JP2015204787A - 植物工場 - Google Patents

植物工場 Download PDF

Info

Publication number
JP2015204787A
JP2015204787A JP2014087574A JP2014087574A JP2015204787A JP 2015204787 A JP2015204787 A JP 2015204787A JP 2014087574 A JP2014087574 A JP 2014087574A JP 2014087574 A JP2014087574 A JP 2014087574A JP 2015204787 A JP2015204787 A JP 2015204787A
Authority
JP
Japan
Prior art keywords
nutrient solution
heat
plant
temperature
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014087574A
Other languages
English (en)
Inventor
正洋 西山
Masahiro Nishiyama
正洋 西山
順三 川上
Junzo Kawakami
順三 川上
篤樹 柿谷
Atsuki Kakiya
篤樹 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2014087574A priority Critical patent/JP2015204787A/ja
Publication of JP2015204787A publication Critical patent/JP2015204787A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Hydroponics (AREA)

Abstract

【課題】消費電力を上げることなく加熱殺菌後の養液を常温レベルにまで冷却し、かつ、空気調和機に再熱除湿運転を行わせることなく栽培室内が必要以上に高湿度になることを未然に防止する。【解決手段】植物工場(1)の栽培室(3)には、栽培容器(11)と照明装置と空調装置(20)とが配置され、栽培容器(11)に収容された植物(15)に養液を供給し、余った養液を回収して再び供給する養液循環システム(30)が設けられており、回収した養液を供給側に戻す循環経路(33)には、回収した養液を加熱殺菌する加熱殺菌装置(46)が配設されている。さらに、加熱殺菌装置(46)の後段の循環経路(33)は、栽培室(3)にまで延設され、この栽培室(3)にまで延設された部分に放熱器(47)が設けられている。【選択図】図1

