JP2015200612A - Blood coagulation time measurement device - Google Patents

Blood coagulation time measurement device Download PDF

Info

Publication number
JP2015200612A
JP2015200612A JP2014080807A JP2014080807A JP2015200612A JP 2015200612 A JP2015200612 A JP 2015200612A JP 2014080807 A JP2014080807 A JP 2014080807A JP 2014080807 A JP2014080807 A JP 2014080807A JP 2015200612 A JP2015200612 A JP 2015200612A
Authority
JP
Japan
Prior art keywords
measurement
cartridge
blood
flow path
blood coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014080807A
Other languages
Japanese (ja)
Inventor
柏田 実
Minoru Kashiwada
実 柏田
啓 高山
Kei Takayama
啓 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APEL CO Ltd
Original Assignee
APEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APEL CO Ltd filed Critical APEL CO Ltd
Priority to JP2014080807A priority Critical patent/JP2015200612A/en
Publication of JP2015200612A publication Critical patent/JP2015200612A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a blood coagulation time measurement device capable of accurately measuring blood coagulation time with a small amount of measurement blood.SOLUTION: A measurement channel 40 is oscillated vertically in an oblique state for moving by reciprocating movement the measurement blood in the measurement channel 40. As coagulation of the measurement blood advances, a layer of the measurement blood to be adhered to a bottom of the measurement channel 40 becomes thicker, a light amount which transmits is reduced and a light reception amount on light reception means is reduced. Then, with respect to a signal value of an initial light reception amount during start of oscillation, by coagulation of the measurement blood, a signal value is varied. Then, when a changed portion of the signal value which is varied to the initial signal value becomes a predetermined ratio, determination means 92 determines that the measurement blood is coagulated. Time measurement means 94 measures the time since the start of oscillation until the determination signal is outputted, and the measured time is displayed by display means 18. Therefore, the coagulation time of the measurement blood can be displayed.

Description

本発明は、血液が凝固するまでの時間を測定するための血液凝固時間測定装置に関するものである。   The present invention relates to a blood coagulation time measuring device for measuring the time until blood coagulates.

人工透析や循環器系の手術等にあっては、血液を体外に取り出し、再び体内に戻しながら行われる。体外に取り出された血液は時間が経過すると凝固が進行し、体内に戻すのに不適当なものとなる。この血液の凝固を阻止するために、抗凝固剤が投与されるが、かかる抗凝固剤の作用効果は人体の作用により減少させられ、血液の凝固が始まる前に抗凝固剤を再度投与する必要がある。そこで、血液が自然に凝固する前に、血液が凝固するであろう時間が予測できれば、適切な時点で抗凝固剤を再び投与することができる。ここで、体外に取り出された血液を撹拌し、また血液に凝固促進剤を混ぜると、血液の凝固が促進される。かかる現象を利用して、血液の凝固を促進しその凝固する時間が測定すれば、その測定時間から凝固促進剤を混ぜない状態での血液凝固時間の予測が可能であり、また血液を撹拌しない場合の血液凝固時間の予測が可能となる。かかる目的から、体外に取り出された血液の凝固時間を測定する種種の技術が提案されている。その一例として、米国特許第5372946号公報(特許文献1)には、測定装置と測定容器からなり、測定容器に設けた測定用毛細管に測定血液を投入してこれを測定装置に挿入し、測定装置に設けた空気ポンプのポンプ圧の増減で測定用毛細管内の測定血液を狭窄部を通過させて往復移動させ、この往復移動に要する時間の変化から血液の凝固時間を測定する技術が示されている。
米国特許第5372946号公報
In dialysis, circulatory system surgery, etc., blood is taken out of the body and returned to the body again. The blood taken out of the body will coagulate over time and become inappropriate for return to the body. Anticoagulants are administered to prevent this blood clotting, but the effects of such anticoagulants are reduced by the action of the human body, and it is necessary to administer the anticoagulant again before blood clotting begins There is. Thus, the anticoagulant can be administered again at an appropriate time if the time during which the blood will clot before the blood spontaneously clots can be predicted. Here, when the blood taken out of the body is stirred and a coagulation promoter is mixed with the blood, coagulation of the blood is promoted. Using this phenomenon, if blood coagulation is promoted and the time to coagulate is measured, the blood coagulation time can be predicted from the measurement time without adding a coagulation promoter, and the blood is not stirred. It is possible to predict the blood coagulation time. For this purpose, various techniques for measuring the clotting time of blood taken out of the body have been proposed. As an example, U.S. Pat. No. 5,372,946 (Patent Document 1) includes a measuring device and a measuring container. The measuring blood is introduced into a measuring capillary provided in the measuring container and inserted into the measuring device. A technique to measure the blood coagulation time from the change in the time required for this reciprocating movement is shown by moving the measuring blood in the measuring capillary back and forth by increasing or decreasing the pump pressure of the air pump provided in the device. ing.
US Pat. No. 5,372,946

上述の特許文献1に記載された技術にあっては、測定装置に設けられた空気ポンプと、測定装置に挿入された測定容器の測定用毛細管を、気密構造で連通する必要がある。何故ならば、仮に気密構造で連通されずに空気が漏れたとすると、所定のポンプ圧の増減が得られず、当然に測定血液の往復移動に要する時間が相違したものとなる。この測定装置に単に測定容器を挿入するだけで、空気ポンプと測定用毛細管を気密構造で連通させる構造は、測定装置および測定容器のいずれにもその形状に高い寸法精度が不可欠である。   In the technique described in Patent Document 1 described above, the air pump provided in the measurement device and the measurement capillary tube of the measurement container inserted in the measurement device need to communicate with each other with an airtight structure. This is because if the air leaks without being communicated by the airtight structure, the predetermined pump pressure cannot be increased or decreased, and naturally the time required for the reciprocating movement of the blood to be measured is different. A structure in which the air pump and the measurement capillary are communicated with each other by simply inserting the measurement container into the measurement apparatus requires a high dimensional accuracy in the shape of both the measurement apparatus and the measurement container.

本発明は、かかる従来技術の事情に鑑みてなされたもので、構造が簡単な血液凝固時間測定装置を提供することを目的とする。また、少量の測定血液でも血液凝固時間を精度良く測定できる血液凝固時間測定装置を提供することを目的とする。   The present invention has been made in view of the circumstances of the prior art, and an object thereof is to provide a blood coagulation time measuring device having a simple structure. It is another object of the present invention to provide a blood coagulation time measuring apparatus that can accurately measure the blood coagulation time even with a small amount of blood.

かかる目的を達成するために、本発明の血液凝固時間測定装置は、測定装置本体と測定カートリッジを備え、透明材からなる前記測定カートリッジに測定血液を収容する断面積に対して長い測定流路を設け、前記測定装置本体には、前記測定カートリッジを収容し得るカートリッジ収容部材を揺動自在に設けるとともに、前記カートリッジ収容部材を前記測定カートリッジを収容した状態で前記測定流路の長さ方向に水平状態を経て長さ方向の端部が上下移動して斜め状態に傾くように揺動させる揺動機構を設け、前記測定流路を上下方向に挟むように発光装置と受光装置とからなる受光検出手段を前記カートリッジ収容部材に配設し、前記測定流路が斜めに傾いた状態でしかも前記受光検出手段に臨む位置に前記測定血液が溜まっていない状態で前記受光装置による受光量に応じた信号値を検出して記憶するとともに演算して判別信号を出力する判別手段を設け、前記揺動機構による揺動開始から前記判別信号が出力されるまでの時間を計測する時間測定手段を設け、前記時間測定手段で測定された時間を前記測定血液の血液凝固時間として表示する表示手段を設け、前記測定流路に所定量の前記測定血液を投入して前記測定カートリッジを前記カートリッジ収容部材に収容した状態で、前記揺動機構で前記カートリッジ収容部材を揺動させて前記測定流路に投入された前記測定血液を前記測定流路内で往復移動させ、前記判別手段はこの往復移動の開始により初期に得られた前記信号値に対して時間が経過して前記信号値が変化しその変化分が所定の割合以上となると判別信号を出力し、前記時間測定手段で計測された時間を前記表示手段で表示するように構成されている。   In order to achieve this object, the blood coagulation time measuring device of the present invention comprises a measuring device main body and a measuring cartridge, and has a measuring channel that is long with respect to the cross-sectional area in which the measuring blood is accommodated in the measuring cartridge made of a transparent material. The measuring device main body is provided with a swingable cartridge housing member capable of housing the measurement cartridge, and the cartridge housing member is placed horizontally in the length direction of the measurement flow channel in a state in which the measurement cartridge is housed. A light receiving mechanism comprising a light emitting device and a light receiving device is provided so that the end of the length direction moves up and down through the state and swings so as to incline in an oblique state, and sandwiches the measurement channel in the vertical direction. Means is disposed in the cartridge housing member, and the measurement blood is not accumulated at a position facing the light receiving detection means in a state where the measurement flow channel is inclined obliquely In the state, a determination means for detecting and storing a signal value corresponding to the amount of light received by the light receiving device and calculating and outputting a determination signal is provided from the start of swinging by the swing mechanism until the determination signal is output. Provided with a time measuring means for measuring the time of the measurement, and provided with a display means for displaying the time measured by the time measuring means as the blood coagulation time of the measurement blood, and putting a predetermined amount of the measurement blood into the measurement flow path. In the state where the measurement cartridge is housed in the cartridge housing member, the cartridge housing member is swung by the rocking mechanism to reciprocate the measurement blood introduced into the measurement flow path. The discriminating means determines whether the signal value changes over time with respect to the signal value initially obtained by the start of the reciprocating movement, and the change amount exceeds a predetermined ratio. Output, and the time measured by said time measuring means is configured to display on the display unit.

そして、前記測定流路内に長さ方向に往復動自在で前記測定血液より比重が重い部材からなる回転部材を配設し、前記揺動機構による揺動で、前記回転部材が前記測定流路内の一端側から他端側まで回転しながら往復移動するように構成しても良い。   A rotating member made of a member that can reciprocate in the lengthwise direction and has a heavier specific gravity than the measurement blood is disposed in the measurement flow path, and the rotation member is moved by the swing mechanism so that the rotation member is moved to the measurement flow path. It may be configured to reciprocate while rotating from one end side to the other end side.

さらに、前記回転部材を球体で構成することもできる。   Furthermore, the rotating member can be formed of a sphere.

また、前記測定流路の底部に長さ方向の溝を設け、この溝の幅を前記回転部材が溝底部に当接しないようにし、前記溝内に血液凝固促進剤を塗布配設して構成しても良い。   In addition, a groove in the length direction is provided at the bottom of the measurement channel, the width of the groove is set so that the rotating member does not contact the groove bottom, and a blood coagulation promoter is applied and disposed in the groove. You may do it.

そしてまた、前記受光検出手段を前記測定流路の長さ方向の中央部に臨んで配設し、前記揺動機構が前記測定カートリッジの前記測定流路が一方に斜めに傾いた状態から他方の斜めに傾いた状態とするために揺動状態を切り換えるときに、前記判別手段が前記受光装置による受光量に応じた信号値を検出するように構成することもできる。   Further, the light receiving detection means is arranged facing the central portion in the length direction of the measurement flow path, and the swing mechanism is moved from the state where the measurement flow path of the measurement cartridge is inclined to one side to the other. The discriminating means may be configured to detect a signal value corresponding to the amount of light received by the light receiving device when the swinging state is switched so as to be inclined obliquely.

そしてさらに、前記カートリッジ収容部材に前記測定カートリッジを前記測定流路の長さ方向に挿入して収容できるカートリッジ挿入孔を設け、前記測定装置本体に外側から前記カートリッジ挿入孔に前記測定カートリッジを挿入できるように開口部を設け、前記カートリッジ収容部材の揺動軸を前記測定装置本体内で外側に近い位置に設けて前記測定カートリッジの挿入方向の先端側が上下に揺動するように構成すことも可能である。   Furthermore, a cartridge insertion hole is provided in the cartridge housing member so that the measurement cartridge can be inserted and accommodated in the length direction of the measurement flow path, and the measurement cartridge can be inserted into the cartridge insertion hole from the outside in the measurement apparatus body. It is also possible to provide an opening so that the swinging shaft of the cartridge housing member is provided at a position close to the outside in the measuring device main body so that the front end side in the insertion direction of the measuring cartridge swings up and down. It is.

また、前記測定カートリッジに上方が開口した血液注入口を設けてその底部側を連通路により前記測定流路の一端側に連通し、前記測定カートリッジにシリンダ機構を設けてそのピストンの移動で内容積が大きくなる圧力室を第2連通路で前記測定流路の他端側に連通し、前記カートリッジ収容部材に前記シリンダ機構の前記ピストンを所定長さだけ移動させるロッドスライド機構を設け、前記ロッドスライド機構の駆動により前記ピストンを所定長さだけ移動させて前記血液注入口に投入された前記測定血液を前記測定流路内に所定量だけ吸引するように構成しても良い。   The measurement cartridge is provided with a blood inlet opening upward, and the bottom side thereof is communicated with one end side of the measurement flow path by a communication path. The cylinder mechanism is provided in the measurement cartridge, and the piston moves to move the internal volume. A rod slide mechanism that communicates the pressure chamber in which the pressure increases to the other end side of the measurement flow path through the second communication path, and moves the piston of the cylinder mechanism by a predetermined length to the cartridge housing member; The piston may be moved by a predetermined length by driving a mechanism, and the measurement blood introduced into the blood inlet may be sucked into the measurement channel by a predetermined amount.

