JP2015201432A - Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015201432A
JP2015201432A JP2015033335A JP2015033335A JP2015201432A JP 2015201432 A JP2015201432 A JP 2015201432A JP 2015033335 A JP2015033335 A JP 2015033335A JP 2015033335 A JP2015033335 A JP 2015033335A JP 2015201432 A JP2015201432 A JP 2015201432A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
particle powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015033335A
Other languages
Japanese (ja)
Inventor
祐司 三島
Yuji Mishima
祐司 三島
尊久 西尾
Takahisa Nishio
尊久 西尾
琢磨 北條
Takuma Hojo
琢磨 北條
光昭 畑谷
Mitsuaki Hataya
光昭 畑谷
竜太 正木
Ryuta Masaki
竜太 正木
貞村 英昭
Hideaki Sadamura
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2015033335A priority Critical patent/JP2015201432A/en
Publication of JP2015201432A publication Critical patent/JP2015201432A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material particle powder having high capacity, a high capacity maintenance rate and excellent high temperature overcharge test, and also to provide a manufacturing method therefor, and a secondary battery using the same.SOLUTION: A positive electrode active material particle powder includes: a core particle composed of cobaltic acid lithium having a layered structure containing element M (M is Mg and/or Al); and a surface layer composed of the cobaltic acid lithium having the layered structure in which at least Ti is incorporated into solid solution. The average layer thickness of the surface layer is 0.005 to 1.5 μm, and the BET specific surface area is 0.02 to 0.25 m/g.

Description

本発明は、高エネルギー密度を示す二次電池用の正極活物質として、高温過充電特性、且つ充放電繰り返し特性に優れた正極活物質粒子粉末とその製造方法、及びそれを用いた二次電池を提供する。   The present invention relates to a positive electrode active material particle powder excellent in high temperature overcharge characteristics and charge / discharge repetition characteristics as a positive electrode active material for a secondary battery exhibiting high energy density, a method for producing the same, and a secondary battery using the same I will provide a.

近年、携帯電話やパソコン等の電子機器の小型・軽量化に拍車がかかり、これらの駆動用電源として高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、且つ安全性が高いという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as mobile phones and personal computers have been spurred to be smaller and lighter, and the demand for secondary batteries having high energy density as power sources for driving these devices has increased. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and high safety has been attracting attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、層状(岩塩型)構造のLiCoO、Li(Ni、Co)O、Li(Ni、Co、Mn)O、及びスピネル型構造のLiMnが一般的に知られており、なかでも高い結晶性が容易に得られやすく、高密度に充填が可能なコバルト酸リチウムLiCoOはモバイル機器の駆動電源の正極活物質として20年以上使われている。しかしながら、前記機器の高性能化に伴い、更なる特性改善が求められている。 Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4V class, LiCoO 2 having a layered (rock salt type) structure, Li (Ni, Co) O 2 , Li (Ni, Co) , Mn) O 2 , and LiMn 2 O 4 having a spinel structure are generally known, and among them, lithium cobalt oxide LiCoO 2 that can easily obtain high crystallinity and can be packed at high density is mobile. It has been used for more than 20 years as a positive electrode active material for device drive power. However, further improvement in characteristics has been demanded as the performance of the device has been improved.

特性改善の一つに、二次電池の充電電圧を上げて、高エネルギー密度化を図る方法がある。しかしながら、高充電電圧下、即ち、過充電状態において、充放電繰り返し特性の劣化やガス発生に伴う電池パックの膨れの問題が指摘されている。   One of the characteristic improvements is to increase the charging voltage of the secondary battery to increase the energy density. However, under high charging voltage, that is, in an overcharged state, problems of deterioration of charge / discharge repetition characteristics and swelling of the battery pack due to gas generation have been pointed out.

一般に、コバルト酸リチウムLiCoOの結晶は一価のLi、三価のCo3+、マイナス二価のO2−で構成されており、充電により該結晶からLiと電子eが脱離し、ヤーン・テラー性の不安定なCo4+を含む脱リチウム状態のLi1−aCoO(a>0)へと変化する。そのため、Liが半分抜けたLi0.5CoOの組成比付近の脱リチウム状態において、該結晶から電解液へコバルトイオンが溶出すると共に、該結晶の相転移や崩壊が発生するため、電池の充放電繰り返し特性を悪化させる。 In general, a crystal of lithium cobaltate LiCoO 2 is composed of monovalent Li + , trivalent Co 3+ , and minus divalent O 2− , and Li + and electrons e are desorbed from the crystal by charging, It changes to Li 1-a CoO 2 (a> 0) in a delithiated state containing Co 4+ with unstable yarn-teller properties. Therefore, in the delithiated state in the vicinity of the composition ratio of Li 0.5 CoO 2 from which Li + has been removed by half, cobalt ions are eluted from the crystal into the electrolyte solution, and phase transition and collapse of the crystal occur. It deteriorates the charge / discharge repetition characteristics.

また、脱リチウム状態のLi1−aCoO(a>0)におけるCo3+/4+に付随したd軌道のエネルギー準位とO2−に付随したp軌道のエネルギー準位は比較的近いため、電気化学的にLi1−aCoOのコバルトイオンから電子を引き抜くことと酸素イオンから電子を引く抜くことは等価であり、結晶からのコバルトイオン溶出と共にも酸素(イオン)も放出される。電池が高い充電状態にあるとき、正極近傍は電子を奪う高い酸化状態に正極が曝され、また、前述の放出された酸素により更に高い酸化状態となり、正極周囲の電解液やバインダーを酸化させ、CO等のガス発生が生じて電池を膨らませる危険が生じる。 In addition, the energy level of the d orbital associated with Co 3 + / 4 + and the energy level of the p orbital associated with O 2− in Li 1-a CoO 2 (a> 0) in the delithiated state are relatively close. Electrochemically extracting electrons from cobalt ions of Li 1-a CoO 2 is equivalent to extracting electrons from oxygen ions, and oxygen (ions) is released along with the elution of cobalt ions from the crystal. When the battery is in a highly charged state, the positive electrode is exposed to a high oxidation state that takes away electrons in the vicinity of the positive electrode, and becomes a higher oxidation state due to the released oxygen, oxidizing the electrolyte and binder around the positive electrode, There is a risk that gas such as CO 2 is generated and the battery is expanded.

特に、高温での高充電圧下では、コバルトイオン溶出に伴った酸素(イオン)と電解液との反応が活性を増し、二次電池としての安全性を確保するためには、脱Li状態のコバルト酸リチウム正極活物質の構造がより安定であることが必要とされている。即ち、充電電圧を上げて、充放電に利用可能なLiの量を安全に増やすためには、コバルト酸リチウム粒子粉末の改善が必要である。従来、コバルト酸リチウムの脱リチウム状態の安定化に対して、異種元素による置換や被覆の技術が提案されている(特許文献1〜6)。   In particular, under high charge pressure at high temperature, the reaction between oxygen (ion) and the electrolyte accompanying elution of cobalt ions increases the activity, and in order to ensure safety as a secondary battery, cobalt in a de-Li state The structure of the lithium acid positive electrode active material is required to be more stable. That is, in order to increase the charging voltage and safely increase the amount of Li available for charging and discharging, it is necessary to improve the lithium cobalt oxide particle powder. Conventionally, a technique of substitution or covering with a different element has been proposed for stabilizing the delithiated state of lithium cobaltate (Patent Documents 1 to 6).

一般に、Li(Ni2+、Co3+、Mn4+)OはLiとNi2+のイオン半径が近いため、Liが遷移金属のサイトへ入ったり、Ni2+がリチウムのサイトへ入ったりして、完全な結晶が作りにくいことが知られている。また、充放電においてNi2+/4+に対応した電位をとり、コバルト酸リチウム正極の電池電圧に比べ低くなる。同時に、4価のコバルトイオンCo4+が生成しない。そのため、コバルト酸リチウムLiCoOに比べ、高温過充電状態でのコバルトイオンの溶出は極めて少なく、コバルト酸リチウムの表面処理として利用されている(特許文献1〜5)。 In general, Li (Ni 2+ , Co 3+ , Mn 4+ ) O 2 has a close ionic radius between Li + and Ni 2+ , so Li + enters a transition metal site or Ni 2+ enters a lithium site. It is known that perfect crystals are difficult to make. Moreover, the electric potential corresponding to Ni <2 +> / 4+ is taken in charging / discharging, and becomes low compared with the battery voltage of a lithium cobaltate positive electrode. At the same time, tetravalent cobalt ions Co 4+ are not generated. Therefore, compared to lithium cobalt oxide LiCoO 2, elution of cobalt ions is extremely small in a high temperature overcharge state, it is used as the surface treatment of the lithium cobalt oxide (Patent Documents 1 to 5).

また、コバルト酸リチウム作製時にTiOを混合すると、得られる粉末にはコバルト酸リチウムの表層にLiTiO結晶として存在し、二次電池の充放電繰り返し特性やレート特性、並びに非水電解液との反応によるガス発生を抑制することが報告されている。(特許文献6)。 In addition, when TiO 2 is mixed during the preparation of lithium cobalt oxide, the resulting powder exists as Li 2 TiO 3 crystals on the surface of the lithium cobalt oxide, and the charge / discharge repetition characteristics and rate characteristics of the secondary battery, as well as the non-aqueous electrolyte It has been reported to suppress gas generation due to the reaction with. (Patent Document 6).

特表2002−529361号公報JP 2002-529361 A 特開2006−331939号公報JP 2006-331939 A 特開2007−066745号公報JP 2007-066745 A 特開2007−258095号公報JP 2007-258095 A 特開2008−16243号公報JP 2008-16243 A 国際公開第2011/043296号International Publication No. 2011/043296

高エネルギー密度を示す二次電池用の正極活物質として、高温過充電特性と充放電繰り返し特性に優れた正極活物質粒子粉末とその製造方法、及びそれを用いた二次電池について、現在最も要求されているところであるが、未だ確立されていない。   As the positive electrode active material for a secondary battery exhibiting high energy density, currently the most demanded of positive electrode active material particle powder excellent in high-temperature overcharge characteristics and charge / discharge repeatability, its manufacturing method, and a secondary battery using the same. It has been established, but has not been established yet.

即ち、特許文献1に記載された技術では、活物質粒子表面層が精密に制御されておらず、高温過充電特性に優れた正極活物質、及び該製造法が開示されているとは言い難い。   That is, in the technique described in Patent Document 1, it is difficult to say that the active material particle surface layer is not precisely controlled, and a positive electrode active material excellent in high-temperature overcharge characteristics and the production method are not disclosed. .

特許文献2記載の技術はコバルト酸リチウム表面のニッケルやマンガンを含む相の精密制御がなされていないため高容量化が難しく、高エネルギー密度を示す二次電池用の正極活物質の製造方法、及び二次電池が開示されているとは言い難い。   The technology described in Patent Document 2 is difficult to increase the capacity because the phase containing nickel or manganese on the surface of lithium cobaltate is not precisely controlled, and a method for producing a positive electrode active material for a secondary battery exhibiting a high energy density, and It is difficult to say that a secondary battery is disclosed.

特許文献3記載の技術はコバルト酸リチウム中の多量のニッケルの存在のため高容量化が難しく、高エネルギー密度を示す二次電池用の正極活物質、及び二次電池が開示されているとは言い難い。   The technology described in Patent Document 3 is difficult to increase the capacity due to the presence of a large amount of nickel in lithium cobalt oxide, and a positive electrode active material for a secondary battery exhibiting a high energy density and a secondary battery are disclosed. It's hard to say.

特許文献4、及び5記載の技術は、コバルト酸リチウム粒子の被覆層の精密な制御ができているとは言い難く、高温過充電時の安定性に優れている正極活物質及び二次電池が開示されているとは言い難い。   The techniques described in Patent Documents 4 and 5 are difficult to say that precise control of the coating layer of lithium cobalt oxide particles is possible, and positive electrode active materials and secondary batteries that are excellent in stability during high-temperature overcharge are obtained. It is hard to say that it is disclosed.

特許文献6記載の技術は、1度の焼成で偶発的にコバルト酸リチウム粒子の表層にLiTiOの結晶を作製する方法であり、コバルト酸リチウム粒子の一次粒子が非常に小さく、コバルトイオン溶出抑制ができず、高温過充電時の安定性に優れている正極活物質および二次電池とは言い難い。 The technique described in Patent Document 6 is a method of accidentally producing a Li 2 TiO 3 crystal on the surface layer of lithium cobalt oxide particles by one firing, where the primary particles of the lithium cobalt oxide particles are very small, cobalt ions It cannot be said that it is a positive electrode active material and a secondary battery that cannot suppress elution and are excellent in stability at high temperature overcharge.

そこで、本発明は、コバルト酸リチウムを芯粒子とし、少量の被覆層を精密に制御することで、高容量を維持しつつ、高温過充電特性と充放電繰り返し特性に優れた正極活物質粒子粉末とその製造方法、及びそれを用いた二次電池の提供を技術的課題とする。   Accordingly, the present invention provides a positive electrode active material particle powder having excellent high-temperature overcharge characteristics and charge / discharge repeatability characteristics while maintaining a high capacity by using lithium cobaltate as a core particle and precisely controlling a small amount of a coating layer. And a method of manufacturing the same, and a secondary battery using the same is a technical problem.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、元素M(MはMg及び/又はAl)を含む層状構造のコバルト酸リチウムからなる芯粒子と、少なくともTiが固溶した層状構造のコバルト酸リチウムからなる表層を有する正極活物質粒子粉末であって、該表層の平均の層厚が0.005〜1.5μmであり、BET比表面積が0.02〜0.25m/gであることを特徴とする正極活物質粒子粉末である(本発明1)。 That is, the present invention provides a positive electrode active material having core particles made of lithium cobaltate having a layered structure containing the element M (M is Mg and / or Al) and a surface layer made of lithium cobaltate having a layered structure in which at least Ti is dissolved. Positive electrode active material particles, characterized in that the material layer powder has an average layer thickness of 0.005 to 1.5 μm and a BET specific surface area of 0.02 to 0.25 m 2 / g It is a powder (Invention 1).

また、本発明は、前記正極活物質粒子粉末が元素A(AはW、Mo、及びBから選ばれる少なくとも1種の元素)を含む水可溶性のリチウム酸化物からなる最表面を有し、該最表面の含有量が0.01〜0.5重量%である本発明1に記載の正極活物質粒子粉末である(本発明2)。   In the present invention, the positive electrode active material particle powder has an outermost surface made of water-soluble lithium oxide containing element A (A is at least one element selected from W, Mo, and B), It is positive electrode active material particle powder of this invention 1 whose content of the outermost surface is 0.01 to 0.5 weight% (this invention 2).

また、本発明は、体積基準のメジアン径が10〜35μmである本発明1又は2に記載の正極活物質粒子粉末である(本発明3)。   Moreover, this invention is a positive electrode active material particle powder of this invention 1 or 2 whose volume-based median diameter is 10-35 micrometers (this invention 3).

また、本発明は残存アルカリ成分が800ppm以下、未反応酸化コバルトが500ppm以下である本発明1〜3のいずれかに記載の正極活物質粒子粉末である(本発明4)。   Moreover, this invention is a positive electrode active material particle powder in any one of this invention 1-3 whose residual alkali component is 800 ppm or less and whose unreacted cobalt oxide is 500 ppm or less (this invention 4).

