時に弁体26がバルブ通路23の流線方向に対して傾斜するものである。
なお、以下では、弁体26における流体上流側(吸気上流側)の端をバルブ上流端αと称する。また、図1(b)に示すように、ハウジング24を流体上流側から見て、全閉時にバルブ上流端αが締め切る通路範囲を上流端締切範囲βと称する。
The valve body 26 is a butterfly valve that is fixed to the shaft 25 in the valve passage 23 by screws, caulking, welding, or the like and rotates integrally with the shaft 25. Specifically, the valve body 26 has an elliptical outer shape, and the valve body 26 is inclined with respect to the streamline direction of the valve passage 23 when fully closed as shown in FIG. Is.
Hereinafter, the fluid upstream end (intake upstream side) of the valve body 26 is referred to as a valve upstream end α. Further, as shown in FIG. 1B, when the housing 24 is viewed from the fluid upstream side, a passage range in which the valve upstream end α closes when fully closed is referred to as an upstream end closing range β.

この実施例1では、燃費向上を図る目的で吸気の圧力損失を低減すべく、吸気ダクトの内径が大きく設けられている。即ち、この実施例1では、入口ダクト21の下流端の内径寸法Daが、バルブ通路23の流体上流端の内径寸法Dhより大きく設けられる(Da>Dh)。
すると、入口ダクト21とバルブ通路23との接続箇所に内径差による段差Aが生じてしまい、段差Aによって圧力損失が大きくなってしまう。
そこで、この実施例1では、段差Aによる圧力損失を回避するべく、バルブ通路23の流体上流端の内側に、流体上流側に向かって拡径するテーパ面Bを設けている。
In the first embodiment, the intake duct has a large inner diameter so as to reduce the pressure loss of the intake air in order to improve fuel efficiency. In other words, in the first embodiment, the inner diameter dimension Da at the downstream end of the inlet duct 21 is provided larger than the inner diameter dimension Dh at the fluid upstream end of the valve passage 23 (Da> Dh).
As a result, a step A due to the difference in inner diameter is generated at the connection portion between the inlet duct 21 and the valve passage 23, and the pressure loss is increased by the step A.
Therefore, in the first embodiment, in order to avoid the pressure loss due to the step A, the tapered surface B having a diameter increasing toward the fluid upstream side is provided inside the fluid upstream end of the valve passage 23.

しかし、テーパ面Bを全周に亘って設けると、ハウジング24のバルブ通路23の長さ寸法Lの短縮が制限されてしまう。具体的には、吸気絞り弁2の小型化要求により、全閉時のバルブ上流端αまでバルブ通路23を短縮することが望まれるが、全閉時のバルブ上流端αまでバルブ通路23を短縮した状態でテーパ面Bを設けると、シール範囲とテーパ面Bが重複してしまい、全閉時の締め切りが成立しなくなってしまう。   However, if the taper surface B is provided over the entire circumference, shortening of the length dimension L of the valve passage 23 of the housing 24 is limited. Specifically, it is desired to shorten the valve passage 23 to the valve upstream end α when fully closed due to a demand for downsizing the intake throttle valve 2, but the valve passage 23 is shortened to the valve upstream end α when fully closed. If the taper surface B is provided in this state, the seal range and the taper surface B overlap, and the deadline when fully closed is not established.

そこで、この実施例1の吸気絞り弁2は、テーパ面Bを全周ではなく、上流端締切範囲βを除く範囲に設けている。即ち、この実施例1では、図1(b)に示すように、バルブ通路23の流体上流端の内側のうち、上流端締切範囲βを除いた他の範囲にテーパ面Bを設けている。
なお、テーパ面Bは、切削加工による面取りで実施しても良いし、アルミ製のハウジング24を成形するダイカストの型で作成しても良い。
また、テーパ面Bは、傾斜面が円錐状のストレートテーパであっても良いし、傾斜面が曲面状のラウンドテーパであっても良い。
Therefore, in the intake throttle valve 2 of the first embodiment, the tapered surface B is provided not in the entire circumference but in the range excluding the upstream end cutoff range β. That is, in the first embodiment, as shown in FIG. 1B, the tapered surface B is provided in the other range excluding the upstream end cut-off range β inside the fluid upstream end of the valve passage 23.
The tapered surface B may be formed by chamfering by cutting, or may be formed by a die casting mold for forming the aluminum housing 24.
Further, the tapered surface B may be a straight taper whose inclined surface is conical or a round taper whose inclined surface is curved.