さらに、前記カートリッジ収容部材に前記測定カートリッジを前記測定流路の長さ方向に挿入して収容できるカートリッジ挿入孔を設け、前記測定装置本体に外側から前記カートリッジ挿入孔に前記測定カートリッジを挿入できるように開口部を設け、前記カートリッジ挿入孔に前記測定カートリッジを挿入した状態で、前記ロッドスライド機構の駆動により前記ピストンを移動させるさいに、前記測定カートリッジが前記カートリッジ挿入孔から抜け出さないようにするカートリッジ係止機構を前記カートリッジ収容部材に設けて構成することもできる。   Further, the cartridge housing member is provided with a cartridge insertion hole that can be accommodated by inserting the measurement cartridge in the length direction of the measurement flow path so that the measurement cartridge can be inserted into the cartridge insertion hole from the outside in the measurement apparatus main body. A cartridge that prevents the measurement cartridge from coming out of the cartridge insertion hole when the piston is moved by driving the rod slide mechanism in a state where the opening is provided in the cartridge insertion hole and the measurement cartridge is inserted into the cartridge insertion hole. A locking mechanism may be provided on the cartridge housing member.

請求項1記載の血液凝固時間測定装置にあっては、測定流路内の測定血液を揺動により測定流路内を往復移動させると、測定血液の凝固が始まり測定流路の底部に付着する。往復移動の続行で凝固により測定流路の底部に付着した測定血液の層の厚さが増加する。この底部に付着した測定血液の層の厚さが増大するほど透過する光量が減少し、受光手段での受光量が低下する。そして、揺動開始の初期の受光量に対して所定の割合で受光量が低下したことにより測定血液が凝固したと判定できる。そこで、判別手段が初期に得られた受光量の信号値に対して時間の経過により受光量の信号値が変化し、その変化分が所定の割合以上となると判別信号を出力し、揺動開始から判別信号が出力されるまでの時間を時間測定手段で計測しこれを表示手段で表示し、もって測定血液の凝固時間を表示することができる。     In the blood coagulation time measuring apparatus according to claim 1, when the measurement blood in the measurement channel is reciprocated in the measurement channel by rocking, the measurement blood starts to coagulate and adheres to the bottom of the measurement channel. . As the reciprocation continues, the thickness of the measurement blood layer attached to the bottom of the measurement channel increases due to coagulation. As the thickness of the measurement blood layer adhering to the bottom increases, the amount of transmitted light decreases, and the amount of light received by the light receiving means decreases. Then, it can be determined that the measured blood is coagulated due to a decrease in the amount of light received at a predetermined ratio with respect to the amount of light received initially at the start of oscillation. Therefore, the signal value of the received light amount changes with the passage of time with respect to the signal value of the received light amount initially obtained by the discriminating means, and when the change exceeds a predetermined ratio, a discrimination signal is output and oscillation starts It is possible to measure the time from when the determination signal is output to the time measurement means and display it on the display means, thereby displaying the coagulation time of the measured blood.

そして、請求項2記載の血液凝固時間測定装置にあっては、測定流路内に長さ方向に往復動自在で測定血液より比重が重い部材からなる回転部材を配設しているので、揺動による測定流路の傾斜で回転部材が測定流路内の一端側から他端側まで回転しながら往復移動し、回転部材に付着した測定血液を引っ張るようにして測定流路の表面張力に抗して測定流路内で往復移動させることができる。   In the blood coagulation time measuring apparatus according to claim 2, a rotating member made of a member that can reciprocate in the length direction and has a heavier specific gravity than the blood to be measured is disposed in the measurement channel. The rotating member reciprocates while rotating from one end side to the other end side in the measuring channel due to the inclination of the measuring channel due to the movement, and resists the surface tension of the measuring channel by pulling the measurement blood adhering to the rotating member. Then, it can be reciprocated in the measurement channel.

さらに、請求項3記載の血液凝固時間測定装置にあっては、回転部材を球体で構成しているので、測定流路内での回転が円滑であり、測定流路の壁等との接触も少なく、回転部材の移動が阻害されるようなことがない。   Furthermore, in the blood coagulation time measuring apparatus according to claim 3, since the rotating member is formed of a spherical body, the rotation in the measurement channel is smooth, and contact with the wall of the measurement channel is also possible. The movement of the rotating member is not hindered.

また、請求項4記載の血液凝固時間測定装置にあっては、測定流路の底部に長さ方向の溝を設け、この溝内に血液凝固促進剤を塗布配設しているが、溝の幅を回転部材が溝底部に当接しないようにしているので、回転部材により血液凝固剤の塗布が破損されることがない。測定カートリッジの運搬等の際に、血液凝固剤の塗布が破損されるような不具合が生ずることがない。   In the blood coagulation time measuring apparatus according to claim 4, a lengthwise groove is provided at the bottom of the measurement channel, and a blood coagulation accelerator is applied and disposed in the groove. Since the width is set so that the rotating member does not contact the groove bottom, the application of the blood coagulant is not damaged by the rotating member. There is no problem that the application of the blood coagulant is damaged when the measurement cartridge is transported.

そしてまた、請求項5記載の血液凝固時間測定装置にあっては、受光検出手段を測定流路の長さ方向の中央部に臨んで配設し、測定流路が一方に斜めに傾いた状態から他方の斜めに傾いた状態とするために揺動状態を切り換えるときに、判別手段が受光量に応じた信号値を検出するようにしたので、揺動機構の制御に応じて容易かつ簡単な構成で信号値の検出が可能である。また、測定流路の先端側が斜め上方に最も傾斜したときと斜め下方に最も傾いたときの、一往復の揺動で2回の検出が可能であり、信号値の検出間隔を短いものとすることができる。   Further, in the blood coagulation time measuring apparatus according to claim 5, the light receiving detection means is arranged facing the central portion in the length direction of the measurement flow path, and the measurement flow path is inclined to one side. Since the discriminating means detects the signal value corresponding to the amount of received light when switching the rocking state to make the other inclined state from the other, it is easy and simple according to the control of the rocking mechanism. The signal value can be detected by the configuration. In addition, it is possible to detect twice by one reciprocal swing when the front end side of the measurement channel is inclined most obliquely upward and when inclined most downward obliquely, and the signal value detection interval is short. be able to.

そしてまた、請求項6記載の血液凝固時間測定装置にあっては、測定装置本体の外側から測定カートリッジを測定流路の長さ方向に挿入できるようにし、カートリッジ収容部材の揺動軸を測定装置本体内で外側に近い位置に設け、測定カートリッジの挿入方向の先端側が上下に揺動するようにしたので、測定装置本体に測定カートリッジを挿入するための構造が、比較的に簡単に構成できる。しかも、測定カートリッジを測定装置本体に挿入するために測定装置本体に設けた開口部が、小さなもので足りる。   Further, in the blood coagulation time measuring apparatus according to claim 6, the measuring cartridge can be inserted in the length direction of the measuring channel from the outside of the measuring apparatus main body, and the swing shaft of the cartridge housing member is used as the measuring apparatus. Since the front end side in the insertion direction of the measurement cartridge is swung up and down at a position close to the outside in the main body, a structure for inserting the measurement cartridge into the measurement apparatus main body can be configured relatively easily. In addition, the opening provided in the measurement apparatus main body for inserting the measurement cartridge into the measurement apparatus main body may be small.

さらに、請求項7記載の血液凝固時間測定装置にあっては、測定カートリッジに組み込んだシリンダ機構により、所定量の測定血液を測定流路内に吸引できるので、測定流路内の測定血液の量のバラツキによる測定精度の不良がない。しかも、血液を吸引するシリンダ機構が測定カートリッジに組み込まれているので、確実な気密構造が得られ、吸引する圧力にバラツキがなく、精度良く所定量の血液を測定流路内に吸引することができる。   Furthermore, in the blood coagulation time measuring apparatus according to claim 7, since a predetermined amount of measuring blood can be sucked into the measuring channel by the cylinder mechanism incorporated in the measuring cartridge, the amount of measuring blood in the measuring channel There is no measurement accuracy defect due to variations in In addition, since a cylinder mechanism for sucking blood is incorporated in the measurement cartridge, a reliable airtight structure can be obtained, the suction pressure does not vary, and a predetermined amount of blood can be sucked into the measurement channel with high accuracy. it can.

さらにまた、請求項8記載の血液凝固時間測定装置にあっては、測定カートリッジがカートリッジ収容部材のカートリッジ挿入孔から抜け出さないようにするカートリッジ係止機構を設けているので、ロッドスライド機構の駆動によりピストンを移動させるさいに、ピストンと共に測定カートリッジがカートリッジ挿入孔から抜け出るような不具合を生じない。   Furthermore, in the blood coagulation time measuring apparatus according to claim 8, since the cartridge locking mechanism for preventing the measurement cartridge from coming out of the cartridge insertion hole of the cartridge housing member is provided, the rod slide mechanism is driven. When the piston is moved, there is no problem that the measurement cartridge comes out of the cartridge insertion hole together with the piston.

以下、本発明の血液凝固時間測定装置の第1実施例につき、図1ないし図15を参照して説明する。図1は、本発明の血液凝固時間測定装置の第1実施例の外観斜視図であり、測定装置本体と測定カートリッジからなり、測定装置本体に測定カートリッジを挿入する前の状態を示す。図2は、図1の状態から、測定装置本体に測定カートリッジを挿入した状態を示す図である。図3は、図2の状態の測定装置本体の内部を示す一部切り欠き図であり、(a)は一部切り欠き正面図であり、(b)は(a)のA−Aで一部切り欠いた側面図である。図4は、測定装置本体内に設けられたカートリッジ収容部材の縦断面図と揺動機構を示す図である。図5は、測定装置本体内でのカートリッジ収容部材の動きを示す図であり、(a)は先端部を斜め上方に揺動させた状態であり、(b)は先端部を斜め下方に揺動させた状態である。図6は、測定カートリッジの構造を示す図であり、(a)は一部切り欠き平面図であり、(b)は左側面図であり、(c)は(a)のA−A断面矢視図であり、(d)は(a)のB−B断面矢視図である。図7は、測定カートリッジに設けられた測定流路の構造を示し、(a)は平面図であり、(b)は(a)のA−A断面矢視図であり、(c)は(a)のB−B断面矢視拡大図である。図8は、測定カートリッジに設けられたシリンダ機構のピストンをロッドスライド機構のロッドで押圧することを示す図である。図9は、シリンダ機構のピストンが押圧されて移動することで測定流路に所定量の測定血液が吸引されることを示す図であり、(a)のピストンがまだ押圧移動されていない状態では、(b)のごとく測定血液は血液注入口に投入されたままの状態にあり、(c)のごとくピストンが押圧移動されると、(d)のごとく血液注入口の測定血液の一部が測定流路への連通路まで吸引され、(e)のごとくさらにピストンが所定長さまで押圧移動されると、(f)のごとく血液注入口の所定量の測定血液が連通路を経て測定流路へと吸引される。図10は、カートリッジ収容部に測定カートリッジを収容した状態で、揺動させたときの測定流路内の測定血液と球体の状態を示し、(a)の先端側を斜め下方に最も下げた状態から、先端側を上げてゆくと(b)〜(e)を経て(f)の先端側を斜め上方に最も上げた状態となり、揺動方向が切り換えられて、先端側を下げてゆくと(g)〜(j)を経て、再び(a)の状態となる。図11は、図10の揺動により受光検出手段の受光装置で得られる受光量に応じた信号値の変化を示す図である。図12は、揺動を開始させてから時間が経過することにより、測定血液の凝固が進むと、測定流路を斜めにした状態で受光検出手段に臨む位置で測定流路に付着する測定血液の層の厚さが変化することを示す図である。図13は、ロッドスライド機構でシリンダ機構のピストンを押圧した際に、測定カートリッジがカートリッジ収容部材から抜け出るのを阻止するためのカートリッジ係止機構を示す図であり、(a)は測定カートリッジを所定位置まで挿入する前の切り欠き平面図であり、(b)は測定カートリッジが所定位置まで挿入されて係止された状態の切り欠き平面図である。図14は、血液凝固時間を測定するための機能ブロック図である。図15は、図14の機能ブロック図における動作を説明するフローチャートである。   Hereinafter, a first embodiment of a blood coagulation time measuring apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is an external perspective view of a first embodiment of a blood coagulation time measuring apparatus according to the present invention, which includes a measuring apparatus main body and a measuring cartridge, and shows a state before the measuring cartridge is inserted into the measuring apparatus main body. FIG. 2 is a diagram illustrating a state in which the measurement cartridge is inserted into the measurement apparatus main body from the state of FIG. FIG. 3 is a partially cutaway view showing the inside of the measuring apparatus main body in the state of FIG. 2, (a) is a partially cutaway front view, and (b) is AA in (a). FIG. FIG. 4 is a longitudinal sectional view of a cartridge housing member provided in the measuring apparatus main body and a view showing a swing mechanism. FIGS. 5A and 5B are diagrams showing the movement of the cartridge housing member in the measuring apparatus main body. FIG. 5A shows a state in which the tip end is swung obliquely upward, and FIG. 5B shows a state in which the tip end is swung obliquely downward. It is in a state of being moved. 6A and 6B are diagrams showing the structure of the measurement cartridge, wherein FIG. 6A is a partially cutaway plan view, FIG. 6B is a left side view, and FIG. 6C is an AA cross-sectional arrow of FIG. It is a view and (d) is a BB cross-sectional arrow view of (a). 7A and 7B show the structure of the measurement flow path provided in the measurement cartridge, where FIG. 7A is a plan view, FIG. 7B is a cross-sectional view taken along the line A-A in FIG. It is a BB cross-section arrow enlarged view of a). FIG. 8 is a diagram illustrating that the piston of the cylinder mechanism provided in the measurement cartridge is pressed by the rod of the rod slide mechanism. FIG. 9 is a diagram showing that a predetermined amount of measurement blood is sucked into the measurement flow path when the piston of the cylinder mechanism is pressed and moved. In the state where the piston of FIG. (B), the blood to be measured is still put into the blood inlet, and when the piston is pushed and moved as shown in (c), a part of the blood measured at the blood inlet is moved as shown in (d). When the piston is sucked up to the communication channel to the measurement channel and the piston is further pressed and moved to a predetermined length as shown in (e), a predetermined amount of measurement blood in the blood inlet is passed through the communication channel as shown in (f). Is sucked into. FIG. 10 shows the state of the measurement blood and the sphere in the measurement flow path when the measurement cartridge is swung in the cartridge housing portion, and the tip end side of (a) is lowered most obliquely downward. From (b) to (e), when the tip side is raised, the tip side of (f) is raised to the uppermost position obliquely, and the swinging direction is switched and the tip side is lowered ( After going through g) to (j), the state (a) is obtained again. FIG. 11 is a diagram showing a change in signal value according to the amount of received light obtained by the light receiving device of the light receiving detecting means by the swing of FIG. FIG. 12 shows the measurement blood adhering to the measurement flow channel at a position facing the light receiving detection means when the measurement flow channel is inclined as time elapses after the oscillation starts and the measurement flow channel is inclined. It is a figure which shows that the thickness of the layer of changes. FIG. 13 is a view showing a cartridge locking mechanism for preventing the measurement cartridge from coming out of the cartridge housing member when the piston of the cylinder mechanism is pressed by the rod slide mechanism. FIG. It is a notch top view before inserting to a position, (b) is a notch top view of the state in which the measurement cartridge was inserted and locked to the predetermined position. FIG. 14 is a functional block diagram for measuring the blood coagulation time. FIG. 15 is a flowchart for explaining the operation in the functional block diagram of FIG.