Description

本発明は、照明装置と空気調和機と養液循環システムとを備えた植物工場に関するものである。
従来、水耕栽培式の植物工場などでは、建屋の栽培室に複数の栽培容器が上下方向に所定間隔をおいて配置されている。栽培容器には、栽培床が収容されており、この栽培床に植物が植えられている。複数の栽培容器への養液供給は、養液循環システムにて行われる。養液循環システムは、養液タンクに貯留された養液を供給し、各栽培容器から排出された余りの養液を回収して養液タンクに戻すように構成されている。
このような養液循環システムにおいては、殺菌装置を備え、回収した養液を殺菌した後、養液タンクに戻すように構成されたものがある。これは、回収した養液には、フザリウム菌(カビの一種)や青枯れ病菌などの病原菌が含まれているためである。回収した養液を殺菌することなく再利用すると、病原菌が増殖して植物に病害が発生したり、植物が枯れてしまったりする。
病原菌の殺菌方法としては、紫外線やオゾンによる殺菌などもあるが、加熱による殺菌も効果が高く有効である。但し、加熱殺菌の場合、殺菌後の養液を常温レベルにまで冷却することが必要である。これは、冷却不足のまま養液を養液タンクに戻すと、養液タンク内の温度が上がってしまい、養液タンク内でカビなどが発生するためである。再利用される養液は殺菌済とはいえ、養液が流れる配管や養液タンク内は無菌ではないので、養液の温度が上がるとカビや細菌などは必然的に増殖する。
加熱殺菌された養液を冷却するものとして、従来、加熱殺菌装置に送られる養液と加熱殺菌装置を経た養液とを熱交換させる熱交換器が設けられている。これによれば、加熱前の養液を予熱して加熱殺菌装置による加熱の効率を高めつつ、加熱後の養液を冷却している。また、特許文献1,2には、加熱手段としてヒートポンプを用い、ヒートポンプサイクルの高温部で養液を加熱して病原菌を殺菌する一方、前記熱交換器での冷却に加えて、ヒートポンプサイクルの低温部でさらに養液を冷却し、常温レベルにまで下げる構成が開示されている。
また、一般的に栽培室には、照明装置および空気調和機も設置されている。照明装置は、栽培容器に収容された植物に対して人工光を照射するものである。照明装置の点灯を制御することで、植物の生育に適した昼夜環境が人工的に作り出される。
また、空気調和機は、冷房運転にて、照明装置から発せられる熱による栽培室内の温度上昇を抑制すると共に、栽培室内を調湿するものである。植物からは、蒸散作用により大量の水蒸気が発生するため、栽培室内は必要以上に高湿度になる傾向にある。そのため、従来、栽培室内を調湿して、湿度(相対湿度)を植物の生育に適した一定範囲内の値に維持することが行われている。
特開2004−216104号公報(2004年8月5日公開) 特開2005−164111号公報(2005年6月23日公開)
しかしながら、特許文献1,2に記載された従来技術を用いて、加熱殺菌後の養液を常温レベルにまで冷却しようとすると、ヒートポンプサイクルで使用される消費電力が大きくなり、ランニングコストが嵩むといった問題がある。
つまり、加熱殺菌後の養液をヒートポンプサイクルの低温部で常温レベルにまで冷却するためには、低温部を常温よりも低温にする必要がある。そのため、ヒートポンプサイクルにおいて高温部と低温部との温度差を大きく確保することが必要となり、ヒートポンプサイクルで使用される消費電力が大きくなってしまう。
また、空気調和機による調湿にて、栽培室内の湿度を一定範囲内の値に維持する構成においても、通常の冷房運転による除湿ではなく再熱除湿運転が必要となって、空気調和機における消費電力が大きくなり、ランニングコストが嵩むといった問題がある。
つまり、照明装置が点灯している昼間期間(明期)は、照明装置から発せられる熱によって栽培室内の温度が上昇するため、空気調和機が適時稼働し、室内温度の上昇を抑制すると同時に除湿が行われ適切な湿度に保たれる。これに対し、照明装置が消灯している夜間期間(暗期)は、照明装置から熱が発せられないため、空気調和機は設定温度に到達するまでは連続して稼働するものの、その後は連続稼働しなくなる。空気調和機が連続稼働しなくなると、除湿が行われない時間帯が発生するため、湿度が上がりすぎてしまう。そこで、一旦夜間期間の設定温度よりも低い温度にまで空気を冷却して強制的に除湿を行い、その後、空気を夜間期間の設定温度にまで温めて送り出すといった再熱除湿運転を、空気調和機に行わせる方法もある。しかしながら、再熱除湿運転は、設定温度よりも低い温度にまで冷却した空気を暖めるための(再熱のための)エネルギーが必要となるため、通常の冷房運転に比べて消費電力が大きくなってしまう。
本願発明は、このような課題に鑑みなされたもので、その目的は、植物工場の消費電力を上げることなく殺菌後の養液を常温レベルにまで冷却することができ、かつ、消費電力の大きい再熱除湿運転を空気調和機に行わせることなく栽培室内が必要以上に高湿度になることを未然に防止することができる植物工場を提供することにある。
上記の課題を解決するために、本発明の一態様に係る植物工場は、植物を栽培するための栽培室に、栽培容器と照明装置と空気調和機とが配置され、前記栽培容器に収容された植物に養液を供給し、余った養液を回収して再び供給する養液循環システムが設けられ、該養液循環システムにおける回収した養液を供給側に戻す循環経路に、回収した養液を加熱殺菌する加熱殺菌装置が配設された植物工場において、前記加熱殺菌装置の後段の循環経路が前記栽培室にまで延設されると共に、前記栽培室まで延設された部分に放熱器が設けられていることを特徴としている。
本発明の一態様によれば、植物工場の消費電力を上げることなく殺菌後の養液を常温レベルにまで冷却することができ、かつ、消費電力の大きい再熱除湿運転を空気調和機に行わせることなく栽培室内が必要以上に高湿度になることを未然に防止する植物工場を提供することができるという効果を奏する。
本発明の実施の一形態に係る植物工場の構成を示す模式図である。 空調装置と放熱器からの放熱とを利用して湿度を調整した場合の、栽培室における温度と湿度の推移を示すグラフである。 空調装置のみで湿度を調整した場合の、栽培室における温度と湿度の推移を示すグラフである。 本発明の実施のその他の形態に係る植物工場の構成を示す模式図である。 本発明の実施のその他の形態に係る植物工場の構成を示す模式図である。
〔実施の形態1〕
以下、本発明の実施の一形態について、図1〜図3を参照して説明する。図1は、本発明の実施の一形態に係る植物工場1の構成を示す模式図である。図1に示すように、植物工場1の建屋2内には、植物を生育させるための栽培室3が設けられている。また、栽培室3の隣には、植物に供給する養液を製造し貯留するタンク室4が設けられている。
植物工場1は、外部と切り離された閉鎖的空間において完全に制御された環境下で野菜や果物等の植物15の生産を行う完全制御型の植物工場である。したがって、少なくとも栽培室3は、断熱性および遮光性が確保された閉鎖的空間として構成されている。
栽培室3内には、複数の栽培棚10が所定間隔を置いて設置されている。複数の栽培棚10は、いずれも同様の構成を有している。栽培棚10は、上下方向に間隔をおいて配置された複数の栽培容器11と、複数の栽培容器11を支持するラック12とを備えている。各栽培容器11には、例えばスチロール板からなる栽培床13が収容されており、この栽培床13に植物15が植えられている。各栽培棚10における各栽培容器11には、タンク室4から延びる養液循環システム30の養液供給経路31が図示しない流路にて接続されており、養液タンク40から養液が供給されるように構成されている。また、各栽培容器11には、タンク室4から延びる養液循環システム30の養液回収経路32が接続されており、各栽培棚10から排出された余りの養液が回収されるように構成されている。
さらに、栽培室3内には、図示しない複数の照明装置と、空調装置(空気調和機)20とが配設されている。照明装置は、例えば栽培棚10のラック12に、植物15の上方から人工光を照射し得るように設置されている。照明装置は、例えばLEDや蛍光灯などからなる。
空調装置20は、栽培室3内の天井や壁に沿って配置されている。空調装置20は、冷房運転を行って冷却器21にて栽培室3内の空気を冷却すると共に除湿し、ファン22にて冷却・除湿した空気を、空気吹出口23より吹出して栽培室3内へと戻す。空調装置20は、冷房運転にて、照明装置から発せられる熱による栽培室3内の温度上昇を抑制すると共に、栽培室3内の湿度が植物15の生育に適した一定範囲内の値に維持されるように除湿する(調湿)。
養液循環システム30は、養液タンク40より養液を各栽培棚10へと供給し、各栽培棚10から排出された余りの養液を回収して養液タンク40へと戻すものであり、回収した養液を養液タンク40へと戻す養液戻し経路33に、加熱殺菌装置46が配設されている。
図1に示すように、養液循環システム30は、養液タンク40から栽培室3の各栽培棚10へと延びる養液供給経路31と、栽培室3の各栽培棚10から回収タンク41へと延びる養液回収経路32と、回収タンク41から養液タンク40へと回収した養液を戻す養液戻し経路33とを有する。養液供給経路31と、養液回収経路32と、養液戻し経路33とで、養液循環システム30における循環経路が構成されている。
養液戻し経路33には、養液の流れに沿って、フィルタ44、熱交換器45の吸熱側、加熱殺菌装置46、熱交換器45の放熱側、放熱器47が配されている。養液タンク40、回収タンク41、フィルタ44、加熱殺菌装置46、熱交換器45は、タンク室4に設置されている。
養液タンク40は、植物15に供給する養液を貯留するものであり、貯留された養液は、第1ポンプ(P1)37により養液供給経路31を通って各栽培棚10へと供給される。養液タンク40には、原水が供給されると共に、養液管理機42を介して原液タンク43より養液の原液が供給され、養液タンク40内で原液を最適な濃度に薄めて養液を製造するように構成されている。原液を薄めて作った新しい養液に、回収されて加熱殺菌された養液が加えられる。
養液管理機42は、養液タンク40に供給する原液の量を管理するものである。養液管理機42は、養液タンク40内の養液の水素イオン濃度(pH)や電気伝導度(EC)を検出して、養液タンク40へ供給する原液の量を制御する。養液タンク40に供給される原水の量は、図示しない制御装置により制御される。
回収タンク41は、各栽培棚10より養液回収経路32を通して回収した養液(回収養液とも記載する)を貯留するものである。回収タンク41に貯留された回収養液は、養液戻し経路33を通して、養液タンク40へと戻される。養液戻し経路33には、第2ポンプ(P2)38、第3ポンプ(P3)39が備えられている。
フィルタ44は、回収された養液に含まれる不純物を除去するものである。熱交換器45は、加熱殺菌装置46に送られる養液と加熱殺菌装置46を経た養液とを熱交換させることで、加熱前の養液を予熱すると共に加熱後の養液の粗熱を除去するものである。
加熱殺菌装置46は、回収された養液を殺菌温度にまで加熱して、養液に含まれる病原菌等を死滅させるものである。殺菌温度は、厳密には殺菌対象とする病原菌によって決められるが、例えば75〜80℃に設定されている。殺菌時間は、例えば数分程度である。本実施の形態の植物工場1においては、加熱殺菌装置46として、エネルギー変換効率が高いヒートポンプ式の加熱殺菌装置を用いている。
放熱器47は、熱交換器45で粗熱が除去された養液の熱を放熱させるものである。そして、ここで注目すべきは、放熱器47の設置場所にある。図1に示すように、放熱器47は、養液戻し経路33をタンク室4から栽培室3内にまで延設させることで、栽培室3内に設置されている。これにより、加熱殺菌された養液の熱を放熱器47で放熱させて養液を冷却すると共に、その熱で栽培室3内の空気を暖めることができる。栽培室3に至る養液戻し経路33は断熱されている。
しかも、本実施の形態の植物工場1においては、より好ましい構成として、放熱器47を空調装置20の冷却器21により熱交換(冷却)された空気流が直接当たる位置、具体的には、空気吹出口23の前に配置している。これにより、放熱器47に空調装置20から吹出される冷却された空気が直に当たり、放熱器47と空気との熱交換がより効果的に行われる。その結果、養液をより一層効果的に冷却することができると共に、空調装置20から吹出された冷たい空気を、放熱器47から放熱される熱によって暖めてから栽培室3へと送ることができる。
なお、ここでは、放熱器47を空気吹出口23の前に配置したが、放熱器47を空調装置20内部の、冷却器21により冷却された空気流が直接当たる位置に配置してもよい。この場合、放熱器47にて暖められた空気が空調装置20の空気吹出口23から吹出され
ることとなる。
また、養液戻し経路33における熱交換器45の放熱側と放熱器47との間には、養液を放熱器47へ送ることなく養液タンク40へと流すための短絡経路34が分岐して形成されている。そして、この分岐点の放熱器47側(第3ポンプ39に至る手前)、および短絡経路34に、バルブ51,52が設けられている。これにより、バルブ51,52の開栓を制御することで、熱交換器45の放熱側より出力された養液の一部、または全部を、放熱器47を通すことなく直接養液タンク40へと送ることができる。
さらに、図示してはいないが、養液タンク40および養液戻し経路33の要所には、養液の温度を計測する温度センサが設けられている。これら温度センサの計測結果に基づいて、バルブ51,52の開栓を後述のように制御する。
次に、上記構成を有する植物工場1の稼働について説明する。植物工場1では、照明装置および空調装置20を制御して、栽培室3に昼間に相当する明期と、夜間に相当する暗期とを交互に作り出している。また、植物工場1では、養液循環システム30を制御して、1日あたり3〜4回の頻度で、養液を栽培室3内の植物15に供給している。
明期においては、照明装置を点灯し、空調装置20を明期の設定温度にて冷房運転させる。明期の設定温度は、植物15に適した昼間の適温であり、厳密には栽培される植物15によって決められる。一般的な植物工場においては、例えば20〜25℃に設定されている。
明期においては、点灯した照明装置から熱が発せられるので、空調装置20は栽培室3内の温度上昇を抑えて明期の設定温度に保持すべく適宜稼働する。したがって、明期においては、植物15の蒸散にて空気中の水分量が増えたとしても、空調装置20の冷房運転により除湿が問題なく実施され、湿度は植物15の生育に適した範囲に保たれる。
一方、暗期においては、照明装置を消灯し、空調装置20の設定温度を強制運転温度に設定して冷房運転させる。そして、この暗期において、回収タンク41に貯留されている回収養液の殺菌処理を行う。
強制運転温度は、空調装置20に強制的に連続運転を行わせるための、植物15に適した夜間の適温よりも低い温度である。植物15に適した夜間の適温は、厳密には栽培される植物15によって決められるが、植物15に適した夜間の適温が10〜15℃とした場合、強制運転温度はそれよりも低い例えば4〜7℃である。
空調装置20の設定温度を、強制運転温度の4〜7℃とした場合、栽培室3の室温が低く成りすぎて植物15の生育に影響を及ぼしかねないが、暗期においては、回収養液の加熱殺菌が行われるので、空調装置20から吹出される4〜7℃の空気は、放熱器47と熱交換を行うことで温められる。その結果、栽培室3内の温度を植物15に適した例えば10〜15℃とすることができる。
ここで、明期の設定温度を22℃、強制運転温度を5℃、殺菌温度を80℃として、植物工場1を稼働した場合の、養液戻し経路33各部における養液の理想的な温度を例示する。
第2ポンプ(P2)38により回収タンク41内の回収された養液を養液戻し経路33に送り出す。送り出された養液はフィルタ44を通過した後、熱交換器45の吸熱側を通って加熱殺菌装置46に入り加熱され、熱交換器45の放熱側より出力される。熱交換器
45の吸熱側の入口部分(A)で、常温(20℃)であった養液は、熱交換器45の吸熱側を通過する際に80℃に熱せられた養液と熱交換することで、熱交換器45の吸熱側の出口部分(B)で50℃程度にまで予熱できる。一方、加熱殺菌され、熱交換器45の放熱側の入口部分(C)で80℃程度あった養液は、熱交換器45の放熱側を通過する際に常温(20℃)の養液と熱交換することで、熱交換器45の放熱側の出口部分(D)で40℃程度にまで冷却できる。
次に、第3ポンプ(P3)39により養液を、放熱器47を通過させて冷却する。暗期の栽培室3の室温が、常温(20℃)よりも低い15℃程度の場合、放熱器47の折り返し部分(E)で養液は、例えば25〜30℃程度にまで冷却される。また、この時、養液から放出された熱により、空調装置20から吹出す空気が加熱され、再熱除湿と同様の仕組みが構成される。その後、養液は養液タンク40に至るまでの過程でさらに冷却され、養液タンク40の入口部分(F)で常温(20℃)まで低下される。
なお、養液戻し経路33の各部(A)〜(F)における養液の温度は、各部に至るまでの養液戻し経路33の経路長や、養液の流れる流速を左右する第2ポンプ(P2)38、第3ポンプ(P3)39のパワーによっても変化するものである。
図2は、空調装置20と放熱器47からの放熱とを利用して湿度を調整した場合の、栽培室における温度と湿度の推移を示すグラフである。一方、図3は、空調装置20のみで湿度を調整した場合の、栽培室における温度と湿度の推移を示すグラフである。
図2、図3において、18時〜6時は照明装置が消灯される暗期であり、6時〜18時は照明装置が点灯される明期である。図2、図3の何れにおいも、明期は、照明装置が熱源として作用するため、空調装置20は適時稼働し、栽培室3の室温は空調装置の明期の設定温度に保持され、湿度は80%程度に維持される。一般的に植物の生育に適した湿度は90%未満と言われており、90%以上の高湿となると、植物への結露が生じやすくなり、生育の妨げとなる。
これに対し、照明装置が消灯されて熱源がなくなる暗期においては、図2、図3に示すように、空調装置20の設定温度が切り換わった直後は、栽培室3の室温が暗期の設定温度になるように空調装置20は稼働するので、湿度も下がる。しかしながら、設定温度にまで低下すると、その後は稼働を停止する。前述したように、栽培室3は、断熱性および遮光性が確保された閉鎖的空間として構成されているため、何らかの熱源が作用しない限り、温度が上がらない。
その結果、図3に示すように、空調装置20のみで湿度を調整した場合は、栽培室3の室温が暗期の設定温度(夜間の適温)に到達した後は上昇し続けて100%となってしまう。これに対し、図2に示すように、放熱器47からの放熱を利用する場合は、放熱器47からの熱によって栽培室3内が暖められるので、空調装置20の暗期の設定温度(強制運転温度)にまで下がることはない。したがって、空調装置20は適宜稼働し、栽培室3の室温は夜間の適温に維持され、湿度も80%程度に維持される。
ところで、周囲温度等の条件によっては、放熱器47を通過して戻ってくる養液の温度が常温(20℃)よりも低く冷却されていることがある。その場合、養液タンク40内の養液の温度が常温よりも低くなってしまう。植物15に供給される養液の温度は、常温であることが好ましいため、養液タンク40内の養液の温度が常温よりも低くなることはあまり好ましくない。
そこで、このような場合は、バルブ51,バルブ52の開閉を制御して、放熱器47へ
と送られる養液の一部あるいは全部を、一時的に短絡経路34を介して養液タンク40内に導入させる。その後、養液タンク40内の養液の温度が常温に復帰すると、バルブ51,バルブ52を元に戻す。このようなバルブ51,52の開閉制御は、手動にて行ってよいし、養液タンク40内の養液の温度に基づいて制御装置にて自動で行ってもよい。
〔実施の形態2〕
以下、本発明の実施のその他の形態について、図4を参照して説明する。なお、説明の便宜上、前記実施形態にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図4は、本実施の形態に係る植物工場の構成を示す模式図である。図4に示すように、本実施の形態の植物工場1aにおいては、養液循環システム30aの養液戻し経路33aに、熱交換器45を通さず放熱器47へと養液を流す迂回路35が分岐して形成されている。迂回路35の上流側の分岐点の熱交換器45側、迂回路35の下流側の分岐点の熱交換器45側、および迂回路35には、バルブ53,55,54が設けられている。バルブ53,55を閉栓しバルブ54を開栓することで、熱交換器45を通過させることなく、加熱殺菌装置46を経た養液を直接放熱器47へと送ることができる。
例えば、周囲温度等の条件によっては、熱交換器45の放熱側から出てくる養液の温度が低く、栽培室3の室温を夜間の適温にまで暖められない場合は、バルブ53〜55の開閉を制御して、加熱された養液を直接栽培室3へと送る。その後、栽培室3の室温が夜間の適温に達すると、バルブ53〜55を元に戻す。このようなバルブ53〜55の開閉制御は、手動にて行ってよいし、栽培室3の室温に基づいて制御装置にて自動で行ってもよい。
なお、熱交換器45の放熱側から出てくる養液の温度が低く成りすぎることを防ぐ別の対策として、熱交換器45における流路を切り換え可能な構成としておき、熱交換器45の放熱側から出てくる養液の温度が低い場合、流路を短いものに切り替えるようにしてもよい。
また、迂回路35を設けた場合、加熱された養液を、短絡経路34を用いて直接養液タンク40に流すことで、養液タンク40内の殺菌処理も可能となる。
〔実施の形態3〕
以下、本発明の実施のその他の形態について、図5を参照して説明する。なお、説明の便宜上、前記実施形態にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図5は、本実施の形態に係る植物工場の構成を示す模式図である。図5に示すように、本実施の形態の植物工場1bにおいては、図4に示した養液循環システム30aの養液戻し経路33aに、さらに、第3ポンプ39の後段に、養液を養液供給経路31へと流す経路36が分岐して形成されている。経路36の上流側の分岐点の放熱器47側と、経路36の下流側の分岐点の養液タンク40側と、経路36には、バルブ56,57,58が設けられている。
これにより、加熱殺菌装置46にて加熱された養液を、迂回路35を通して第3ポンプ(P3)39まで導くと共に、バルブ56,57を閉栓してバルブ58を開栓して、加熱された養液を、経路36を用いて直接養液供給経路31に流すことで、各栽培棚10の殺菌処理も可能となる。
〔まとめ〕
本発明の一態様に係る植物工場は、植物を栽培するための栽培室3に、栽培容器11と照明装置と空調装置20とが配置され、前記栽培容器11に収容された植物15に養液を供給し、余った養液を回収して再び供給する養液循環システム30が設けられ、該養液循環システム30における回収した養液を供給側に戻す循環経路(養液戻し経路33)に、回収した養液を加熱殺菌する加熱殺菌装置46が配設された植物工場1において、前記加熱殺菌装置46の後段の循環経路が前記栽培室3にまで延設されると共に、前記栽培室3まで延設された部分に放熱器47が設けられていることを特徴としている。
上記構成によれば、加熱殺菌装置46にて加熱された養液は、栽培室3まで延設された循環経路を流れる間に冷却されると共に、該経路に配された放熱器47を通過することで効果的に冷却される。しかも、放熱器47は、空調装置20によって、加熱された養液と比べて十分に低い植物に適した温度に管理された栽培室3に配設されているので、放熱がより効果的に行われる。したがって、経路長が長くなった分、養液を送り出すポンプ等の消費電力が若干上がるかもしれないが、電気的に熱を吸熱する冷却機構等を設けずとも養液を常温レベルにまで冷却できるので、結果として養液を冷却するために必要な消費電力を下げることができる。
しかも、放熱器47を栽培室3に設けたことで、放熱器47から発せられた熱を用いて栽培室3を暖めることが可能となる。したがって、例えば、この放熱器47から発せられた熱を、除湿後の空気を暖める熱源として利用することで、空調装置20には冷房運転を行わせながら、消費電力の大きい再熱除湿運転を行わせた場合と同等の効果を得ることができる。つまり、空調装置20に再熱除湿運転を行わせることなく栽培室内が高湿度になることを未然に防止することができる。
さらに、本発明の一態様に係る植物工場1は、前記放熱器47は、前記空気調和機(空調装置20)に備えられた冷却部(冷却器21)により冷却された空気流が直接当たる位置に配置されている構成とすることが好ましい。
放熱器47に冷却器21にて冷却された冷たい空気を直接当てて熱交換させることで、放熱器47による放熱がより一層効果的に行われると共に、暖める前の冷たい空気が栽培室3内の一部の植物に当たってその生育を妨げるといった不具合を確実に回避することができる。
さらに、本発明の一態様に係る植物工場1は、前記照明装置を点灯する明期と前記照明装置を消灯する暗期とを交互に作って前記植物を生育する生育工程において、前記暗期に、前記加熱殺菌装置46による養液の加熱殺菌を行う構成とすることが好ましい。
照明装置は熱を発するため、栽培室3内の熱源となる。照明装置が点灯される明期は照明装置が発する熱によって室温が上がるため、空調装置20は適時稼働して空気を設定温度にまで冷却する。これにより、除湿は問題なく行われる。しかしながら、照明装置が消灯される暗期は、照明装置から熱が発せられないため、室温が上がらない。そのため、空調装置20は栽培室を設定温度にまで冷却させると稼働を停止してしまう。その結果、栽培室の除湿が行われず、湿度が上がってしまう。
上記構成によれば、このような湿度が上がってしまう暗期に、回収した養液の加熱殺菌を行って、放熱器47により栽培室3を暖めるので、空調装置20の設定温度をこの放熱器47からの熱による暖めを加味して低く設定することが可能となり、空調装置20には冷房運転を行わせながら、再熱除湿運転を行わせた場合と同等の効果を得ることができる。
さらに、本発明の一態様に係る植物工場1は、前記加熱殺菌装置46がヒートポンプ方式であることが好ましい。
一般にヒートポンプサイクルでは、高温側と低温側の温度差が大きいほど圧縮機の仕事量が大きくなって消費電力が上昇し、ヒートポンプサイクルを備えた加熱殺菌装置のエネルギー効率が低下する。前述した特許文献1,2に記載された技術では、ヒートポンプサイクルの高温側で加熱した養液を冷却するために、ヒートポンプサイクルの低温側を常温よりも低い温度に設定しており、高温側と低温側の温度差が大きくなっている。
これに対し、上記構成によれば、加熱後の養液の冷却には空調の冷気を利用するため、加熱殺菌装置のヒートポンプサイクルの低温側を常温よりも低い温度とする必要がなく、高温側と低温側の温度差を小さくできる。例えば、特許文献1,2に記載された技術では、高温側90℃,低温側10℃(温度差80℃)としていたところを、上記構成によれば、高温側90℃,低温側20℃(温度差70℃)とすることができる。高温側と低温側の温度差を小さくできることで、サイクルの負荷が下がり、加熱殺菌装置46のエネルギー効率を高めることができる。
さらに、本発明の一態様に係る植物工場1a,1bは、前記養液循環システム30は、養液タンク40に貯留された養液を前記植物15に供給し、余った養液を回収し、前記加熱殺菌装置46にて加熱殺菌した後、前記養液タンク40に戻すように構成されており、回収した養液を前記養液タンク40に戻す循環経路(養液戻し経路33a、33b)に、前記加熱殺菌装置46に送られる養液と前記加熱殺菌装置46を経た養液とを熱交換させる熱交換器45が配設されると共に、前記加熱殺菌装置46を経た養液を前記熱交換器45に送ることなく前記放熱器47へ送る迂回路35が設けられている構成とすることもできる。
上記構成によれば、迂回路35を使って、熱交換器45を通過させることなく、加熱殺菌装置46を経た養液を直接放熱器47へと送ることができる。したがって、熱交換器45を通した養液の温度が、栽培室3の室温を上げるには低く、再熱除湿の効果があまり期待できない場合には、迂回路35を使って加熱殺菌装置46を経た養液を直接放熱器47へと送ることで、栽培室3の室温を上げて効果的な除湿が可能となる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、外部と切り離された閉鎖的空間において完全に制御された環境下で野菜や果物等の植物の生産を行う完全制御型の植物工場に利用することができる。
1,1a,1b 植物工場
2 建屋
3 栽培室
4 タンク室
10 栽培棚
11 栽培容器
13 栽培床
15 植物
20 空調装置(空気調和機)
21 冷却器(冷却部)
23 空気吹出口
30,30a,30b 養液循環システム
31 養液供給経路(循環経路)
32 養液回収経路(循環経路)
33,33a,33b 養液戻し経路(循環経路)
35 迂回路
40 養液タンク
41 回収タンク
42 養液管理機
43 原液タンク
45 熱交換器
46 加熱殺菌装置
47 放熱器

Claims (5)

  1. 植物を栽培するための栽培室に、栽培容器と照明装置と空気調和機とが配置され、前記栽培容器に収容された植物に養液を供給し、余った養液を回収して再び供給する養液循環システムが設けられ、該養液循環システムにおける回収した養液を供給側に戻す循環経路に、回収した養液を加熱殺菌する加熱殺菌装置が配設された植物工場において、
    前記加熱殺菌装置の後段の循環経路が前記栽培室にまで延設されると共に、前記栽培室まで延設された部分に放熱器が設けられていることを特徴とする植物工場。
  2. 前記放熱器は、前記空気調和機に備えられた冷却部により冷却された空気流が直接当たる位置に配置されていることを特徴とする請求項1に記載の植物工場。
  3. 前記照明装置を点灯する明期と前記照明装置を消灯する暗期とを交互に作って前記植物を生育する生育工程において、前記暗期に、前記加熱殺菌装置による養液の加熱殺菌を行うことを特徴とする請求項1又は2に記載の植物工場。
  4. 前記加熱殺菌装置がヒートポンプ方式であることを特徴とする請求項1から3の何れか1項に記載の植物工場。
  5. 前記養液循環システムは、養液タンクに貯留された養液を前記植物に供給し、余った養液を回収し、前記加熱殺菌装置にて加熱殺菌した後、前記養液タンクに戻すように構成されており、回収した養液を前記養液タンクに戻す循環経路に、前記加熱殺菌装置に送られる養液と前記加熱殺菌装置を経た養液とを熱交換させる熱交換器が配設されると共に、前記加熱殺菌装置を経た養液を前記熱交換器に送ることなく前記放熱器へ送る迂回路が設けられていることを特徴とする請求項1から4の何れか1項に記載の植物工場。
JP2014087574A 2014-04-21 2014-04-21 植物工場 Pending JP2015204787A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087574A JP2015204787A (ja) 2014-04-21 2014-04-21 植物工場

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087574A JP2015204787A (ja) 2014-04-21 2014-04-21 植物工場

Publications (1)

Publication Number Publication Date
JP2015204787A true JP2015204787A (ja) 2015-11-19

Family

ID=54602229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087574A Pending JP2015204787A (ja) 2014-04-21 2014-04-21 植物工場

Country Status (1)

Country Link
JP (1) JP2015204787A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192333A (ja) * 2016-04-20 2017-10-26 司ゴム電材株式会社 水耕栽培棚の空調システム
CN110226436A (zh) * 2018-03-06 2019-09-13 四季洋圃生物机电股份有限公司 育苗装置
JP2019193638A (ja) * 2019-06-10 2019-11-07 司ゴム電材株式会社 水耕栽培棚の空調システム
JP2020092654A (ja) * 2018-12-13 2020-06-18 株式会社プランテックス 植物栽培装置
CN115299332A (zh) * 2022-07-21 2022-11-08 广东金莱特智能科技有限公司 一种具有加热功能的室内种植机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669217A (en) * 1984-11-17 1987-06-02 Aeroponics, Associates-1983 Ltd. Plant propagation system and apparatus
JPH05153879A (ja) * 1991-12-05 1993-06-22 Toshiba Corp 植物の育成装置
JPH0662684A (ja) * 1992-08-07 1994-03-08 Nepon Kk 養液栽培用液肥の加熱殺菌装置
WO2007058062A1 (ja) * 2005-10-28 2007-05-24 National University Corporation Chiba University 植物生産システム
JP3990618B2 (ja) * 2002-10-07 2007-10-17 松下電工株式会社 植物育成照明方法
JP2008043781A (ja) * 2007-09-27 2008-02-28 Sanyo Electric Co Ltd ヒートポンプ装置を用いた殺菌処理装置
JP2013111073A (ja) * 2011-12-01 2013-06-10 Mitsubishi Electric Plant Engineering Corp レタス栽培システムおよび方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669217A (en) * 1984-11-17 1987-06-02 Aeroponics, Associates-1983 Ltd. Plant propagation system and apparatus
JPH05153879A (ja) * 1991-12-05 1993-06-22 Toshiba Corp 植物の育成装置
JPH0662684A (ja) * 1992-08-07 1994-03-08 Nepon Kk 養液栽培用液肥の加熱殺菌装置
JP3990618B2 (ja) * 2002-10-07 2007-10-17 松下電工株式会社 植物育成照明方法
WO2007058062A1 (ja) * 2005-10-28 2007-05-24 National University Corporation Chiba University 植物生産システム
JP2008043781A (ja) * 2007-09-27 2008-02-28 Sanyo Electric Co Ltd ヒートポンプ装置を用いた殺菌処理装置
JP2013111073A (ja) * 2011-12-01 2013-06-10 Mitsubishi Electric Plant Engineering Corp レタス栽培システムおよび方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192333A (ja) * 2016-04-20 2017-10-26 司ゴム電材株式会社 水耕栽培棚の空調システム
CN110226436A (zh) * 2018-03-06 2019-09-13 四季洋圃生物机电股份有限公司 育苗装置
JP2020092654A (ja) * 2018-12-13 2020-06-18 株式会社プランテックス 植物栽培装置
JP7123780B2 (ja) 2018-12-13 2022-08-23 株式会社プランテックス 植物栽培装置
JP2019193638A (ja) * 2019-06-10 2019-11-07 司ゴム電材株式会社 水耕栽培棚の空調システム
CN115299332A (zh) * 2022-07-21 2022-11-08 广东金莱特智能科技有限公司 一种具有加热功能的室内种植机

Similar Documents

Publication Publication Date Title
JP2015204787A (ja) 植物工場
CN103503763B (zh) 一种植物生长箱控制***及其控制方法
US10674680B2 (en) Fan coil for greenhouse
JP5583587B2 (ja) 暖房および除湿のための方法およびシステム
US10736274B2 (en) Growing system mixing box
US10405501B1 (en) Growing system mixing box with CO2 containing exhaust inlet and cooling and heating coils in series
KR20100067156A (ko) 온실용 하이브리드 히트펌프식 열교환 시스템
KR101575876B1 (ko) 공기순환-공기정화 겸 냉각장치가 구비된 식물재배장치
CN110235638A (zh) 人工光封闭型植物工厂
US20200281152A1 (en) Livestock stall system
JP6863182B2 (ja) 栽培設備
KR20170139911A (ko) 농수산물 상온 유지 제습 건조기
JP2015052429A (ja) 貯蔵庫
CN202455968U (zh) 植物生长箱
KR100754772B1 (ko) 배출수를 활용하는 농업용 제습기
KR102122307B1 (ko) 그래핀막을 갖는 온실 제어 시스템
EP3800988A1 (en) Method and device for cultivation of crops
KR102122301B1 (ko) 이중 파이프로 온실의 온도를 제어하는 온실 제어 시스템
KR20150137567A (ko) 축열식 공기소독 냉열 교환기
CN214701005U (zh) 光控除湿一体化智能空调机组
JP6474573B2 (ja) 植物栽培装置及び植物栽培装置用の空調装置
CN212753516U (zh) 一种温室大棚防病机及温室大棚空气调节***
KR20200002543A (ko) 이중 팬코일부 및 살균소독부를 포함하는 온실 제어 시스템
CN111567280A (zh) 一种温室大棚防病机
RU167332U1 (ru) Устройство облучения растений для теплиц

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807