また、本発明は前記表層のTi濃度が0.001≦Ti/Co(mol比)≦0.02である本発明1〜4のいずれかに記載の正極活物質粒子粉末である(本発明5)。   Further, the present invention is the positive electrode active material particle powder according to any one of the present inventions 1 to 4, wherein the surface layer has a Ti concentration of 0.001 ≦ Ti / Co (mol ratio) ≦ 0.02. ).

また、本発明は前記表層の前記芯粒子に対する被覆率が80%以上である本発明1〜5のいずれかに記載の正極活物質粒子粉末である(本発明6)。   Moreover, this invention is a positive electrode active material particle powder in any one of this invention 1-5 whose coverage with respect to the said core particle of the said surface layer is 80% or more (this invention 6).

また、本発明は本発明1〜6のいずれかに記載の正極活物質粒子粉末の製造方法であって、リチウム原料とコバルト原料と元素M原料(MはMg及び/又はAl)を混合後、800〜1100℃で焼成を行って層状構造のコバルト酸リチウム粒子粉末を作製する第一工程と、第一工程で得られたコバルト酸リチウム粒子粉末とチタン原料とリチウム原料とを混合後、800〜1100℃で焼成を行って表層を形成する第二工程からなることを特徴とする正極活物質粒子粉末の製造方法である(本発明7)。   Moreover, this invention is a manufacturing method of the positive electrode active material particle powder in any one of this invention 1-6, Comprising: After mixing a lithium raw material, a cobalt raw material, and element M raw material (M is Mg and / or Al), A first step of producing a lithium cobaltate particle powder having a layered structure by baking at 800 to 1100 ° C., and after mixing the lithium cobaltate particle powder obtained in the first step, a titanium raw material, and a lithium raw material, It is a manufacturing method of the positive electrode active material particle powder which consists of a 2nd process which forms by baking by 1100 degreeC (this invention 7).

また、本発明は本発明2〜6のいずれかに記載の正極活物質粒子粉末の製造方法であって、リチウム原料とコバルト原料と元素M原料(MはMg及び/又はAl)を混合後、800〜1100℃で焼成を行って層状構造のコバルト酸リチウム粒子粉末を作製する第一工程と、第一工程で得られたコバルト酸リチウム粒子粉末とチタン原料と元素A原料(AはW、Mo、及びBから選ばれる少なくとも1種の元素)とリチウム原料とを混合後、800〜1100℃で焼成を行って表層及び最表面を形成する第二工程からなることを特徴とする正極活物質粒子粉末の製造方法である(本発明8)。   Further, the present invention is a method for producing a positive electrode active material particle powder according to any one of the present invention 2-6, after mixing a lithium raw material, a cobalt raw material and an element M raw material (M is Mg and / or Al), A first step of producing a layered lithium cobalt oxide particle powder by firing at 800 to 1100 ° C., a lithium cobalt oxide particle powder obtained in the first step, a titanium raw material, and an element A raw material (A is W, Mo And at least one element selected from B) and a lithium raw material, followed by baking at 800 to 1100 ° C. to form a surface layer and an outermost surface, and thereby comprising positive electrode active material particles This is a method for producing a powder (Invention 8).

また、本発明は本発明1〜6のいずれかに記載の正極活物質粒子粉末を正極活物質の少なくとも一部に用いて作製した非水電解液二次電池である(本発明9)。   Further, the present invention is a non-aqueous electrolyte secondary battery produced by using the positive electrode active material particle powder according to any one of the present inventions 1 to 6 as at least a part of the positive electrode active material (Invention 9).

また、本発明は本発明1〜6のいずれかに記載の正極活物質粒子粉末に対し、凝集粒子の体積基準のメジアン径が1〜7μmのLi(Ni1−a−bCoMn)O(a及びbは0.15≦a≦0.4、0.15≦b≦0.5)で表わされる正極活物質粒子粉末を3〜25重量%含む混合物を正極活物質として用いて作製した非水電解液二次電池ある(本発明10)。 Further, the present invention is to positive electrode active material particles as described in any one of the present invention 1-6, volume-based median diameter of aggregated particles of 1~7μm Li (Ni 1-a- b Co a Mn b) A mixture containing 3 to 25% by weight of positive electrode active material particles represented by O 2 (a and b are 0.15 ≦ a ≦ 0.4, 0.15 ≦ b ≦ 0.5) is used as the positive electrode active material. There is a produced non-aqueous electrolyte secondary battery (Invention 10).

本発明に係る正極活物質粒子粉末は、芯粒子に高容量を示すコバルト酸リチウムを用い、その表層に微量のTiを固溶させ、高温過充電時のコバルトイオンの溶出を抑制した正極活物質粒子粉末であるため、これを用いた二次電池は高温過充電特性と充放電繰り返し特性に優れている。従って、本発明に係る正極活物質粒子粉末は、非水電解液二次電池用の正極活物質として好適である。   The positive electrode active material powder according to the present invention is a positive electrode active material in which lithium cobaltate having a high capacity is used as a core particle, a trace amount of Ti is solid-solved on the surface layer, and elution of cobalt ions during high temperature overcharge is suppressed. Since it is a particle powder, a secondary battery using this is excellent in high-temperature overcharge characteristics and charge / discharge repetition characteristics. Therefore, the positive electrode active material particle powder according to the present invention is suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

また、本発明に係る正極活物質粒子粉末は、その最表面にコバルト酸リチウムと電解液との反応を抑制する相を形成することができ、高温過充電特性と充放電繰り返し特性に優れた二次電池を製造できる。   In addition, the positive electrode active material particle powder according to the present invention can form a phase that suppresses the reaction between lithium cobalt oxide and the electrolytic solution on the outermost surface, and has excellent high-temperature overcharge characteristics and charge / discharge repetition characteristics. A secondary battery can be manufactured.

本発明の実施例1の各工程で得られる粒子粉末のSEM写真である。 (1)第一工程で得られたコバルト酸リチウム粒子粉末 (2)二酸化チタンが被覆処理されたコバルト酸リチウム粒子粉末 (3)第二工程で得られた正極活物質粒子粉末It is a SEM photograph of the particle powder obtained at each process of Example 1 of the present invention. (1) Lithium cobaltate particle powder obtained in the first step (2) Lithium cobaltate particle powder coated with titanium dioxide (3) Positive electrode active material particle powder obtained in the second step 実施例1で得られた正極活物質粒子粉末を樹脂包埋後、収束イオンビーム(FIB)で薄膜化して撮影したSTEM写真とエネルギー分散型X線(EDX)で分析した結果である。+005、+001、+008は粒子の最表面であり、他は粒子内部である。斜体字はTi/Co(mol%)である。It is the result of analyzing by the STEM photograph and energy dispersive X-rays (EDX) which image | photographed the positive electrode active material particle powder obtained in Example 1 after embedding resin and making it thin with a focused ion beam (FIB). +005, +001, and +008 are the outermost surfaces of the particles, and the others are inside the particles. The italic character is Ti / Co (mol%). 実施例1で得られた正極活物質粒子粉末を樹脂包埋後、収束イオンビーム(FIB)で薄膜化し、ナノビームの電子線回折(NED)で分析した(1)表面から約600nmの+003、(2)表面から約250nmの+002、(3)粒子最表面の+001、における[0,−1,0]zoneの回折パターンである。こられの測定箇所は図2に示した点に対応している。The positive electrode active material particle powder obtained in Example 1 was embedded in a resin, then thinned with a focused ion beam (FIB), and analyzed by nanobeam electron diffraction (NED). (1) +003 of about 600 nm from the surface ( 2) [0, -1, 0] zone diffraction pattern at +002 at approximately 250 nm from the surface, and (3) +001 at the outermost surface of the particle. These measurement points correspond to the points shown in FIG. 実施例1で得られた正極活物質粒子粉末を樹脂包埋後、クロスセクションポリッシャー(CP)で粒子断面を作製し、電界放射型オージェ電子分光法(FE‐AES)で点分析した結果である。点分析により、約0.02μmの範囲の元素濃度を得た。図に示すFE−AES像のとおり、粒子断面の各地点で粒子表面から点分析を行い、粒子表面からの距離に対し、Tiの微分形式のオージェスペクトル強度をプロットした。FIG. 4 shows the result of embedding the positive electrode active material particle powder obtained in Example 1 with a resin, making a cross section of the particle with a cross section polisher (CP), and performing point analysis with field emission Auger electron spectroscopy (FE-AES). . Point analysis yielded elemental concentrations in the range of about 0.02 μm. As in the FE-AES image shown in the figure, point analysis was performed from the particle surface at each point of the particle cross section, and the Auger spectrum intensity in the differential form of Ti was plotted against the distance from the particle surface. 実施例1で得られた正極活物質粒子粉末のX線回折パターンをRietveld解析した結果である。測定点(+)に対し実線で計算値を示す。各2θにおける測定値と計算値の差を下段に曲線で示した。X線回折パターンの下にコバルト酸リチウムのピーク位置を短線(|)で、Tiが固溶したコバルト酸リチウムのピーク位置を長線(|)で示した。右上の挿入図はX線回折パターンの2θが43.5から46.5°までの範囲を拡大した部分であり、縦軸を対数とし、該2相のピークを破線で表わしたものである。It is the result of Rietveld analysis of the X-ray diffraction pattern of the positive electrode active material particle powder obtained in Example 1. The calculated value is indicated by a solid line with respect to the measurement point (+). The difference between the measured value and the calculated value at each 2θ is shown by a curve in the lower part. Under the X-ray diffraction pattern, the peak position of lithium cobaltate is indicated by a short line (|), and the peak position of lithium cobaltate in which Ti is dissolved is indicated by a long line (|). The inset in the upper right is an enlarged portion of the X-ray diffraction pattern 2θ from 43.5 to 46.5 °, with the vertical axis representing the logarithm and the two-phase peaks represented by broken lines. 実施例1で得られた正極活物質粒子粉末を正極化し、コインセルを用いて25℃、4.4Vで充放電試験を行った結果である。It is the result of having made positive electrode active material particle powder obtained in Example 1 into a positive electrode and conducting a charge / discharge test at 25 ° C. and 4.4 V using a coin cell. 実施例1で得られた正極活物質粒子粉末を正極化し、コインセルを用いて25℃、4.4Vで充放電繰り返し試験を行った結果である。横軸に放電回数、縦軸に初期放電容量を100%とした放電容量維持率を示す。It is the result of having made the positive electrode active material particle powder obtained in Example 1 into a positive electrode and conducting a charge / discharge repeated test at 25 ° C. and 4.4 V using a coin cell. The horizontal axis represents the number of discharges, and the vertical axis represents the discharge capacity retention rate with the initial discharge capacity being 100%. 正極活物質粒子粉末を正極化し、コインセルを用いて60℃、4.5Vで高温過充電試験を行った結果である。時間の原点を0.1C定電流充電試験開始直後とし、4.5Vに達した後、定電圧試験に切り替え、14〜72時間の正極活物質重量当たりの積算電流値から漏れ電気量を算出した。It is the result of converting the positive electrode active material particle powder into a positive electrode and conducting a high-temperature overcharge test at 60 ° C. and 4.5 V using a coin cell. The time origin was set immediately after the start of the 0.1 C constant current charge test, and after reaching 4.5 V, the test was switched to the constant voltage test, and the amount of leakage electricity was calculated from the accumulated current value per positive electrode active material weight for 14 to 72 hours. .

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

まず、本発明に係る正極活物質粒子粉末について述べる。   First, the positive electrode active material particle powder according to the present invention will be described.

本発明に係る正極活物質粒子粉末は元素M(MはMg及び/又はAl)を含む層状構造のコバルト酸リチウムからなる芯粒子と、少なくともチタンが固溶したコバルト酸リチウムからなる表層を有している。   The positive electrode active material particle powder according to the present invention has a core particle made of lithium cobaltate having a layered structure containing the element M (M is Mg and / or Al) and a surface layer made of lithium cobaltate in which at least titanium is dissolved. ing.

本発明に係る正極活物質粒子の芯粒子である層状構造のコバルト酸リチウムの化学式はLi1+x(Co1−y)O(x及びyは、0<x≦0.1、0<y≦0.03、MはMg及び/又はAl)である。芯粒子をコバルト酸リチウムとすることで高いエネルギー密度をもつ正極活物質粒子粉末を得ることができる。 The chemical formula of the lithium cobaltate having a layered structure which is the core particle of the positive electrode active material particle according to the present invention is Li 1 + x (Co 1-y M y ) O 2 (x and y are 0 <x ≦ 0.1, 0 < y ≦ 0.03, M is Mg and / or Al). By using lithium cobalt oxide as the core particle, a positive electrode active material particle powder having a high energy density can be obtained.

コバルト酸リチウム作製時のリチウム量をコバルトと添加元素Mのmol量に対して過剰にすることで、焼成後の一次粒子径が増大し、電池の高温過充電特性が向上する。xの値が0以下の場合、コバルト酸リチウムの一次粒子が小さくなり、電池の高温過充電特性を悪化させる。また、xの値が0.1を超える場合、容量が確保できず、高エネルギー密度の電池を設計することができない。また、正極活物質の残存アルカリ成分が増加し、それに起因する充電時の電解液分解によるガス発生が生じる。   By making the amount of lithium at the time of producing lithium cobalt oxide excessive with respect to the molar amount of cobalt and additive element M, the primary particle diameter after firing increases, and the high-temperature overcharge characteristics of the battery are improved. When the value of x is 0 or less, the primary particles of lithium cobalt oxide become small, and the high-temperature overcharge characteristics of the battery are deteriorated. Further, when the value of x exceeds 0.1, the capacity cannot be secured, and a battery having a high energy density cannot be designed. Moreover, the residual alkali component of a positive electrode active material increases, and the gas generation by the electrolyte solution decomposition | disassembly at the time of charge resulting from it arises.

また、添加元素Mはコバルト酸リチウムに固溶する、Mg、Alのうち少なくとも1種である。特に、Mgは放電容量を上げる効果も備えており、添加元素Mとしてより好ましい。添加元素Mを微量添加することによって電池の高温過充電特性を良好にすることができる。yの値が0の場合、電池の高温過充電特性に対する効果が現れない。また、yの値が0.03を超える場合、放電容量が確保できず、高エネルギー密度の電池を設計することができない。   Further, the additive element M is at least one of Mg and Al that are solid-solved in lithium cobalt oxide. In particular, Mg has an effect of increasing the discharge capacity and is more preferable as the additive element M. By adding a small amount of additive element M, the high-temperature overcharge characteristics of the battery can be improved. When the value of y is 0, the effect on the high temperature overcharge characteristic of the battery does not appear. On the other hand, if the value of y exceeds 0.03, the discharge capacity cannot be secured, and a battery with a high energy density cannot be designed.

本発明に係る正極活物質粒子粉末の表層は、少なくともTiが固溶した層状構造のコバルト酸リチウムである。   The surface layer of the positive electrode active material particle powder according to the present invention is a lithium cobalt oxide having a layered structure in which at least Ti is dissolved.

本発明に係る正極活物質粒子粉末の表層は、平均の層厚が0.005〜1.5μmである。表層の層厚が0.005μm未満の場合、コバルトイオンの溶出を抑制できず、高温過充電特性が不良であった。表層の層厚が1.5μmを超える場合、容量の確保が難しく、高いエネルギー密度の電池の設計が難しくなる。表層の層厚は、好ましくは0.01〜1.3μm、より好ましくは0.05〜1.2μmである。   The surface layer of the positive electrode active material particle powder according to the present invention has an average layer thickness of 0.005 to 1.5 μm. When the surface layer thickness was less than 0.005 μm, the elution of cobalt ions could not be suppressed, and the high-temperature overcharge characteristics were poor. When the thickness of the surface layer exceeds 1.5 μm, it is difficult to ensure the capacity, and it becomes difficult to design a battery having a high energy density. The layer thickness of the surface layer is preferably 0.01 to 1.3 μm, more preferably 0.05 to 1.2 μm.

従来、Tiは電解液の分解を妨げる効果を備えていることが知られていた。今回、Tiをコバルト酸リチウム結晶の表層に固溶させることにより、コバルトイオンの溶出を防ぐ役割を果たすことが分かった。コバルト酸リチウムの表層において三価のCo3+のサイトに四価のTi4+が部分的に固溶し、構造欠陥を有するLi(□α/3Co1−4α/3Tiα)Oが生じ、脱Li状態での相転移や結晶崩壊を抑制したためと推察している。ここで、□は空孔を意味する。 Conventionally, it has been known that Ti has an effect of preventing the decomposition of the electrolytic solution. This time, it was found that by dissolving Ti in the surface layer of lithium cobaltate crystal, it plays a role of preventing elution of cobalt ions. In the surface layer of lithium cobaltate, tetravalent Ti 4+ partially dissolves at the trivalent Co 3+ site, resulting in Li (□ α / 3 Co 1-4α / 3 Ti α ) O 2 having structural defects. This is presumed to be because the phase transition and crystal collapse in the Li-free state were suppressed. Here, □ means a hole.

表層のTi濃度は0.001≦Ti/Co(mol比)≦0.02であることが好ましい。表層のTi濃度がTi/Co<0.001では高温過充電特性は良好でない。また、0.02<Ti/Coの場合、表層のコバルト酸リチウムに固溶しきらなかったチタンがLiTiOを形成し、容量を低下させる。 The Ti concentration of the surface layer is preferably 0.001 ≦ Ti / Co (mol ratio) ≦ 0.02. When the Ti concentration of the surface layer is Ti / Co <0.001, the high temperature overcharge characteristics are not good. Further, in the case of 0.02 <Ti / Co, titanium that did not completely dissolve in the surface lithium cobaltate forms Li 2 TiO 3 and lowers the capacity.

表層の芯粒子に対する被覆率が80%以上であることが好ましい。被覆率が80%を下回る場合、高温過充電特性が不良であった。   It is preferable that the coverage of the core particles on the surface layer is 80% or more. When the coverage was less than 80%, the high temperature overcharge characteristics were poor.

本発明に係る正極活物質粒子粉末は元素M(MはMg及び/又はAl)を含む層状構造のコバルト酸リチウムからなる芯粒子と、チタンが固溶したコバルト酸リチウムからなる表層を有する。また、元素A(AはW、Mo、及びBから選ばれる少なくとも1種の元素)を含む水可溶性のリチウム酸化物からなる最表面を有していてもよい。   The positive electrode active material particle powder according to the present invention has core particles made of lithium cobaltate having a layered structure containing the element M (M is Mg and / or Al), and a surface layer made of lithium cobaltate in which titanium is dissolved. Moreover, you may have the outermost surface which consists of a water-soluble lithium oxide containing the element A (A is at least 1 sort (s) of elements chosen from W, Mo, and B).

本発明に係る正極活物質粒子粉末の最表面に存在するリチウム酸化物の化学式はLiAOδ(AはMo、W、Bのうち少なくとも1種、AがMo又はWの場合z=2、δ=4、AがBの場合z=3、δ=3)である。即ち、Aがモリブデン(Mo)の場合LiMoO、Aがタングステン(W)の場合LiWO、Aがホウ素(B)の場合LiBOである。これらの化合物は後述する可溶性塩とワルダー法による残存アルカリ成分の測定結果から定量化した。 The chemical formula of the lithium oxide present on the outermost surface of the positive electrode active material particle powder according to the present invention is Li z AO δ (A is at least one of Mo, W, and B, z = 2 when A is Mo or W, When δ = 4 and A is B, z = 3 and δ = 3). That is, Li 2 MoO 4 when A is molybdenum (Mo), Li 2 WO 4 when A is tungsten (W), and Li 3 BO 3 when A is boron (B). These compounds were quantified based on the measurement results of the soluble salts described later and the residual alkali components by the Walder method.

該最表面に存在するリチウム酸化物は二酸化炭素や水に対し溶解性を示すため、高温過充電状態で電池内部に生成した二酸化炭素や水を捕捉し、電池のガス膨れや電解液分解を抑制する働きを示すと考えている。また、該酸化物は電池内に残存、或いは生成する水と電解液との反応で生じたフッ酸に対し耐性を示すため、コバルト酸リチウム結晶の崩壊を抑制する働きも示すと考えている。従って、より高容量であり、且つ、より高温過充電特性に優れた電池特性を示すことができる。   Since the lithium oxide present on the outermost surface is soluble in carbon dioxide and water, it captures carbon dioxide and water generated inside the battery in a high-temperature overcharged state, and suppresses gas expansion and electrolyte decomposition of the battery. I think that it shows the work to do. In addition, since the oxide exhibits resistance to hydrofluoric acid remaining in the battery or generated by the reaction between the generated water and the electrolytic solution, it is considered that the oxide also functions to suppress the collapse of the lithium cobalt oxide crystal. Therefore, it is possible to exhibit battery characteristics that are higher in capacity and more excellent in high-temperature overcharge characteristics.

最表面に存在するリチウム化合物の含有量は、0.01〜0.5重量%であることが好ましい。該最表面の含有量が0.01重量%未満の場合、その効果は電池特性に見られず、また、0.5重量%を超える場合、容量が低下する場合がある。   The content of the lithium compound present on the outermost surface is preferably 0.01 to 0.5% by weight. When the content of the outermost surface is less than 0.01% by weight, the effect is not seen in the battery characteristics, and when it exceeds 0.5% by weight, the capacity may decrease.

本発明に係る正極活物質粒子粉末は一次粒子が凝集した二次粒子である。一次粒子は大きくなると層状構造特有のエッジが観察でき、結晶子サイズに近いことが分かる。そのため、一次粒子が大きいほど高温過充電試験に対し良好である。また、一次粒子が大きくなるほど、BET比表面積は低下する傾向にあり、電解液との接触面積が低減でき、高温過充電試験に対し良好となる。   The positive electrode active material particle powder according to the present invention is a secondary particle in which primary particles are aggregated. As the primary particles become larger, an edge peculiar to the layered structure can be observed, and it can be seen that it is close to the crystallite size. Therefore, the larger the primary particles, the better the high temperature overcharge test. In addition, as the primary particles become larger, the BET specific surface area tends to decrease, the contact area with the electrolytic solution can be reduced, and the high temperature overcharge test becomes better.

本発明に係る正極活物質粒子粉末の一次粒子は粒径が3μm以上であることが好ましい。それ未満の場合、結晶が弱く、高温過充電状態での結晶崩壊を抑制することが難しい。   The primary particles of the positive electrode active material particle powder according to the present invention preferably have a particle size of 3 μm or more. If it is less than that, the crystal is weak and it is difficult to suppress crystal collapse in a high-temperature overcharged state.

本発明に係る正極活物質粒子粉末の二次粒子の体積基準のメジアン径は10〜35μmである。メジアン径が10μm未満の場合、圧縮成型体密度は低くなり、高いエネルギー密度の電池の設計が難しくなる。メジアン径が35μmを超えて、他の特性を満たす粒子粉末を得ることは難しい。メジアン径は、より好ましくは11〜30μmであり、さらに好ましくは12〜25μmである。   The volume-based median diameter of the secondary particles of the positive electrode active material particle powder according to the present invention is 10 to 35 μm. When the median diameter is less than 10 μm, the density of the compression molded body becomes low, and it becomes difficult to design a battery having a high energy density. It is difficult to obtain a particle powder having a median diameter exceeding 35 μm and satisfying other characteristics. The median diameter is more preferably 11 to 30 μm, and further preferably 12 to 25 μm.

本発明に係る正極活物質粒子のBET比表面積が0.02〜0.25m/gである。BET比表面積が0.02m/g未満の粒子を作製することは、現時点では困難である。BET比表面積が0.25m/gを超える場合、電解液との接触面積が広くなり、高温過充電状態で正極活物質からのコバルトイオン溶出やガス発生を抑制できなくなる。BET比表面積は、より好ましくは0.07〜0.23m/gであり、さらに好ましくは0.08〜0.21m/gである。 The positive electrode active material particles according to the present invention have a BET specific surface area of 0.02 to 0.25 m 2 / g. It is currently difficult to produce particles with a BET specific surface area of less than 0.02 m 2 / g. When the BET specific surface area exceeds 0.25 m 2 / g, the contact area with the electrolytic solution becomes wide, and it becomes impossible to suppress elution of cobalt ions and gas generation from the positive electrode active material in a high temperature overcharged state. The BET specific surface area is more preferably 0.07 to 0.23 m 2 / g, and further preferably 0.08 to 0.21 m 2 / g.

本発明に係る正極活物質粒子粉末における残存アルカリ成分は800ppm以下が望ましい。その値を超える場合、アルカリ性が高くなり、電極スラリー作製時のゲル化の要因となり、電池特性に悪影響を及ぼすためである。   The residual alkali component in the positive electrode active material particle powder according to the present invention is desirably 800 ppm or less. When the value is exceeded, the alkalinity increases, which causes gelation during electrode slurry preparation and adversely affects battery characteristics.

本発明に係る正極活物質粒子粉末における未反応酸化コバルトCoは500ppm以下が望ましい。その値を超える場合、高温過充電特性が悪くなり、安全な電池の設計が難しくなる。 Unreacted cobalt oxide Co 3 O 4 in the positive electrode active material particles according to the present invention is less desirable 500 ppm. When the value is exceeded, the high-temperature overcharge characteristic is deteriorated, and it is difficult to design a safe battery.

本発明に係る正極活物質粒子粉末における2.5ton/cmでの圧縮成型体密度は3.5〜4.2g/ccが望ましい。3.5g/cc未満の場合、高いエネルギー密度の電池の設計が難しくなる。4.2g/ccを超える場合、他の特性を満たす粒子粉末を得ることは難しい。 The density of the compression molded body at 2.5 ton / cm 2 in the positive electrode active material particle powder according to the present invention is preferably 3.5 to 4.2 g / cc. If it is less than 3.5 g / cc, it becomes difficult to design a battery having a high energy density. When it exceeds 4.2 g / cc, it is difficult to obtain a particle powder satisfying other characteristics.

圧縮成型体密度を上げるために、本発明に係る正極活物質粒子粉末に、体積基準のメジアン径が1〜7μmの正極活物質粒子粉末を3〜25重量%で混合したものを正極活物質として取り扱っても問題ない。体積基準のメジアン径が1〜7μmの正極活物質粒子粉末として、望ましくは、LiCoOとLi(Ni、Co、Mn)Oの少なくとも1種である。体積基準のメジアン径が1〜7μmの範囲外であれば、圧縮成型体密度を上げることが難しく、高いエネルギー密度の電池が得られない。 In order to increase the density of the compression molded body, the positive electrode active material particle powder according to the present invention mixed with 3 to 25% by weight of a positive electrode active material particle powder having a volume-based median diameter of 1 to 7 μm is used as the positive electrode active material. There is no problem with handling. The positive electrode active material particle powder having a volume-based median diameter of 1 to 7 μm is desirably at least one of LiCoO 2 and Li (Ni, Co, Mn) O 2 . If the volume-based median diameter is outside the range of 1 to 7 μm, it is difficult to increase the density of the compression molded body, and a battery having a high energy density cannot be obtained.

本発明に係る正極活物質粒子粉末に対して、混合する正極活物質はLi(Ni1−a−bCoMn)O(a及びbは0.15≦a≦0.4、0.15≦b≦0.5)であることが好ましい。aの値が0.15未満の場合やbの値が0.5を超える場合、所望の層状構造が形成されにくくなり、高性能の正極活物質として機能しにくくなる。また、aの値が0.4を超える場合やbの値が0.15未満の場合、高温過充電試験に劣る正極活物質となり、混合する効果が現れない。混合する正極活物質のLiとOの各々の量は僅かに化学量論組成比の1と2の値からずれても構わず、特に限定しない。 With respect to the positive electrode active material particle powder according to the present invention, the positive electrode active material to be mixed is Li (Ni 1-ab Co a Mn b ) O 2 (a and b are 0.15 ≦ a ≦ 0.4, 0 .15 ≦ b ≦ 0.5). When the value of a is less than 0.15 or when the value of b exceeds 0.5, it becomes difficult to form a desired layered structure, and it becomes difficult to function as a high-performance positive electrode active material. Moreover, when the value of a exceeds 0.4 or when the value of b is less than 0.15, it becomes a positive electrode active material inferior to a high temperature overcharge test, and the effect of mixing does not appear. The amount of each of Li and O of the positive electrode active material to be mixed may be slightly deviated from the values of 1 and 2 in the stoichiometric composition ratio, and is not particularly limited.

本発明に係る正極活物質粒子粉末に対して、混合する正極活物質Li(Ni1−a−bCoMn)O(a及びbは0.15≦a≦0.4、0.15≦b≦0.5)は体積基準のメジアン径が1〜7μmであることが好ましい。1μm未満では高温過充電試験に優れる正極活物質は得られず、また、7μmを超えては圧縮成型体密度が向上した正極活物質は得られない。 The positive electrode active material powder according to the present invention is mixed with the positive electrode active material Li (Ni 1-ab Co a Mn b ) O 2 (a and b are 0.15 ≦ a ≦ 0.4, 0. 15 ≦ b ≦ 0.5) preferably has a volume-based median diameter of 1 to 7 μm. If it is less than 1 μm, a positive electrode active material excellent in the high-temperature overcharge test cannot be obtained, and if it exceeds 7 μm, a positive electrode active material having an improved compression molded body density cannot be obtained.

本発明に係る正極活物質粒子粉末に対して、混合する正極活物質Li(Ni1−a−bCoMn)O(a及びbは0.15≦a≦0.4、0.15≦b≦0.5)は3〜25重量%であることが好ましい。3重量%未満、又は25重量%を超えては、圧縮成型体密度が向上した正極活物質は得られない。 The positive electrode active material powder according to the present invention is mixed with the positive electrode active material Li (Ni 1-ab Co a Mn b ) O 2 (a and b are 0.15 ≦ a ≦ 0.4, 0. 15 ≦ b ≦ 0.5) is preferably 3 to 25% by weight. When the amount is less than 3% by weight or exceeds 25% by weight, a positive electrode active material having an improved compression molded body density cannot be obtained.

次に、本発明に係る正極活物質粒子粉末の製造法について述べる。   Next, a method for producing the positive electrode active material particle powder according to the present invention will be described.

本発明に係る正極活物質粒子粉末は該粒子の多層構造を形成させるために2度の焼成を含む固相反応法を基に作製される。固相反応とは構成する元素を含む原料を混合し、高温の熱処理により固体同士の化学反応を促進させ、目的の相を得る方法である。   The positive electrode active material particle powder according to the present invention is produced based on a solid-phase reaction method including two firings in order to form a multilayer structure of the particles. The solid-phase reaction is a method in which raw materials containing constituent elements are mixed and a chemical reaction between solids is promoted by high-temperature heat treatment to obtain a target phase.

本発明に係る正極活物質粒子粉末は1度目の焼成で芯粒子となる層状構造のコバルト酸リチウムを作製し、2度目の焼成でTiを固溶させたコバルト酸リチウムからなる表層を該粒子に形成することで製造できる。また、モリブデン、タングステン、ホウ素のうち少なくとも1種を含むリチウム酸化物からなる最表面は、2度目の焼成時に表層と同時に形成することができる。   The positive electrode active material particle powder according to the present invention produces a lithium cobaltate having a layered structure that becomes a core particle in the first firing, and a surface layer made of lithium cobaltate in which Ti is dissolved in the second firing as a particle. It can be manufactured by forming. Further, the outermost surface made of lithium oxide containing at least one of molybdenum, tungsten, and boron can be formed simultaneously with the surface layer during the second firing.

まず、第一工程について説明する。第一工程ではリチウム原料とコバルト原料と元素M原料(MはMg及び/又はAl)を混合後、800〜1100℃で焼成を行って層状構造のコバルト酸リチウム粒子粉末を作製する。   First, the first step will be described. In the first step, a lithium raw material, a cobalt raw material, and an element M raw material (M is Mg and / or Al) are mixed and then fired at 800 to 1100 ° C. to produce a lithium cobaltate particle powder having a layered structure.

芯粒子のコバルト酸リチウム粒子粉末の原料には構成元素を有する種々の化合物を用いることができる。   Various compounds having a constituent element can be used as a raw material for the lithium cobalt oxide particle powder of the core particle.

芯粒子の原料の混合は溶媒を用いない乾式法によることが望ましい。原料粉末の混合装置としては、らいかい機、ボールミル、ヘンシェルミキサー、ハイスピードミキサー等を用いることができる。   It is desirable to mix the raw materials for the core particles by a dry method that does not use a solvent. As a mixing device for the raw material powder, a raking machine, a ball mill, a Henschel mixer, a high speed mixer, or the like can be used.

芯粒子のリチウム原料としてはLiOH・HO、LiCOが好ましい。リチウムの原料粉末は、固相反応中のリチウムの拡散を容易にするために粒径が微細なものを用いることが望ましい。 As a lithium raw material for the core particles, LiOH.H 2 O and Li 2 CO 3 are preferable. It is desirable to use a lithium raw material powder having a fine particle size in order to facilitate diffusion of lithium during the solid-phase reaction.

芯粒子のコバルト原料としてはCo(OH)、CoOOH、Coが好ましい。コバルトの原料粉末は、該粒径が本発明で得られる正極活物質粒子粉末の粒径に強く影響を与えるため、メジアン径D50が所望の正極活物質粒子粉末のD50と近い値であることが好ましい。 As the cobalt raw material of the core particles, Co (OH) 2 , CoOOH, and Co 3 O 4 are preferable. Raw material powder cobalt, to provide a strong influence on the particle size of the positive electrode active material particles the particle size is obtained in the present invention, the median diameter D 50 is a value close to the D 50 of the desirable positive electrode active material particles It is preferable.

芯粒子の添加物元素M(MはMg及び/又はAl)はコバルト原料中に含まれていても、元素Mの化合物を添加しても構わない。元素Mの化合物としては酸化物、水酸化物、炭酸塩が好ましい。添加物元素Mの原料粉末は固相反応性の高い微細なものが望ましい。   The additive element M (M is Mg and / or Al) of the core particle may be contained in the cobalt raw material, or a compound of the element M may be added. The compound of the element M is preferably an oxide, hydroxide, or carbonate. The raw material powder of additive element M is preferably a fine powder having high solid phase reactivity.

芯粒子を得る1度目の焼成の温度は800〜1100℃である。該温度での焼成時間は5〜15時間程度であり、焼成の昇温、降温速度は100〜200℃/時間程度である。焼成温度が800℃未満では固相反応が十分でなく、得られた正極活物質での電池の容量は至って低い。一方、焼成温度が1100℃を超える場合、リチウムの蒸発が抑えきれず、化学組成のずれを引き起し、また、電気炉の劣化を促進させる。焼成温度はより好ましくは930〜1050℃である。   The temperature of the first firing to obtain core particles is 800-1100 ° C. The firing time at this temperature is about 5 to 15 hours, and the temperature rise and temperature drop rate of firing is about 100 to 200 ° C./hour. When the firing temperature is less than 800 ° C., the solid phase reaction is not sufficient, and the battery capacity of the obtained positive electrode active material is extremely low. On the other hand, when the firing temperature exceeds 1100 ° C., the evaporation of lithium cannot be suppressed, causing a shift in chemical composition and promoting the deterioration of the electric furnace. The firing temperature is more preferably 930 to 1050 ° C.

焼成炉としては、ガス流通式箱型マッフル炉、ガス流通式回転炉、ローラーハースキルン等を用いることができる。   As the firing furnace, a gas flow box muffle furnace, a gas flow rotary furnace, a roller hearth kiln, or the like can be used.

焼成の後に、焼成物の粉砕、分級を行っても構わない。粉砕装置として、らいかい機、衝撃式微粉砕機、流体粉砕機等がある。   After firing, the fired product may be pulverized and classified. Examples of the pulverizer include a rough machine, an impact pulverizer, and a fluid pulverizer.

次に、第二工程について説明する。第二工程では、第一工程で得られたコバルト酸リチウム粒子粉末とチタン原料とリチウム原料とを混合後、800〜1100℃で焼成を行って表層を形成して、本発明に係る正極活物質粒子粉末を作製する。   Next, the second step will be described. In the second step, the lithium cobalt oxide particle powder obtained in the first step, the titanium raw material, and the lithium raw material are mixed, and then fired at 800 to 1100 ° C. to form a surface layer, whereby the positive electrode active material according to the present invention A particle powder is prepared.

また、第二工程で、第一工程で得られたコバルト酸リチウム粒子粉末とチタン原料と元素A原料(AはW、Mo、及びBから選ばれる少なくとも1種の元素)とリチウム原料とを混合後、800〜1100℃で焼成を行って表層及び最表面を形成してもよい。   In the second step, the lithium cobalt oxide particle powder obtained in the first step, the titanium raw material, the element A raw material (A is at least one element selected from W, Mo, and B) and the lithium raw material are mixed. Then, baking may be performed at 800 to 1100 ° C. to form the surface layer and the outermost surface.

表層と最表面の原料には構成元素を有する種々の化合物を用いることができる。   Various compounds having constituent elements can be used for the surface layer and the outermost surface material.

表層及び最表面の原料の混合は乾式法、湿式法のいずれでも構わない。   Mixing of the surface layer and the raw material on the outermost surface may be either a dry method or a wet method.

表層及び最表面の原料の混合を乾式法で行う場合、原料粉末の混合装置としては、らいかい機、ボールミル、ヘンシェルミキサー、ハイスピードミキサー等を用いることができる。   When mixing the raw material of the surface layer and the outermost surface by a dry method, as a raw material powder mixing apparatus, a raking machine, a ball mill, a Henschel mixer, a high speed mixer, or the like can be used.

表層及び最表面の原料の混合を湿式法で行う場合、水溶媒を用いて、構成元素の酸化物、水酸化物、或いは炭酸塩として共沈させ、水洗、濾別、乾燥をして混合原料粉末を得ることが望ましい。   When mixing the raw material of the surface layer and the outermost surface by a wet method, it is coprecipitated as an oxide, hydroxide, or carbonate of a constituent element using a water solvent, washed with water, filtered and dried, and mixed raw material It is desirable to obtain a powder.

そのため、乾式混合を用いる場合には、酸化物、水酸化物、炭酸塩を原料とすることが望ましく、湿式混合を用いる場合、硫酸塩、硝酸塩、塩化物を原料とすることが望ましい。   Therefore, when dry mixing is used, it is desirable to use oxides, hydroxides, and carbonates as raw materials, and when wet mixing is used, it is desirable to use sulfates, nitrates, and chlorides as raw materials.

表層及び最表面のリチウム原料はLiOH・HO、LiCOであることが好ましい。 The surface layer and the outermost lithium raw material are preferably LiOH.H 2 O and Li 2 CO 3 .

表層のチタン原料はTiO・nHO、Ti(SO、TiClであることが好ましい。 The titanium material for the surface layer is preferably TiO 2 · nH 2 O, Ti (SO 4 ) 2 , or TiCl 4 .

最表面の添加物元素Aの原料はモリブデン(Mo)、タングステン(W)、ホウ素(B)の酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩、塩化物であることが好ましい。   The raw material of the additive element A on the outermost surface is preferably molybdenum (Mo), tungsten (W), boron (B) oxide, hydroxide, carbonate, sulfate, nitrate, or chloride.

表層及び最表面を得る2度目の焼成温度は、800〜1100℃である。該温度での焼成時間は5〜15時間程度であり、焼成の昇温、降温速度は100〜200℃/時間程度である。焼成温度が800℃未満では固相反応が十分でなく、得られた正極活物質での電池の容量は至って低い。一方、焼成温度が1100℃を超える場合、リチウムの蒸発が抑えきれず、化学組成のずれを引き起し、また、電気炉の劣化を促進させる。焼成温度はより好ましくは850〜1040℃である。   The second baking temperature for obtaining the surface layer and the outermost surface is 800 to 1100 ° C. The firing time at this temperature is about 5 to 15 hours, and the temperature rise and temperature drop rate of firing is about 100 to 200 ° C./hour. When the firing temperature is less than 800 ° C., the solid phase reaction is not sufficient, and the battery capacity of the obtained positive electrode active material is extremely low. On the other hand, when the firing temperature exceeds 1100 ° C., the evaporation of lithium cannot be suppressed, causing a shift in chemical composition and promoting the deterioration of the electric furnace. The firing temperature is more preferably 850 to 1040 ° C.

焼成炉としては、ガス流通式箱型マッフル炉、ガス流通式回転炉、ローラーハースキルン等を用いることができる。   As the firing furnace, a gas flow box muffle furnace, a gas flow rotary furnace, a roller hearth kiln, or the like can be used.

第一工程で得られたコバルト酸リチウムと表層の原料とを混合し、2度目の焼成を行うことによって、芯粒子表層にTiが固溶した結晶相が形成される。また、該コバルト酸リチウムと表層および最表面の原料との混合物を焼成することで、表層と同時に元素Aを含む水可溶性のリチウム酸化物からなる最表面が形成される。該表層もまた芯粒子表面にTiが拡散することで形成される。   The lithium cobaltate obtained in the first step and the raw material for the surface layer are mixed and fired for the second time, whereby a crystalline phase in which Ti is dissolved in the core particle surface layer is formed. Moreover, the outermost surface which consists of a water-soluble lithium oxide containing the element A is formed simultaneously with a surface layer by baking the mixture of this lithium cobaltate, a surface layer, and the raw material of the outermost surface. The surface layer is also formed by diffusion of Ti on the surface of the core particle.

焼成の後に、焼成物の粉砕、篩分けを行っても構わない。粉砕装置として、らいかい機、衝撃式微粉砕機、流体粉砕機等がある。   After firing, the fired product may be pulverized and sieved. Examples of the pulverizer include a rough machine, an impact pulverizer, and a fluid pulverizer.

次に、本発明に係る正極活物質粒子粉末を正極活物質として用いた非水電解液二次電池について述べる。   Next, a non-aqueous electrolyte secondary battery using the positive electrode active material particle powder according to the present invention as a positive electrode active material will be described.

本発明に係る正極活物質粒子粉末を用いて正極シートを製造する場合には、常法に従って、導電剤と結着剤を添加混合する。導電剤としてはカーボンブラック、グラファイト等が好ましい。結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。溶媒として、例えば、N−メチル−ピロリドンを用いることが好ましい。正極活物質粒子粉末と導電材と結着剤該添加物を含むスラリーを蜂蜜状になるまで混練する。得られた正極合剤スラリーを溝が25μm〜500μmのドクターブレードで塗布速度は約60cm/secで集電体上に塗布し、溶媒除去と結着剤軟化のため80〜180℃で乾燥する。集電体には約20μmのAl箔を用いる。正極合剤を塗布した集電体に線圧0.1〜3t/cmのカレンダーロール処理を行って正極シートを得る。   When manufacturing a positive electrode sheet using the positive electrode active material particle powder according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, carbon black, graphite or the like is preferable. As the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable. For example, N-methyl-pyrrolidone is preferably used as the solvent. The slurry containing the positive electrode active material particle powder, the conductive material and the binder and the additive is kneaded until it becomes honey. The obtained positive electrode mixture slurry is applied onto a current collector with a doctor blade having a groove of 25 μm to 500 μm at a coating speed of about 60 cm / sec, and dried at 80 to 180 ° C. to remove the solvent and soften the binder. An Al foil of about 20 μm is used for the current collector. The current collector coated with the positive electrode mixture is subjected to a calender roll treatment with a linear pressure of 0.1 to 3 t / cm to obtain a positive electrode sheet.

本発明に係る正極活物質粒子粉末は圧縮成型体密度が高く、また、該正極活物質のBET比表面積が低いため、正極合剤スラリーへの結着剤添加量を低減でき、結果として密度の高い正極シートが得られる。また、メジアン径が1〜7μmの小粒径の正極活物質を混合することでより高密度の正極シートを得ることができる。   The positive electrode active material particle powder according to the present invention has a high compression-molded body density, and since the BET specific surface area of the positive electrode active material is low, the amount of binder added to the positive electrode mixture slurry can be reduced. A high positive electrode sheet is obtained. Moreover, a higher-density positive electrode sheet can be obtained by mixing a positive electrode active material having a small particle diameter with a median diameter of 1 to 7 μm.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、正極と同様のドクターブレード法や金属圧延により負極シートは作製される。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method or metal rolling as the positive electrode.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質を用いて製造した対極Liの二次電池は、25℃において、4.4Vと4,5Vでの充電後の初期放電容量が、各々170mAh/g、190mAh/g以上である。また、25℃において、4.4Vと4,5Vでの充電、3.0Vまでの放電での51回目の放電容量維持率は、各々85%、80%以上である。更に、後述する評価法の高温過充電試験において、60℃での漏れ電気量は25mAh/g以下であり、優れた電池特性を示す。   The secondary battery of the counter electrode Li manufactured using the positive electrode active material according to the present invention has initial discharge capacities of 170 mAh / g and 190 mAh / g or more at 25 ° C. after charging at 4.4 V and 4, 5 V, respectively. It is. In addition, at 25 ° C., the discharge capacity maintenance ratios at the 51st time in charging at 4.4 V and 4,5 V and discharging to 3.0 V are 85% and 80% or more, respectively. Furthermore, in a high-temperature overcharge test of an evaluation method described later, the amount of electricity leaked at 60 ° C. is 25 mAh / g or less, indicating excellent battery characteristics.

<作用>
本発明に係る正極活物質粒子粉末は、芯粒子に高容量を示すコバルト酸リチウムを用いる。該コバルト酸リチウム粒子表面は微量のTiが固溶した層を形成しているため、コバルトイオンの溶出を抑制することができ、高容量で、高温過充電試験と充放電繰り返し特性に優れる二次電池を製造できる。
<Action>
The positive electrode active material particle powder according to the present invention uses lithium cobalt oxide having a high capacity as the core particle. Since the surface of the lithium cobalt oxide particles forms a layer in which a small amount of Ti is dissolved, it is possible to suppress elution of cobalt ions, a high capacity, and a secondary that excels in high temperature overcharge test and charge / discharge repeatability. A battery can be manufactured.

また、本発明に係る正極活物質粒子粉末が、粒子の最表面に少量の耐酸化性のモリブデン、タングステン、ホウ素からなるリチウム化合物を有すると電解液の分解を抑制するため、高容量で、高温過充電試験と充放電繰り返し特性に優れる二次電池を製造できる。   In addition, when the positive electrode active material particle powder according to the present invention has a small amount of oxidation-resistant molybdenum, tungsten, or boron compound on the outermost surface of the particle to suppress decomposition of the electrolyte, it has a high capacity and a high temperature. A secondary battery having excellent overcharge test and charge / discharge repetition characteristics can be manufactured.

本発明の具体的な実施の例を以下に示す。   Specific examples of implementation of the present invention are shown below.

炭酸リチウムLiCOは純度99.4%の東洋ケミカルズ株式会社製を用いた。オキシ水酸化コバルトCoOOHは下記参考文献を元に作製し、D50=17.2μmの粉末を得た。得られたオキシ水酸化コバルトは、EDTA(エチレンジアミン四酢酸)によるキレート滴定により測定した純度が94.7%であった。水酸化マグネシウムMg(OH)は宇部マテリアルズ株式会社製、及び水酸化アルミニウムAl(OH)は日本軽金属株式会社製を用いた。これらの化学式と純度から原料仕込み量を決定した。 Lithium carbonate Li 2 CO 3 manufactured by Toyo Chemicals Co., Ltd. having a purity of 99.4% was used. Cobalt oxyhydroxide CoOOH was prepared based on the following reference, and a powder of D 50 = 17.2 μm was obtained. The obtained cobalt oxyhydroxide had a purity of 94.7% as measured by chelate titration with EDTA (ethylenediaminetetraacetic acid). Magnesium hydroxide Mg (OH) 2 manufactured by Ube Materials Co., Ltd. and aluminum hydroxide Al (OH) 3 manufactured by Nippon Light Metal Co., Ltd. were used. The raw material charge was determined from these chemical formulas and purity.

<参考文献>
特許第5296948号、戸田工業株式会社
<References>
Patent No. 5296948, Toda Industry Co., Ltd.

本発明の正極活物質粒子粉末の粉体評価は以下のように行った。   The powder evaluation of the positive electrode active material particle powder of the present invention was performed as follows.

第一工程と第二工程で得られる試料の主成分元素であるリチウム、コバルト、マグネシウム、アルミニウム、チタン、モリブデン、タングステン、ホウ素の含有量は、該試料粉末を20%塩酸で完全に溶解後、ICP発光分光分析装置(ICP−OES)Optima8300[株式会社パーキンエルマージャパン]を用い、検量線法で測定した。   The content of lithium, cobalt, magnesium, aluminum, titanium, molybdenum, tungsten, and boron, which are the main components of the sample obtained in the first step and the second step, is determined by completely dissolving the sample powder with 20% hydrochloric acid. It measured by the analytical curve method using ICP emission-spectral-analysis apparatus (ICP-OES) Optima8300 [Perkin Elmer Japan Co., Ltd.].

試料の表面を観察することと化学組成を分析するためにエネルギー分散型X線分析装置付き走査電子顕微鏡SEMのJSM−7100[日本電子株式会社]を用いた。   In order to observe the surface of the sample and analyze the chemical composition, JSM-7100 [JEOL Ltd.] of a scanning electron microscope SEM with an energy dispersive X-ray analyzer was used.

BET比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、Macsorb[(株)マウンテック]を用いた。また、下記(1)式からBET換算粒径を算出した。この際、粒子は真球状であり、コバルト酸リチウムの真密度として、5.1g/ccを用いた。
BET換算粒径(μm)=6/BET値(m/g)/真密度(g/cc)・・・(1)
For the BET specific surface area, the sample was dried and deaerated under nitrogen gas at 120 ° C. for 45 minutes, and then Macsorb [Co., Ltd., Mountec] was used. Further, the BET equivalent particle diameter was calculated from the following formula (1). At this time, the particles were spherical, and 5.1 g / cc was used as the true density of lithium cobaltate.
BET equivalent particle size (μm) = 6 / BET value (m 2 / g) / true density (g / cc) (1)

試料の表層近辺の結晶構造と組成を確認するために、樹脂包埋処理を行い、FIB(収束イオンビーム、Focused Ion Beam)のJEM−9320[日本電子株式会社]で100nm以下に薄片化した。透過型電子顕微鏡TEMのJEM−2100[日本電子株式会社]に付随したNED(ナノビーム電子線回折、Nano Electron Diffraction)やEDX(エネルギー分散型X線分析、Energy Dispersive X−ray spectrometry)を用いて観察した。   In order to confirm the crystal structure and composition in the vicinity of the surface layer of the sample, resin embedding treatment was performed, and it was sliced to 100 nm or less with JEM-9320 (JEOL Ltd.) of FIB (focused ion beam, Focused Ion Beam). Observation using NEM (Nano Electron Diffraction) and EDX (Energy Dispersive X-ray spectroscopy) attached to JEM-2100 [JEOL Ltd.] of transmission electron microscope TEM did.

試料の表層のTiの固溶領域、即ちTiが固溶した表層の層厚を算出するために、粒子粉末を樹脂に包埋し、クロスセクションポリッシャー(CP、Cross Section Polisher)のSM−09010[日本電子株式会社]で粒子を切断後、電界放射型オージェ電子顕微鏡FE−AESのJAMP−9500F[日本電子株式会社]で観察した。加速電圧20kV、照射電流4nAとし、断面箇所の20nmφの範囲で深さ方向数nmを点分析できるようにした。エネルギー範囲として、Tiは355−435eV、Coは730−800eV、各々10回測定し、平均化したスペクトルが得られた。得られたスペクトルは電子のエネルギーEに対するEとN(E)の積である。ここで、N(E)はエネルギーの分布である。   In order to calculate the solid solution region of Ti on the surface layer of the sample, that is, the layer thickness of the surface layer in which Ti was dissolved, the particle powder was embedded in resin, and SM-09010 [CP, Cross Section Polisher] was used. The particles were cut with JEOL Ltd., and then observed with a JAMP-9500F (JEOL Ltd.) of a field emission Auger electron microscope FE-AES. The acceleration voltage was 20 kV, the irradiation current was 4 nA, and a point analysis of several nm in the depth direction was made possible within the range of 20 nmφ at the cross section. As energy ranges, Ti was measured at 355-435 eV, and Co was measured at 730-800 eV, 10 times each, and an averaged spectrum was obtained. The obtained spectrum is the product of E and N (E) with respect to the electron energy E. Here, N (E) is an energy distribution.

図4(1)に示すように試料断面において、粒子表面から粒子内部へ向かって点分析を直線的に行い、得られたTiによる385eV付近を極小とする微分形式のスペクトルの強度d [E・N(E)]/dEを読み取った。即ち、図4(1)では、粒子表面の該スペクトル強度は82である。粒子内部に進むほど、該スペクトル強度は33、20、18、16と下がった。図4(2)に示すように、11地点の粒子表面からの距離に対する該スペクトル強度をプロットし、該スペクトル強度が30以下をTiの検出限界とし、表面からその距離を各々の地点のTiが固溶した表層の層厚とした。算術平均により該層厚の平均値を表1に記した。測定地点の数に対するTiが検出された数から、芯粒子に対する被覆率として表1に記した。   As shown in FIG. 4 (1), a point analysis is linearly performed from the particle surface toward the inside of the particle in the sample cross section, and the intensity d [E · N (E)] / dE was read. That is, in FIG. 4 (1), the spectral intensity on the particle surface is 82. The spectral intensity decreased to 33, 20, 18, and 16 as it proceeded to the inside of the particle. As shown in FIG. 4 (2), the spectrum intensity with respect to the distance from the particle surface at 11 points is plotted, the spectrum intensity is 30 or less as the Ti detection limit, and the distance from the surface is the Ti at each point. It was set as the layer thickness of the surface layer which carried out solid solution. The average value of the layer thickness is shown in Table 1 by arithmetic mean. From the number of Ti detected with respect to the number of measurement points, the coverage for core particles is shown in Table 1.

これらと同様に、各試料の任意の10〜14地点において、図4(1)と同様の点分析と図4(2)のプロットを行い、各試料の表層の平均層厚と被覆率を算出し、表1に記した。   Similarly to these, the point analysis similar to FIG. 4 (1) and the plot of FIG. 4 (2) are performed at arbitrary 10 to 14 points of each sample, and the average layer thickness and coverage of each sample are calculated. And listed in Table 1.

ICP発光分光分析で得られた試料のTi/Co比は、前述の真球状粒子と仮定したBET換算粒径の表層のTi/Co比と芯粒子のCo量に対応するとした。前記記載の方法で得られた平均の層厚を形成したとして、芯粒子の体積と表層の体積を割り出し、表層のTi/Co(mol比)を算出して、表1に記載した。   The Ti / Co ratio of the sample obtained by ICP emission spectroscopic analysis was assumed to correspond to the Ti / Co ratio of the surface layer of the BET equivalent particle diameter assumed to be the above-mentioned spherical particles and the Co amount of the core particles. The average layer thickness obtained by the method described above was formed, and the volume of the core particles and the volume of the surface layer were calculated, and Ti / Co (mol ratio) of the surface layer was calculated and listed in Table 1.

試料の結晶相の確認のため、粉末X線回折装置SmartLab[株式会社リガク製]を用いて測定した。X線回折パターンはCu−Kα、45kV,200mAの条件下で、モノクロメータ通して測定し、最高ピーク強度のcount数が6000〜12000になるよう、0.01°のステップで、計数時間1.0秒で2θが15〜90°の範囲で測定した。外部標準試料としてNIST(National Institute of Standards and Technology)のSRM660bを用い、Rietveld解析プログラムにRIETAN2000を用いた。   In order to confirm the crystal phase of the sample, measurement was performed using a powder X-ray diffractometer SmartLab [manufactured by Rigaku Corporation]. The X-ray diffraction pattern was measured through a monochromator under the conditions of Cu-Kα, 45 kV, 200 mA, and the counting time was 1. in steps of 0.01 ° so that the number of counts of the maximum peak intensity was 6000 to 12000. Measurements were made in the range of 2 to 15 ° to 90 ° at 0 seconds. SRM660b of NIST (National Institute of Standards and Technology) was used as an external standard sample, and Rietan2000 was used as a Rietveld analysis program.

水可溶性塩の測定方法として、試料5gを100cc純水で、20分間煮沸した溶液を室温まで冷やし、濾別後、ICP発光分光分析装置にて分析した。層状構造のコバルト酸リチウムやコバルト・チタン酸リチウムは水に不溶であるから、水可溶性塩の測定によって最表面に露出した水可溶性の化合物の元素量を測定できる。水可溶性塩として、検出されたLi、W、Mo、Bの量と後述するワルダー法による残存アルカリ成分量から、最表面に形成される化合物は推定できる。即ち、最表面はLiAOδ(AはW、Mo、Bのうち少なくとも1種、AがW及び/又Moの場合z=2、δ=4、AがBの場合z=3、δ=3)で表される化合物であり、LiWO、LiMoO、及びLiBOである。 As a method for measuring water-soluble salts, a solution obtained by boiling 5 g of a sample with 100 cc pure water for 20 minutes was cooled to room temperature, filtered, and then analyzed with an ICP emission spectroscopic analyzer. Since the layered lithium cobaltate and cobalt / lithium titanate are insoluble in water, the amount of the element of the water-soluble compound exposed on the outermost surface can be measured by measuring the water-soluble salt. As the water-soluble salt, the compound formed on the outermost surface can be estimated from the detected amounts of Li, W, Mo, B and the residual alkali component amount by the Walder method described later. That is, the outermost surface is Li z AO δ (A is at least one of W, Mo, and B, z = 2, δ = 4 when A is W and / or Mo, and z = 3, δ when A is B. = 3), Li 2 WO 4 , Li 2 MoO 4 , and Li 3 BO 3 .

残存アルカリ成分として、ワルダー法で得られた水酸化リチウムと炭酸リチウムの量を炭酸リチウム量に換算した数値を用いた。即ち、試料10.0gを水50mlに1時間分散させ、その後、1時間静置した後、上澄み液を塩酸で滴定した。その際の指示薬はフェノールフタレインとブロモフェノールブルーを用い水酸化リチウムと炭酸リチウムを定量し、全て炭酸リチウム量に換算した。但し、前記LiWO、LiMoO、及びLiBOの影響は計算により除外していている。 As the residual alkali component, a numerical value obtained by converting the amount of lithium hydroxide and lithium carbonate obtained by the Walder method into the amount of lithium carbonate was used. That is, 10.0 g of a sample was dispersed in 50 ml of water for 1 hour, then allowed to stand for 1 hour, and then the supernatant was titrated with hydrochloric acid. In this case, phenolphthalein and bromophenol blue were used as indicators, and lithium hydroxide and lithium carbonate were quantified, and all were converted to the amount of lithium carbonate. However, the influence of Li 2 WO 4 , Li 2 MoO 4 , and Li 3 BO 3 is excluded by calculation.

未反応酸化コバルトCoの定量は、酸化コバルトとコバルト酸リチウムとの硫酸鉄溶液に対する溶解度の違いを利用した。即ち、試料を硫酸鉄溶液に分散し、1時間放置後、未溶解成分を未反応酸化コバルトとみなした。該未溶解成分はフィルターで濾別され、フィルター上の残存物を塩酸に溶かし、コバルト量をICP発光分光分析装置で定量し、酸化コバルトCoに換算した。 Unreacted cobalt oxide Co 3 O 4 was quantified using the difference in solubility between cobalt oxide and lithium cobaltate in an iron sulfate solution. That is, the sample was dispersed in an iron sulfate solution and allowed to stand for 1 hour, and then the undissolved component was regarded as unreacted cobalt oxide. The undissolved component was filtered off with a filter, the residue on the filter was dissolved in hydrochloric acid, the amount of cobalt was quantified with an ICP emission spectroscopic analyzer, and converted to cobalt oxide Co 3 O 4 .

試料のメジアン径D50は湿式法のレーザー回折・散乱型粒度分布計のマイクロトラックHRA[日機装株式会社]を用いて測定した。 Median diameter D 50 of the samples was measured using a Microtrac HRA [Nikkiso Co., Ltd.] in the laser diffraction scattering type particle size distribution meter wet method.

圧縮成型体密度は5gの試料を10mmφの治具で2.5t/cmの圧力で圧粉し、成型体の重量と体積から算出した。 The density of the compression molded body was calculated from the weight and volume of the molded body by compacting a 5 g sample with a 10 mmφ jig at a pressure of 2.5 t / cm 2 .

得られた正極活物質粒子粉末を用いて、下記製造方法で正極を調製し、CR2032型コインセルでの二次電池特性を評価した。   Using the obtained positive electrode active material particle powder, a positive electrode was prepared by the following production method, and the secondary battery characteristics in a CR2032-type coin cell were evaluated.

正極活物質と導電剤であるアセチレンブラック、グラファイト及び結着剤のポリフッ化ビニリデンを重量比94:3:3となるよう精秤し、N−メチル−2−ピロリドンに分散させ、高速混練装置で十分に混合して正極合剤スラリーを調整した。次に該合剤スラリーを集電体のアルミニウム箔にドクターブレードで塗布し、120℃で乾燥して、0.5t/cmに加圧して、約40μmの膜厚の正極シートを作製した。正極シートを16mmφに打ち抜き、正極とした。   The positive electrode active material and the conductive agent acetylene black, graphite, and the binder polyvinylidene fluoride were precisely weighed to a weight ratio of 94: 3: 3, and dispersed in N-methyl-2-pyrrolidone. Thorough mixing was performed to prepare a positive electrode mixture slurry. Next, the mixture slurry was applied to an aluminum foil as a current collector with a doctor blade, dried at 120 ° C., and pressurized to 0.5 t / cm to produce a positive electrode sheet having a thickness of about 40 μm. A positive electrode sheet was punched to 16 mmφ to obtain a positive electrode.

負極として、16mmφに打ち抜いた金属リチウム箔[本城金属株式会社]を用いた。   As the negative electrode, a metal lithium foil [Honjo Metal Co., Ltd.] punched to 16 mmφ was used.

セパレーターとして、セルガード#2400[Celgard,LLC]20mmφを用いた。1mol/lのLiPFを溶解したECとDMC(エチレンカーボネート:ジメチルカーボネート=1:2体積比)混合溶媒を電解液として用いた。これら部材を組み立て、CR2032型コインセル[株式会社宝泉]を作製した。 As a separator, Celgard # 2400 [Celgard, LLC] 20 mmφ was used. EC and DMC (ethylene carbonate: dimethyl carbonate = 1: 2 volume ratio) mixed solvent in which 1 mol / l LiPF 6 was dissolved was used as an electrolytic solution. These members were assembled to produce a CR2032-type coin cell [Hosen Co., Ltd.].

電解液や金属リチウムが大気により分解されないよう、アルゴン雰囲気のグローブボックス中で電池の組み立てを行った。   The battery was assembled in a glove box in an argon atmosphere so that the electrolyte and metallic lithium were not decomposed by the air.

25℃における初期放電容量、及び放電容量維持率の測定は、放電電圧下限を3.0Vとし、充電上限電圧を4.4V及び4.5Vとした2条件の試験を行った。定電流で充電して各上限電圧に到達後、上限電圧下において充電電流が0.025Cを下回ったときを充電の終了とした。1、11、21、31、41、51回目の充放電を0.2Cで、その他の回数の充放電を1Cで行い、1回目の放電容量を初期放電容量、51回目の放電容量を1回目の放電容量で割った値を放電容量維持率として評価した。   The initial discharge capacity at 25 ° C. and the discharge capacity retention rate were measured under two conditions with the discharge voltage lower limit set to 3.0V and the charge upper limit voltage set to 4.4V and 4.5V. After charging with a constant current and reaching each upper limit voltage, when the charge current was lower than 0.025C under the upper limit voltage, charging was terminated. 1, 11, 21, 31, 41, 51st charge / discharge at 0.2C, other number of charge / discharge at 1C, first discharge capacity at initial discharge capacity, 51st discharge capacity at first time The value divided by the discharge capacity was evaluated as the discharge capacity retention rate.

高温過充電試験として、60℃において、0.1Cで4.5Vまで定電流で充電後、4.5Vを維持したまま、電流値を変動させた。充電開始から14時間後から72時間後までの間の電流値を積算し、正極活物質重量当りの漏れ電気量とした。充電開始から72時間以内に電池に短絡が起こった場合には、短絡した時点で試験を打ち切った。   As a high temperature overcharge test, after charging at a constant current up to 4.5 V at 0.1 C at 60 ° C., the current value was varied while maintaining 4.5 V. The current values from 14 hours to 72 hours after the start of charging were integrated to obtain the amount of electricity leaked per positive electrode active material weight. When a short circuit occurred within 72 hours from the start of charging, the test was terminated when the short circuit occurred.

高温過充電における正極活物質からのCo溶出量を定量化した。即ち、負極グラファイトを用いて電池を組み、60℃、0.1C定電流で4.4Vまで充電後、同電圧を維持したまま、電流値を変動させ、72時間後に電池を取り出し、分解した。その後、負極、及びセパレーターに析出したCo量をICP発光分光にて定量化した。   The amount of Co elution from the positive electrode active material during high temperature overcharge was quantified. That is, a battery was assembled using negative electrode graphite, charged to 4.4 V at 60 ° C. and a constant current of 0.1 C, the current value was changed while maintaining the same voltage, and the battery was taken out and disassembled after 72 hours. Thereafter, the amount of Co deposited on the negative electrode and the separator was quantified by ICP emission spectroscopy.

[実施例1]
(第一工程)
LiCO、CoOOH、Mg(OH)、Al(OH)がmol比でLi/(0.990Co+0.005Mg+0.005Al)=1.05、各原料の総重量が3.0kgになるようとなるように原料を計量した。原料を20分間混合して、容積内の混合原料にムラがないことを目視にて確認し、ICP発光分光分析にて組成ずれがないことを確認した。混合原料を匣鉢に入れ、焼成炉で980℃、10時間焼成した。得られた焼成物を粉砕・分級し、MgとAlが固溶したコバルト酸リチウム粒子粉末を作製した。
[Example 1]
(First step)
Li 2 CO 3 , CoOOH, Mg (OH) 2 , and Al (OH) 3 are in a molar ratio of Li / (0.990Co + 0.005Mg + 0.005Al) = 1.05, and the total weight of each raw material is 3.0 kg. The raw materials were weighed so that The raw materials were mixed for 20 minutes, and it was visually confirmed that there was no unevenness in the mixed raw materials in the volume, and it was confirmed that there was no composition shift by ICP emission spectroscopic analysis. The mixed raw material was put in a mortar and fired at 980 ° C. for 10 hours in a firing furnace. The obtained fired product was pulverized and classified to prepare lithium cobalt oxide particle powder in which Mg and Al were dissolved.

SEM写真を図1(1)に示すように、得られたコバルト酸リチウム粒子の表面に凹凸はほとんど観察されない。得られたコバルト酸リチウム粒子粉末を酸溶液で溶解後、ICP発光分光分析により、各元素の含有量を測定したところ、得られたコバルト酸リチウムの組成はLi1.05(Co0.990Mg0.005Al0.005)Oであった。これらの値は原料仕込みから予測される値と一致していた。 As shown in FIG. 1A, the SEM photograph shows almost no irregularities on the surface of the obtained lithium cobalt oxide particles. After the obtained lithium cobaltate particles powder was dissolved in an acid solution, the content of each element was measured by ICP emission spectroscopic analysis. As a result, the composition of the obtained lithium cobaltate was Li 1.05 (Co 0.990 Mg 0.005 Al 0.005 ) O 2 . These values were consistent with the values predicted from raw material charging.

(第二工程)
得られたコバルト酸リチウム粒子粉末を100g計量し、コバルトに対し0.2mol%二酸化チタン(Ti/Co=0.002mol比、ミレニアム・インオーガニック・ケミカルズ製、PC−500、250m/g)をボールミルにて1時間混合した。
(Second step)
100 g of the obtained lithium cobaltate particle powder was weighed, and 0.2 mol% titanium dioxide (Ti / Co = 0.002 mol ratio, manufactured by Millennium Inorganic Chemicals, PC-500, 250 m 2 / g) with respect to cobalt. Mix for 1 hour in a ball mill.

混合後のSEM写真を図1(2)に示す。図1(2)から微細な二酸化チタンがコバルト酸リチウム粒子を満遍なく覆い、被覆率が高いことが確認された。   The SEM photograph after mixing is shown in FIG. From FIG. 1 (2), it was confirmed that fine titanium dioxide uniformly covered the lithium cobalt oxide particles and the coverage was high.

被覆処理物を坩堝に入れ、箱型マッフル炉で1000℃、5時間で再焼成した。メノウ乳鉢で粉砕し、45μmのメッシュで篩分けし、本発明の正極活物質粒子粉末を得た(図1(3)参照)。ICP発光分光分析装置で元素分析し、仕込み量と一致するLi/Co比とTi/Co比が得られた。   The coated product was put in a crucible and refired at 1000 ° C. for 5 hours in a box-type muffle furnace. The mixture was pulverized with an agate mortar and sieved with a 45 μm mesh to obtain a positive electrode active material particle powder of the present invention (see FIG. 1 (3)). Elemental analysis was performed with an ICP emission spectroscopic analyzer, and a Li / Co ratio and a Ti / Co ratio that coincided with the charged amount were obtained.

図2及び図3に実施例1の粒子のSTEM−EDX−NEDの分析結果を示す。前述したように、Tiはコバルト酸リチウム粒子に拡散し、活物質粒子表面から内部に向かって、Tiの濃度は傾斜していた。即ち、表層にTiが固溶した層状構造のコバルト酸リチウムが形成されていることがわかった。   2 and 3 show the STEM-EDX-NED analysis results of the particles of Example 1. FIG. As described above, Ti diffused into the lithium cobalt oxide particles, and the concentration of Ti was inclined from the surface of the active material particles to the inside. That is, it was found that lithium cobaltate having a layered structure in which Ti was dissolved in the surface layer was formed.

図4に実施例1の粒子断面のFE−AES分析結果を示す。図4(1)に示すようにA地点における点分析を行ったところ、微分形式のスペクトル強度から粒子表面付近でTiは検出可能であった。図4(2)に示すように、A地点の該強度が30以下となる場所、即ち、粒子表面から1.05μmの距離をTi固溶した表層の層厚と見積もった。同様に任意のB〜K地点においても、粒子内部方向に点分析を行い、外挿してTi固溶層の層厚を見積もった。各々の地点における該層厚の平均値は0.9μmであった。BET換算粒径は9.8μmであり、該平均の層厚を形成する体積はBET換算粒径からなる粒子の体積の45.6%に相当した。そのため、ICP発光分光によるTi/Co比から、該層の平均のTi/Coは0.004mol比と見積もられた。   FIG. 4 shows the FE-AES analysis result of the particle cross section of Example 1. When point analysis was performed at point A as shown in FIG. 4 (1), Ti was detectable in the vicinity of the particle surface from the spectrum intensity in the differential form. As shown in FIG. 4 (2), the place where the intensity at point A is 30 or less, that is, the distance of 1.05 μm from the particle surface was estimated as the layer thickness of the surface layer in which Ti was dissolved. Similarly, at arbitrary B to K points, point analysis was performed in the particle internal direction, and extrapolated to estimate the layer thickness of the Ti solid solution layer. The average value of the layer thickness at each point was 0.9 μm. The BET equivalent particle size was 9.8 μm, and the volume forming the average layer thickness corresponded to 45.6% of the volume of the particle having the BET equivalent particle size. Therefore, the average Ti / Co of the layer was estimated to be 0.004 mol ratio from the Ti / Co ratio by ICP emission spectroscopy.

図5に示すように、Rietveld解析により得られた格子定数から層状構造のコバルト酸リチウムの相とチタンが固溶したコバルト酸リチウムの2相の存在を確認した。第一工程で得られたコバルト酸リチウムの格子定数はa=2.8164Å、c=14.057Åであり、第二工程で得られたコバルト酸リチウムの格子定数はa=2.8161Å、c=14.056Åであり、第一工程で得られた値とほぼ同じであった。そのため、第一工程で得られた該コバルト酸リチウムの組成を該芯粒子の組成とみなした。また、表層の格子定数はa=2.819Å、c=14.07Åであって、表層の格子定数aとcは芯粒子に比べて長くなっており、表層はチタンが固溶したコバルト酸リチウムであると推定した。   As shown in FIG. 5, the presence of two layers of a lithium cobaltate layer having a layered structure and lithium cobaltate in which titanium was solid-solved was confirmed from the lattice constant obtained by Rietveld analysis. The lattice constant of the lithium cobaltate obtained in the first step is a = 2.8164Å and c = 14.057Å, and the lattice constant of the lithium cobaltate obtained in the second step is a = 2.8161Å, c = It was 14.056 mm and was almost the same as the value obtained in the first step. Therefore, the composition of the lithium cobaltate obtained in the first step was regarded as the composition of the core particles. The surface layer has a lattice constant of a = 2.819 Å and c = 14.07 、, and the surface layer has a lattice constant a and c longer than that of the core particle, and the surface layer is lithium cobalt oxide in which titanium is dissolved. It was estimated that.

表2に示すよう、得られた正極活物質粒子粉末の粉体特性である残存アルカリや未反応酸化コバルトは低く、メジアン径は大きく、高い圧縮成型体密度が得られた。   As shown in Table 2, the residual alkali and unreacted cobalt oxide, which are the powder characteristics of the obtained positive electrode active material particle powder, were low, the median diameter was large, and a high compression-molded body density was obtained.

得られた粒子粉末を正極化し、コインセルにて評価を行った。その結果は、表3に示すように初期の放電容量も高く、充放電繰り返し特性も良好で、高温過充電試験結果も良好であった。60℃のグラファイト負極を用いたコバルトイオン溶出量は正極活物質に対し0.20wt%であり、後述する比較例1に比べ、溶出量は抑制されていた。   The obtained particle powder was converted into a positive electrode and evaluated in a coin cell. As shown in Table 3, the initial discharge capacity was high, the charge / discharge repetition characteristics were good, and the high-temperature overcharge test result was also good. The cobalt ion elution amount using a graphite negative electrode at 60 ° C. was 0.20 wt% with respect to the positive electrode active material, and the elution amount was suppressed as compared with Comparative Example 1 described later.

以下の実施例、及び比較例についても同様に、粉体特性を表1と2に、電池特性を表3に記す。   Similarly, in the following examples and comparative examples, the powder characteristics are shown in Tables 1 and 2, and the battery characteristics are shown in Table 3.

[実施例2〜4]
芯粒子のコバルト酸リチウムの作製の際、Li/(0.990Co+0.0025Mg+0.0075Al)=1.02mol比となるように原料を計量した。他の条件は、実施例1同様に処理を行い、第二工程の焼成の温度として、実施例2は1050℃、実施例3は1000℃、実施例4は950℃とした。結果、良好な粉体特性と電池特性が得られた。但し、実施例2はTiの固溶が進行しすぎたためか、Tiが検出できない粒子表面も存在し、被覆率はやや低下していた。その結果、高温過充電試験による60℃の漏れ電気量は僅かに高い値を示した。
[Examples 2 to 4]
The raw materials were weighed so that the ratio Li / (0.990Co + 0.0025Mg + 0.0075Al) = 1.02 mol ratio was produced when the core particle lithium cobaltate was prepared. The other conditions were the same as in Example 1. The firing temperature in the second step was 1050 ° C. in Example 2, 1000 ° C. in Example 3, and 950 ° C. in Example 4. As a result, good powder characteristics and battery characteristics were obtained. However, in Example 2, there was a particle surface where Ti could not be detected because the solid solution of Ti progressed too much, and the coverage was slightly reduced. As a result, the amount of electricity leaked at 60 ° C. in the high temperature overcharge test showed a slightly high value.

[実施例5〜7]
芯粒子のコバルト酸リチウムの作製の際、Li/(0.995Co+0.005Mg)=1.03mol比となるように原料を計量した。第一工程における他の条件は、実施例1同様に処理を行った。第二工程において、得られたコバルト酸リチウムを100g計量し、コバルトに対し0.1mol%二酸化チタンをボールミル混合した。実施例5、6、7は最表面の相となり得るMo、W、Bを各々コバルトに対し、0.1mol%となるよう、サブミクロンのMoO、WO、HBOと所定量のLiCOをボールミル混合した。ここで、所定量とはLiMoO、LiWO、LiBOが形成できるLiのmol量である。第二工程の焼成温度として、950℃とした。得られた正極活物質粒子粉末のSEM−EDX分析により、Mo、W、Bが粒子表面にいることが分かった。また、ICP発光分析により、水可溶性のMo、W、Bは試料中のMo、W、B量の88、91、83%であった。表1〜3に示すように良好な粉体特性と電池特性が得られた。
[Examples 5 to 7]
The raw materials were weighed so that the ratio Li / (0.995Co + 0.005Mg) = 1.03 mol was obtained when the core particle lithium cobaltate was prepared. Other conditions in the first step were the same as in Example 1. In the second step, 100 g of the obtained lithium cobaltate was weighed, and 0.1 mol% titanium dioxide was ball-milled with respect to cobalt. In Examples 5, 6, and 7, submicron MoO 3 , WO 3 , H 3 BO 3 and a predetermined amount of Mo, W, and B, which can be the outermost surface phase, are 0.1 mol% with respect to cobalt, respectively. Li 2 CO 3 was ball mill mixed. Here, the predetermined amount is the molar amount of Li that can form Li 2 MoO 4 , Li 2 WO 4 , and Li 3 BO 3 . The firing temperature in the second step was 950 ° C. SEM-EDX analysis of the obtained positive electrode active material particle powder revealed that Mo, W, and B were on the particle surface. Moreover, by ICP emission analysis, water-soluble Mo, W, and B were 88, 91, and 83% of the amount of Mo, W, and B in a sample. As shown in Tables 1 to 3, good powder characteristics and battery characteristics were obtained.

[実施例8]
芯粒子のコバルト酸リチウムの作製の際、Li/(0.995Co+0.005Mg)=1.025mol比となるように原料を計量した。第一工程における他の条件は、実施例1同様に処理を行った。第二工程において、得られたコバルト酸リチウムを100g計量し、コバルトに対し0.2mol%二酸化チタンをボールミル混合し、950℃で焼成した。結果、表1〜3に示すように良好な粉体特性と電池特性が得られた。
[Example 8]
The raw materials were weighed so that Li / (0.995Co + 0.005Mg) = 1.005 mol ratio when producing lithium cobalt oxide as the core particles. Other conditions in the first step were the same as in Example 1. In the second step, 100 g of the obtained lithium cobaltate was weighed, 0.2 mol% titanium dioxide was mixed in a ball mill with respect to cobalt, and fired at 950 ° C. As a result, as shown in Tables 1 to 3, good powder characteristics and battery characteristics were obtained.

[実施例9]
実施例8で得られたコバルト酸リチウムの粒子粉末を85重量%とし、体積基準のメジアン径が3.4μmのLi1.03Ni0.5Co0.2Mn0.3を15重量%となるよう混合し、該混合物を正極活物質とした。圧縮成型体密度は3.97g/ccと高い値が得られた。電池特性を評価したところ、表4に示すように、高い初期放電容量と低い漏れ電気量を示した。
[Example 9]
The lithium cobaltate particle powder obtained in Example 8 was 85% by weight, and 15% by weight of Li 1.03 Ni 0.5 Co 0.2 Mn 0.3 O 2 having a volume-based median diameter of 3.4 μm. %, And the mixture was used as a positive electrode active material. The compression molded body density was as high as 3.97 g / cc. When the battery characteristics were evaluated, as shown in Table 4, a high initial discharge capacity and a low amount of leakage electricity were shown.

[実施例10]
実施例8で得られたコバルト酸リチウムの粒子粉末を85重量%とし、体積基準のメジアン径が3.5μmのLi1.06Ni0.4Co0.3Mn0.3を15重量%となるよう混合し、該混合物を正極活物質とした。圧縮成型体密度は3.91g/ccと高い値が得られた。電池特性を評価したところ、表4に示すように、高い放電容量と低い漏れ電気量を示した。
[Example 10]
The lithium cobaltate particle powder obtained in Example 8 was 85% by weight, and 15% by weight of Li 1.06 Ni 0.4 Co 0.3 Mn 0.3 O 2 having a volume-based median diameter of 3.5 μm. %, And the mixture was used as a positive electrode active material. The compression molding density was as high as 3.91 g / cc. When the battery characteristics were evaluated, as shown in Table 4, a high discharge capacity and a low amount of leakage electricity were shown.

[比較例1]
実施例1の第一工程で得られたコバルト酸リチウムを正極活物質とした。即ち、本発明の粒子の表層にチタンを含む層状化合物や最表面にモリブデン、タングステン、ホウ素からなる異相は存在しない。その結果、4.5Vの初期放電容量や放電容量維持率は悪く、60℃の漏れ電気量は高い値を示した。60℃のグラファイト負極を用いた電池のコバルトイオン溶出量は正極活物質に対し0.37wt%と実施例1に比べ高い値を示した。
[Comparative Example 1]
The lithium cobalt oxide obtained in the first step of Example 1 was used as the positive electrode active material. That is, there is no layered compound containing titanium on the surface layer of the particles of the present invention or a heterogeneous phase composed of molybdenum, tungsten, or boron on the outermost surface. As a result, the initial discharge capacity and the discharge capacity retention rate of 4.5V were poor, and the amount of leakage electricity at 60 ° C. was high. The cobalt ion elution amount of the battery using the graphite negative electrode at 60 ° C. was 0.37 wt% with respect to the positive electrode active material, which was higher than that in Example 1.

[比較例2]
LiCO、CoOOH、及びMg(OH)をLi/(0.996Co+0.004Mg)=0.996mol比となるように計量した。ここで、粒成長を抑制するためサブミクロンのZrO(Zr/Co=0.1mol%)を添加した。原料を混合し、980℃で焼成後、粉砕、分級を経て、第一工程のみで得られたコバルト酸リチウムを正極活物質粒子粉末とした。得られた正極活物質粒子粉末では、Zrのコバルト酸リチウムへの固溶は観察されなかった。また、SEM観察により一次粒子径が2μmと小さかったため、BET比表面積は高いが、D50がやや大きめであった。その結果、初期放電容量や放電容量維持率は高いものの、漏れ電気量は高かった。
[Comparative Example 2]
Li 2 CO 3 , CoOOH, and Mg (OH) 2 were weighed so that the ratio Li / (0.996Co + 0.004Mg) = 0.996 mol. Here, in order to suppress grain growth, submicron ZrO 2 (Zr / Co = 0.1 mol%) was added. The raw materials were mixed, fired at 980 ° C., pulverized and classified, and lithium cobaltate obtained only in the first step was used as the positive electrode active material particle powder. In the obtained positive electrode active material particle powder, solid solution of Zr in lithium cobalt oxide was not observed. Moreover, since the primary particle diameter was small and 2μm by SEM observation, but a high BET specific surface area, D 50 was slightly larger. As a result, although the initial discharge capacity and the discharge capacity maintenance rate were high, the amount of leakage electricity was high.

[比較例3]
LiCO、CoOOH、Mg(OH)及びTiOをLi/(0.985Co+0.005Mg+0.01Ti)=1.02mol比となるように計量した。原料を混合し、1000℃で焼成後、粉砕、分級を経て、第一工程のみで得られたコバルト酸リチウムを正極活物質粒子粉末とした。得られた正極活物質粒子粉末は、XRDで確認したところ、層状構造単一相が得られ、Ti固溶によるa軸が2.8176Å、c軸が14.067Åと伸びた格子定数が得られた。また、SEM観察による一次粒子径が2μmと小さかったため、BET比表面積は高いが、D50がやや大きめであった。その結果、初期放電容量や放電容量維持率も低く、漏れ電気量は高かった。
[Comparative Example 3]
Li 2 CO 3 , CoOOH, Mg (OH) 2 and TiO 2 were weighed so that the ratio Li / (0.985Co + 0.005Mg + 0.01Ti) = 1.02 mol. The raw materials were mixed, fired at 1000 ° C., pulverized and classified, and lithium cobaltate obtained only in the first step was used as the positive electrode active material particle powder. When the obtained positive electrode active material particle powder was confirmed by XRD, a lamellar structure single phase was obtained, and a lattice constant with an a-axis extending to 2.8176 mm and a c-axis extending to 14.067 mm due to Ti solid solution was obtained. It was. Moreover, since the primary particle diameter determined by SEM observation was as small as 2 [mu] m, but a high BET specific surface area, D 50 was slightly larger. As a result, the initial discharge capacity and discharge capacity maintenance rate were low, and the amount of leakage electricity was high.

[比較例4]
比較例2で得られたコバルト酸リチウム粒子粉末を100g計量し、コバルトに対し0.2mol%二酸化チタンを混合し、1000℃で再焼成した。結果、コバルト酸リチウム粒子の表層にチタンが固溶した粒子が得られたものの、一次粒子径の大きさは比較例2とほぼ同じで、改善されなかった。また、一次粒子径が小さいため、二酸化チタンでの表面処理が不十分であり、Tiが固溶した表層の芯粒子に対する被覆率が低下した。結果、電池特性として、初期放電容量、及び放電容量維持率は良好であったが、漏れ電気量が高かった。
[Comparative Example 4]
100 g of the lithium cobaltate particles obtained in Comparative Example 2 were weighed, mixed with 0.2 mol% titanium dioxide with respect to cobalt, and refired at 1000 ° C. As a result, although particles in which titanium was dissolved in the surface layer of lithium cobaltate particles were obtained, the size of the primary particle diameter was almost the same as in Comparative Example 2 and was not improved. Moreover, since the primary particle diameter was small, the surface treatment with titanium dioxide was insufficient, and the coverage of core particles on the surface layer in which Ti was dissolved was lowered. As a result, the initial discharge capacity and the discharge capacity retention rate were good as battery characteristics, but the amount of leakage electricity was high.

[比較例5]
実施例2の第一工程で得られたコバルト酸リチウム100gに、コバルトに対し0.2mol%のMoOと所定量のLiCOをボールミル混合後、1050℃で焼成した。表面被覆状態が耐酸化性に劣っていたためか、初期放電容量は高いものの、放電容量維持率は低く、漏れ電気量は高かった。
[Comparative Example 5]
To 100 g of lithium cobaltate obtained in the first step of Example 2, 0.2 mol% of MoO 3 and a predetermined amount of Li 2 CO 3 with respect to cobalt were mixed with a ball mill and then fired at 1050 ° C. The initial discharge capacity was high because the surface coating state was inferior in oxidation resistance, but the discharge capacity retention rate was low, and the amount of leakage electricity was high.

[比較例6]
LiCO、Co、Mg(OH)及びAl(OH)をLi/(0.990Co+0.005Mg+0.005Al)=1.02mol比となるように計量した。ここで、微粒子のCo(D50=2.4μm)を用いた。原料を混合し、920℃で焼成後、粉砕、分級を経て、第一工程のみで得られたコバルト酸リチウムを正極活物質粒子粉末とした。得られた正極活物質粒子粉末は、BET比表面積は高く、残存アルカリ成分は高く、未反応酸化コバルトは高く、D50が小さく、圧縮成型体密度は低かった。これは焼成温度が低かったためと推察できる。その結果、初期放電容量や放電容量維持率は高いものの、漏れ電気量は高かった。
[Comparative Example 6]
Li 2 CO 3 , Co 3 O 4 , Mg (OH) 2 and Al (OH) 3 were weighed so that the ratio Li / (0.990Co + 0.005Mg + 0.005Al) = 1.02 mol. Here, fine particles of Co 3 O 4 (D 50 = 2.4 μm) were used. The raw materials were mixed, fired at 920 ° C., pulverized and classified, and lithium cobaltate obtained only in the first step was used as the positive electrode active material particle powder. The positive electrode active material particles obtained are, BET specific surface area is high, remaining alkali components is high, unreacted cobalt oxide is high, small D 50, the compressed compact density was low. It can be inferred that this was because the firing temperature was low. As a result, although the initial discharge capacity and the discharge capacity maintenance rate were high, the amount of leakage electricity was high.

[比較例7]
比較例1で得られた正極活物質粒子粉末を85重量%とし、体積基準のメジアン径が3.4μmのLi1.03Ni0.333Co0.333Mn0.333を15重量%となるよう混合し、該混合物を正極活物質とした。圧縮成型体密度は3.91g/ccと高い値が得られた。電池特性を評価したところ、表4に示すように、高い放電容量を示したが、容量維持率は低く、高い漏れ電気量を示した。
[Comparative Example 7]
85% by weight of the positive electrode active material particle powder obtained in Comparative Example 1 and 15% by weight of Li 1.03 Ni 0.333 Co 0.333 Mn 0.333 O 2 having a volume-based median diameter of 3.4 μm. The mixture was used as a positive electrode active material. The compression molding density was as high as 3.91 g / cc. When the battery characteristics were evaluated, as shown in Table 4, a high discharge capacity was shown, but the capacity retention rate was low and a high amount of leakage electricity was shown.

[比較例8]
比較例1で得られた正極活物質粒子粉末を85重量%とし、体積基準のメジアン径が3.5μmのLi1.05Ni0.4Co0.3Mn0.3を15重量%となるよう混合し、該混合物を正極活物質とした。圧縮成型体密度は3.90g/ccと高い値が得られた。電池特性を評価したところ、表4に示すように、高い放電容量を示したが、容量維持率は低く、高い漏れ電気量を示した。
[Comparative Example 8]
85% by weight of the positive electrode active material particle powder obtained in Comparative Example 1 and 15% by weight of Li 1.05 Ni 0.4 Co 0.3 Mn 0.3 O 2 having a volume-based median diameter of 3.5 μm The mixture was used as a positive electrode active material. The compression molded body density was as high as 3.90 g / cc. When the battery characteristics were evaluated, as shown in Table 4, a high discharge capacity was shown, but the capacity retention rate was low and a high amount of leakage electricity was shown.

以上の結果から本発明に係る正極材活物質は、芯粒子に高容量を示すコバルト酸リチウムを用い、コバルト酸リチウム粒子表面には微量のTiが固溶した層を形成しているため、コバルトイオンの溶出を抑制することができ、高容量で、高温過充電試験と充放電繰り返し特性においても優れていることが確認された。
From the above results, the positive electrode active material according to the present invention uses lithium cobaltate having a high capacity as the core particle, and forms a layer in which a small amount of Ti is dissolved in the lithium cobaltate particle surface. It was confirmed that ion elution can be suppressed, the capacity is high, and the high-temperature overcharge test and charge / discharge repetition characteristics are also excellent.

本発明は低コストで、環境負荷の少ない製法で作製された正極活物質粒子粉末を二次電池正極活物質として用いることで、体積当りのエネルギー密度が高く、充放電繰り返し特性に優れ、耐高温過充電性を備えた非水溶媒系二次電池を得ることができる。   The present invention uses a positive electrode active material particle powder produced by a low-cost, low environmental load production method as a secondary battery positive electrode active material, which has a high energy density per volume, excellent charge / discharge repeatability, and high temperature resistance. A nonaqueous solvent secondary battery having overchargeability can be obtained.

Claims (10)

元素M(MはMg及び/又はAl)を含む層状構造のコバルト酸リチウムからなる芯粒子と、少なくともTiが固溶した層状構造のコバルト酸リチウムからなる表層を有する正極活物質粒子粉末であって、該表層の平均の層厚が0.005〜1.5μmであり、BET比表面積が0.02〜0.25m/gであることを特徴とする正極活物質粒子粉末。 Positive electrode active material particle powder having core particles made of lithium cobaltate having a layered structure containing element M (M is Mg and / or Al) and a surface layer made of lithium cobaltate having a layered structure in which at least Ti is solid-solved. The positive electrode active material particle powder, wherein the average layer thickness of the surface layer is 0.005 to 1.5 μm, and the BET specific surface area is 0.02 to 0.25 m 2 / g. 前記正極活物質粒子粉末が元素A(AはW、Mo、及びBから選ばれる少なくとも1種の元素)を含む水可溶性のリチウム酸化物からなる最表面を有し、該最表面の含有量が0.01〜0.5重量%である請求項1に記載の正極活物質粒子粉末。 The positive electrode active material particle powder has an outermost surface made of a water-soluble lithium oxide containing the element A (A is at least one element selected from W, Mo, and B), and the content of the outermost surface is The positive electrode active material particle powder according to claim 1, which is 0.01 to 0.5 wt%. 体積基準のメジアン径が10〜35μmである請求項1又は2に記載の正極活物質粒子粉末。 The positive electrode active material particle powder according to claim 1 or 2, wherein the volume-based median diameter is 10 to 35 µm. 残存アルカリ成分が800ppm以下、未反応酸化コバルトが500ppm以下である請求項1〜3のいずれか一項に記載の正極活物質粒子粉末。 The positive electrode active material particle powder according to any one of claims 1 to 3, wherein the residual alkali component is 800 ppm or less and the unreacted cobalt oxide is 500 ppm or less. 前記表層のTi濃度が0.001≦Ti/Co(mol比)≦0.02である請求項1〜4のいずれか一項に記載の正極活物質粒子粉末。 The positive electrode active material particle powder according to claim 1, wherein a Ti concentration of the surface layer is 0.001 ≦ Ti / Co (mol ratio) ≦ 0.02. 前記表層の前記芯粒子に対する被覆率が80%以上である請求項1〜5のいずれか一項に記載の正極活物質粒子粉末。 The positive electrode active material particle powder according to claim 1, wherein a coverage of the surface layer with respect to the core particles is 80% or more. 請求項1〜6のいずれか一項に記載の正極活物質粒子粉末の製造方法であって、リチウム原料とコバルト原料と元素M原料(MはMg及び/又はAl)を混合後、800〜1100℃で焼成を行って層状構造のコバルト酸リチウム粒子粉末を作製する第一工程と、第一工程で得られたコバルト酸リチウム粒子粉末とチタン原料とリチウム原料とを混合後、800〜1100℃で焼成を行って表層を形成する第二工程からなることを特徴とする正極活物質粒子粉末の製造方法。 It is a manufacturing method of the positive electrode active material particle powder as described in any one of Claims 1-6, Comprising: After mixing a lithium raw material, a cobalt raw material, and element M raw material (M is Mg and / or Al), 800-1100 The first step of producing a layered lithium cobalt oxide particle powder by firing at ° C., the lithium cobalt oxide particle powder obtained in the first step, the titanium raw material, and the lithium raw material are mixed, and then at 800 to 1100 ° C. The manufacturing method of the positive electrode active material particle powder characterized by including the 2nd process which performs baking and forms a surface layer. 請求項2〜6のいずれか一項に記載の正極活物質粒子粉末の製造方法であって、リチウム原料とコバルト原料と元素M原料(MはMg及び/又はAl)を混合後、800〜1100℃で焼成を行って層状構造のコバルト酸リチウム粒子粉末を作製する第一工程と、第一工程で得られたコバルト酸リチウム粒子粉末とチタン原料と元素A原料(AはW、Mo、及びBから選ばれる少なくとも1種の元素)とリチウム原料とを混合後、800〜1100℃で焼成を行って表層及び最表面を形成する第二工程からなることを特徴とする正極活物質粒子粉末の製造方法。 It is a manufacturing method of the positive electrode active material particle powder as described in any one of Claims 2-6, Comprising: After mixing a lithium raw material, a cobalt raw material, and element M raw material (M is Mg and / or Al), 800-1100 A first step of producing a layered lithium cobalt oxide particle powder by firing at 0 ° C., a lithium cobaltate particle powder obtained in the first step, a titanium raw material, and an element A raw material (A is W, Mo, and B) A positive electrode active material particle powder comprising a second step of forming a surface layer and an outermost surface by baking at 800 to 1100 ° C. after mixing a lithium raw material with at least one element selected from Method. 請求項1〜6のいずれか一項に記載の正極活物質粒子粉末を正極活物質の少なくとも一部に用いて作製した非水電解液二次電池。 The non-aqueous-electrolyte secondary battery produced using the positive electrode active material particle powder as described in any one of Claims 1-6 for at least one part of a positive electrode active material. 請求項1〜6のいずれか一項に記載の正極活物質粒子粉末に対し、凝集粒子の体積基準のメジアン径が1〜7μmのLi(Ni1−a−bCoMn)O(a及びbは0.15≦a≦0.4、0.15≦b≦0.5)で表わされる正極活物質粒子粉末を3〜25重量%含む混合物を正極活物質として用いて作製した非水電解液二次電池。 To the positive electrode active material particles according to any one of claims 1 to 6, Li of the volume-based median diameter of the aggregated particles 1~7μm (Ni 1-a-b Co a Mn b) O 2 ( a and b were prepared using, as a positive electrode active material, a mixture containing 3 to 25% by weight of a positive electrode active material particle powder represented by 0.15 ≦ a ≦ 0.4 and 0.15 ≦ b ≦ 0.5) Water electrolyte secondary battery.
JP2015033335A 2014-03-31 2015-02-23 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery Pending JP2015201432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033335A JP2015201432A (en) 2014-03-31 2015-02-23 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014073235 2014-03-31
JP2014073235 2014-03-31
JP2015033335A JP2015201432A (en) 2014-03-31 2015-02-23 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015201432A true JP2015201432A (en) 2015-11-12

Family

ID=54552489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033335A Pending JP2015201432A (en) 2014-03-31 2015-02-23 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015201432A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054830A (en) * 2016-12-19 2017-03-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2018007908A1 (en) * 2016-07-05 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
WO2018043515A1 (en) * 2016-08-29 2018-03-08 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018110065A (en) * 2016-12-28 2018-07-12 株式会社半導体エネルギー研究所 Active material particle, cathode with active material particle, power storage device with cathode and manufacturing method thereof
JP2019169303A (en) * 2018-03-22 2019-10-03 富山薬品工業株式会社 Nonaqueous electrolyte solution for power storage device
JP2020136114A (en) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 Positive electrode material of lithium secondary battery
WO2020208966A1 (en) * 2019-04-12 2020-10-15 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries, positive electrode, and lithium secondary battery
CN112054193A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Positive electrode material for secondary battery and secondary battery using the same
CN112117416A (en) * 2019-06-19 2020-12-22 通用汽车环球科技运作有限责任公司 Ceramic coated separator for lithium-containing electrochemical cells and method of making same
JP2020537624A (en) * 2017-10-20 2020-12-24 湖南杉杉能源科技股▲フン▼有限公司 Lithium-cobalt metal oxide powder, its preparation method, and method for determining the content of cobalt (II, III)
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
WO2021246215A1 (en) * 2020-06-02 2021-12-09 日本化学工業株式会社 Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP2022084681A (en) * 2016-12-28 2022-06-07 株式会社半導体エネルギー研究所 Secondary battery and module
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
JP2022550194A (en) * 2019-10-02 2022-11-30 ポスコ Positive electrode active material for lithium secondary battery, and lithium secondary battery containing the same
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210573A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2009057722A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210573A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2009057722A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220051021A (en) 2016-07-05 2022-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP7403013B2 (en) 2016-07-05 2023-12-21 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7465390B2 (en) 2016-07-05 2024-04-10 株式会社半導体エネルギー研究所 Lithium-ion secondary battery
JP7442709B2 (en) 2016-07-05 2024-03-04 株式会社半導体エネルギー研究所 Lithium ion secondary battery
CN110911639B (en) * 2016-07-05 2022-04-19 株式会社半导体能源研究所 Positive electrode active material
KR20190025632A (en) 2016-07-05 2019-03-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A cathode active material, a method for producing a cathode active material,
JP7442710B2 (en) 2016-07-05 2024-03-04 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7442719B2 (en) 2016-07-05 2024-03-04 株式会社半導体エネルギー研究所 Lithium ion secondary battery
KR20190134824A (en) 2016-07-05 2019-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20190140094A (en) 2016-07-05 2019-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20190141022A (en) 2016-07-05 2019-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20190141792A (en) 2016-07-05 2019-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2020004733A (en) * 2016-07-05 2020-01-09 株式会社半導体エネルギー研究所 Positive electrode active material
JP2020035766A (en) * 2016-07-05 2020-03-05 株式会社半導体エネルギー研究所 Electronic equipment
JP2020038848A (en) * 2016-07-05 2020-03-12 株式会社半導体エネルギー研究所 Cathode active material layer
JP2020043090A (en) * 2016-07-05 2020-03-19 株式会社半導体エネルギー研究所 Cathode active material layer
CN110911639A (en) * 2016-07-05 2020-03-24 株式会社半导体能源研究所 Positive electrode active material
JP2020047612A (en) * 2016-07-05 2020-03-26 株式会社半導体エネルギー研究所 Cathode active material layer
JP2020080331A (en) * 2016-07-05 2020-05-28 株式会社半導体エネルギー研究所 Lithium ion secondary battery, electronic apparatus, and positive electrode active material
JP2020080332A (en) * 2016-07-05 2020-05-28 株式会社半導体エネルギー研究所 Electronic apparatus, lithium ion secondary battery, and positive electrode active material
JP2020102461A (en) * 2016-07-05 2020-07-02 株式会社半導体エネルギー研究所 Lithium ion secondary battery and cathode active material
JP2020115462A (en) * 2016-07-05 2020-07-30 株式会社半導体エネルギー研究所 Lithium ion secondary battery
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
JP2020129564A (en) * 2016-07-05 2020-08-27 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7411131B2 (en) 2016-07-05 2024-01-10 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2020161496A (en) * 2016-07-05 2020-10-01 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7403014B2 (en) 2016-07-05 2023-12-21 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7398491B2 (en) 2016-07-05 2023-12-14 株式会社半導体エネルギー研究所 Method for manufacturing lithium ion secondary battery
JP2020191303A (en) * 2016-07-05 2020-11-26 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7359832B2 (en) 2016-07-05 2023-10-11 株式会社半導体エネルギー研究所 Method for producing positive electrode active material, method for producing secondary battery, and method for producing electronic equipment
JP7337113B2 (en) 2016-07-05 2023-09-01 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2023096109A (en) * 2016-07-05 2023-07-06 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2023096108A (en) * 2016-07-05 2023-07-06 株式会社半導体エネルギー研究所 lithium ion secondary battery
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
JP2021101429A (en) * 2016-07-05 2021-07-08 株式会社半導体エネルギー研究所 Lithium ion secondary battery
KR20230098913A (en) 2016-07-05 2023-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20230080489A (en) 2016-07-05 2023-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20230079485A (en) 2016-07-05 2023-06-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20230074857A (en) 2016-07-05 2023-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2023063597A (en) * 2016-07-05 2023-05-09 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2018206747A (en) * 2016-07-05 2018-12-27 株式会社半導体エネルギー研究所 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2023060314A (en) * 2016-07-05 2023-04-27 株式会社半導体エネルギー研究所 lithium ion secondary battery
WO2018007908A1 (en) * 2016-07-05 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2022078212A (en) * 2016-07-05 2022-05-24 株式会社半導体エネルギー研究所 Manufacture method of lithium ion secondary battery
JP2023060317A (en) * 2016-07-05 2023-04-27 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2023041826A (en) * 2016-07-05 2023-03-24 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2023041825A (en) * 2016-07-05 2023-03-24 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP7095023B2 (en) 2016-07-05 2022-07-04 株式会社半導体エネルギー研究所 Lithium ion secondary battery
WO2018043515A1 (en) * 2016-08-29 2018-03-08 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2018043515A1 (en) * 2016-08-29 2019-06-24 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10978711B2 (en) 2016-08-29 2021-04-13 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7103222B2 (en) 2016-08-29 2022-07-20 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
JP2017054830A (en) * 2016-12-19 2017-03-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP7383063B2 (en) 2016-12-28 2023-11-17 株式会社半導体エネルギー研究所 How to make a secondary battery
JP2022081580A (en) * 2016-12-28 2022-05-31 株式会社半導体エネルギー研究所 Manufacture method of secondary battery
JP2022084681A (en) * 2016-12-28 2022-06-07 株式会社半導体エネルギー研究所 Secondary battery and module
JP7124167B2 (en) 2016-12-28 2022-08-23 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP7295984B2 (en) 2016-12-28 2023-06-21 株式会社半導体エネルギー研究所 Secondary battery and module
JP2021120957A (en) * 2016-12-28 2021-08-19 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2018110065A (en) * 2016-12-28 2018-07-12 株式会社半導体エネルギー研究所 Active material particle, cathode with active material particle, power storage device with cathode and manufacturing method thereof
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
JP7034275B2 (en) 2017-10-20 2022-03-11 巴斯夫杉杉▲電▼池材料有限公司 Lithium-cobalt metal oxide powder, its preparation method, and method for determining the content of cobalt (II, III).
US11784309B2 (en) 2017-10-20 2023-10-10 Basf Shanshan Battery Materials Co., Ltd. Lithium cobalt metal oxide powder, method for making the same, and method for determining content of cobalt (II,III) oxide
JP2020537624A (en) * 2017-10-20 2020-12-24 湖南杉杉能源科技股▲フン▼有限公司 Lithium-cobalt metal oxide powder, its preparation method, and method for determining the content of cobalt (II, III)
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode
JP2019169303A (en) * 2018-03-22 2019-10-03 富山薬品工業株式会社 Nonaqueous electrolyte solution for power storage device
JP7084607B2 (en) 2018-03-22 2022-06-15 富山薬品工業株式会社 Non-aqueous electrolyte for power storage devices
JP7074697B2 (en) 2019-02-21 2022-05-24 トヨタ自動車株式会社 Positive electrode material for lithium secondary batteries
JP2020136114A (en) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 Positive electrode material of lithium secondary battery
JP2020172418A (en) * 2019-04-12 2020-10-22 住友化学株式会社 Lithium metal composite oxide powder and positive electrode active material for lithium secondary battery
WO2020208966A1 (en) * 2019-04-12 2020-10-15 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries, positive electrode, and lithium secondary battery
CN112054193A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Positive electrode material for secondary battery and secondary battery using the same
CN112117416A (en) * 2019-06-19 2020-12-22 通用汽车环球科技运作有限责任公司 Ceramic coated separator for lithium-containing electrochemical cells and method of making same
CN112117416B (en) * 2019-06-19 2023-10-17 通用汽车环球科技运作有限责任公司 Ceramic coated separator for lithium-containing electrochemical cells and method of making same
JP2022550194A (en) * 2019-10-02 2022-11-30 ポスコ Positive electrode active material for lithium secondary battery, and lithium secondary battery containing the same
JP7252174B2 (en) 2020-06-02 2023-04-04 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2021246215A1 (en) * 2020-06-02 2021-12-09 日本化学工業株式会社 Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP2021190359A (en) * 2020-06-02 2021-12-13 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP2015201432A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
KR101532807B1 (en) Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
EP3444226A1 (en) Spherical or spherical-like cathode material for lithium-ion battery and lithium-ion battery
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
CN107078294B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
US11196048B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery containing the positive electrode active material
KR101487468B1 (en) Spinel type lithium-manganese-nickel-containing composite oxide
JP2010135285A (en) Positive electrode active material for lithium secondary battery and method for manufacturing the same
JP2015201431A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
US11594726B2 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2013182757A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP7397409B2 (en) Li-Ni composite oxide particles and non-aqueous electrolyte secondary battery
JP6417888B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2006147499A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6536939B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2012022896A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
US20220278322A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
KR20200040760A (en) Metal composite hydroxide and method for manufacturing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing same, and nonaqueous electrolyte secondary battery using same
JP2017031006A (en) Lithium manganese composite oxide powder and production method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820