第1実施例において、本発明の血液凝固時間測定装置は、図1に示すように、測定装置本体10と測定カートリッジ12により構成される。測定装置本体10には、操作手段としての電源スイッチ14やスタートスイッチ16および凝固時間を表示するために表示手段18が設けられ、さらに測定カートリッジ12を測定装置本体10内に挿入して収容し得るように開口部20が設けられている。図2に示すように、測定装置本体10に測定カートリッジ12を長さ方向に挿入し、この挿入状態で測定カートリッジ12の挿入後端部が測定装置本体10の外側に位置し、後述する血液注入口22に測定血液を注入できる状態とされる。測定装置本体10内において、図3および図4に示すごとく、測定カートリッジ12が挿入されてこれを収容し得るカートリッジ挿入孔24が設けられたカートリッジ収容部材26が、カートリッジ挿入孔24の開口を測定装置本体10の開口部20に臨むようにして、揺動軸28により揺動自在に配設される。カートリッジ収容部材26には、ガイドピン30が設けられ、測定装置本体10に設けられた揺動機構32のカム34が当接している。このカム34は、モーター36により回転駆動され、その回転状態がフォトインタラプタ38により検出されて、回転方向の切り換え制御がなされる。よって、カートリッジ収容部材26がカム34の回転により揺動させられる。さらに、カートリッジ収容部材26には、挿入収容された状態の測定カートリッジ12の中央部に臨んで、後述する測定流路40に臨んでこれを上下方向に挟むように発光装置42と受光装置44が配設される。これらの発光装置42と受光装置44で受光検出手段が構成される。また、カートリッジ挿入孔24に測定カートリッジ12が適切に挿入されたことを検出するためのリミットスイッチ46がカートリッジ挿入孔24の奥の位置に配設される。さらに、測定カートリッジ12を所定温度に維持するためヒーター48と温度センサー50が配設される。そして、カートリッジ収容部材26には、測定カートリッジ12に設けられた後述するシリンダ機構52のピストン54を押圧移動させるためのロッドスライド機構56が設けられている。揺動機構32のカム34の回転により、図5に示すごとく、カートリッジ収容部材26が、(a)に示すごとく先端側が斜め上方に上げられた状態と、(b)に示すごとく先端部が斜め下方に下げられた状態との間で揺動させられる。先端部が斜め上方に最も上げられた状態と先端部が斜め下方に最も下げられた状態とは、カム34の位置がフォトインタラプタ38により検出されて、後述するマイクロコンピュータ90により適宜に制御されて、揺動方向の切り換えがなされる。   In the first embodiment, the blood coagulation time measuring device of the present invention is constituted by a measuring device main body 10 and a measuring cartridge 12, as shown in FIG. The measuring apparatus main body 10 is provided with a power switch 14 as an operating means, a start switch 16 and a display means 18 for displaying the coagulation time. Further, the measuring cartridge 12 can be inserted and accommodated in the measuring apparatus main body 10. Thus, an opening 20 is provided. As shown in FIG. 2, the measurement cartridge 12 is inserted into the measurement apparatus main body 10 in the length direction, and in this inserted state, the insertion rear end of the measurement cartridge 12 is located outside the measurement apparatus main body 10, and blood injection to be described later is performed. Measurement blood can be injected into the inlet 22. As shown in FIGS. 3 and 4, the cartridge housing member 26 provided with the cartridge insertion hole 24 in which the measurement cartridge 12 is inserted and can accommodate the measurement cartridge 12 in the measurement apparatus main body 10 measures the opening of the cartridge insertion hole 24. A swinging shaft 28 is provided so as to be swingable so as to face the opening 20 of the apparatus main body 10. A guide pin 30 is provided on the cartridge housing member 26, and a cam 34 of a swing mechanism 32 provided on the measurement apparatus main body 10 is in contact therewith. The cam 34 is rotationally driven by a motor 36, the rotational state thereof is detected by a photo interrupter 38, and switching control of the rotational direction is performed. Therefore, the cartridge housing member 26 is swung by the rotation of the cam 34. Furthermore, the cartridge housing member 26 has a light emitting device 42 and a light receiving device 44 so as to face the central portion of the measurement cartridge 12 in the inserted and housed state and to face a measurement flow path 40 to be described later so as to be sandwiched vertically. Arranged. These light emitting device 42 and light receiving device 44 constitute a light receiving detection means. In addition, a limit switch 46 for detecting that the measurement cartridge 12 is properly inserted into the cartridge insertion hole 24 is disposed at a position behind the cartridge insertion hole 24. Further, a heater 48 and a temperature sensor 50 are provided to maintain the measurement cartridge 12 at a predetermined temperature. The cartridge housing member 26 is provided with a rod slide mechanism 56 for pressing and moving a piston 54 of a cylinder mechanism 52 (described later) provided on the measurement cartridge 12. As shown in FIG. 5, the rotation of the cam 34 of the swing mechanism 32 causes the cartridge housing member 26 to be tilted upward as shown in FIG. 5A, and as shown in FIG. It is swung between the state lowered downward. The state in which the tip end is raised most obliquely upward and the state in which the tip end is lowered obliquely downward are detected by the photo interrupter 38 and appropriately controlled by a microcomputer 90 described later. The swing direction is switched.

測定カートリッジ12は、図6と図7に示すごとく、全体が樹脂等の透明部材からなる偏平形状であり、上下の面がそれぞれ薄い封止材58、58で覆われている。一例として、長さが約80mm、幅が約25mm、厚さが約8mmである。そして、中心部材60に長さ方向に長いの測定流路40が上方から切削されて設けられ、その底部に長さ方向に幅の細い溝62、62が設けられる。測定流路40は、一例として長さ約25mmで、幅は約5mmで、深さは約7mmである。また、中心部材60の挿入後端部側に上方から血液注入口22が切削されて設けられる。さらに、中心部材60の挿入先端面からシリンダ機構52のシリンダ壁64となる孔が深く穿設される。なお、この孔は、開口側が大きな径で途中で段差を設けて穿設される。さらに、この孔の穿設先端部に中心部材60の外側と連通する空気抜き孔66が穿設される。そして、中心部材60に下方から血液注入口22の底部と測定流路40の一端部の底部を連通する連通路68として幅が狭く深さの浅い溝が切削されて設けられる。また、中心部材60に下方から測定流路40の他端部の底部とシリンダ機構52のピストン54の移動で内容積が大きくなる圧力室を連通する第2連通路70として幅が狭く深さの浅い溝が切削されて設けられる。測定流路40は上面に設けた封止材58により蓋がなされ、連通路68と第2連通路70は下面に設けた封止部材58により蓋がなされる。シリンダ機構52のシリンダ壁64となる孔には、先端側の径の小さい孔のシリンダ壁64に密着して摺動するガスケット72を設けたピストン54が挿入される。また、孔の大きな径の段差の部分にピストン54が貫通するブッシュ74が配設される。ガスケット72とブッシュ74の間の圧力室が、ピストン54の移動によりその内容積が増大するシリンダ機構52が構成されている。さらに、測定流路40の底に穿設した溝62、62内に凝固促進剤76が塗布されている。測定流路40内には、図7に示すごとく、血液より比重の重い鉄等からなる回転部材としての球体78が測定流路40内を長さ方向に移動自在に配設される。この球体78の径は、一例として約4mmであり、この球体78の径に対して、底部の溝62、62の幅が狭く穿設されていて、球体78が溝62、62内に入らず、溝底部に当接しないように構成される。そこで、溝62、62内に塗布された凝固促進剤76に球体78が当接することがない。   As shown in FIGS. 6 and 7, the measuring cartridge 12 has a flat shape made entirely of a transparent member such as a resin, and upper and lower surfaces are covered with thin sealing materials 58 and 58, respectively. As an example, the length is about 80 mm, the width is about 25 mm, and the thickness is about 8 mm. A long measurement channel 40 in the longitudinal direction is cut and provided in the central member 60 from above, and grooves 62 and 62 having a narrow width in the longitudinal direction are provided at the bottom. As an example, the measurement channel 40 has a length of about 25 mm, a width of about 5 mm, and a depth of about 7 mm. In addition, the blood injection port 22 is cut and provided on the rear end side of the central member 60 from above. Further, a hole that becomes the cylinder wall 64 of the cylinder mechanism 52 is deeply drilled from the insertion tip surface of the central member 60. This hole is formed with a large diameter on the opening side and a step in the middle. Further, an air vent hole 66 communicating with the outside of the central member 60 is formed at the drilling tip portion of the hole. A groove having a narrow width and a shallow depth is cut and provided in the central member 60 as a communication path 68 that communicates the bottom of the blood inlet 22 and the bottom of one end of the measurement channel 40 from below. Further, the second communication passage 70 having a narrow width and a small depth communicates with the central member 60 from below the bottom of the other end of the measurement flow path 40 and the pressure chamber whose internal volume increases as the piston 54 of the cylinder mechanism 52 moves. Shallow grooves are cut and provided. The measurement channel 40 is covered with a sealing material 58 provided on the upper surface, and the communication path 68 and the second communication path 70 are covered with a sealing member 58 provided on the lower surface. A piston 54 provided with a gasket 72 that slides in close contact with the cylinder wall 64 having a small diameter on the tip side is inserted into the hole that becomes the cylinder wall 64 of the cylinder mechanism 52. In addition, a bush 74 through which the piston 54 penetrates is provided at a step portion having a large diameter hole. The pressure chamber between the gasket 72 and the bush 74 constitutes a cylinder mechanism 52 whose internal volume is increased by the movement of the piston 54. Further, a coagulation promoter 76 is applied in the grooves 62 and 62 formed in the bottom of the measurement channel 40. As shown in FIG. 7, a sphere 78 as a rotating member made of iron or the like having a higher specific gravity than blood is disposed in the measurement channel 40 so as to be movable in the length direction within the measurement channel 40. The diameter of the sphere 78 is, for example, about 4 mm. The width of the bottom grooves 62 and 62 is narrower than the diameter of the sphere 78, and the sphere 78 does not enter the grooves 62 and 62. , Configured not to contact the groove bottom. Therefore, the sphere 78 does not come into contact with the coagulation accelerator 76 applied in the grooves 62 and 62.

また、図8に示すごとく、カートリッジ収容部材26に設けられたロッドスライド機構56のロッド80が、カートリッジ収容部材26に挿入収容された測定カートリッジ12のシリンダ機構52のピストン54に臨むように配設される。このロッド80が突出してシリンダ壁64となる孔に挿入されてピストン54を所定寸法だけ押圧移動させる。このロッド80の突出寸法は、後述するフォトインタラプタ104とマイクロコンピュータ90により適宜検出制御される。このピストン54の移動により、ピストン54に固定されたガスケット72とシリンダ壁64に固定されているブッシュ74の間の寸法が大きくなり、ガスケット72とブッシュ74の間の圧力室の内容積が増大して負圧を生ずる。ロッドスライド機構52は、例えば、モーターで回転する雌ねじ部材に軸回りに回転しない雄ねじ部材を螺合させた構造であり、この雄ねじ部材の突出寸法をフォトインタラプタ104で検出している。そこで、図9において、(a)に示すようにピストン54が移動する前は測定流路40に負圧が作用しておらず、(b)に示すように血液注入口22に注入された測定血液は表面張力により連通路68にも流入することがない。しかし、(c)に示すようにピストン54が押圧移動されて圧力室に負圧が生ずると、(d)に示すように血液注入口22に注入された測定血液は表面張力に抗して連通路68に流入する。さらに、(e)に示すようにピストン54がさらに所定寸法だけ押圧移動されて圧力室の負圧が大きくなると、(f)に示すように血液注入口22に注入された測定血液は連通路68を経て測定流路40に所定量が吸引される。この測定流路40に吸引される測定血液は、一例として0.08ccであり、測定流路40の全体の内容積に比較して僅かである。   Further, as shown in FIG. 8, the rod 80 of the rod slide mechanism 56 provided in the cartridge housing member 26 is disposed so as to face the piston 54 of the cylinder mechanism 52 of the measurement cartridge 12 inserted and housed in the cartridge housing member 26. Is done. The rod 80 protrudes and is inserted into a hole that becomes the cylinder wall 64, and the piston 54 is pressed and moved by a predetermined dimension. The protruding dimension of the rod 80 is appropriately detected and controlled by a photo interrupter 104 and a microcomputer 90 described later. By the movement of the piston 54, the dimension between the gasket 72 fixed to the piston 54 and the bush 74 fixed to the cylinder wall 64 increases, and the internal volume of the pressure chamber between the gasket 72 and the bush 74 increases. Negative pressure. The rod slide mechanism 52 has a structure in which, for example, a male screw member that does not rotate about an axis is screwed to a female screw member that is rotated by a motor, and the protruding dimension of the male screw member is detected by the photo interrupter 104. Therefore, in FIG. 9, before the piston 54 moves as shown in FIG. 9A, no negative pressure is applied to the measurement flow path 40, and the measurement injected into the blood inlet 22 as shown in FIG. 9B. Blood does not flow into the communication path 68 due to surface tension. However, when the piston 54 is pushed and moved as shown in (c) and negative pressure is generated in the pressure chamber, the measured blood injected into the blood inlet 22 as shown in (d) continues against the surface tension. It flows into the passage 68. Further, when the piston 54 is further pressed and moved by a predetermined dimension as shown in (e) and the negative pressure in the pressure chamber is increased, the measured blood injected into the blood inlet 22 as shown in (f) is communicated with the communication path 68. Then, a predetermined amount is sucked into the measurement channel 40. The measurement blood sucked into the measurement channel 40 is, for example, 0.08 cc, which is a little compared with the entire internal volume of the measurement channel 40.

測定流路40内に吸引された測定血液は、測定流路40を長さ方向に傾けて揺動させても、測定流路40の内壁が測定血液で濡れていない状態では、表面張力により自重により流れて移動するようなことはない。そこで、測定流路40を長さ方向に傾けて何回か揺動させると、測定流路40内の球体78が自重により回転移動して測定流路40の端部まで移動する。このときに測定流路40の一端部に吸引された測定血液が球体78に付着し、球体78が他端部側に回転移動する際に引っ張られながら移動し、測定流路40の内壁を濡らし、測定血液が自重により流れ得るようになる。   Even if the measurement blood sucked into the measurement flow path 40 is swung by tilting the measurement flow path 40 in the length direction, the weight of the measurement blood is reduced by the surface tension when the inner wall of the measurement flow path 40 is not wet with the measurement blood. There is no such thing as flowing. Therefore, when the measurement channel 40 is tilted in the length direction and is swung several times, the sphere 78 in the measurement channel 40 rotates and moves to the end of the measurement channel 40 by its own weight. At this time, the measurement blood sucked into one end portion of the measurement flow path 40 adheres to the sphere 78 and moves while being pulled when the sphere 78 rotates and moves to the other end side to wet the inner wall of the measurement flow path 40. Measurement blood can flow by its own weight.

揺動機構32の駆動によりカートリッジ収容部材26が揺動されて、測定流路40が長さ方向に揺動されたときの測定流路40内の測定血液の状態を図10および図11により説明する。図10(a)に示すように測定カートリッジ12の挿入先端側が下方斜めに最も下げられた状態では、球体78は先端側にあり、測定血液も先端側に溜まった状態である。この状態では、受光検出手段の光軸が通過する測定流路40の中央部の底に付着している測定血液の厚さは薄いものである。そこで、図11(a)で示すように透過する光量が多くて受光量に応じた信号値は大きなものとなる。そして、図10(b)に示すように測定カートリッジ12の挿入先端側を少し上げるように揺動させた状態では、球体78は未だ先端側にあるが、測定血液はその表面が水平となるように少し流動して、測定流路40の中央部の測定血液の厚さが少し厚くなる。そこで、図11(b)で示すように受光量に応じた信号値は少し減少する。さらに、図10(c)に示すように測定カートリッジ12の挿入先端側を少し上げて測定流路40が水平状態となると、球体78は未だ先端側にあるが、測定血液はその表面が水平となるようにさらに流動して、測定流路40の中央部の測定血液がさらに厚くなる。そこで、図11(c)で示すように受光量に応じた信号値はさらに小さなものとなる。そしてさらに、図10(d)に示すように測定カートリッジ12の挿入先端側が少し上方斜めに上げられた状態では、球体78は他端側に移動を開始するが、測定血液は先んじて他端側に流れ、測定流路40の中央部の測定血液の厚さが少し減少する。そこで、図11(d)で示すように受光量に応じた信号値は少し増加する。さらに、図10(e)に示すように測定カートリッジ12の挿入先端側がさらに上方斜めに上げられた状態で、球体78が移動して測定流路40の中央部まで移動すると、受光量が零となって、図11(e)で示すように受光量に応じた信号値は極端に減少する。さらに、図10(f)に示すように測定カートリッジ12の挿入先端側がさらに上方斜めに上げられて最も上げられた状態では、球体78は他端側にまで移動し、測定血液も他端側に溜まった状態である。この状態では、測定流路40の中央部の底に付着している測定血液の厚さは薄いものである。そこで、図11(f)で示すように受光量に応じた信号値は大きなものとなる。この図10(f)の状態まで揺動されると、揺動方向が切り換えられて、こんどは図10(g)に示すように測定カートリッジ12の挿入先端側が少し下げられる。この状態では、球体78は未だ他端側にあり、測定血液も他端側に溜まった状態であるが、少し測定流路40の中央部側に流動する。そこで、図11(g)で示すように受光量に応じた信号値は少し減少する。さらに、図10(h)に示すように測定カートリッジ12の挿入先端側を少し下げて測定流路40が水平状態となると、球体78は未だ他端側にあるが、測定血液はその表面が水平となるようにさらに流動して、測定流路40の中央部の測定血液がさらに厚くなる。そこで、図11(h)で示すように受光量に応じた信号値はさらに小さなものとなる。そしてさらに、図10(i)に示すように測定カートリッジ12の挿入先端側が少し下方斜めに下げられた状態では、球体78は先端側に移動を開始するが、測定血液は先んじて先端側に流れ、測定流路40の中央部の測定血液の厚さが少し減少する。そこで、図11(i)で示すように受光量に応じた信号値は少し増加する。さらに、図10(j)に示すように測定カートリッジ12の挿入先端側がさらに下方斜めに下げられた状態で、球体78が移動して測定流路40の中央部まで移動すると、受光量が零となって、図11(j)で示すように受光量に応じた信号値は極端に減少する。さらに、測定カートリッジ12の挿入先端側がさらに下方斜めに下げられると、再び図10(a)の状態に戻り、揺動方向が切り換えらる。なお、測定流路40の上下の揺動は、一例として1分間に10回程度の速度でおこなう。   The state of the blood to be measured in the measurement channel 40 when the cartridge housing member 26 is oscillated by the driving of the oscillating mechanism 32 and the measurement channel 40 is oscillated in the length direction will be described with reference to FIGS. To do. As shown in FIG. 10 (a), in the state where the insertion tip side of the measurement cartridge 12 is lowered most obliquely downward, the sphere 78 is on the tip side, and the measurement blood is also accumulated on the tip side. In this state, the thickness of the measurement blood adhering to the bottom of the central portion of the measurement channel 40 through which the optical axis of the light receiving detection means passes is thin. Therefore, as shown in FIG. 11A, the amount of transmitted light is large, and the signal value corresponding to the amount of received light is large. Then, as shown in FIG. 10B, in the state where the insertion tip side of the measurement cartridge 12 is swung so as to be slightly raised, the sphere 78 is still on the tip side, but the surface of the measurement blood is horizontal. And the thickness of the measurement blood at the central portion of the measurement flow path 40 is slightly increased. Therefore, as shown in FIG. 11B, the signal value corresponding to the amount of received light slightly decreases. Furthermore, as shown in FIG. 10 (c), when the insertion tip side of the measurement cartridge 12 is slightly raised and the measurement channel 40 becomes horizontal, the sphere 78 is still on the tip side, but the surface of the measurement blood is horizontal. As a result, the measurement blood at the center of the measurement flow path 40 becomes thicker. Therefore, as shown in FIG. 11C, the signal value corresponding to the amount of received light is even smaller. Further, as shown in FIG. 10 (d), in the state where the insertion tip side of the measurement cartridge 12 is slightly raised obliquely upward, the sphere 78 starts to move to the other end side. The thickness of the measurement blood at the center of the measurement channel 40 is slightly reduced. Therefore, as shown in FIG. 11D, the signal value corresponding to the amount of received light slightly increases. Further, as shown in FIG. 10E, when the sphere 78 moves and moves to the central portion of the measurement flow path 40 with the insertion tip side of the measurement cartridge 12 further inclined upward, the received light amount becomes zero. Thus, as shown in FIG. 11E, the signal value corresponding to the amount of received light is extremely reduced. Furthermore, as shown in FIG. 10 (f), in the state where the insertion tip side of the measurement cartridge 12 is further lifted obliquely upward and is raised most, the sphere 78 moves to the other end side, and the measurement blood also moves to the other end side. It is a state that has accumulated. In this state, the thickness of the measurement blood adhering to the bottom of the central portion of the measurement channel 40 is thin. Therefore, as shown in FIG. 11F, the signal value corresponding to the amount of received light becomes large. When it is swung to the state of FIG. 10 (f), the swinging direction is switched and the insertion tip side of the measurement cartridge 12 is slightly lowered as shown in FIG. 10 (g). In this state, the sphere 78 is still on the other end side, and the blood to be measured has also accumulated on the other end side, but slightly flows toward the center of the measurement flow path 40. Therefore, as shown in FIG. 11G, the signal value corresponding to the amount of received light slightly decreases. Furthermore, as shown in FIG. 10 (h), when the measurement leading end side of the measurement cartridge 12 is slightly lowered and the measurement channel 40 becomes horizontal, the sphere 78 is still on the other end side, but the surface of the measurement blood is horizontal. And the measurement blood at the center of the measurement flow path 40 becomes thicker. Therefore, as shown in FIG. 11H, the signal value corresponding to the amount of received light is even smaller. Further, as shown in FIG. 10 (i), in a state where the insertion tip side of the measurement cartridge 12 is slightly inclined downward, the sphere 78 starts to move to the tip side, but the measurement blood first flows to the tip side. The thickness of the measurement blood at the center of the measurement flow path 40 is slightly reduced. Therefore, as shown in FIG. 11 (i), the signal value corresponding to the amount of received light slightly increases. Further, when the sphere 78 moves and moves to the center of the measurement flow path 40 in a state where the insertion tip side of the measurement cartridge 12 is further lowered downward as shown in FIG. Thus, as shown in FIG. 11 (j), the signal value corresponding to the amount of received light is extremely reduced. Furthermore, when the insertion tip side of the measurement cartridge 12 is further lowered obliquely, the state returns to the state of FIG. 10A again, and the swinging direction is switched. Note that the vertical swing of the measurement channel 40 is performed at a speed of about 10 times per minute as an example.

上述のごとき揺動により、測定流路40内の測定血液が徐々に凝固してゆき、この凝固に伴い、図12に示すごとく、測定流路40の底部に付着する測定血液の厚さがt1からt2へと増加する。この底部に付着する測定血液の層が厚くなるほど、透過する光量が減少して受光量に応じた信号値は減少する。また、測定血液の凝固が進行するほど透過する光量が減少する。なお、受光検出手段は、赤外光を用いているが、可視光を用いて血液を透過する波長の範囲を用いても良い。そこで、測定流路40内に所定量の測定血液が吸引された状態で何度か(一例として、端部の上下揺動を1回として10回程度の揺動)の揺動がなされ、測定流路40の内壁が測定血液で濡れた状態で、初期値として受光量に応じた信号値が検出されて記憶される。なお、初期値の検出は、揺動を開始して所定時間後に検出するようにしても良い。この信号値の検出は、図10(a)と(f)の測定カートリッジ12の挿入先端側が最も上方斜めに上げられまたは下方斜めに下げられた状態で検出する。これは、揺動機構32のカム34の動きを切り換え制御するのと同時に行えばよく、マイクロコンピュータ90により揺動機構32のフォトインタラプタ38からの信号に応じて容易に行うことができる。測定カートリッジ12が斜めの状態で信号値を検出するのは、測定流路40の受光検出手段に臨む位置に、球体78が存在しないとともに測定血液が溜まっていない状態で底部に付着した測定血液の層のみを検出するためである。   The measurement blood in the measurement channel 40 is gradually coagulated by the oscillation as described above, and along with this coagulation, the thickness of the measurement blood adhering to the bottom of the measurement channel 40 is t1 as shown in FIG. Increases from t to t2. As the measurement blood layer adhering to the bottom becomes thicker, the amount of transmitted light decreases and the signal value corresponding to the amount of received light decreases. Further, the amount of light transmitted decreases as the measurement blood coagulates. The light receiving detection unit uses infrared light, but may use a range of wavelengths that transmit blood using visible light. Therefore, the measurement channel 40 is swung several times (as an example, the end portion is swung up and down once for about 10 times) in a state where a predetermined amount of measurement blood is sucked into the measurement channel 40, and the measurement is performed. In the state where the inner wall of the channel 40 is wet with the measurement blood, a signal value corresponding to the amount of received light is detected and stored as an initial value. The initial value may be detected after a predetermined time from the start of swinging. This signal value is detected in a state in which the insertion tip side of the measurement cartridge 12 shown in FIGS. 10A and 10F is raised up obliquely or lowered downward. This may be performed simultaneously with the switching control of the movement of the cam 34 of the swing mechanism 32, and can be easily performed by the microcomputer 90 according to a signal from the photo interrupter 38 of the swing mechanism 32. The signal value is detected when the measurement cartridge 12 is in an oblique state because the measurement blood adhering to the bottom of the measurement channel 40 is not present at the position facing the light receiving detection means and the measurement blood is not accumulated. This is to detect only the layer.

測定流路40内の球体78は、溝62、62内に塗布された凝固促進剤76に直接には当接することがないので、測定流路40内に測定血液が吸引されるまでは、球体78の動きにより凝固促進剤76が削られたり剥がされるようなことがない。そこで、測定カートリッジ12の運搬中に、凝固促進剤76の剥離等の不具合を生ずることがない。しかも、測定流路40内に測定血液が吸引されて、凝固促進剤76が測定血液中に溶解すると、球体78の測定血液を撹拌する作用により、凝固促進剤76が測定血液に均等に拡散される。もって、凝固時間の測定を安定して行うことができる。   Since the sphere 78 in the measurement channel 40 does not directly contact the coagulation promoter 76 applied in the grooves 62, 62, until the measurement blood is sucked into the measurement channel 40, The movement of 78 does not cause the coagulation promoter 76 to be scraped off or peeled off. Therefore, problems such as peeling of the coagulation accelerator 76 do not occur during transportation of the measurement cartridge 12. Moreover, when the measurement blood is sucked into the measurement channel 40 and the coagulation promoter 76 is dissolved in the measurement blood, the coagulation promoter 76 is evenly diffused into the measurement blood by the action of stirring the measurement blood of the sphere 78. The Therefore, the measurement of the coagulation time can be performed stably.

カートリッジ収容部材26に挿入収容された測定カートリッジ12のシリンダ機構52のピストン54を、ロッド80で所定寸法だけ押圧移動させるさいに、測定カートリッジ12は、挿入方向と反対の抜け方向の力を受ける。そこで、図13に示すように、測定カートリッジ12の抜けを阻止するためのカートリッジ係止機構が設けられている。このカートリッジ係止機構は、測定カートリッジ12に設けられた係止用凹部84に、カートリッジ収納部材26に設けられたプランジャー86の係止用ロッド88が突出して挿入されるように構成されている。そこで、図13(a)のごとく、測定カートリッジ12を挿入する前は係止用ロッド88が突出していない状態であり、測定カートリッジ12の挿入が可能である。そして、図13(b)のごとく、測定カートリッジ12が所定位置まで挿入されてリミットスイッチ46がONとなった状態で、プランジャー86が駆動されて係止用ロッド88が突出して、測定カートリッジ12に設けられた係止用凹部84に挿入されて係合し、測定カートリッジ12の抜けが阻止される。   When the piston 54 of the cylinder mechanism 52 of the measurement cartridge 12 inserted and housed in the cartridge housing member 26 is pressed and moved by the rod 80 by a predetermined dimension, the measurement cartridge 12 receives a force in the withdrawal direction opposite to the insertion direction. Therefore, as shown in FIG. 13, a cartridge locking mechanism for preventing the measurement cartridge 12 from coming off is provided. This cartridge locking mechanism is configured such that a locking rod 88 of a plunger 86 provided in the cartridge storage member 26 protrudes and is inserted into a locking recess 84 provided in the measurement cartridge 12. . Therefore, as shown in FIG. 13A, the locking rod 88 is not projected before the measurement cartridge 12 is inserted, and the measurement cartridge 12 can be inserted. Then, as shown in FIG. 13B, in a state where the measurement cartridge 12 is inserted to a predetermined position and the limit switch 46 is turned on, the plunger 86 is driven and the locking rod 88 protrudes, and the measurement cartridge 12 Is inserted into and engaged with a locking recess 84 provided in the, and the measurement cartridge 12 is prevented from coming off.

本発明の血液凝固時間測定装置の全体的な動作につき説明する。図14に示す血液凝固時間を測定するための機能ブロック図において、動作制御はマイクロコンピュータ90によりなされる。このマイクロコンピュータ90には、判別手段92と時間計測手段94の機能を有し、表示手段18、電源スイッチ14、スタートスイッチ16、リミットスイッチ46、電源回路96、揺動機構制御手段98とモーター36およびそのフォトインタラプタ38、ロッドスライド機構制御手段100とモーター102およびそのフォトインタラプタ104、温度制御手段106とヒーター48および温度センサー50、発光措置42と受光装置44が接続されている。そしてその動作は、まず、電源スイッチ14をONにすると、温度センサー50でカートリッジ収容部材26の温度を検出して、温度制御手段106でヒーター48をON/OFF制御して、カートリッジ収容部材26を例えば37°Cの一定温度に維持する。そして、測定カートリッジ12が挿入されてリミットスイッチ46が操作されると、測定カートリッジ12が所定位置まで挿入されたと確認できる。この測定カートリッジ12が所定位置まで挿入された状態で血液注入口22に測定血液を注入して、スタートスイッチ16をONすると、凝固時間の測定動作が開始される。ここで、リミットスイッチ46が適切にONとなっていない状態や、カートリッジ収容部材26が所定の温度に維持されていない場合は、マイクロコンピュータ90はスタートスイッチ16がONされても、凝固時間測定を開始しないようにプログラムされている。次に、スタートスイッチ16がONされて凝固時間測定を開始される動作を図15のフローチャートにより説明する。スタートスイッチ16がONされると、カートリッジ係止機構のプランジャー86が駆動されて、測定カートリッジ12の抜けを阻止する状態とし、続いてロッドスライド機構56を動作させて、ピストン54を移動させ、測定流路40に所定量の測定血液を吸引する(ステップ1)。測定流路40に測定血液が吸引された状態で、揺動機構32が動作されて、測定流路40の揺動動作が開始される(ステップ2)。この揺動動作が所定回数の繰り返し(例えば10回程度)または所定の時間経過(例えば1分程度)したか否かを判別し(ステップ3)、所定回数または所定時間が経過するまで揺動動作を繰り返し、所定回数または所定時間が経過すると、測定カートリッジ12の先端側端部が最も上げられたときまたは下げられたときに初期値が検出されて記憶がなされる(ステップ4)。さらに、揺動動作が継続されると同時に時間測定が開始される(ステップ5)。揺動操作毎に信号値が検出され、初期値に対して信号値が変化し、判別手段92によりその変化した割合が演算され、所定の割合(例えば3割の変化)またはそれ以上に変化したか否かが判別される(ステップ6)。所定の割合またはそれ以上に変化するまで、揺動動作と時間計測が継続される。そして、信号値の変化分が大きくなり、所定の割合またはそれ以上に変化して判別手段92から判別信号が出力されると、揺動動作が停止されるとともに時間計測が停止される(ステップ7)。さらに、時間計測手段94で測定された時間が表示手段18により凝固時間として表示される(ステップ8)。また、カートリッジ係止手段による測定カートリッジ12の係止が解放されるとともに、ロッドスライド機構56のロッド80が測定カートリッジ12から抜き出されて(ステップ9)、一連の凝固時間測定動作が終了する。なお、ステップ8とステップ9が同時になされても良いし、動作の順序が逆であっても良い。ここで、受光装置44の受光量に応じた信号値が判別手段92に測定の間は常時与えられていて、測定流路40が所定の傾きの状態となって判別動作を行うタイミングで、判別手段92で信号値を適宜に取り込んで演算等がなされる。   The overall operation of the blood coagulation time measuring apparatus of the present invention will be described. In the functional block diagram for measuring the blood coagulation time shown in FIG. 14, the operation control is performed by the microcomputer 90. The microcomputer 90 has functions of a determination unit 92 and a time measurement unit 94, and includes a display unit 18, a power switch 14, a start switch 16, a limit switch 46, a power circuit 96, a swing mechanism control unit 98, and a motor 36. The photo interrupter 38, the rod slide mechanism control means 100 and the motor 102 and the photo interrupter 104, the temperature control means 106 and the heater 48 and the temperature sensor 50, the light emission measure 42 and the light receiving device 44 are connected. First, when the power switch 14 is turned on, the temperature sensor 50 detects the temperature of the cartridge housing member 26, and the temperature control means 106 controls the heater 48 to be turned on / off, thereby controlling the cartridge housing member 26. For example, it is maintained at a constant temperature of 37 ° C. When the measurement cartridge 12 is inserted and the limit switch 46 is operated, it can be confirmed that the measurement cartridge 12 has been inserted to a predetermined position. When measurement blood is injected into the blood injection port 22 with the measurement cartridge 12 inserted to a predetermined position and the start switch 16 is turned on, the measurement operation of the coagulation time is started. Here, when the limit switch 46 is not properly turned on or when the cartridge housing member 26 is not maintained at a predetermined temperature, the microcomputer 90 measures the coagulation time even if the start switch 16 is turned on. It is programmed not to start. Next, the operation of starting the clotting time measurement when the start switch 16 is turned on will be described with reference to the flowchart of FIG. When the start switch 16 is turned on, the plunger 86 of the cartridge locking mechanism is driven to prevent the measurement cartridge 12 from coming off, and then the rod slide mechanism 56 is operated to move the piston 54. A predetermined amount of measurement blood is sucked into the measurement channel 40 (step 1). With the measurement blood sucked into the measurement channel 40, the swing mechanism 32 is operated, and the swing operation of the measurement channel 40 is started (step 2). It is determined whether or not the swinging operation has been repeated a predetermined number of times (for example, about 10 times) or a predetermined time has passed (for example, about 1 minute) (step 3), and the swinging operation is continued until the predetermined number of times or the predetermined time has passed. When a predetermined number of times or a predetermined time has elapsed, the initial value is detected and stored when the leading end of the measuring cartridge 12 is raised or lowered most (step 4). Further, time measurement is started at the same time as the swinging operation is continued (step 5). The signal value is detected for each swing operation, the signal value is changed with respect to the initial value, the change rate is calculated by the discriminating means 92, and changed to a predetermined rate (for example, 30% change) or more. Is determined (step 6). The swinging operation and time measurement are continued until the ratio changes to a predetermined rate or more. Then, when the change in the signal value increases and changes to a predetermined ratio or more and a determination signal is output from the determination means 92, the swing operation is stopped and the time measurement is stopped (step 7). ). Further, the time measured by the time measuring means 94 is displayed as the coagulation time by the display means 18 (step 8). Further, the locking of the measurement cartridge 12 by the cartridge locking means is released, and the rod 80 of the rod slide mechanism 56 is extracted from the measurement cartridge 12 (step 9), and a series of coagulation time measurement operations is completed. Note that step 8 and step 9 may be performed simultaneously, or the order of operations may be reversed. Here, a signal value corresponding to the amount of light received by the light receiving device 44 is always given to the discriminating means 92 during the measurement, and the discriminating operation is performed at the timing when the discriminating operation is performed when the measurement channel 40 is in a predetermined inclination. The means 92 takes in the signal values as appropriate and performs calculations.

上記した第1実施例にあっては、測定流路40の上下の揺動を、1分間に10回程度の速度で行っているが、この揺動の早さを速くすればより測定血液の凝固が促進される。そして、同じ揺動回数であっても、測定流路40の長さ方向の距離が長ければ測定血液の移動する距離が長くなりそれだけ撹拌される激しさが大きくなり、凝固が促進される。また、凝固促進剤の種類および測定血液に混入する濃度により、凝固するまでの時間が変化する。また、凝固を判別する変化分を初期値に対して如何に設定するかで、測定される血液凝固時間は変化する。したがって、本発明の血液凝固時間測定装置で得られる血液凝固時間は、測定血液を撹拌する激しさや混入する凝固促進剤の種類とその濃度、さらには凝固したと判別する変化分の設定により変化する。そこで、予め、本発明の血液凝固時間測定装置で得られる血液凝固時間に対応させて、測定血液に凝固促進剤を混ぜない状態でしかも撹拌しない場合の測定血液が自然に凝固する血液凝固時間を測定しておけば、本発明の血液凝固時間測定装置で得られる血液凝固時間から、測定血液が自然に凝固する血液凝固時間を演算予測することができる。そこで、この演算予測された血液凝固時間から、適切な時点で抗凝固剤を投与することができる。   In the first embodiment described above, the measurement channel 40 is swung up and down at a speed of about 10 times per minute. Coagulation is promoted. Even if the number of oscillations is the same, if the distance in the length direction of the measurement flow path 40 is long, the distance to which the measurement blood moves becomes longer, and the intensity of stirring is increased accordingly, and coagulation is promoted. Further, the time until coagulation varies depending on the type of coagulation accelerator and the concentration mixed in the measurement blood. The measured blood coagulation time varies depending on how the change for determining coagulation is set with respect to the initial value. Therefore, the blood coagulation time obtained by the blood coagulation time measuring device of the present invention varies depending on the intensity of stirring the measured blood, the type and concentration of the coagulation promoter to be mixed, and further, the change amount for determining that the blood coagulates. To do. Therefore, in advance, the blood coagulation time corresponding to the blood coagulation time obtained by the blood coagulation time measuring apparatus of the present invention is set so that the measurement blood naturally coagulates without mixing the coagulation promoter with the measurement blood. If measured, the blood coagulation time when the measured blood naturally coagulates can be calculated and predicted from the blood coagulation time obtained by the blood coagulation time measuring apparatus of the present invention. Therefore, an anticoagulant can be administered at an appropriate time based on the calculated blood coagulation time.

次に、図16と図17を参照して本発明の血液凝固時間測定装置の第2実施例で用いる測定カートリッジを説明する。図16は、第2実施例で用いる測定カートリッジの構造を示す図であり、(a)は平面図であり、(b)は(a)のA−A断面矢視図であり、(c)は(a)のB−B断面矢視図である。図17は、図16に示す測定カートリッジの使用方法を示す図であり、(a)は測定流路に分注器で測定血液を注入する図であり、(b)は測定流路に分注器で測定血液が注入された状態示す図であり、(c)は測定流路に測定血液が注入された測定カートリッジを長さ方向に強く振って、測定血液で測定流路の内壁を濡らした状態の図である。   Next, a measurement cartridge used in the second embodiment of the blood coagulation time measuring apparatus of the present invention will be described with reference to FIGS. FIG. 16 is a view showing the structure of the measurement cartridge used in the second embodiment, where (a) is a plan view, (b) is a cross-sectional view taken along line AA of (a), and (c). These are BB cross-sectional arrow views of (a). FIG. 17 is a diagram illustrating a method of using the measurement cartridge illustrated in FIG. 16, (a) is a diagram in which measurement blood is injected into the measurement channel using a dispenser, and (b) is a sample dispensed into the measurement channel (C) is a diagram showing a state in which the measurement blood is injected by the vessel, and (c) shows that the measurement cartridge in which the measurement blood is injected into the measurement channel is vigorously shaken in the length direction to wet the inner wall of the measurement channel with the measurement blood. It is a figure of a state.

第2実施例で用いる測定カートリッジ112の構造は、図16に示すごとく、全体が透明部材からなる偏平形状であり、中心部材114の中央部に長さ方向に長い測定流路40が上方から切削され、その上面が薄い封止材116で蓋がなされている。この封止材116には、測定流路40に臨んで注入穴118が穿設されている。この第2実施例の測定カートリッジ112の全体の寸法は、一例として、長さが約80mm、幅が約13mm、厚さが約8mmである。そして、図17に示すごとく、まず分注器120で所定量の測定血液を採取し、その測定血液を(a)のごとく注入穴118から測定流路40内に注入する。この測定血液が分注器120で測定流路40に注入された状態では、(b)のごとく、表面張力により測定血液が測定流路40内を流動するようなことがない。そこで、測定カートリッジ112を測定流路40の長さ方向に強く往復させて振ることで、表面張力に抗して測定血液を強制的に測定流路40内を移動させて、測定流路40の内壁を測定血液で濡らした(c)のごとき状態とする。そして、第1実施例と同様に、測定装置本体10の測定カートリッジ挿入口24に挿入することで、第1実施例と同様に凝固時間を測定することができる。この第2実施例では、測定カートリッジ112を長さ方向に振ることで、測定流路40の内壁を測定血液で濡らした状態としており、第1実施例のごとき球体78が配設されていない。この球体78が配設されていないため、測定流路40の内壁に凝固促進剤76を塗布しても何ら問題を生ずることがない。なお、第2実施例の測定カートリッジ112にあっても、第1実施例と同様に球体78を測定流路40内に配設しても良い。この測定流路40内に球体78を配設する場合は、第1実施例と同様に測定流路40の底に溝62を切削して設けて凝固促進剤76を塗布すればよい。   As shown in FIG. 16, the structure of the measurement cartridge 112 used in the second embodiment is a flat shape made of a transparent member as a whole, and a measurement channel 40 that is long in the length direction is cut from above at the center of the center member 114. The upper surface is covered with a thin sealing material 116. An injection hole 118 is formed in the sealing material 116 so as to face the measurement channel 40. As an example, the overall dimensions of the measurement cartridge 112 of the second embodiment are about 80 mm in length, about 13 mm in width, and about 8 mm in thickness. Then, as shown in FIG. 17, first, a predetermined amount of measurement blood is collected by the dispenser 120, and the measurement blood is injected into the measurement channel 40 from the injection hole 118 as shown in (a). In a state where the measurement blood is injected into the measurement channel 40 by the dispenser 120, the measurement blood does not flow in the measurement channel 40 due to the surface tension as shown in (b). Therefore, the measurement cartridge 112 is strongly reciprocated in the length direction of the measurement channel 40 and shaken to forcibly move the measurement blood in the measurement channel 40 against the surface tension. A state as shown in (c) in which the inner wall is wetted with measurement blood. As in the first embodiment, the coagulation time can be measured in the same manner as in the first embodiment by inserting it into the measurement cartridge insertion port 24 of the measurement apparatus main body 10. In this second embodiment, the measurement cartridge 112 is shaken in the length direction so that the inner wall of the measurement flow path 40 is wetted with the measurement blood, and the sphere 78 as in the first embodiment is not provided. Since the sphere 78 is not provided, no problem occurs even if the coagulation accelerator 76 is applied to the inner wall of the measurement flow path 40. Even in the measurement cartridge 112 of the second embodiment, the sphere 78 may be disposed in the measurement flow path 40 as in the first embodiment. When the sphere 78 is disposed in the measurement channel 40, the groove 62 may be cut and provided on the bottom of the measurement channel 40 and the coagulation accelerator 76 may be applied as in the first embodiment.

なお、上述の実施例の説明にあっては、測定カートリッジ12、112を測定装置本体10のカートリッジ挿入口24に長さ方向に挿入しているが、かかる構造に限られず、測定カートリッジ12、112がその端部が上下に揺動されて、測定流路40の中央部の底に付着する測定血液の層の厚さおよび凝固の進行に応じた受光量を検出し、その受光量に応じた信号値が出力されれば良いことは、容易に理解できるであろう。そこで、測定装置本体10のカートリッジ収容部材26を測定カートリッジ12、112を幅方向に挿入収容する構造としても良い。さらに、カートリッジ収容部材26に上方が開口された収容部を設けるとともに、その上方を覆う蓋体に受光検出手段の発光装置42もしくは受光装置44の一方を設け、カートリッジ収容部材26に発光装置42もしくは受光装置44の他方を対応させて配設し、カートリッジ収容部材26の収容部に上方から測定カートリッジ12、112を収容し、さらに蓋体で覆って、第1実施例と同様に凝固時間を測定するようにしても良い。   In the description of the above-described embodiment, the measurement cartridges 12 and 112 are inserted into the cartridge insertion port 24 of the measurement apparatus main body 10 in the length direction. However, the measurement cartridges 12 and 112 are not limited to this structure. However, its end is swung up and down to detect the amount of light received according to the thickness of the measurement blood layer adhering to the bottom of the central portion of the measurement channel 40 and the progress of coagulation, and according to the amount of light received It can be easily understood that the signal value may be output. Therefore, the cartridge housing member 26 of the measurement apparatus main body 10 may be configured to insert and house the measurement cartridges 12 and 112 in the width direction. Further, the cartridge housing member 26 is provided with a housing portion whose upper side is opened, and one of the light-emitting device 42 or the light-receiving device 44 of the light-receiving detecting means is provided on the lid covering the upper portion, and the light-emitting device 42 or The other one of the light receiving devices 44 is arranged correspondingly, the measuring cartridges 12 and 112 are accommodated from above in the accommodating portion of the cartridge accommodating member 26, and further covered with a lid, and the coagulation time is measured as in the first embodiment. You may make it do.

また、受光検出手段は、測定流路40の長さ方向の中央部に臨む位置に限られず、端部側であっても良い。測定流路40が斜めに傾いた状態であるとともに受光検出手段に臨む位置に測定血液が溜まっていない状態であれば、測定流路40の受光検出手段に臨む位置の底には、測定血液が付着しているだけの状態であり、信号値の検出が可能である。このように受光検出手段を端部に設けた構造では、測定流路40の傾き方向によっては受光検出手段に臨む位置の測定流路40内に測定血液が溜まっており、信号値の検出ができない。しかるに、測定流路40の上下揺動で、少なくとも1回の信号値の検出は可能である。また、測定流路40が所定の傾きの状態となって判別動作を行うタイミングで、受光検出手段が動作状態となって、受光装置44の受光量に応じた信号値が判別手段92に与えられるようにしても良い。   Further, the light receiving detection means is not limited to the position facing the central portion in the length direction of the measurement channel 40, and may be on the end side. If the measurement flow path 40 is inclined and the measurement blood does not accumulate at the position facing the light reception detection means, the measurement blood is placed at the bottom of the measurement flow path 40 at the position facing the light reception detection means. It is in a state of only adhering, and a signal value can be detected. Thus, in the structure in which the light receiving detection means is provided at the end, depending on the inclination direction of the measurement flow path 40, the measurement blood is accumulated in the measurement flow path 40 at the position facing the light reception detection means, and the signal value cannot be detected. . However, it is possible to detect the signal value at least once by vertically swinging the measurement channel 40. In addition, at the timing when the measurement flow path 40 is in a predetermined inclination state and the determination operation is performed, the light reception detection unit is in an operation state, and a signal value corresponding to the amount of light received by the light receiving device 44 is given to the determination unit 92. You may do it.

そして、第1実施例にあっては、測定流路40内に配設される回転部材としての球体78は、測定流路40内を揺動に伴って長さ方向に移動自在であれば良く、球形状に限られず、回転部材が円板状であっても良い。この円板状とすると、円板の側面と測定流路40の内壁の接触面積が大きくなり、移動に対して抵抗として作用する場合があるが、測定流路40の内壁に円板の側面に接触する長さ方向の突条を設けたり、円板の側面の中央部に突起を設けるなどして、接触抵抗を小さなものとすればよい。また、円板の側面を外側が凸なる曲面としても良く、さらには側面形状は円形であるが縦断面形状が縦に長い楕円形であっても良い。また、球体40は、測定血液より比重の重いものであれば良く、鉄製に限られず、ガラス製等であっても良い。   In the first embodiment, the sphere 78 as a rotating member disposed in the measurement flow path 40 may be movable in the length direction in the measurement flow path 40 as it swings. The rotating member is not limited to a spherical shape, and may be a disc shape. With this disk shape, the contact area between the side surface of the disk and the inner wall of the measurement flow path 40 increases, which may act as a resistance against movement. The contact resistance may be reduced by providing a protruding protrusion in the length direction in contact or by providing a protrusion at the center of the side surface of the disk. Further, the side surface of the disk may be a curved surface with a convex outer side, and the side surface shape may be an ellipse that is circular but has a vertically long cross-sectional shape. Moreover, the spherical body 40 should just be a thing whose specific gravity is heavier than measurement blood, and is not restricted to iron, The product made from glass etc. may be sufficient.

さらに、第2実施例にあっては、測定カートリッジ112の測定流路の一端側に測定血液を注入し、測定カートリッジ112をカートリッジ収容部材26に収容させた状態で、他端側を下斜め方向に下げた状態の測定カートリッジ112に適宜な振動を与えて、表面張力に抗して測定血液を測定流路40内で流動させ、もって測定流路40の内壁を測定血液で濡らした状態とするようにしても良い。   Furthermore, in the second embodiment, measurement blood is injected into one end side of the measurement flow path of the measurement cartridge 112, and the other end side is inclined downward in a state where the measurement cartridge 112 is accommodated in the cartridge accommodating member 26. Appropriate vibration is applied to the measurement cartridge 112 in the lowered state to cause the measurement blood to flow in the measurement channel 40 against the surface tension, so that the inner wall of the measurement channel 40 is wetted with the measurement blood. You may do it.

そしてさらに、上記実施例において、カートリッジ収容部材26の揺動軸28を測定装置本体10内で外側に近い位置に設けて、測定カートリッジ12、112の挿入方向の先端側が上下に揺動するようにしたが、これに限られず、測定カートリッジ12、112の略中央部に臨む位置に揺動軸28を設けて、両端部が上下に揺動するようにしても良い。また、上記の実施例では、カートリッジ収容部材26が測定装置本体10の内部に配設されているが、これに限られず、カートリッジ収容部材26の全体またはその一部が測定装置本体10の外部となるように配設しても良い。   Further, in the above embodiment, the swing shaft 28 of the cartridge housing member 26 is provided at a position close to the outside in the measurement apparatus main body 10 so that the distal end side in the insertion direction of the measurement cartridges 12 and 112 swings up and down. However, the present invention is not limited to this, and the swing shaft 28 may be provided at a position facing the substantially central portion of the measurement cartridges 12 and 112 so that both ends swing up and down. In the above-described embodiment, the cartridge housing member 26 is disposed inside the measuring apparatus main body 10. However, the present invention is not limited to this, and the entire cartridge housing member 26 or a part thereof is connected to the outside of the measuring apparatus main body 10. You may arrange | position so that it may become.

本発明の血液凝固時間測定装置の第1実施例の外観斜視図であり、測定装置本体と測定カートリッジからなり、測定装置本体に測定カートリッジを挿入する前の状態を示す。It is an external appearance perspective view of 1st Example of the blood coagulation time measuring apparatus of this invention, consists of a measuring device main body and a measuring cartridge, and shows the state before inserting a measuring cartridge in a measuring device main body. 図1の状態から、測定装置本体に測定カートリッジを挿入した状態を示す図である。It is a figure which shows the state which inserted the measurement cartridge into the measuring apparatus main body from the state of FIG. 図2の状態の測定装置本体の内部を示す一部切り欠き図であり、(a)は一部切り欠き正面図であり、(b)は(a)のA−Aで一部切り欠いた側面図である。FIG. 3 is a partially cutaway view showing the inside of the measurement apparatus main body in the state of FIG. 2, (a) is a partially cutaway front view, and (b) is a partially cutout at A-A in (a). It is a side view. 測定装置本体内に設けられたカートリッジ収容部材の縦断面図と揺動機構を示す図である。It is a figure which shows the longitudinal cross-sectional view and swing mechanism of the cartridge accommodating member provided in the measuring apparatus main body. 測定装置本体内でのカートリッジ収容部材の動きを示す図であり、(a)は先端部を斜め上方に揺動させた状態であり、(b)は先端部を斜め下方に揺動させた状態である。It is a figure which shows a motion of the cartridge accommodating member in a measuring device main body, (a) is the state which rock | fluctuated the front-end | tip part diagonally upward, (b) is the state which rock | fluctuated the front-end | tip part diagonally downward It is. 測定カートリッジの構造を示す図であり、(a)は一部切り欠き平面図であり、(b)は側面図であり、(c)は(a)のA−A断面矢視図であり、(d)は(a)のB−B断面矢視図である。It is a figure which shows the structure of a measurement cartridge, (a) is a partially cutaway plan view, (b) is a side view, (c) is an AA cross-sectional arrow view of (a), (D) is a BB cross-sectional arrow view of (a). 測定カートリッジに設けられた測定流路の構造を示し、(a)は平面図であり、(b)は(a)のA−A断面矢視図であり、(c)は(a)のB−B断面矢視拡大図である。The structure of the measurement flow path provided in the measurement cartridge is shown, (a) is a plan view, (b) is an AA cross-sectional arrow view of (a), and (c) is B of (a). It is -B cross-section arrow enlarged view. 測定カートリッジに設けられたシリンダ機構のピストンをロッドスライド機構のロッドで押圧することを示す図である。It is a figure which shows pressing the piston of the cylinder mechanism provided in the measurement cartridge with the rod of a rod slide mechanism. シリンダ機構のピストンが押圧されて移動することで測定流路に所定量の測定血液が吸引されることを示す図であり、(a)のピストンがまだ押圧移動されていない状態では、(b)のごとく測定血液は血液注入口に投入された状態にあり、(c)のごとくピストンが押圧移動されると、(d)のごとく血液注入口の測定血液の一部が測定流路への連通路まで吸引され、(e)のごとくさらにピストンが所定長さだけ押圧移動されると、(f)のごとく血液注入口の所定量の測定血液が連通路を経て測定流路へと吸引される。It is a figure which shows that a predetermined amount of measurement blood is attracted | sucked to a measurement flow path by the piston of a cylinder mechanism being pressed and moved, (b) in the state where the piston of (a) has not been pressed and moved yet As shown in (c), when the piston is pushed and moved as shown in (c), a part of the measured blood at the blood inlet is connected to the measurement channel. When the piston is sucked up to the passage and the piston is further pushed and moved by a predetermined length as shown in (e), a predetermined amount of measurement blood at the blood inlet is sucked into the measurement flow path via the communication passage as shown in (f). . カートリッジ収容部に測定カートリッジを収容した状態で、揺動させたときの測定流路内の測定血液と球体の状態を示し、(a)の先端側を斜め下方に下げた状態から、先端側を上げてゆくと(b)〜(e)を経て(f)の先端側を斜め上方に上げた状態となり、揺動方向が切り換えられて、先端側を下げてゆくと(g)〜(j)を経て、再び(a)の状態となる。The state of the measurement blood and the sphere in the measurement flow path when the measurement cartridge is swung in the cartridge housing portion is shown, and the tip side is lowered from the state where the tip side of (a) is lowered obliquely downward. When it is raised, it passes through (b) to (e), and the tip side of (f) is raised obliquely upward, and the swinging direction is switched and the tip side is lowered (g) to (j). Then, the state (a) is obtained again. 図10の揺動により受光検出手段の受光装置で得られる受光量に応じた信号値の変化を示す図である。It is a figure which shows the change of the signal value according to the light reception amount obtained with the light-receiving device of a light reception detection means by rocking | fluctuation of FIG. 揺動を開始させてから時間が経過することにより、測定血液の凝固が進むと、測定流路を斜めにした状態で受光検出手段に臨む位置で測定流路に付着する測定血液の層の厚さが変化することを示す図である。When the measurement blood progresses to coagulate after a lapse of time from the start of oscillation, the thickness of the measurement blood layer adhering to the measurement channel at the position facing the light receiving detection means with the measurement channel inclined It is a figure which shows that change. ロッドスライド機構でシリンダ機構のピストンを押圧した際に、測定カートリッジがカートリッジ収容部材から抜け出るのを阻止するためのカートリッジ係止機構を示す図であり、(a)は測定カートリッジを所定位置まで挿入する前の切り欠き平面図であり、(b)は測定カートリッジが所定位置まで挿入されて係止された状態の切り欠き平面図である。It is a figure which shows the cartridge locking mechanism for preventing that a measurement cartridge pulls out from a cartridge accommodating member when the piston of a cylinder mechanism is pressed with a rod slide mechanism, (a) inserts a measurement cartridge to a predetermined position. It is a front notch top view, (b) is a notch top view of the state which the measurement cartridge was inserted and latched to the predetermined position. 血液凝固時間を測定するための機能ブロック図である。It is a functional block diagram for measuring blood coagulation time. 図14の機能ブロック図における動作を説明するフローチャートである。It is a flowchart explaining the operation | movement in the functional block diagram of FIG. 第2実施例で用いる測定カートリッジの構造を示す図であり、(a)は平面図であり、(b)は(a)のA−A断面矢視図であり、(c)は(a)のB−B断面矢視図である。It is a figure which shows the structure of the measurement cartridge used in 2nd Example, (a) is a top view, (b) is an AA cross-sectional arrow view of (a), (c) is (a). FIG. 図16に示す測定カートリッジの使用方法を示す図であり、(a)は測定流路に分注器で測定血液を注入する図であり、(b)は測定流路に分注器で測定血液が注入された状態示す図であり、(c)は測定流路に測定血液が注入された測定カートリッジを長さ方向に強く振って、測定血液で測定流路の内壁を濡らした状態の図である。It is a figure which shows the usage method of the measurement cartridge shown in FIG. 16, (a) is a figure which inject | pours measurement blood into a measurement flow path with a dispenser, (b) is measurement blood with a dispenser into a measurement flow path. (C) is a diagram showing a state in which the measurement cartridge in which the measurement blood is injected into the measurement channel is strongly shaken in the length direction and the inner wall of the measurement channel is wetted with the measurement blood. is there.

10 測定装置本体
12 測定カートリッジ
14 電源スイッチ
16 スタートスイッチ
18 表示手段
20 開口部
22 血液注入口
24 カートリッジ挿入孔
26 カートリッジ収容部材
28 揺動軸
30 ガイドピン
32 揺動機構
34 カム
36 モーター
38 フォトインタラプタ
40 測定流路
42 発光装置
44 受光装置
46 リミットスイッチ
48 ヒーター
50 温度センサー
52 シリンダ機構
54 ピストン
56 ロッドスライド機構
58 封止材
60 中心部材
62 溝
64 シリンダ壁
66 空気抜き孔
68 連通路
70 第2連通路
72 ガスケット
74 ブッシュ
76 凝固促進剤
78 球体
80 ロッド
84 係止用凹部
86 プランジャー
88 係止用ロッド
90 マイクロコンピュータ
92 判別手段
94 時間計測手段
96 電源回路
98 揺動機構制御手段
100 ロッドスライド機構制御手段
102 モーター
104 フォトインタラプタ
106 温度制御手段
112 測定カートリッジ
114 中心部材
116 封止材
118 注入穴
120 分注器
DESCRIPTION OF SYMBOLS 10 Measuring apparatus main body 12 Measurement cartridge 14 Power switch 16 Start switch 18 Display means 20 Opening part 22 Blood injection port 24 Cartridge insertion hole 26 Cartridge accommodating member 28 Oscillation shaft 30 Guide pin 32 Oscillation mechanism 34 Cam 36 Motor 36 Photo interrupter 40 Measurement channel 42 Light emitting device 44 Light receiving device 46 Limit switch 48 Heater 50 Temperature sensor 52 Cylinder mechanism 54 Piston 56 Rod slide mechanism 58 Sealing material 60 Center member 62 Groove 64 Cylinder wall 66 Air vent hole 68 Communication channel 70 Second communication channel 72 Gasket 74 Bush 76 Coagulation accelerator 78 Sphere 80 Rod 84 Locking recess 86 Plunger 88 Locking rod 90 Microcomputer 92 Discriminating means 94 Time measuring means 96 Power supply Circuit 98 Swing mechanism control means 100 Rod slide mechanism control means 102 Motor 104 Photointerrupter 106 Temperature control means 112 Measurement cartridge 114 Central member 116 Sealing material 118 Injection hole 120 Dispenser

Claims (8)

測定装置本体と測定カートリッジを備え、透明材からなる前記測定カートリッジに測定血液を収容する断面積に対して長い測定流路を設け、前記測定装置本体には、前記測定カートリッジを収容し得るカートリッジ収容部材を揺動自在に設けるとともに、前記カートリッジ収容部材を前記測定カートリッジを収容した状態で前記測定流路の長さ方向に水平状態を経て長さ方向の端部が上下移動して斜め状態に傾くように揺動させる揺動機構を設け、前記測定流路を上下方向に挟むように発光装置と受光装置とからなる受光検出手段を前記カートリッジ収容部材に配設し、前記測定流路が斜めに傾いた状態でしかも前記受光検出手段に臨む位置に前記測定血液が溜まっていない状態で前記受光装置による受光量に応じた信号値を検出して記憶するとともに演算して判別信号を出力する判別手段を設け、前記揺動機構による揺動開始から前記判別信号が出力されるまでの時間を計測する時間測定手段を設け、前記時間測定手段で測定された時間を前記測定血液の血液凝固時間として表示する表示手段を設け、前記測定流路に所定量の前記測定血液を投入して前記測定カートリッジを前記カートリッジ収容部材に収容した状態で、前記揺動機構で前記カートリッジ収容部材を揺動させて前記測定流路に投入された前記測定血液を前記測定流路内で往復移動させ、前記判別手段はこの往復移動の開始により初期に得られた前記信号値に対して時間が経過して前記信号値が変化しその変化分が所定の割合以上となると判別信号を出力し、前記時間測定手段で計測された時間を前記表示手段で表示するように構成したことを特徴とする血液凝固時間測定装置。 A measurement apparatus body and a measurement cartridge are provided, the measurement cartridge made of a transparent material is provided with a measurement flow path that is long with respect to a cross-sectional area for accommodating measurement blood, and the measurement apparatus body contains a cartridge housing that can accommodate the measurement cartridge A member is provided so as to be swingable, and the end of the lengthwise direction is moved up and down in the horizontal direction in the length direction of the measurement flow path in the state where the measurement cartridge is accommodated, and the cartridge storage member is inclined in an oblique state. The light receiving detection means comprising a light emitting device and a light receiving device is provided in the cartridge housing member so as to sandwich the measurement flow channel in the vertical direction, and the measurement flow channel is inclined. A signal value corresponding to the amount of light received by the light receiving device is detected and stored in a tilted state and in a state where the measurement blood does not accumulate at a position facing the light receiving detection means. And a determination unit that calculates and outputs a determination signal, and includes a time measurement unit that measures a time from the start of swinging by the swing mechanism until the determination signal is output, and is measured by the time measurement unit Display means for displaying the time as the blood coagulation time of the measurement blood is provided, and the rocking mechanism in a state where a predetermined amount of the measurement blood is introduced into the measurement flow path and the measurement cartridge is accommodated in the cartridge accommodation member The cartridge housing member is swung to reciprocate the measurement blood introduced into the measurement flow path in the measurement flow path, and the determination means obtains the signal value initially obtained by starting the reciprocation. When the signal value changes with the passage of time and the change exceeds a predetermined ratio, a determination signal is output, and the time measured by the time measuring means is represented by the display means. Blood coagulation time measuring apparatus characterized by being configured to. 請求項1記載の血液凝固時間測定装置において、前記測定流路内に長さ方向に往復動自在で前記測定血液より比重が重い部材からなる回転部材を配設し、前記揺動機構による揺動で、前記回転部材が前記測定流路内の一端側から他端側まで回転しながら往復移動するように構成したことを特徴とする血液凝固時間測定装置。 2. The blood coagulation time measuring apparatus according to claim 1, wherein a rotating member made of a member that is reciprocally movable in the length direction and has a heavier specific gravity than the measuring blood is disposed in the measurement flow path, and is rocked by the rocking mechanism. The blood coagulation time measuring apparatus is configured to reciprocate while rotating the rotating member from one end side to the other end side in the measurement channel. 請求項2記載の血液凝固時間測定装置において、前記回転部材を球体で構成したことを特徴とする血液凝固時間測定装置。 3. The blood coagulation time measuring device according to claim 2, wherein the rotating member is formed of a sphere. 請求項2または3記載の血液凝固時間測定装置において、前記測定流路の底部に長さ方向の溝を設け、この溝の幅を前記回転部材が溝底部に当接しないようにし、前記溝内に血液凝固促進剤を塗布配設して構成したことを特徴とする血液凝固時間測定装置。 4. The blood coagulation time measuring apparatus according to claim 2, wherein a longitudinal groove is provided at the bottom of the measurement channel, and the width of the groove is set so that the rotating member does not contact the groove bottom. A blood coagulation time measuring device, characterized in that a blood coagulation promoter is applied and disposed on the blood coagulation promoter. 請求項1記載の血液凝固時間測定装置において、前記受光検出手段を前記測定流路の長さ方向の中央部に臨んで配設し、前記揺動機構が前記測定カートリッジの前記測定流路が一方に斜めに傾いた状態から他方の斜めに傾いた状態とするために揺動状態を切り換えるときに、前記判別手段が前記受光装置による受光量に応じた信号値を検出するように構成したことを特徴とする血液凝固時間測定装置。 2. The blood coagulation time measuring apparatus according to claim 1, wherein the light receiving detection means is arranged facing a central portion in the length direction of the measurement flow path, and the swing mechanism is arranged so that the measurement flow path of the measurement cartridge is one side. The switching means is configured to detect a signal value corresponding to the amount of light received by the light receiving device when switching the swinging state so as to change from the slanting state to the other slanting state. A blood clotting time measuring device. 請求項1記載の血液凝固時間測定装置において、前記カートリッジ収容部材に前記測定カートリッジを前記測定流路の長さ方向に挿入して収容できるカートリッジ挿入孔を設け、前記測定装置本体に外側から前記カートリッジ挿入孔に前記測定カートリッジを挿入できるように開口部を設け、前記カートリッジ収容部材の揺動軸を前記測定装置本体内で外側に近い位置に設けて前記測定カートリッジの挿入方向の先端側が上下に揺動するように構成したことを特徴とする血液凝固時間測定装置。 2. The blood coagulation time measurement device according to claim 1, wherein a cartridge insertion hole is provided in the cartridge housing member so that the measurement cartridge can be inserted in the length direction of the measurement flow path, and the cartridge is inserted into the measurement device main body from the outside. An opening is provided so that the measurement cartridge can be inserted into the insertion hole, and the swing shaft of the cartridge housing member is provided at a position close to the outside in the main body of the measurement device, so that the distal end side in the insertion direction of the measurement cartridge swings up and down. A blood coagulation time measuring device, characterized in that it is configured to move. 請求項1記載の血液凝固時間測定装置において、前記測定カートリッジに上方が開口した血液注入口を設けてその底部側を連通路により前記測定流路の一端側に連通し、前記測定カートリッジにシリンダ機構を設けてそのピストンの移動で内容積が大きくなる圧力室を第2連通路で前記測定流路の他端側に連通し、前記カートリッジ収容部材に前記シリンダ機構の前記ピストンを所定長さだけ移動させるロッドスライド機構を設け、前記ロッドスライド機構の駆動により前記ピストンを所定長さだけ移動させて前記血液注入口に投入された前記測定血液を前記測定流路内に所定量だけ吸引するように構成したことを特徴とする血液凝固時間測定装置。 2. The blood coagulation time measurement apparatus according to claim 1, wherein a blood injection port having an upper opening is provided in the measurement cartridge, and a bottom side thereof is communicated with one end side of the measurement flow path through a communication path, and a cylinder mechanism is connected to the measurement cartridge. A pressure chamber whose internal volume increases by movement of the piston is communicated to the other end of the measurement flow path through the second communication path, and the piston of the cylinder mechanism is moved by a predetermined length to the cartridge housing member. A rod slide mechanism is provided, and the piston is moved by a predetermined length by driving the rod slide mechanism, and the measurement blood introduced into the blood inlet is sucked into the measurement channel by a predetermined amount. A blood coagulation time measuring apparatus characterized by the above. 請求項7記載の血液凝固時間測定装置において、前記カートリッジ収容部材に前記測定カートリッジを前記測定流路の長さ方向に挿入して収容できるカートリッジ挿入孔を設け、前記測定装置本体に外側から前記カートリッジ挿入孔に前記測定カートリッジを挿入できるように開口部を設け、前記カートリッジ挿入孔に前記測定カートリッジを挿入した状態で、前記ロッドスライド機構の駆動により前記ピストンを移動させるさいに、前記測定カートリッジが前記カートリッジ挿入孔から抜け出さないようにするカートリッジ係止機構を前記カートリッジ収容部材に設けて構成したことを特徴とする血液凝固時間測定装置。 8. The blood coagulation time measurement device according to claim 7, wherein a cartridge insertion hole is provided in the cartridge housing member so that the measurement cartridge can be inserted and accommodated in a length direction of the measurement flow path. An opening is provided so that the measurement cartridge can be inserted into the insertion hole, and the piston is moved by driving the rod slide mechanism in a state where the measurement cartridge is inserted into the cartridge insertion hole. A blood coagulation time measuring device, wherein a cartridge locking mechanism for preventing the cartridge insertion hole from being pulled out is provided in the cartridge housing member.
JP2014080807A 2014-04-10 2014-04-10 Blood coagulation time measurement device Pending JP2015200612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080807A JP2015200612A (en) 2014-04-10 2014-04-10 Blood coagulation time measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080807A JP2015200612A (en) 2014-04-10 2014-04-10 Blood coagulation time measurement device

Publications (1)

Publication Number Publication Date
JP2015200612A true JP2015200612A (en) 2015-11-12

Family

ID=54551975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080807A Pending JP2015200612A (en) 2014-04-10 2014-04-10 Blood coagulation time measurement device

Country Status (1)

Country Link
JP (1) JP2015200612A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456530B1 (en) * 2018-01-16 2019-01-23 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
CN109270286A (en) * 2018-11-26 2019-01-25 海卫特(广州)医疗科技有限公司 Card insert type analyzer component, card insert type analyzer and its clutch structure
WO2019142650A1 (en) * 2018-01-16 2019-07-25 株式会社アペレ Cartridge for measuring blood coagulation time and device for measuring blood coagulation time
JP2022533512A (en) * 2019-03-15 2022-07-25 コアギュレイション・サイエンシーズ・エルエルシー Coagulation test device, system and method of use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456530B1 (en) * 2018-01-16 2019-01-23 株式会社アペレ Blood coagulation time measurement cartridge and blood coagulation time measurement device
WO2019142650A1 (en) * 2018-01-16 2019-07-25 株式会社アペレ Cartridge for measuring blood coagulation time and device for measuring blood coagulation time
JP2019124548A (en) * 2018-01-16 2019-07-25 株式会社アペレ Cartridge for measuring blood coagulation time, and blood coagulation time measuring device
TWI691722B (en) * 2018-01-16 2020-04-21 日商愛蓓兒股份有限公司 Cassette for measuring blood clotting time and blood clotting time measuring device
TWI705246B (en) * 2018-01-16 2020-09-21 日商愛蓓兒股份有限公司 Cassette for measuring blood coagulation time and blood coagulation time measuring device
CN112946302A (en) * 2018-01-16 2021-06-11 株式会社爱蓓儿 Cartridge for measuring blood coagulation time and blood coagulation time measuring device
US11543420B2 (en) 2018-01-16 2023-01-03 Apel Co., Ltd Blood clotting time measurement cartridge and blood clotting time measuring device
CN109270286A (en) * 2018-11-26 2019-01-25 海卫特(广州)医疗科技有限公司 Card insert type analyzer component, card insert type analyzer and its clutch structure
JP2022533512A (en) * 2019-03-15 2022-07-25 コアギュレイション・サイエンシーズ・エルエルシー Coagulation test device, system and method of use
JP7333824B2 (en) 2019-03-15 2023-08-25 コアギュレイション・サイエンシーズ・エルエルシー Coagulation test device, system and method of use

Similar Documents

Publication Publication Date Title
JP2015200612A (en) Blood coagulation time measurement device
US11554209B2 (en) Systems, apparatuses and methods for fluid infusion into a body
JP6766309B1 (en) Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP6456530B1 (en) Blood coagulation time measurement cartridge and blood coagulation time measurement device
US20170055760A1 (en) Beverage brewing systems and methods for using the same
US20080160500A1 (en) Low volume assay apparatus and method
US9057370B2 (en) Negative dead volume syringe
JP2015206608A (en) Blood coagulation time measurement device
AU2005317821A1 (en) Low volume assay apparatus and method
CN112946302B (en) Cartridge for measuring blood coagulation time and blood coagulation time measuring device
JP6415775B1 (en) Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP6407468B1 (en) Blood coagulation time measurement cartridge and blood coagulation time measurement device
JP2015203610A (en) Blood coagulation time measurement device
JPH08238317A (en) Liquid dispenser
KR101276179B1 (en) Apparatus and method of platelet multi-function analysis, and micro stirring chip
JP5281833B2 (en) Liquid supply device
JP2005233787A (en) Automatic dispenser and autoanalyzer using the same
JPWO2019049825A1 (en) Abnormality detection method for automatic analyzer and sample dispensing mechanism
JP2005140524A (en) Syringe pump, sampling method using the same, and sampling apparatus