(実施例1の効果1)
この実施例1の吸気絞り弁2は、図1(b)に示すように、バルブ通路23の流体上流端の内側のうち、上流端締切範囲βにはテーパ面Bを設けないため、図1(a)に示すように、全閉時のバルブ上流端αまでバルブ通路23を短縮しても全閉時の締め切りを確保することができる。
また、図1(b)に示すように、バルブ通路23の流体上流端のうち、上流端締切範囲βを除く他の範囲にテーパ面Bを設けるため、段差A(入口ダクト21とバルブ通路23の内径差)による圧力損失の増加をテーパ面Bによって抑えることができる。
(Effect 1 of Example 1)
As shown in FIG. 1B, the intake throttle valve 2 of the first embodiment does not have a tapered surface B in the upstream end cut-off range β in the fluid upstream end of the valve passage 23. As shown to (a), even if it shortens the valve channel | path 23 to the valve upstream end (alpha) at the time of full closure, the deadline at the time of full closure can be ensured.
Further, as shown in FIG. 1B, a step A (inlet duct 21 and valve passage 23 is provided in order to provide a tapered surface B in a range other than the upstream end cut-off range β in the fluid upstream end of the valve passage 23. An increase in pressure loss due to the difference in inner diameter of the taper surface B can be suppressed by the tapered surface B.

このように、この実施例1の吸気絞り弁2は、「圧力損失の低減のためにテーパ面Bを設ける」ことと、「バルブ通路23の短縮化を図りつつ全閉時の締め切りを確保する」ことの両立を図ることができる。即ち、この実施例1の吸気絞り弁2は、「テーパ面Bによる圧力損失の低減」と「バルブ通路23の短縮化」の両方を達成できる。   As described above, the intake throttle valve 2 of the first embodiment “provides the tapered surface B for reducing the pressure loss” and “ensures the deadline when fully closed while shortening the valve passage 23. It is possible to achieve both. That is, the intake throttle valve 2 of the first embodiment can achieve both “reduction of pressure loss due to the tapered surface B” and “shortening of the valve passage 23”.

上記の実施例では、吸気絞り弁2に本発明を適用する例を示したが、本発明は吸気絞り弁2に限定されるものではなく、全閉時に弁体26がバルブ通路23の流線方向に対して傾斜するタイプのバルブ装置に本発明を適用可能なものである。   In the above-described embodiment, an example in which the present invention is applied to the intake throttle valve 2 has been described. However, the present invention is not limited to the intake throttle valve 2, and the valve body 26 is a streamline of the valve passage 23 when fully closed. The present invention can be applied to a valve device that is inclined with respect to a direction.

2 吸気絞り弁(バルブ装置)
21 入口ダクト
22 出口ダクト
23 バルブ通路
24 ハウジング
25 シャフト
26 弁体
α バルブ上流端
β 上流端締切範囲
B テーパ面
2 Inlet throttle valve (valve device)
21 Inlet duct 22 Outlet duct 23 Valve passage 24 Housing 25 Shaft 26 Valve body α Valve upstream end β Upstream end cutoff range B Tapered surface

Claims (2)

流体上流側の入口ダクト(21)と、流体下流側の出口ダクト(22)との間に配置され、前記入口ダクト(21)と前記出口ダクト(22)の間の開度調整を行うバルブ装置において、
このバルブ装置は、前記入口ダクト(21)から前記出口ダクト(22)に至るバルブ通路(23)が形成されるハウジング(24)と、このハウジング(24)に対して回動自在に支持されるシャフト(25)と、このシャフト(25)と一体に回動して前記バルブ通路(23)の開度調整を行う弁体(26)とを具備し、
全閉時に前記弁体(26)が前記バルブ通路(23)の流線方向に対して傾斜するとともに、前記入口ダクト(21)の内径寸法(Da)が前記バルブ通路(23)の内径寸法(Dh)より大きく設けられ、
前記弁体(26)における流体上流側の端をバルブ上流端(α)とするとともに、前記ハウジング(24)を流体上流側から見て、全閉時に前記バルブ上流端(α)が締め切る通路範囲を上流端締切範囲(β)とした場合、
前記バルブ通路(23)の流体上流端の内側には、前記上流端締切範囲(β)を除いて、流体上流側に向かって拡径するテーパ面(B)が設けられることを特徴とするバルブ装置。
A valve device that is disposed between the inlet duct (21) on the upstream side of the fluid and the outlet duct (22) on the downstream side of the fluid and adjusts the opening between the inlet duct (21) and the outlet duct (22). In
The valve device is rotatably supported with respect to a housing (24) in which a valve passage (23) from the inlet duct (21) to the outlet duct (22) is formed, and the housing (24). A shaft (25) and a valve body (26) that rotates integrally with the shaft (25) to adjust the opening of the valve passage (23);
When fully closed, the valve body (26) is inclined with respect to the streamline direction of the valve passage (23), and the inner diameter dimension (Da) of the inlet duct (21) is the inner diameter dimension of the valve passage (23) ( Dh) larger than
A passage range in which the valve upstream end (α) closes when fully closed when the housing (24) is viewed from the fluid upstream side while the end of the valve body (26) on the fluid upstream side is the valve upstream end (α). Is the upstream end cutoff range (β),
The valve passage (23) is provided with a tapered surface (B) having a diameter increasing toward the fluid upstream side, except for the upstream end cut-off range (β), inside the fluid upstream end of the valve passage (23). apparatus.
請求項1に記載のバルブ装置において、
このバルブ装置は、吸気が導かれる前記バルブ通路(23)と、このバルブ通路(23)にEGRガスを導く低圧EGR流路(11)との合流部に吸気負圧を発生させる吸気絞り弁(2)であることを特徴とするバルブ装置。
The valve device according to claim 1,
This valve device includes an intake throttle valve (23) that generates an intake negative pressure at a junction between the valve passage (23) through which intake air is guided and a low-pressure EGR passage (11) that guides EGR gas to the valve passage (23). 2) A valve device.
JP2014088378A 2014-04-22 2014-04-22 Valve device Expired - Fee Related JP6260430B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014088378A JP6260430B2 (en) 2014-04-22 2014-04-22 Valve device
DE102015105636.4A DE102015105636A1 (en) 2014-04-22 2015-04-14 valve apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088378A JP6260430B2 (en) 2014-04-22 2014-04-22 Valve device

Publications (2)

Publication Number Publication Date
JP2015206323A true JP2015206323A (en) 2015-11-19
JP6260430B2 JP6260430B2 (en) 2018-01-17

Family

ID=54326127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088378A Expired - Fee Related JP6260430B2 (en) 2014-04-22 2014-04-22 Valve device

Country Status (2)

Country Link
JP (1) JP6260430B2 (en)
DE (1) DE102015105636A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464860B2 (en) * 2015-03-23 2019-02-06 株式会社デンソー Exhaust gas recirculation device
JP7401279B2 (en) 2019-12-06 2023-12-19 株式会社アドバンテック Stage for heating and cooling objects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303981A (en) * 2000-04-27 2001-10-31 Fuji Heavy Ind Ltd Throttle valve device of engine
JP2008223523A (en) * 2007-03-09 2008-09-25 Kubota Corp Engine
JP2009002216A (en) * 2007-06-21 2009-01-08 Hitachi Ltd Intake air quantity control device for internal combustion engine
JP2011032929A (en) * 2009-07-31 2011-02-17 Denso Corp Low-pressure egr apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303981A (en) * 2000-04-27 2001-10-31 Fuji Heavy Ind Ltd Throttle valve device of engine
JP2008223523A (en) * 2007-03-09 2008-09-25 Kubota Corp Engine
JP2009002216A (en) * 2007-06-21 2009-01-08 Hitachi Ltd Intake air quantity control device for internal combustion engine
JP2011032929A (en) * 2009-07-31 2011-02-17 Denso Corp Low-pressure egr apparatus

Also Published As

Publication number Publication date
JP6260430B2 (en) 2018-01-17
DE102015105636A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6460012B2 (en) Valve device
JP5988853B2 (en) Exhaust gas recirculation valve
JP6167186B2 (en) Wastegate valve device
JP6768427B2 (en) Double eccentric valve
US9926893B2 (en) Exhaust gas recirculation device
JP5170191B2 (en) Low pressure EGR device
JP6260430B2 (en) Valve device
JP6701436B2 (en) Butterfly valve and exhaust gas recirculation valve
JP6011501B2 (en) Valve device
JP5516527B2 (en) Resin gear parts with nuts
WO2014142110A1 (en) Valve device
JP6036623B2 (en) Valve device
JP6384286B2 (en) Valve unit
JP2015101987A (en) EGR valve device
JP6177114B2 (en) Exhaust gas recirculation valve
JP2011252421A (en) Exhaust gas recirculation apparatus
JP2013142430A (en) Link apparatus
JP6277908B2 (en) Valve device
JP2015059625A (en) Butterfly valve device, internal combustion engine, and method of manufacturing butterfly valve device
JP6489266B2 (en) Valve unit
US11002365B2 (en) Valve device
JP5175658B2 (en) Intake device for internal combustion engine
WO2017208603A1 (en) Double eccentric valve
JP2015059530A (en) Exhaust gas recirculation device
JP2012219890A (en) Valve unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R151 Written notification of patent or utility model registration

Ref document number: 6260430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees