JP2015199429A - heating control mechanism - Google Patents

heating control mechanism Download PDF

Info

Publication number
JP2015199429A
JP2015199429A JP2014079611A JP2014079611A JP2015199429A JP 2015199429 A JP2015199429 A JP 2015199429A JP 2014079611 A JP2014079611 A JP 2014079611A JP 2014079611 A JP2014079611 A JP 2014079611A JP 2015199429 A JP2015199429 A JP 2015199429A
Authority
JP
Japan
Prior art keywords
power
battery
temperature
amount
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014079611A
Other languages
Japanese (ja)
Other versions
JP6252323B2 (en
Inventor
良晨 潘
Yang-Jin Pan
良晨 潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014079611A priority Critical patent/JP6252323B2/en
Publication of JP2015199429A publication Critical patent/JP2015199429A/en
Application granted granted Critical
Publication of JP6252323B2 publication Critical patent/JP6252323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating control mechanism that suppresses a decline in the service life of a battery.SOLUTION: A heating control mechanism includes: an internal combustion engine that outputs power by burning fuel; an electric power generation section for generating electric power by using the power of the internal combustion engine; a battery charged by electric power generated by the electric power generation section; a driving section driven by discharge of the battery; a heater for heating a vehicle; and a control section for controlling the amount of an electric current to be supplied to the heater. Based on charging of the battery by the electric power generation section and discharging by the driving section, the control section controls the amount of electric current to be supplied to the heater so as to reduce the temporal change amount of the capacity of the battery.

Description

本発明は、車両を暖房するヒータに供給する電流量を調整する暖房制御機構に関するものである。   The present invention relates to a heating control mechanism that adjusts the amount of current supplied to a heater for heating a vehicle.

特許文献1に示されるように、内燃機関の運転状態に応じて電気的加熱手段を加熱して暖房する車両用暖房装置が従来技術として知られている。この車両用暖房装置は、内燃機関が減速停止であり、暖房スイッチが閉成状態であり、冷却媒体温度が所定の設定温度以下の時に、内燃機関の発電装置で発生した電力によって電気的加熱手段を加熱させて暖房する暖房制御手段を有している。このように発電装置で発生した電力によって電気的加熱手段を加熱することで、車両に搭載されたバッテリーの消耗が低減されている。   As shown in Patent Document 1, a vehicular heating apparatus that heats an electric heating means according to the operating state of an internal combustion engine is known as a conventional technique. The vehicle heating device is configured to electrically heat the electric power generated by the power generation device of the internal combustion engine when the internal combustion engine is decelerated and stopped, the heating switch is closed, and the coolant temperature is equal to or lower than a predetermined set temperature. It has a heating control means for heating by heating. As described above, the electric heating means is heated by the electric power generated by the power generation device, so that the consumption of the battery mounted on the vehicle is reduced.

特開平6−344763号公報JP-A-6-344863

ところで、バッテリーは車両に搭載された各種電気機器に電力を供給することで放電し、上記した発電装置から供給される電力などによって充電される。そして、その充放電の時間変化量が大きいとバッテリーの寿命が低下する虞がある。これに対して特許文献1に記載の車両用暖房装置では、上記したように発電装置で発生した電力によって電気的加熱手段を加熱することでバッテリーの消耗を低減しているが、それによってバッテリーの充放電の時間変化量の大きさを抑制する構成とはなっていない。すなわち、電気的加熱手段への電力供給によってバッテリーの充放電の時間変化量の大きさを低減する構成とはなっていない。そのためバッテリー(電池)の寿命が低下する虞がある。   By the way, the battery is discharged by supplying electric power to various electric devices mounted on the vehicle, and is charged by the electric power supplied from the above-described power generator. And if the time change amount of the charge / discharge is large, there is a possibility that the life of the battery is reduced. On the other hand, in the vehicle heating device described in Patent Document 1, as described above, the electric heating means is heated by the electric power generated by the power generation device to reduce battery consumption. It is not the structure which suppresses the magnitude | size of the time change amount of charging / discharging. That is, it is not the structure which reduces the magnitude | size of the time change amount of charging / discharging of a battery by the electric power supply to an electrical heating means. Therefore, there is a possibility that the life of the battery (battery) may be reduced.

そこで本発明は上記問題点に鑑み、電池の寿命の低下が抑制された暖房制御機構を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a heating control mechanism in which a decrease in battery life is suppressed.

上記した目的を達成するために本発明は、燃料の燃焼によって動力を出力する内燃機関(10)と、内燃機関の動力によって発電する発電部(20)と、発電部の発電によって充電される電池(30)と、電池の放電によって駆動する駆動部(40)と、車両を暖房するヒータ(50)と、ヒータに供給する電流量を調整する調整部(60)と、を有し、調整部は、電池の発電部による充電および駆動部による放電に基づいて、電池の電池容量の時間変化量が小さくなるように、ヒータに供給する電流量を調整することを特徴とする。   To achieve the above object, the present invention provides an internal combustion engine (10) that outputs power by combustion of fuel, a power generation unit (20) that generates power using the power of the internal combustion engine, and a battery that is charged by power generation by the power generation unit. (30), a drive unit (40) driven by battery discharge, a heater (50) for heating the vehicle, and an adjustment unit (60) for adjusting the amount of current supplied to the heater, the adjustment unit Is characterized in that the amount of current supplied to the heater is adjusted based on the charging by the power generation unit of the battery and the discharge by the driving unit so that the amount of time change of the battery capacity of the battery becomes small.

このように本発明ではヒータ(50)に供給する電流量を調整することで、電池(30)の電池容量の時間変化量(充放電)を小さくしている。したがってヒータに供給する電流量によって電池の電池容量の時間変化量を変化させない構成と比べて、電池(30)の電池容量の時間変化が小さくなる。この結果、電池(30)の寿命の低下が抑制される。   Thus, in the present invention, the amount of time change (charge / discharge) of the battery capacity of the battery (30) is reduced by adjusting the amount of current supplied to the heater (50). Therefore, the time change of the battery capacity of the battery (30) is small as compared with the configuration in which the time change amount of the battery capacity of the battery is not changed by the amount of current supplied to the heater. As a result, the lifetime reduction of the battery (30) is suppressed.

調整部は、発電部から電池へ供給される電力が駆動部のために電池から放電される電力よりも大きい場合、ヒータに供給する電流量を第1設定値にし、発電部から電池へ供給される電力が駆動部のために電池から放電される電力よりも小さい場合、ヒータに供給する電流量を第1設定値よりも低い第2設定値にする。   When the power supplied from the power generation unit to the battery is larger than the power discharged from the battery for the drive unit, the adjustment unit sets the amount of current supplied to the heater to the first set value and is supplied from the power generation unit to the battery. When the power to be supplied is smaller than the power discharged from the battery for the drive unit, the amount of current supplied to the heater is set to a second set value lower than the first set value.

このように電池(30)の充電量が放電量よりも大きい場合、充電量が放電量よりも小さい場合と比べてヒータ(50)に供給する電流量を増大し、その反対の場合に減少する。これによって電池(30)の電池容量の時間変化が小さくなり、電池(30)の寿命の低下が抑制される。   Thus, when the amount of charge of the battery (30) is larger than the amount of discharge, the amount of current supplied to the heater (50) is increased as compared with the case where the amount of charge is smaller than the amount of discharge, and decreases in the opposite case. . Thereby, the time change of the battery capacity of the battery (30) is reduced, and the decrease in the life of the battery (30) is suppressed.

内燃機関に冷却媒体を循環させることで内燃機関を冷却する冷却部(70)と、内燃機関によって昇温された冷却媒体の熱を車両の暖房に再利用する熱交換器(80)と、内燃機関を制御する制御部(60)と、を有し、制御部は、発電部から電池へ供給される電力が駆動部のために電池から放電される電力よりも大きい場合、内燃機関の駆動による発熱量を第3設定値にし、発電部から電池へ供給される電力が駆動部のために電池から放電される電力よりも小さい場合、内燃機関の駆動による発熱量を第3設定値よりも大きい第4設定値にする。   A cooling unit (70) for cooling the internal combustion engine by circulating the cooling medium in the internal combustion engine; a heat exchanger (80) for reusing the heat of the cooling medium heated by the internal combustion engine for heating the vehicle; A control unit (60) for controlling the engine, and the control unit is configured to drive the internal combustion engine when the power supplied from the power generation unit to the battery is larger than the power discharged from the battery for the drive unit. When the heat generation amount is set to the third set value, and the power supplied from the power generation unit to the battery is smaller than the power discharged from the battery for the drive unit, the heat generation amount by driving the internal combustion engine is larger than the third set value Set to the fourth set value.

このように電池(30)の充電量が放電量よりも大きい場合、充電量が放電量よりも小さい場合と比べて内燃機関(10)の駆動による発熱量を減少し、その反対の場合に増大する。換言すれば、ヒータ(50)に供給する電流量(発熱量)が増大する場合に内燃機関(10)の発熱量を減少し、ヒータ(50)に供給する電流量(発熱量)が減少する場合に内燃機関(10)の発熱量を増大する。これによれば、電池(30)の電池容量の時間変化を小さくするべくヒータ(50)に供給する電流量を調整したとしても、ヒータ(50)および熱交換器(80)から出力される総熱量の変動が抑制され、車両の暖房状態の変化が抑制される。   Thus, when the amount of charge of the battery (30) is larger than the amount of discharge, the amount of heat generated by driving the internal combustion engine (10) is reduced compared to the case where the amount of charge is smaller than the amount of discharge, and vice versa. To do. In other words, when the current amount (heat generation amount) supplied to the heater (50) increases, the heat generation amount of the internal combustion engine (10) decreases, and the current amount (heat generation amount) supplied to the heater (50) decreases. In this case, the heat generation amount of the internal combustion engine (10) is increased. According to this, even if the amount of current supplied to the heater (50) is adjusted in order to reduce the time change of the battery capacity of the battery (30), the total output from the heater (50) and the heat exchanger (80). Variations in the amount of heat are suppressed, and changes in the heating state of the vehicle are suppressed.

なお、特許請求の範囲に記載の請求項、および、課題を解決するための手段それぞれに記載の要素に括弧付きで符号をつけているが、この括弧付きの符号は実施形態に記載の各構成要素との対応関係を簡易的に示すためのものであり、実施形態に記載の要素そのものを必ずしも示しているわけではない。括弧付きの符号の記載は、いたずらに特許請求の範囲を狭めるものではない。   In addition, although the elements described in the claims and the means for solving the problems are attached with parentheses, the parentheses are attached to each component described in the embodiment. This is to simply show the correspondence with the elements, and does not necessarily indicate the elements themselves described in the embodiments. The description of the reference numerals with parentheses does not unnecessarily narrow the scope of the claims.

第1実施形態に係る暖房制御機構の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the heating control mechanism which concerns on 1st Embodiment. ヒータの電流量および内燃機関の発熱量それぞれの設定を示すフロー図である。It is a flowchart which shows each setting of the electric current amount of a heater, and the emitted-heat amount of an internal combustion engine. 目標温度の設定を示すフロー図である。It is a flowchart which shows the setting of target temperature. 目標保有電力の設定を示すフロー図である。It is a flowchart which shows the setting of target holding | maintenance electric power. ヒータ駆動電力の調整を示す概念図である。It is a conceptual diagram which shows adjustment of heater drive electric power. 電池の電力収支の時間変化を示すグラフ図である。It is a graph which shows the time change of the electric power balance of a battery. ヒータの電流量の時間変化を示すグラフ図である。It is a graph which shows the time change of the electric current amount of a heater. 電池の電池容量の時間変化を示すグラフ図である。It is a graph which shows the time change of the battery capacity of a battery.

以下、本発明の実施形態を図に基づいて説明する。
(第1実施形態)
図1〜図8に基づいて本実施形態に係る暖房制御機構を説明する。なお、図1では電力が供給される線と動力が出力される線それぞれを実線で示し、電気信号の送受信される線を破線で示している。そして後述するように駆動部40は多数の要素から成るが、駆動部40を象徴としてブロックで示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
The heating control mechanism according to the present embodiment will be described based on FIGS. In FIG. 1, a line for supplying power and a line for outputting power are indicated by solid lines, and a line for transmitting and receiving electrical signals is indicated by broken lines. As will be described later, the drive unit 40 is composed of a number of elements.

図1に示すように暖房制御機構200は、内燃機関10と、発電部20と、電池30と、駆動部40と、ヒータ50と、制御部60と、を有する。内燃機関10は燃料の燃焼によって動力を出力し、発電部20は内燃機関10の動力によって発電する。そして電池30は発電部20の発電によって充電され、駆動部40は電池の放電によって駆動される。ヒータ50は車両を暖房し、制御部60はヒータ50に供給する電流量を調整する。   As shown in FIG. 1, the heating control mechanism 200 includes an internal combustion engine 10, a power generation unit 20, a battery 30, a drive unit 40, a heater 50, and a control unit 60. The internal combustion engine 10 outputs power by the combustion of fuel, and the power generation unit 20 generates power by the power of the internal combustion engine 10. The battery 30 is charged by the power generation of the power generation unit 20, and the drive unit 40 is driven by the battery discharge. The heater 50 heats the vehicle, and the controller 60 adjusts the amount of current supplied to the heater 50.

本実施形態に係る暖房制御機構200は上記した構成要素の他に、冷却部70と、熱交換器80と、強制冷却部90と、記憶部100と、を有する。冷却部70は内燃機関10に冷却媒体(水)を循環させることで内燃機関10を冷却し、熱交換器80は内燃機関10によって昇温された冷却媒体の熱を車両の暖房に再利用する。強制冷却部90は冷却媒体を強制冷却し、記憶部100は車両の現在位置、ユーザーの走行履歴を保有する。   The heating control mechanism 200 according to the present embodiment includes a cooling unit 70, a heat exchanger 80, a forced cooling unit 90, and a storage unit 100 in addition to the components described above. The cooling unit 70 cools the internal combustion engine 10 by circulating a cooling medium (water) through the internal combustion engine 10, and the heat exchanger 80 reuses the heat of the cooling medium heated by the internal combustion engine 10 for heating the vehicle. . The forced cooling unit 90 forcibly cools the cooling medium, and the storage unit 100 holds the current position of the vehicle and the travel history of the user.

さらに本実施形態に係る暖房制御機構200は上記した構成要素の他に、走行状態検出センサ110と、電力状態検出センサ120と、空調状態検出センサ130と、を有する。走行状態検出センサ110は車両の走行状態および内燃機関10の状態を検出し、電力状態検出センサ120は電池30の保有電力および消費電力を検出する。そして空調状態検出センサ130は車両内外の温度および車両の暖房状態を検出する。   Furthermore, the heating control mechanism 200 according to the present embodiment includes a traveling state detection sensor 110, a power state detection sensor 120, and an air conditioning state detection sensor 130 in addition to the above-described components. The traveling state detection sensor 110 detects the traveling state of the vehicle and the state of the internal combustion engine 10, and the power state detection sensor 120 detects the retained power and power consumption of the battery 30. The air conditioning state detection sensor 130 detects the temperature inside and outside the vehicle and the heating state of the vehicle.

内燃機関10はいわゆるエンジンであり、燃料の燃焼によって回転し、その回転によって車両が走行するための動力を出力する。図1に示すように内燃機関10はクラッチ11、発電部20、変速機12、および、駆動軸13を介して駆動輪14と連結されている。したがってクラッチ11の結合具合、発電部20の発電要求、変速機12の変速比に応じた内燃機関10の動力が駆動輪14に伝達され、これによって車両の走行が実現される。   The internal combustion engine 10 is a so-called engine, which is rotated by the combustion of fuel, and outputs power for running the vehicle by the rotation. As shown in FIG. 1, the internal combustion engine 10 is connected to drive wheels 14 via a clutch 11, a power generation unit 20, a transmission 12, and a drive shaft 13. Therefore, the power of the internal combustion engine 10 according to the coupling state of the clutch 11, the power generation request of the power generation unit 20, and the gear ratio of the transmission 12 is transmitted to the drive wheels 14, thereby realizing vehicle travel.

発電部20はいわゆるモータジェネレータであり、発電しつつ車両に走行するための動力を出力する。上記したように発電部20は内燃機関10の動力によって発電する。この発電によって生じた電力が電池30に出力され、これによって電池30が充電される。また、ユーザーの要求(アクセル開度)に応じて、発電部20にて生成された動力が駆動輪14へと出力される。   The power generation unit 20 is a so-called motor generator, and outputs power for traveling to the vehicle while generating power. As described above, the power generation unit 20 generates power using the power of the internal combustion engine 10. The electric power generated by this power generation is output to the battery 30, thereby charging the battery 30. Further, the power generated by the power generation unit 20 is output to the drive wheels 14 in response to a user request (accelerator opening).

電池30はいわゆるバッテリーであり、車両に搭載された各種電気機器に電力を出力する。電池30は上記したように発電部20によって充電されるが、上記した駆動部40およびヒータ50に電力を供給することで放電する。電池30は充放電量の変化が大きいと寿命が低下する性質を有する。逆に言えば、電池30は充放電量の変化が小さいと寿命の低下が抑制される性質を有する。   The battery 30 is a so-called battery and outputs electric power to various electric devices mounted on the vehicle. The battery 30 is charged by the power generation unit 20 as described above, but is discharged by supplying power to the drive unit 40 and the heater 50 described above. The battery 30 has a property that the life is reduced when the change in the charge / discharge amount is large. In other words, the battery 30 has a property that a decrease in life is suppressed when a change in the charge / discharge amount is small.

駆動部40は、上記した暖房制御機構200の構成要素の内、電池30とヒータ50を除く電気機器であり、電池30の放電によって駆動する。したがって駆動部40およびヒータ50の駆動によって、電池30の電池容量の変化量が定まる。駆動部40とヒータ50とは、電池30の電池容量の時間変化量が小さくなるよう、逆の振る舞いを示す。すなわち、駆動部40にて電力供給量が増大した場合、ヒータ50への電力供給量が減少され、駆動部40にて電力供給量が減少した場合、ヒータ50への電力供給量が増大される。   The drive unit 40 is an electrical device excluding the battery 30 and the heater 50 among the components of the heating control mechanism 200 described above, and is driven by the discharge of the battery 30. Therefore, the amount of change in the battery capacity of the battery 30 is determined by driving the drive unit 40 and the heater 50. The drive unit 40 and the heater 50 exhibit opposite behaviors so that the amount of time change in the battery capacity of the battery 30 is small. That is, when the power supply amount is increased in the drive unit 40, the power supply amount to the heater 50 is decreased. When the power supply amount is decreased in the drive unit 40, the power supply amount to the heater 50 is increased. .

ヒータ50は車両を暖房する。本実施形態においてヒータ50は冷却媒体を昇温することで車両を暖房する。ヒータ50は自身に電流が流れることで自身の温度が上昇する。これに対して発電部20は制御部60によって制御されることで発電し、その発電によって生まれた電力を電池30に供給する。したがってヒータ50は発電部20よりも電流変化が速くなっている。   The heater 50 heats the vehicle. In the present embodiment, the heater 50 heats the vehicle by raising the temperature of the cooling medium. The heater 50 rises in its own temperature as a current flows through it. On the other hand, the power generation unit 20 generates power by being controlled by the control unit 60, and supplies power generated by the power generation to the battery 30. Therefore, the heater 50 changes the current faster than the power generation unit 20.

制御部60は、内燃機関10、発電部20、電池30、および、空調に関わるヒータ50と熱交換器80を制御する。制御部60は、内燃機関制御部61、発電部制御部62、電池制御部63、空調制御部64、および、これらを統括して制御する統合制御部65を有する。統合制御部65から各制御部61〜64へと制御信号が出力されるが、各制御部61〜64はこの制御信号と自身に入力されるセンサ信号とに基づいて内燃機関10、発電部20、電池30、および、ヒータ50と熱交換器80を制御する。内燃機関制御部61は走行状態検出センサ110のセンサ信号に基づいて内燃機関10を制御し、図1では電気信号の送受信を明示しないが、発電部制御部62はセンサ110,120それぞれのセンサ信号に基づいて発電部20を制御する。電池制御部63は電力状態検出センサ120のセンサ信号に基づいて電池30を制御し、空調制御部64は空調状態検出センサ130のセンサ信号に基づいてヒータ50と熱交換器80を制御する。特に制御部60は、電池30の発電部20による充電(充電電力)および駆動部40による放電(消費電力)に基づいて、電池30の電池容量の時間変化量が小さくなるように、ヒータ50に供給する電流量を調整する。より詳しく言えば、制御部60は、充電電力および消費電力に基づいて、電池容量の時間変化量が小さくなるように、駆動部40の調整よりも早く電池30の充放電電流を調整するためにヒータ50に供給する電流量を調整する。これらの詳しい制御については後述する。なお、制御部60の中に、特許請求の範囲に記載の調整部および制御部が含まれている。   The control unit 60 controls the internal combustion engine 10, the power generation unit 20, the battery 30, and the heater 50 and the heat exchanger 80 related to air conditioning. The control unit 60 includes an internal combustion engine control unit 61, a power generation unit control unit 62, a battery control unit 63, an air conditioning control unit 64, and an integrated control unit 65 that controls these in an integrated manner. A control signal is output from the integrated control unit 65 to each of the control units 61 to 64. Each of the control units 61 to 64 is based on the control signal and a sensor signal input to itself. The battery 30 and the heater 50 and the heat exchanger 80 are controlled. The internal combustion engine control unit 61 controls the internal combustion engine 10 based on the sensor signal of the traveling state detection sensor 110, and the power generation unit control unit 62 does not clearly indicate transmission / reception of the electric signal in FIG. The power generation unit 20 is controlled based on the above. The battery control unit 63 controls the battery 30 based on the sensor signal of the power state detection sensor 120, and the air conditioning control unit 64 controls the heater 50 and the heat exchanger 80 based on the sensor signal of the air conditioning state detection sensor 130. In particular, the control unit 60 controls the heater 50 so that the amount of change over time of the battery capacity of the battery 30 is reduced based on charging (charging power) by the power generation unit 20 and discharging (power consumption) by the driving unit 40. Adjust the amount of current to be supplied. More specifically, the control unit 60 adjusts the charging / discharging current of the battery 30 earlier than the adjustment of the driving unit 40 so that the time change amount of the battery capacity becomes small based on the charging power and the power consumption. The amount of current supplied to the heater 50 is adjusted. Details of these controls will be described later. The control unit 60 includes an adjustment unit and a control unit described in the claims.

冷却部70は、内燃機関10に冷却媒体を流動させるためのパイプ71と、冷却媒体を内燃機関10に供給しつつ冷却媒体をパイプ71内で循環させるポンプ72と、を有する。図1に示すように内燃機関10、ヒータ50、熱交換器80、および、強制冷却部90それぞれにパイプ71が連結されている。内燃機関10およびヒータ50によって昇温された冷却媒体の熱が熱交換器80によって車両の暖房に再利用される。冷却媒体はパイプ71内を循環する過程で降温され、この降温された冷却媒体が内燃機関10に流入される。これによって内燃機関10が冷却される。なお、冷却媒体が内燃機関10の発熱によって昇温しすぎた場合、冷却媒体は強制冷却部90によって強制的に降温される。   The cooling unit 70 includes a pipe 71 for causing the internal combustion engine 10 to flow a cooling medium, and a pump 72 for circulating the cooling medium in the pipe 71 while supplying the cooling medium to the internal combustion engine 10. As shown in FIG. 1, a pipe 71 is connected to each of the internal combustion engine 10, the heater 50, the heat exchanger 80, and the forced cooling unit 90. The heat of the cooling medium heated by the internal combustion engine 10 and the heater 50 is reused for heating the vehicle by the heat exchanger 80. The cooling medium is cooled in the process of circulating through the pipe 71, and the cooled cooling medium flows into the internal combustion engine 10. As a result, the internal combustion engine 10 is cooled. Note that when the temperature of the cooling medium is excessively increased due to the heat generated by the internal combustion engine 10, the temperature of the cooling medium is forcibly decreased by the forced cooling unit 90.

熱交換器80は、冷却媒体の熱を空気へ熱交換するヒータコア81と、ヒータコア81によって熱交換された空気を車室内に送風するブロア82と、を有する。上記したように冷却媒体は内燃機関10だけではなくヒータ50によっても昇温される。したがってブロア82から車室内に送風される総熱量は、内燃機関10およびヒータ50それぞれによって定められる。換言すれば、車両の暖房状態は、内燃機関10の発熱量およびヒータ50に供給される電流量によって定められる。   The heat exchanger 80 includes a heater core 81 that exchanges heat of the cooling medium into air, and a blower 82 that blows air exchanged by the heater core 81 into the vehicle interior. As described above, the temperature of the cooling medium is raised not only by the internal combustion engine 10 but also by the heater 50. Therefore, the total amount of heat blown from the blower 82 into the vehicle compartment is determined by the internal combustion engine 10 and the heater 50, respectively. In other words, the heating state of the vehicle is determined by the amount of heat generated by the internal combustion engine 10 and the amount of current supplied to the heater 50.

強制冷却部90は、パイプ71に連結された迂回パイプ91と、パイプ71から迂回パイプ91への冷却媒体の流入を調整するバルブ92と、迂回パイプ91に設けられた、冷却媒体を冷却するラジエータ93と、を有する。内燃機関10にて昇温された冷却媒体の温度が第3閾値よりも低い場合、バルブ92は作動せず、冷却媒体は迂回パイプ91へと流入しない。しかしながら内燃機関10にて昇温された冷却媒体の温度が第3閾値を超えた場合、バルブ92が作動し、冷却媒体は迂回パイプ91へと流入する。これにより冷却媒体はラジエータ93によって冷却される。なお、内燃機関10によって昇温された冷却媒体の温度は後述する水温センサ114によって検出され、バルブ92は制御部60によって作動される。そして第3閾値は後述する第1閾値よりも高い値であり、制御部60が保有している。   The forced cooling unit 90 includes a bypass pipe 91 connected to the pipe 71, a valve 92 that adjusts the flow of the coolant from the pipe 71 to the bypass pipe 91, and a radiator that cools the coolant provided in the bypass pipe 91. 93. When the temperature of the cooling medium heated by the internal combustion engine 10 is lower than the third threshold value, the valve 92 does not operate and the cooling medium does not flow into the bypass pipe 91. However, when the temperature of the coolant raised in the internal combustion engine 10 exceeds the third threshold value, the valve 92 operates and the coolant flows into the bypass pipe 91. Thereby, the cooling medium is cooled by the radiator 93. The temperature of the cooling medium raised by the internal combustion engine 10 is detected by a water temperature sensor 114 described later, and the valve 92 is operated by the control unit 60. The third threshold value is higher than a first threshold value which will be described later, and is held by the control unit 60.

記憶部100はいわゆるナビであり、車両の現在位置、ユーザーの走行履歴を保有している。例えば車両が坂道を上っている場合、電池30の消費電力の上昇が予想され、車両が坂道を下っている場合、電池30の充電電力の上昇が予想される。また、車両の走行する道路状況(傾斜やカーブ)に応じたユーザーの走行が予想され、その予想に応じて電池30の充放電も予想される。この電池30の充放電の予想が制御部60にて行われる。記憶部100は電池30の充放電の予想に関する情報を制御部60へと出力する。   The storage unit 100 is a so-called navigation and holds the current position of the vehicle and the travel history of the user. For example, when the vehicle is going up a slope, an increase in power consumption of the battery 30 is expected, and when the vehicle is going down a slope, an increase in charging power of the battery 30 is expected. Moreover, a user's driving | running | working according to the road conditions (inclination and curve) where a vehicle drive | works is anticipated, and charging / discharging of the battery 30 is also anticipated according to the expectation. The controller 60 predicts charging / discharging of the battery 30. The storage unit 100 outputs information related to the prediction of charging / discharging of the battery 30 to the control unit 60.

走行状態検出センサ110は、車速センサ111、回転数センサ112、内燃機関負荷センサ113、および、水温センサ114を有する。車速センサ111は車両速度を検出し、回転数センサ112は内燃機関10および発電部20それぞれの回転数を検出する。そして内燃機関負荷センサ113は内燃機関10の負荷を検出し、水温センサ114は内燃機関10によって昇温された冷却媒体の温度を検出する。したがって水温センサ114によって検出される温度は、内燃機関10の駆動による車室内の暖房状態を決めるパロメータの1つとなっている。   The traveling state detection sensor 110 includes a vehicle speed sensor 111, a rotation speed sensor 112, an internal combustion engine load sensor 113, and a water temperature sensor 114. The vehicle speed sensor 111 detects the vehicle speed, and the rotation speed sensor 112 detects the rotation speed of each of the internal combustion engine 10 and the power generation unit 20. The internal combustion engine load sensor 113 detects the load of the internal combustion engine 10, and the water temperature sensor 114 detects the temperature of the cooling medium heated by the internal combustion engine 10. Therefore, the temperature detected by the water temperature sensor 114 is one of the parameters that determines the heating state of the passenger compartment by driving the internal combustion engine 10.

電力状態検出センサ120は、電圧センサ121、電流センサ122、温度センサ123を有する。電圧センサ121は電池30の電圧を検出し、電流センサ122は電池30を流出入する電流を検出する。そして温度センサ123は電池30の温度を検出する。電池30の保有電力(電池容量)、充電電力、および、消費電力はこれら電池30の電圧、電流、および、温度によって概算される。電力状態検出センサ120が特許請求の範囲に記載の保有電力検出部、および、消費電力検出部に相当する。   The power state detection sensor 120 includes a voltage sensor 121, a current sensor 122, and a temperature sensor 123. The voltage sensor 121 detects the voltage of the battery 30, and the current sensor 122 detects the current flowing in and out of the battery 30. The temperature sensor 123 detects the temperature of the battery 30. The retained power (battery capacity), charging power, and power consumption of the battery 30 are approximated by the voltage, current, and temperature of the battery 30. The power state detection sensor 120 corresponds to the retained power detection unit and the power consumption detection unit described in the claims.

空調状態検出センサ130は、A/Cスイッチ131、温度設定スイッチ132、車室内温度センサ133、外気温センサ134、および、吹き出し口温度センサ135を有する。A/Cスイッチ131は車両に設けられたエアコンのオン・オフ状態を検出し、温度設定スイッチ132はユーザーによって設定されたエアコンの温度を検出する。車室内温度センサ133は車室内の温度を検出し、外気温センサ134は車室外の温度を検出する。そして吹き出し口温度センサ135はブロア82から送風される風が車室内に流入する吹き出し口の温度を検出する。   The air conditioning state detection sensor 130 includes an A / C switch 131, a temperature setting switch 132, a vehicle interior temperature sensor 133, an outside air temperature sensor 134, and an outlet temperature sensor 135. The A / C switch 131 detects the on / off state of an air conditioner provided in the vehicle, and the temperature setting switch 132 detects the temperature of the air conditioner set by the user. The vehicle interior temperature sensor 133 detects the temperature inside the vehicle interior, and the outside air temperature sensor 134 detects the temperature outside the vehicle interior. The outlet temperature sensor 135 detects the temperature of the outlet through which the air blown from the blower 82 flows into the vehicle compartment.

次に、制御部60の制御を図2〜図5に基づいて説明する。制御部60は、ヒータ50および内燃機関10の発熱設定を行い、車室内の暖房に適した冷却媒体の目標温度設定を行う。また制御部60は、電池30の目標保有電力の設定を行い、ヒータ駆動電力の調整を行う。   Next, control of the control part 60 is demonstrated based on FIGS. The controller 60 sets the heat generation of the heater 50 and the internal combustion engine 10 and sets the target temperature of the cooling medium suitable for heating the vehicle interior. In addition, the control unit 60 sets the target holding power of the battery 30 and adjusts the heater driving power.

制御部60は、暖房に適した冷却媒体温度としての第1閾値と、第1閾値よりも値の低い第2閾値を有する。また制御部60は、ヒータ50に供給する電流量の設定値として、第1設定値と、第1設定値よりも値の低い第2設定値を有する。さらに制御部60は、冷却媒体を昇温するのに適した内燃機関10の発熱量として、第3設定値と、第3設定値よりも大きい第4設定値を有する。   The control unit 60 has a first threshold value as a coolant temperature suitable for heating and a second threshold value lower than the first threshold value. Further, the control unit 60 has a first set value and a second set value that is lower than the first set value as the set value of the amount of current supplied to the heater 50. Further, the control unit 60 has a third set value and a fourth set value larger than the third set value as the amount of heat generated by the internal combustion engine 10 suitable for raising the temperature of the cooling medium.

以下、図2に基づいてヒータ50および内燃機関10の発熱制御を説明する。図2に示すようにステップS10において制御部60は、電池30の充電電力が消費電力よりも大きいか否かを判定する。充電電力が消費電力よりも大きいと判定した場合、制御部60は電池30が充電状態(電力収支がプラス)であると判定し、ステップS20へと進む。これとは異なり、充電電力が消費電力よりも小さいと判定した場合、制御部60は電池30が放電状態(電力収支がマイナス)であると判定し、ステップS30へと進む。   Hereinafter, heat generation control of the heater 50 and the internal combustion engine 10 will be described with reference to FIG. As shown in FIG. 2, in step S10, the control unit 60 determines whether or not the charging power of the battery 30 is greater than the power consumption. If it is determined that the charging power is greater than the power consumption, the control unit 60 determines that the battery 30 is in the charged state (the power balance is positive), and proceeds to step S20. On the other hand, when it is determined that the charging power is smaller than the power consumption, the control unit 60 determines that the battery 30 is in a discharged state (the power balance is negative), and proceeds to step S30.

なお、制御部60は上記したステップS10を実行する前に目標充電電力を算出する。目標充電電力は、目標電池容量から現在の電池容量を減算した値に所定の係数を乗算した値である。制御部60はこの目標充電電力、駆動部40などの各種放電要求、および、電力状態検出センサ120のセンサ信号に基づいて充電電力と消費電力を算出する。   Note that the control unit 60 calculates the target charging power before executing step S10 described above. The target charging power is a value obtained by multiplying a value obtained by subtracting the current battery capacity from the target battery capacity by a predetermined coefficient. The control unit 60 calculates charging power and power consumption based on the target charging power, various discharge requests of the driving unit 40, and the sensor signal of the power state detection sensor 120.

ステップS20に進むと制御部60は、内燃機関10によって昇温された冷却媒体温度(水温センサ114の検出温度)が第1閾値よりも大きいか否かを判定する。検出温度が第1閾値よりも大きいと判定した場合、制御部60は冷却媒体が暖房に適した温度よりも高いと判定し、ステップS40へと進む。これとは異なり、検出温度が第1閾値よりも小さいと判定した場合、制御部60は冷却媒体が暖房に適した温度よりも低いと判定し、ステップS50へと進む。   In step S20, the control unit 60 determines whether or not the coolant temperature (temperature detected by the water temperature sensor 114) raised by the internal combustion engine 10 is greater than the first threshold value. When it is determined that the detected temperature is higher than the first threshold, the control unit 60 determines that the cooling medium is higher than the temperature suitable for heating, and proceeds to step S40. On the other hand, when it is determined that the detected temperature is lower than the first threshold, the control unit 60 determines that the cooling medium is lower than the temperature suitable for heating, and proceeds to step S50.

ステップS40に進むと制御部60は、ヒータ電流量の設定値である第1設定値を減少し、ステップS50へと進む。   If it progresses to step S40, the control part 60 will reduce the 1st setting value which is a setting value of heater current amount, and will progress to step S50.

ステップS50に進むと制御部60は、ヒータ電流量を第1設定値に設定する。以上示したように制御部60は、電池30が充電状態であり、冷却媒体が暖房に適した温度よりも高いと判定した場合に第1設定値を減少し、冷却媒体が暖房に適した温度よりも低いと判定した場合に第1設定値をそのままの値にする。ステップS50後、制御部60はステップS60へと進む。   In step S50, the control unit 60 sets the heater current amount to the first set value. As described above, when the control unit 60 determines that the battery 30 is in the charged state and the cooling medium is higher than the temperature suitable for heating, the control unit 60 decreases the first set value, and the cooling medium is suitable for heating. If it is determined that the value is lower than the first setting value, the first setting value is left as it is. After step S50, the control unit 60 proceeds to step S60.

ステップS60に進むと制御部60は、内燃機関10の発熱量を第3設定値に設定する。そしてヒータ50および内燃機関10の発熱設定を終了する。   In step S60, the control unit 60 sets the heat generation amount of the internal combustion engine 10 to the third set value. Then, the heat generation setting of the heater 50 and the internal combustion engine 10 is finished.

上記したようにステップS10において電池30が放電状態であると判定した場合、制御部60はステップS30へと進む。ステップS30に進むと制御部60は、水温センサ114の検出温度が第2閾値よりも低いか否かを判定する。検出温度が第2閾値よりも低いと判定した場合、制御部60は冷却媒体が暖房に適した温度よりも低いと判定し、ステップS70へと進む。これとは異なり、検出温度が第2閾値よりも大きいと判定した場合、制御部60は冷却媒体が暖房に適した温度よりも高いと判定し、ステップS80へと進む。   As described above, when it is determined in step S10 that the battery 30 is in a discharged state, the control unit 60 proceeds to step S30. If it progresses to step S30, the control part 60 will determine whether the detected temperature of the water temperature sensor 114 is lower than a 2nd threshold value. When it is determined that the detected temperature is lower than the second threshold, the control unit 60 determines that the cooling medium is lower than the temperature suitable for heating, and proceeds to step S70. On the other hand, when it is determined that the detected temperature is higher than the second threshold, the control unit 60 determines that the cooling medium is higher than the temperature suitable for heating, and proceeds to step S80.

ステップS70に進むと制御部60は、ヒータ電流量の設定値である第2設定値を減少し、ステップS80へと進む。   If it progresses to step S70, the control part 60 will reduce the 2nd setting value which is a setting value of heater electric current amount, and will progress to step S80.

ステップS80に進むと制御部60は、ヒータ電流量を第2設定値に設定する。以上示したように制御部60は、冷却媒体が暖房に適した温度よりも低いと判定した場合に第2設定値を増加し、冷却媒体が暖房に適した温度よりも高いと判定した場合に第2設定値をそのままの値にする。ステップS80後、制御部60はステップS90へと進む。   In step S80, the control unit 60 sets the heater current amount to the second set value. As described above, the control unit 60 increases the second set value when it is determined that the cooling medium is lower than the temperature suitable for heating, and when it is determined that the cooling medium is higher than the temperature suitable for heating. The second set value is left as it is. After step S80, the control unit 60 proceeds to step S90.

ステップS90に進むと制御部60は、内燃機関10の発熱量を第4設定値に設定する。そしてヒータ50および内燃機関10の発熱設定を終了する。なお、制御部60は上記したステップS10〜S90を順次繰り返すことで、ヒータ50へ供給される電流量および内燃機関10の発熱量を順次更新する。   In step S90, the control unit 60 sets the heat generation amount of the internal combustion engine 10 to the fourth set value. Then, the heat generation setting of the heater 50 and the internal combustion engine 10 is finished. The controller 60 sequentially updates the amount of current supplied to the heater 50 and the amount of heat generated by the internal combustion engine 10 by sequentially repeating steps S10 to S90 described above.

以上示したように制御部60は、電池30の発電部20による充電(充電電力)および駆動部40による放電(消費電力)に基づいて、電池30の電池容量の時間変化量が小さくなるように、ヒータ50に供給する電流量を調整する。すなわち制御部60は、充電電力が消費電力よりも大きい場合、ヒータ50に供給する電流量を第1設定値にし、充電電力が消費電力よりも小さい場合、ヒータ50に供給する電流量を第1設定値よりも低い第2設定値にする。   As described above, the control unit 60 reduces the time change amount of the battery capacity of the battery 30 based on the charging (charging power) by the power generation unit 20 of the battery 30 and the discharging (power consumption) by the driving unit 40. The amount of current supplied to the heater 50 is adjusted. That is, the control unit 60 sets the current amount supplied to the heater 50 to the first set value when the charging power is larger than the power consumption, and sets the current amount supplied to the heater 50 to the first setting value when the charging power is smaller than the power consumption. The second set value is set lower than the set value.

また制御部60は、電池30の充放電だけではなく、水温センサ114の検出温度に基づいてヒータ50に供給する電流量を調整する。すなわち制御部60は、充電電力が消費電力よりも大きく、且つ、検出温度が第1閾値よりも大きい場合、第1設定値を所定値減少する。また制御部60は、充電電力が消費電力よりも小さく、且つ、検出温度が第2閾値よりも小さい場合、第2設定値を所定値増加する。   Further, the control unit 60 adjusts the amount of current supplied to the heater 50 based on the temperature detected by the water temperature sensor 114 as well as the charge / discharge of the battery 30. That is, the control unit 60 decreases the first set value by a predetermined value when the charging power is larger than the power consumption and the detected temperature is larger than the first threshold. The control unit 60 increases the second set value by a predetermined value when the charging power is smaller than the power consumption and the detected temperature is smaller than the second threshold.

そして制御部60は、電池30の充放電に基づいてヒータ50の発熱量だけではなく、内燃機関10の発熱量も調整する。すなわち制御部60は、充電電力が消費電力よりも大きい場合、内燃機関10の駆動による発熱量を第3設定値にし、充電電力が消費電力よりも小さい場合、内燃機関10の駆動による発熱量を第3設定値よりも大きい第4設定値にする。なお、内燃機関10の発熱量の増減は、内燃機関10の出力効率若しくは出力そのものを増減することで実現される。   The control unit 60 adjusts not only the heat value of the heater 50 but also the heat value of the internal combustion engine 10 based on the charge / discharge of the battery 30. That is, the control unit 60 sets the heat generation amount by driving the internal combustion engine 10 to the third set value when the charging power is larger than the power consumption, and sets the heat generation amount by driving the internal combustion engine 10 when the charging power is lower than the power consumption. The fourth set value is set larger than the third set value. In addition, increase / decrease in the emitted-heat amount of the internal combustion engine 10 is implement | achieved by increasing / decreasing the output efficiency of the internal combustion engine 10, or the output itself.

次に、図3に基づいて車室内の暖房に適した冷却媒体の目標温度の設定を説明する。この目標温度は上記した第1閾値および第2閾値に関わる値であり、制御部60は値の異なる第1目標温度と第2目標温度を有している。本実施形態において第2目標温度は第1目標温度よりも低くなっている。そして内燃機関10の発熱による冷却媒体の昇温スピードは、目標温度と検出温度との乖離幅と正比例の関係となっている。   Next, the setting of the target temperature of the cooling medium suitable for heating the passenger compartment will be described with reference to FIG. This target temperature is a value related to the first threshold value and the second threshold value, and the control unit 60 has a first target temperature and a second target temperature having different values. In the present embodiment, the second target temperature is lower than the first target temperature. The rate of temperature rise of the cooling medium due to heat generated by the internal combustion engine 10 is directly proportional to the deviation width between the target temperature and the detected temperature.

図3に示すようにステップS110において制御部60は、充電電力と消費電力を予測する。上記したように制御部60には記憶部100から電池30の充放電の予想に関する情報(車両の現在位置、ユーザーの走行履歴)が入力される。また制御部60には走行状態検出センサ110から車両の走行状態に関する情報(車両速度、内燃機関10および発電部20の回転数、内燃機関10の負荷)が入力される。制御部60はこれらの情報に基づいて充電電力と消費電力それぞれを予測する。ステップS110後、制御部60はステップS120へと進む。なお、詳しくは記載しないが、制御部60は上記した充電電力と消費電力の予測に基づいて、ヒータ50に供給する電流量を調整する。換言すれば、制御部60は充電電力と消費電力の予測に基づいて、上記した第1設定値および第2設定値を調整する。   As shown in FIG. 3, in step S110, the control unit 60 predicts charging power and power consumption. As described above, the control unit 60 is input from the storage unit 100 with information related to the prediction of charging / discharging of the battery 30 (current position of the vehicle, user's travel history). Further, information related to the running state of the vehicle (vehicle speed, the number of revolutions of the internal combustion engine 10 and the power generation unit 20, and the load of the internal combustion engine 10) is input to the control unit 60 from the running state detection sensor 110. The control unit 60 predicts charging power and power consumption based on these pieces of information. After step S110, the control unit 60 proceeds to step S120. Although not described in detail, the control unit 60 adjusts the amount of current supplied to the heater 50 based on the above-described prediction of charging power and power consumption. In other words, the control unit 60 adjusts the first set value and the second set value described above based on the prediction of the charging power and the power consumption.

ステップS120に進むと制御部60は、水温センサ114の検出温度と第1目標温度との差である第1乖離温度を算出し、ステップS130へと進む。   If it progresses to step S120, the control part 60 will calculate the 1st deviation temperature which is the difference of the detected temperature of the water temperature sensor 114, and 1st target temperature, and will progress to step S130.

ステップS130に進むと制御部60は、算出した第1乖離温度に基づいて内燃機関10から熱交換器80へと供給される冷却媒体の温度を第1目標温度に昇温するために必要な昇温電力を算出する。昇温電力の算出後、制御部60はステップS140へと進む。   In step S130, the control unit 60 increases the temperature required to raise the temperature of the cooling medium supplied from the internal combustion engine 10 to the heat exchanger 80 to the first target temperature based on the calculated first deviation temperature. Calculate the thermal power. After calculating the temperature rising power, the control unit 60 proceeds to step S140.

ステップS140に進むと制御部60は電池30の保有電力が昇温電力よりも大きいか否かを判定する。保有電力が昇温電力よりも大きいと判定した場合、制御部60は冷却媒体を第1目標温度に昇温することが可能であると判定し、ステップS150へと進む。これとは異なり、保有電力が昇温電力よりも小さいと判定した場合、制御部60は冷却媒体を第1目標温度に昇温することが不可能であると判定し、ステップS160へと進む。   When the process proceeds to step S140, the control unit 60 determines whether or not the retained power of the battery 30 is larger than the temperature rising power. If it is determined that the retained power is greater than the temperature rising power, the control unit 60 determines that the cooling medium can be heated to the first target temperature, and proceeds to step S150. On the other hand, if it is determined that the retained power is smaller than the temperature rising power, the control unit 60 determines that it is impossible to raise the temperature of the cooling medium to the first target temperature, and proceeds to step S160.

ステップS150に進むと制御部60は第1目標温度を所定値減少する。こうすることで内燃機関10による熱交換器80へと供給される冷却媒体の温度の昇温スピードを下げ、目標温度の設定を終了する。   In step S150, the control unit 60 decreases the first target temperature by a predetermined value. In this way, the temperature increase speed of the cooling medium supplied to the heat exchanger 80 by the internal combustion engine 10 is reduced, and the setting of the target temperature is completed.

上記したようにステップS160に進むと制御部60は、水温センサ114の検出温度と第2目標温度との差である第2乖離温度を算出し、ステップS170へと進む。   As described above, when the process proceeds to step S160, the control unit 60 calculates the second deviation temperature that is the difference between the temperature detected by the water temperature sensor 114 and the second target temperature, and proceeds to step S170.

ステップS170に進むと制御部60は、算出した第2乖離温度に基づいて内燃機関10から熱交換器80へと供給される冷却媒体の温度を第2目標温度に降温した際に放出される降温電力を算出する。降温電力の算出後、制御部60はステップS180へと進む。   When the process proceeds to step S170, the control unit 60 lowers the temperature released when the temperature of the cooling medium supplied from the internal combustion engine 10 to the heat exchanger 80 is lowered to the second target temperature based on the calculated second deviation temperature. Calculate power. After calculating the temperature lowering power, the control unit 60 proceeds to step S180.

ステップS180に進むと制御部60は電池30の消費電力が降温電力よりも小さいか否かを判定する。制御部60は、消費電力が降温電力よりも小さいと判定した場合、ステップS190へと進み、消費電力が降温電力よりも大きいと判定した場合、第2目標温度の値を変更せずに目標温度の設定を終了する。   In step S180, the control unit 60 determines whether or not the power consumption of the battery 30 is smaller than the temperature lowering power. When it is determined that the power consumption is smaller than the temperature lowering power, the control unit 60 proceeds to step S190, and when it is determined that the power consumption is larger than the temperature lowering power, the target temperature is changed without changing the value of the second target temperature. Finish setting.

ステップS190に進むと制御部60は第2目標温度を所定値増加する。こうすることで内燃機関10による熱交換器80へと供給される冷却媒体の温度の昇温スピードを上げ、目標温度の設定を終了する。なお、制御部60は上記したステップS110〜S190を順次繰り返すことで、目標温度の設定を順次更新する。   In step S190, the control unit 60 increases the second target temperature by a predetermined value. By doing so, the temperature raising speed of the temperature of the cooling medium supplied to the heat exchanger 80 by the internal combustion engine 10 is increased, and the setting of the target temperature is completed. In addition, the control part 60 updates the setting of target temperature sequentially by repeating above-described step S110-S190 sequentially.

以上示したように制御部60は、保有電力が冷却媒体を第1目標温度に昇温するために必要な昇温電力よりも大きい場合、第1目標温度を所定値減少する。こうすることで内燃機関10による冷却媒体の昇温スピードを下げる。また制御部60は、保有電力が昇温電力よりも小さく、消費電力が冷却媒体を第2目標温度に降温した際に放出される降温電力よりも小さい場合、第2目標温度を所定値増加する。こうすることで内燃機関10による冷却媒体の昇温スピードを上げる。   As described above, the control unit 60 decreases the first target temperature by a predetermined value when the retained power is larger than the temperature rising power required to raise the temperature of the cooling medium to the first target temperature. In this way, the temperature increase rate of the cooling medium by the internal combustion engine 10 is reduced. In addition, the control unit 60 increases the second target temperature by a predetermined value when the retained power is smaller than the temperature rising power and the power consumption is smaller than the temperature lowering power released when the cooling medium is lowered to the second target temperature. . In this way, the temperature increase rate of the cooling medium by the internal combustion engine 10 is increased.

なお、上記フローではステップS110にて充電電力と消費電力とを予測した後、ステップS120〜190において目標温度を設定する例を示した。しかしながら処理としては上記した充電電力と消費電力の予測と、目標温度の設定とは別に行うことも可能である。そのため、上記した順に処理を行わなくともよい。   The above flow shows an example in which the target temperature is set in steps S120 to S190 after the charging power and the power consumption are predicted in step S110. However, the process can be performed separately from the above-described prediction of charging power and power consumption and setting of the target temperature. Therefore, processing does not have to be performed in the order described above.

次に、図4に基づいて電池30の目標保有電力の設定を説明する。制御部60は、予め所定の目標保有電力を有するが、下記に示すようにその値は順次更新される。図4に示すようにステップS210において制御部60は、目標保有電力と現在の保有電力との差である保有電力差を算出する。ステップS210後、制御部60はステップS220へと進む。   Next, the setting of the target retained power of the battery 30 will be described based on FIG. The control unit 60 has a predetermined target held power in advance, and the value is sequentially updated as shown below. As shown in FIG. 4, in step S210, the control unit 60 calculates a retained power difference that is a difference between the target retained power and the current retained power. After step S210, the control unit 60 proceeds to step S220.

ステップS220に進むと制御部60は、第1目標温度若しくは第2目標温度と検出温度との差分値に所定値を乗算した許容保有電力を算出する。ステップS220後、制御部60はステップS230へと進む。   In step S220, the control unit 60 calculates allowable retained power obtained by multiplying the first target temperature or the difference value between the second target temperature and the detected temperature by a predetermined value. After step S220, control unit 60 proceeds to step S230.

ステップS230に進むと制御部60は、ステップS210にて算出した保有電力差がステップS220にて算出した許容保有電力よりも小さいか否かを判定する。保有電力差が許容保有電力よりも小さいと判定した場合、制御部60は車両が暖房に適した温度(目標温度)に近く、保有電力は目標保有電力に近いと判定し、ステップS240へと進む。これとは異なり、保有電力差が許容保有電力よりも大きいと判定した場合、制御部60は車両が目標温度から遠く、保有電力は目標保有電力から遠いと判定し、目標保有電力を変更せずに、目標保有電力の設定を終了する。   In step S230, the control unit 60 determines whether or not the retained power difference calculated in step S210 is smaller than the allowable retained power calculated in step S220. When it is determined that the retained power difference is smaller than the allowable retained power, the control unit 60 determines that the vehicle is close to the temperature suitable for heating (target temperature), and that the stored power is close to the target stored power, and proceeds to step S240. . On the other hand, when it is determined that the retained power difference is larger than the allowable retained power, the control unit 60 determines that the vehicle is far from the target temperature and the retained power is far from the target retained power, and does not change the target retained power. Then, the setting of the target holding power is finished.

ステップS240に進むと制御部60は目標保有電力を現在の保有電力に設定する。これによって電池30の充放電をゼロにする。そして制御部60は目標保有電力の設定を終了する。なお、制御部60は上記したステップS210〜S240を順次繰り返すことで、目標保有電力を順次更新する。   In step S240, the control unit 60 sets the target held power to the current held power. Thereby, charging / discharging of the battery 30 is made zero. And the control part 60 complete | finishes the setting of target holding | maintenance electric power. In addition, the control part 60 updates target electric power sequentially by repeating above-described step S210-S240 sequentially.

以上示したように制御部60は、保有電力差が許容保有電力よりも小さい場合、目標保有電力を現在の保有電力に設定することで電池30の充放電をゼロにする。   As described above, when the retained power difference is smaller than the allowable retained power, the control unit 60 sets the target retained power to the current retained power, thereby reducing the charge / discharge of the battery 30 to zero.

次に、図5に基づいてヒータ50の駆動電力の調整を説明する。制御部60は目標保有電力と現在の保有電力とに基づいて充電電力の目標値を算出する。上記したように保有電力差が許容保有電力よりも大きいと判定した場合、制御部60は目標保有電力を現在の保有電力に設定するため、充電電力の目標値をゼロに設定する。したがってこの場合、ヒータ50に供給される電流量はゼロとなる。しかしながら保有電力差が許容保有電力よりも小さいと判定した場合、制御部60は目標保有電力と現在の保有電力とに基づいて充電電力の目標値を算出し、これに基づいてヒータ50に供給する電流量(ヒータ駆動電力)を算出する。   Next, adjustment of the driving power of the heater 50 will be described with reference to FIG. The control unit 60 calculates the target value of the charging power based on the target stored power and the current stored power. When it is determined that the retained power difference is larger than the allowable retained power as described above, the control unit 60 sets the target value of the charged power to zero in order to set the target retained power to the current retained power. Therefore, in this case, the amount of current supplied to the heater 50 is zero. However, if it is determined that the retained power difference is smaller than the allowable retained power, the control unit 60 calculates the target value of the charging power based on the target stored power and the current stored power, and supplies the target value to the heater 50 based on the target power. The amount of current (heater driving power) is calculated.

図5に示すように制御部60は充電電力の目標値を算出するとともに、発電電力(発電部20の発電によって生じる電力)と消費電力とに基づいて充電電力の現在値を算出する。そして制御部60は上記した充電電力の目標値と現在値の差分に基づいて、ヒータ50の駆動電力調整値を算出する。制御部60はヒータ50の駆動電力目標値を有しており、この駆動電力目標値と算出した駆動電力調整値との差分に基づいて、ヒータ50の駆動電力を算出する。上記処理を経ることでヒータ50の駆動電力、すなわち、ヒータ50に供給される電流量が調整される。   As shown in FIG. 5, the control unit 60 calculates the target value of the charging power, and calculates the current value of the charging power based on the generated power (power generated by the power generation of the power generation unit 20) and the power consumption. Then, the control unit 60 calculates a driving power adjustment value for the heater 50 based on the difference between the target value of the charging power and the current value. The control unit 60 has a drive power target value for the heater 50, and calculates the drive power for the heater 50 based on the difference between the drive power target value and the calculated drive power adjustment value. Through the above processing, the driving power of the heater 50, that is, the amount of current supplied to the heater 50 is adjusted.

なお、上記したようにヒータ50に供給される電流量は図2および図3に示すフローにも従っている。そのため、ヒータ50の供給電流量は、電池30の充放電状態、冷却媒体の温度、充放電の予測、および、上記した駆動電力によって定められる。制御部60は、これら4つの条件に従って、電池30の電池容量の時間変化量が小さくなるようにヒータ50に供給する電流量を調整する。   As described above, the amount of current supplied to the heater 50 also follows the flow shown in FIGS. Therefore, the amount of current supplied to the heater 50 is determined by the charge / discharge state of the battery 30, the temperature of the cooling medium, the prediction of charge / discharge, and the drive power described above. In accordance with these four conditions, the control unit 60 adjusts the amount of current supplied to the heater 50 so that the amount of time change in the battery capacity of the battery 30 is small.

なお、制御部60は、ヒータ50に供給する電流量の調整量に基づいて、ヒータ50の所定時間内における総発熱量が変動しないように、内燃機関10の動力によって発電される発電部20の発電量も調整する。図5に示すように制御部60はヒータ電流量調整値の積算を行う。制御部60はヒータ50へ供給する電流量を、ヒータ50の所定時間内における総発熱量が変動しないように発電部20の発電量を調整するが、その調整にはズレが生じる。したがって制御部60はヒータ50へ供給する電流量を調整する毎にこのズレが解消されるように順次積算して更新する。最後に制御部60は、上記した充電電力目標値、車両の走行駆動力、消費電力、および、ヒータ電流量調整値の積算に基づいて、内燃機関10を制御する。   It should be noted that the control unit 60 controls the power generation unit 20 that is generated by the power of the internal combustion engine 10 so that the total heat generation amount of the heater 50 within a predetermined time does not vary based on the adjustment amount of the current amount supplied to the heater 50. Adjust the amount of power generation. As shown in FIG. 5, the controller 60 integrates the heater current amount adjustment value. The control unit 60 adjusts the power generation amount of the power generation unit 20 so that the total heat generation amount of the heater 50 within a predetermined time does not fluctuate, but there is a deviation in the adjustment. Therefore, every time the amount of current supplied to the heater 50 is adjusted, the control unit 60 sequentially accumulates and updates so as to eliminate this deviation. Finally, the control unit 60 controls the internal combustion engine 10 based on the integration of the above-described charging power target value, vehicle driving force, power consumption, and heater current amount adjustment value.

次に本実施形態に係る暖房制御機構200の作用効果を説明する。上記したように暖房制御機構200では、ヒータ50に供給する電流量を調整することで、電池30の電池容量の時間変化量(充放電)を小さくしている。したがってヒータに供給する電流量によって電池の電池容量の時間変化量を変化させない構成と比べて、電池30の電池容量の時間変化が小さくなる。この結果、電池30の寿命の低下が抑制される。   Next, the effect of the heating control mechanism 200 according to the present embodiment will be described. As described above, in the heating control mechanism 200, the amount of time change (charge / discharge) of the battery capacity of the battery 30 is reduced by adjusting the amount of current supplied to the heater 50. Therefore, the time change of the battery capacity of the battery 30 is smaller than the configuration in which the time change amount of the battery capacity of the battery is not changed by the amount of current supplied to the heater. As a result, a decrease in the life of the battery 30 is suppressed.

制御部60は、電池30の発電部20による充電(充電電力)および駆動部40による放電(消費電力)に基づいて、電池30の電池容量の時間変化量が小さくなるように、ヒータ50に供給する電流量を調整する。すなわち制御部60は、充電電力が消費電力よりも大きい場合、ヒータ50に供給する電流量を第1設定値にし、充電電力が消費電力よりも小さい場合、ヒータ50に供給する電流量を第1設定値よりも低い第2設定値にする。   Based on the charging (charging power) by the power generation unit 20 of the battery 30 and the discharging (power consumption) by the driving unit 40, the control unit 60 supplies the heater 50 so that the amount of time change of the battery capacity of the battery 30 is small. Adjust the amount of current. That is, the control unit 60 sets the current amount supplied to the heater 50 to the first set value when the charging power is larger than the power consumption, and sets the current amount supplied to the heater 50 to the first setting value when the charging power is smaller than the power consumption. The second set value is set lower than the set value.

このように電池30の充電量が放電量よりも大きい場合、充電量が放電量よりも小さい場合と比べてヒータ50に供給する電流量を増大し、その反対の場合に減少する。これによって電池30の電池容量の時間変化が小さくなり、電池30の寿命の低下が抑制される。   Thus, when the charge amount of the battery 30 is larger than the discharge amount, the amount of current supplied to the heater 50 is increased as compared with the case where the charge amount is smaller than the discharge amount, and decreases in the opposite case. Thereby, the time change of the battery capacity of the battery 30 is reduced, and the decrease in the life of the battery 30 is suppressed.

例えば図6に示すように電池30の電力収支(充電電力と消費電力の差分値)が時間変動する場合において、図7に破線で示すようにヒータ50へ供給する電流が一定の場合、図8に破線で示すように電池30の電池容量の時間変化が大きくなる。これに対して図7に実線で示すように電力収支とは逆となるようにヒータ50へ供給する電流量を調整することで、図8に実線で示すように電池30の電池容量の時間変化が小さくなる。   For example, when the power balance of battery 30 (difference value between charging power and power consumption) varies with time as shown in FIG. 6, when the current supplied to heater 50 is constant as shown by the broken line in FIG. As shown by the broken line, the time change of the battery capacity of the battery 30 increases. On the other hand, by adjusting the amount of current supplied to the heater 50 so as to be opposite to the power balance as shown by the solid line in FIG. 7, the time change of the battery capacity of the battery 30 as shown by the solid line in FIG. Becomes smaller.

制御部60は、充電電力が消費電力よりも大きい場合、内燃機関10の駆動による発熱量を第3設定値にし、充電電力が消費電力よりも小さい場合、内燃機関10の駆動による発熱量を第3設定値よりも大きい第4設定値にする。   The controller 60 sets the amount of heat generated by driving the internal combustion engine 10 to the third set value when the charging power is larger than the power consumption, and sets the amount of heat generated by driving the internal combustion engine 10 when the charging power is smaller than the power consumption. The fourth set value is set larger than the 3 set value.

このように電池30の充電量が放電量よりも大きい場合、充電量が放電量よりも小さい場合と比べて内燃機関10の駆動による発熱量を減少し、その反対の場合に増大する。換言すれば、ヒータ50に供給する電流量(発熱量)が増大する場合に内燃機関10の発熱量を減少し、ヒータ50に供給する電流量(発熱量)が減少する場合に内燃機関10の発熱量を増大する。これによれば、電池30の電池容量の時間変化を小さくするべくヒータ50に供給する電流量を調整したとしても、ヒータ50および熱交換器80から出力される総熱量の変動が抑制され、車両の暖房状態の変化が抑制される。   Thus, when the charge amount of the battery 30 is larger than the discharge amount, the amount of heat generated by the driving of the internal combustion engine 10 is reduced as compared with the case where the charge amount is smaller than the discharge amount, and increases in the opposite case. In other words, when the current amount (heat generation amount) supplied to the heater 50 increases, the heat generation amount of the internal combustion engine 10 decreases, and when the current amount (heat generation amount) supplied to the heater 50 decreases, the internal combustion engine 10 Increase calorific value. According to this, even if the amount of current supplied to the heater 50 is adjusted so as to reduce the time change of the battery capacity of the battery 30, fluctuations in the total heat output from the heater 50 and the heat exchanger 80 are suppressed, and the vehicle The change in the heating state is suppressed.

制御部60は、電池30の充放電だけではなく、水温センサ114の検出温度に基づいてヒータ50に供給する電流量を調整する。すなわち制御部60は、充電電力が消費電力よりも大きく、且つ、検出温度が第1閾値よりも大きい場合、第1設定値を所定値減少する。また制御部60は、充電電力が消費電力よりも小さく、且つ、検出温度が第2閾値よりも小さい場合、第2設定値を所定値増加する。   The controller 60 adjusts the amount of current supplied to the heater 50 based on the temperature detected by the water temperature sensor 114 as well as the charge / discharge of the battery 30. That is, the control unit 60 decreases the first set value by a predetermined value when the charging power is larger than the power consumption and the detected temperature is larger than the first threshold. The control unit 60 increases the second set value by a predetermined value when the charging power is smaller than the power consumption and the detected temperature is smaller than the second threshold.

これによれば、検温部で検出された冷却媒体の温度に基づかずにヒータに供給する電流量を調整する構成と比べて、ヒータ50および熱交換器80から出力される総熱量の変動が抑制され、車両の暖房状態の変化が抑制される。   According to this, compared to the configuration in which the amount of current supplied to the heater is adjusted without being based on the temperature of the cooling medium detected by the temperature detection unit, the fluctuation of the total heat output from the heater 50 and the heat exchanger 80 is suppressed. Thus, a change in the heating state of the vehicle is suppressed.

制御部60は、保有電力が冷却媒体を第1目標温度に昇温するために必要な昇温電力よりも大きい場合、第1目標温度を所定値減少する。これによれば、保有電力と昇温電力の関係に関わらずに第1目標温度の値を一定に保つ構成と比べて、冷却媒体の温度が第1目標温度に達するべく昇温された結果、第3閾値を超えることが抑制される。また、内燃機関10による冷却媒体の昇温スピードが下げられる。これらにより、冷却媒体が強制冷却部90によって強制冷却されることが抑制される。   The control unit 60 decreases the first target temperature by a predetermined value when the retained power is larger than the heating power required to raise the temperature of the cooling medium to the first target temperature. According to this, as a result of raising the temperature of the cooling medium so as to reach the first target temperature, as compared with the configuration in which the value of the first target temperature is kept constant regardless of the relationship between the retained power and the temperature rising power, Exceeding the third threshold is suppressed. Further, the temperature increase rate of the cooling medium by the internal combustion engine 10 is reduced. Thus, the forced cooling of the cooling medium by the forced cooling unit 90 is suppressed.

制御部60は、保有電力が昇温電力よりも小さく、消費電力が冷却媒体を第2目標温度に降温した際に放出される降温電力よりも大きい場合、第2目標温度を所定値増加する。こうすることで、第2目標温度と冷却媒体の温度との乖離幅が増大され、内燃機関10による熱交換器80へと供給される冷却媒体の温度の昇温スピードが上げられる。これにより車両を第2目的温度に基づく暖房状態に早く移行することができる。   The control unit 60 increases the second target temperature by a predetermined value when the retained power is smaller than the temperature rising power and the power consumption is larger than the temperature lowering power released when the cooling medium is lowered to the second target temperature. By doing so, the difference between the second target temperature and the temperature of the cooling medium is increased, and the temperature increase speed of the temperature of the cooling medium supplied to the heat exchanger 80 by the internal combustion engine 10 is increased. Thereby, the vehicle can be quickly shifted to the heating state based on the second target temperature.

制御部60は、目標保有電力と現在の保有電力との差である保有電力差が目標温度と検出温度との差に基づく許容保有電力よりも小さい場合、目標保有電力を現在の保有電力に設定することで電池30の充放電をゼロにする。   The control unit 60 sets the target stored power to the current stored power when the stored power difference, which is the difference between the target stored power and the current stored power, is smaller than the allowable stored power based on the difference between the target temperature and the detected temperature. By doing so, charge / discharge of the battery 30 is made zero.

保有電力差が許容保有電力よりも小さい、ということは、車両は暖房に適した温度(目標温度)に近く、保有電力は目標保有電力に近いと予想される。したがって上記のように電池30の充放電をゼロにすることで、電池30の寿命の低下を抑制しつつ、車両の暖房状態を目標温度に保つことができる。   The fact that the retained power difference is smaller than the allowable retained power means that the vehicle is close to a temperature suitable for heating (target temperature), and the retained power is expected to be close to the target retained power. Therefore, by setting the charging / discharging of the battery 30 to zero as described above, the heating state of the vehicle can be maintained at the target temperature while suppressing a decrease in the life of the battery 30.

制御部60は記憶部100から入力される電池30の充放電の予想に関する情報、および、走行状態検出センサ110から入力される車両の走行状態に関する情報に基づいて充電電力と消費電力それぞれを予測する。そして制御部60は充電電力と消費電力の予測に基づいて、ヒータ50に供給する電流量を調整する。   The control unit 60 predicts the charging power and the power consumption based on the information related to the prediction of charging / discharging of the battery 30 input from the storage unit 100 and the information related to the traveling state of the vehicle input from the traveling state detection sensor 110. . And the control part 60 adjusts the electric current amount supplied to the heater 50 based on prediction of charging power and power consumption.

これによれば、充電電力および消費電力の予測をせずにヒータに供給する電流量を調整する構成と比べて、電池30の充放電が抑制され、電池30の寿命の低下が抑制される。また、記憶部の情報だけに基づいて充電電力および消費電力の予測をする構成と比べて、その予測精度が向上される。   According to this, compared with the structure which adjusts the electric current amount supplied to a heater, without estimating charging electric power and power consumption, charging / discharging of the battery 30 is suppressed and the fall of the lifetime of the battery 30 is suppressed. In addition, the prediction accuracy is improved as compared with the configuration in which the charging power and the power consumption are predicted based only on the information in the storage unit.

ヒータ50は発電部20よりも電流変化が速くなっており、制御部60は、電池30の電池容量の時間変化量が小さくなるように、駆動部40の調整よりも早く電池30の充放電電流を調整するためにヒータ50に供給する電流量を調整する。これによれば、制御部がヒータではなく駆動部に供給する電流量を調整する構成と比べて、電池30の電池容量を速く調整することができる。   The heater 50 has a faster current change than the power generation unit 20, and the control unit 60 charges and discharges the battery 30 faster than the adjustment of the drive unit 40 so that the amount of time change in the battery capacity of the battery 30 is small. In order to adjust the current, the amount of current supplied to the heater 50 is adjusted. According to this, compared with the structure which adjusts the electric current amount which a control part supplies not a heater but a drive part, the battery capacity of the battery 30 can be adjusted rapidly.

制御部60は、電池30の充放電状態、冷却媒体の温度、充放電の予測、および、駆動電力に基づいて、電池30の電池容量の時間変化量が小さくなるようにヒータ50に供給する電流量を調整する。これによれば、制御部が上記した4つの条件の内の少なくとも3つに基づいてヒータへ供給する電流量を調整する構成と比べて、より高精度に電池30の電池容量の時間変化量が小さくなるように調整することができる。   Based on the charge / discharge state of the battery 30, the temperature of the cooling medium, the prediction of charge / discharge, and the driving power, the control unit 60 supplies the current to the heater 50 so that the amount of time change in the battery capacity of the battery 30 is small. Adjust the amount. According to this, the time change amount of the battery capacity of the battery 30 can be more accurately compared to the configuration in which the control unit adjusts the amount of current supplied to the heater based on at least three of the above four conditions. It can be adjusted to be smaller.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態に係る暖房制御機構200は、内燃機関10、発電部20、電池30、駆動部40、ヒータ50、制御部60の他に、冷却部70、熱交換器80、強制冷却部90、および、記憶部100を有する例を示した。しかしながら暖房制御機構200は冷却部70、熱交換器80、強制冷却部90、および、記憶部100を有さなくともよい。また暖房制御機構200は上記した構成要素の他に、走行状態検出センサ110、電力状態検出センサ120、および、空調状態検出センサ130を有する例を示した。しかしながら暖房制御機構200は走行状態検出センサ110、電力状態検出センサ120、および、空調状態検出センサ130を有さなくともよい。   The heating control mechanism 200 according to the present embodiment includes a cooling unit 70, a heat exchanger 80, a forced cooling unit 90, in addition to the internal combustion engine 10, the power generation unit 20, the battery 30, the drive unit 40, the heater 50, and the control unit 60. And the example which has the memory | storage part 100 was shown. However, the heating control mechanism 200 may not include the cooling unit 70, the heat exchanger 80, the forced cooling unit 90, and the storage unit 100. Moreover, the heating control mechanism 200 showed the example which has the driving | running state detection sensor 110, the electric power state detection sensor 120, and the air-conditioning state detection sensor 130 other than the above-mentioned component. However, the heating control mechanism 200 may not include the traveling state detection sensor 110, the power state detection sensor 120, and the air conditioning state detection sensor 130.

本実施系に係る発電部20はモータジェネレータであり、発電しつつ車両に走行するための動力を出力する例を示した。しかしながら発電部20は発電の機能だけを奏するものであってもよい。   The power generation unit 20 according to the present embodiment is a motor generator, and an example has been shown in which power for running on a vehicle is output while generating power. However, the power generation unit 20 may have only a power generation function.

本実施形態に係るヒータ50は冷却媒体を昇温することで車両を暖房する例を示した。しかしながらヒータ50の熱によって直接車両を暖房してもよい。この場合、熱交換器80から車室内に送られる熱量は内燃機関10によって定められる。   The heater 50 which concerns on this embodiment showed the example which heats a vehicle by heating up a cooling medium. However, the vehicle may be directly heated by the heat of the heater 50. In this case, the amount of heat sent from the heat exchanger 80 into the vehicle compartment is determined by the internal combustion engine 10.

本実施形態に係る制御部60は、内燃機関制御部61、発電部制御部62、電池制御部63、空調制御部64、および、統合制御部65を有する例を示した。しかしながら制御部60は、このように5つの電気機器によって構成されなくともよい。制御部60は、より多くの電気機器によって構成されてもよいし、より少ない電気機器によって構成されてもよい。   The control part 60 which concerns on this embodiment showed the example which has the internal combustion engine control part 61, the electric power generation part control part 62, the battery control part 63, the air-conditioning control part 64, and the integrated control part 65. However, the control unit 60 does not have to be configured by five electric devices in this way. The control unit 60 may be configured by more electrical devices or may be configured by fewer electrical devices.

本実施形態では制御部60がヒータ50だけではなく内燃機関10の発熱制御を行う例を示した。しかしながら制御部60は内燃機関10の発熱制御を行わなくともよい。   In the present embodiment, an example in which the control unit 60 controls not only the heater 50 but also the internal combustion engine 10 is shown. However, the control unit 60 may not perform heat generation control of the internal combustion engine 10.

本実施形態では制御部60は充電電力と消費電力だけではなく水温センサ114の検出温度に基づいて、電池30の電池容量の時間変化量が小さくなるようにヒータ50に供給する電流量を設定する例を示した。しかしながら制御部60は検出温度に基づいてヒータ50に供給する電流量を設定しなくともよい。   In the present embodiment, the control unit 60 sets the amount of current to be supplied to the heater 50 based on not only the charging power and the power consumption but also the temperature detected by the water temperature sensor 114 so that the time change amount of the battery capacity of the battery 30 is small. An example is shown. However, the control unit 60 may not set the amount of current supplied to the heater 50 based on the detected temperature.

制御部60は目標充電電力、駆動部40などの各種放電要求、および、電力状態検出センサ120のセンサ信号に基づいて充電電力と消費電力を算出する例を示した。しかしながら制御部60は目標充電電力や駆動部40などの各種放電要求に基づいて充電電力と消費電力を算出しなくともよい。少なくとも電力状態検出センサ120のセンサ信号に基づいて充電電力と消費電力を算出すればよい。   The control part 60 showed the example which calculates charging power and power consumption based on the target charging power, various discharge requests, such as the drive part 40, and the sensor signal of the power state detection sensor 120. However, the control unit 60 does not have to calculate the charging power and the power consumption based on the target charging power and various discharge requests such as the driving unit 40. The charging power and the power consumption may be calculated based on at least the sensor signal of the power state detection sensor 120.

本実施形態では制御部60が冷却媒体の目標温度を更新する例を示した。しかしながら制御部60は目標温度を更新しなくともよい。   In this embodiment, the control part 60 showed the example which updates the target temperature of a cooling medium. However, the control unit 60 does not have to update the target temperature.

本実施形態では制御部60が充電電力と消費電力を予測する例を示した。しかしながら制御部60は充電電力と消費電力を予測しなくともよい。また、予測するとしても、制御部60は記憶部100と走行状態検出センサ110それぞれの情報ではなく、記憶部100の情報だけで予測してもよい。   In this embodiment, the control part 60 showed the example which estimates charging electric power and power consumption. However, the control unit 60 may not predict the charging power and the power consumption. Moreover, even if it estimates, the control part 60 may predict only with the information of the memory | storage part 100 instead of each information of the memory | storage part 100 and the driving | running | working state detection sensor 110. FIG.

本実施形態では制御部60が電池30の目標保有電力を更新する例を示した。しかしながら制御部60は目標保有電力を更新しなくともよい。   In this embodiment, the control part 60 showed the example which updates the target holding | maintenance electric power of the battery 30. However, the control unit 60 may not update the target held power.

本実施形態では制御部60がヒータ50の駆動電力を目標保有電力と現在の保有電力に基づいて調整する例を示した。しかしながら制御部60はヒータ50の駆動電力を目標保有電力と保有電力とに基づいて調整しなくともよい。   In this embodiment, the control part 60 showed the example which adjusts the drive electric power of the heater 50 based on target holding electric power and present holding electric power. However, the control unit 60 may not adjust the driving power of the heater 50 based on the target stored power and the stored power.

本実施形態ではヒータ50の供給電流量が、電池30の充放電状態、冷却媒体の温度、電池30の充放電予測、および、ヒータ50の駆動電力によって定められる例を示した。しかしながら制御部60は、少なくとも電池30の充放電状態に基づいてヒータ50の供給電流量を設定すればよい。制御部60は他の3条件を加味しなくともよい。   In the present embodiment, an example is shown in which the amount of current supplied to the heater 50 is determined by the charge / discharge state of the battery 30, the temperature of the cooling medium, the charge / discharge prediction of the battery 30, and the driving power of the heater 50. However, the control unit 60 may set the supply current amount of the heater 50 based on at least the charge / discharge state of the battery 30. The controller 60 does not have to consider the other three conditions.

本実施形態では制御部60は、ヒータ50に供給する電流量の調整量に基づいて、ヒータ50の所定時間内における総発熱量が変動しないように、発電部20の発電量も調整する例を示した。しかしながら制御部60は、ヒータ50に供給する電流量の調整量に基づいて、ヒータ50の総発熱量が変動しないように発電部20の発電量を調整しなくともよい。   In this embodiment, the control unit 60 adjusts the power generation amount of the power generation unit 20 based on the adjustment amount of the current amount supplied to the heater 50 so that the total heat generation amount of the heater 50 within a predetermined time does not fluctuate. Indicated. However, the control unit 60 may not adjust the power generation amount of the power generation unit 20 based on the adjustment amount of the current amount supplied to the heater 50 so that the total heat generation amount of the heater 50 does not fluctuate.

本実地形態では制御部60がヒータ電流量調整値の積算を行う例を示した。しかしながら制御部60はヒータ電流量調整値の積算を行わなくともよい。   In the present embodiment, an example is shown in which the control unit 60 performs integration of the heater current amount adjustment value. However, the controller 60 does not have to integrate the heater current amount adjustment value.

10・・・内燃機関
20・・・発電部
30・・・電池
40・・・駆動部
50・・・ヒータ
60・・・制御部
200・・・暖房制御機構
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 20 ... Power generation part 30 ... Battery 40 ... Drive part 50 ... Heater 60 ... Control part 200 ... Heating control mechanism

Claims (14)

燃料の燃焼によって動力を出力する内燃機関(10)と、
前記内燃機関の動力によって発電する発電部(20)と、
前記発電部の発電によって充電される電池(30)と、
前記電池の放電によって駆動する駆動部(40)と、
車両を暖房するヒータ(50)と、
前記ヒータに供給する電流量を調整する調整部(60)と、を有し、
前記調整部は、前記電池の前記発電部による充電および前記駆動部による放電に基づいて、前記電池の電池容量の時間変化量が小さくなるように、前記ヒータに供給する電流量を調整することを特徴とする暖房制御機構。
An internal combustion engine (10) for outputting power by combustion of fuel;
A power generation section (20) for generating power by the power of the internal combustion engine;
A battery (30) charged by power generation of the power generation unit;
A drive unit (40) driven by discharging of the battery;
A heater (50) for heating the vehicle;
An adjustment unit (60) for adjusting the amount of current supplied to the heater,
The adjustment unit adjusts the amount of current supplied to the heater based on the charging of the battery by the power generation unit and the discharge by the driving unit so that the amount of time change in the battery capacity of the battery is small. Characteristic heating control mechanism.
前記調整部は、
前記発電部から前記電池へ供給される電力が前記駆動部のために前記電池から放電される電力よりも大きい場合、前記ヒータに供給する電流量を第1設定値にし、
前記発電部から前記電池へ供給される電力が前記駆動部のために前記電池から放電される電力よりも小さい場合、前記ヒータに供給する電流量を前記第1設定値よりも低い第2設定値にすることを特徴とする請求項1に記載の暖房制御機構。
The adjustment unit is
When the power supplied from the power generation unit to the battery is larger than the power discharged from the battery for the drive unit, the amount of current supplied to the heater is set to a first set value,
When the power supplied from the power generation unit to the battery is smaller than the power discharged from the battery for the driving unit, the amount of current supplied to the heater is a second set value lower than the first set value. The heating control mechanism according to claim 1, wherein:
前記内燃機関に冷却媒体を循環させることで前記内燃機関を冷却する冷却部(70)と、
前記内燃機関によって昇温された前記冷却媒体の熱を車両の暖房に再利用する熱交換器(80)と、
前記内燃機関を制御する制御部(60)と、を有し、
前記制御部は、
前記発電部から前記電池へ供給される電力が前記駆動部のために前記電池から放電される電力よりも大きい場合、前記内燃機関の駆動による発熱量を第3設定値にし、
前記発電部から前記電池へ供給される電力が前記駆動部のために前記電池から放電される電力よりも小さい場合、前記内燃機関の駆動による発熱量を前記第3設定値よりも大きい第4設定値にすることを特徴とする請求項2に記載の暖房制御機構。
A cooling unit (70) for cooling the internal combustion engine by circulating a cooling medium in the internal combustion engine;
A heat exchanger (80) for reusing the heat of the cooling medium heated by the internal combustion engine for heating the vehicle;
A control unit (60) for controlling the internal combustion engine,
The controller is
If the power supplied from the power generation unit to the battery is greater than the power discharged from the battery for the drive unit, the amount of heat generated by driving the internal combustion engine is set to a third set value,
When the electric power supplied from the power generation unit to the battery is smaller than the electric power discharged from the battery for the driving unit, the amount of heat generated by driving the internal combustion engine is set to a fourth setting larger than the third setting value. The heating control mechanism according to claim 2, wherein the heating control mechanism is a value.
前記内燃機関から前記熱交換器へと供給される前記冷却媒体の温度を検出する検温部(114)を有し、
前記調整部は、前記発電部と前記駆動部による前記電池の充放電だけではなく、前記検温部にて検出された前記冷却媒体の温度に基づいて前記ヒータに供給する電流量を調整することを特徴とする請求項3に記載の暖房制御機構。
A temperature detecting unit (114) for detecting the temperature of the cooling medium supplied from the internal combustion engine to the heat exchanger;
The adjusting unit adjusts the amount of current supplied to the heater based on the temperature of the cooling medium detected by the temperature detecting unit as well as charging and discharging of the battery by the power generation unit and the driving unit. The heating control mechanism according to claim 3, wherein:
前記調整部は、
第1閾値と、前記第1閾値よりも小さい第2閾値と、を有し、
前記発電部から前記電池へ供給される電力が前記駆動部のために前記電池から放電される電力よりも大きく、且つ、前記検温部にて検出された前記冷却媒体の温度が前記第1閾値よりも大きい場合、前記第1設定値を所定値減少し、
前記発電部から前記電池へ供給される電力が前記駆動部のために前記電池から放電される電力よりも小さく、且つ、前記検温部にて検出された前記冷却媒体の温度が前記第2閾値よりも小さい場合、前記第2設定値を所定値増加することを特徴とする請求項4に記載の暖房制御機構。
The adjustment unit is
A first threshold and a second threshold smaller than the first threshold,
The power supplied from the power generation unit to the battery is larger than the power discharged from the battery for the drive unit, and the temperature of the cooling medium detected by the temperature detection unit is higher than the first threshold value. Is also larger, the first set value is decreased by a predetermined value,
The power supplied from the power generation unit to the battery is smaller than the power discharged from the battery for the drive unit, and the temperature of the cooling medium detected by the temperature detection unit is lower than the second threshold value. The heating control mechanism according to claim 4, wherein the second setting value is increased by a predetermined value when the value is smaller.
前記検温部にて検出された前記冷却媒体の温度が前記第1閾値よりも大きい第3閾値を超えた場合、前記冷却媒体を強制冷却する強制冷却部(90)と、
前記電池の保有電力を検出する保有電力検出部(120)と、を有し、
前記調整部は、前記車両の暖房に適した前記冷却媒体の第1目標温度を有しており、
前記調整部は、
前記検温部にて検出された前記冷却媒体の温度と前記第1目標温度との差である第1乖離温度を算出し、
算出した前記第1乖離温度に基づいて前記内燃機関から前記熱交換器へと供給される前記冷却媒体の温度を前記第1目標温度に昇温するために必要な昇温電力を算出し、
算出した前記昇温電力と前記保有電力とを比較して、前記保有電力が前記昇温電力よりも大きい場合、前記第1目標温度を所定値減少することを特徴とする請求項5に記載の暖房制御機構。
A forced cooling unit (90) forcibly cooling the cooling medium when the temperature of the cooling medium detected by the temperature detection unit exceeds a third threshold value greater than the first threshold value;
A retained power detection unit (120) for detecting the retained power of the battery,
The adjusting unit has a first target temperature of the cooling medium suitable for heating the vehicle,
The adjustment unit is
Calculating a first divergence temperature which is a difference between the temperature of the cooling medium detected by the temperature detector and the first target temperature;
Based on the calculated first divergence temperature, a heating power required to raise the temperature of the cooling medium supplied from the internal combustion engine to the heat exchanger to the first target temperature is calculated,
6. The first target temperature is decreased by a predetermined value when the calculated power rising power and the stored power are compared and the stored power is larger than the temperature rising power. 6. Heating control mechanism.
前記電池の放電による消費電力を検出する消費電力検出部(120)を有し、
前記調整部は、前記第1目標温度とは異なる第2目標温度を有し、
前記制御部は、前記内燃機関の駆動による発熱によって、前記内燃機関から前記熱交換器へと供給される前記冷却媒体の温度を昇温する機能を有し、その昇温スピードは、前記第2目標温度と前記検温部にて検出された前記冷却媒体の温度との乖離幅と正比例の関係となっており、
前記調整部は、
前記検温部にて検出された前記冷却媒体の温度と前記第2目標温度との差である第2乖離温度を算出し、
算出した前記第2乖離温度に基づいて前記内燃機関から前記熱交換器へと供給される前記冷却媒体の温度を前記第2目標温度に降温するために必要な降温電力を算出し、
算出した前記降温電力と前記消費電力とを比較して、前記消費電力が前記降温電力よりも大きく、前記保有電力が前記昇温電力よりも小さい場合、前記第2目標温度を所定値増加することで、前記内燃機関による前記熱交換器へと供給される前記冷却媒体の温度の昇温スピードを上げることを特徴とする請求項6に記載の暖房制御機構。
A power consumption detector (120) for detecting power consumption due to discharge of the battery;
The adjusting unit has a second target temperature different from the first target temperature,
The controller has a function of increasing the temperature of the cooling medium supplied from the internal combustion engine to the heat exchanger by heat generated by driving the internal combustion engine, and the temperature increase speed is the second The deviation width between the target temperature and the temperature of the cooling medium detected by the temperature detection unit is in a directly proportional relationship,
The adjustment unit is
Calculating a second deviation temperature that is a difference between the temperature of the cooling medium detected by the temperature detector and the second target temperature;
Based on the calculated second divergence temperature, a temperature lowering power necessary for lowering the temperature of the cooling medium supplied from the internal combustion engine to the heat exchanger to the second target temperature is calculated,
The calculated temperature drop power and the power consumption are compared, and if the power consumption is larger than the temperature drop power and the held power is smaller than the temperature rise power, the second target temperature is increased by a predetermined value. The heating control mechanism according to claim 6, wherein the heating speed of the temperature of the cooling medium supplied to the heat exchanger by the internal combustion engine is increased.
前記調整部は、
前記電池の目標保有電力、および、前記第1目標温度若しくは前記第2目標温度と前記検温部にて検出された前記冷却媒体の温度との差分値に基づく許容保有電力を算出し、
前記目標保有電力と前記保有電力との差が前記許容保有電力よりも小さい場合、前記電池の充放電をゼロにすることを特徴とする請求項7に記載の暖房制御機構。
The adjustment unit is
Calculating the target retained power of the battery and the allowable retained power based on a difference value between the first target temperature or the second target temperature and the temperature of the cooling medium detected by the temperature detection unit;
The heating control mechanism according to claim 7, wherein when the difference between the target stored power and the stored stored power is smaller than the allowable stored power, charge / discharge of the battery is set to zero.
前記調整部は、前記目標保有電力と前記保有電力との差が前記許容保有電力よりも小さい場合、前記目標保有電力を前記保有電力に設定することを特徴とする請求項8に記載の暖房制御機構。   The heating control according to claim 8, wherein the adjustment unit sets the target retained power to the retained power when a difference between the target retained power and the retained power is smaller than the allowable retained power. mechanism. 前記車両の現在位置、ユーザーの走行履歴を保有する記憶部(100)を有し、
前記調整部は、前記記憶部から供給される情報に基づいて前記電池の充電および放電それぞれの量を予測して、前記ヒータに供給する電流量を調整することを特徴とする請求項1〜9いずれか1項に記載の暖房制御機構。
A storage unit (100) that holds the current position of the vehicle and the user's travel history,
The said adjustment part estimates the amount of each charge and discharge of the said battery based on the information supplied from the said memory | storage part, and adjusts the electric current amount supplied to the said heater. The heating control mechanism according to any one of claims.
前記車両の走行状態を検出する走行状態検出センサ(110)を有し、
前記調整部は、前記記憶部から供給される情報だけではなく、前記走行状態検出センサから供給される情報にも基づいて前記電池の充電および放電それぞれの量を予測して、前記ヒータに供給する電流量を調整することを特徴とする請求項10に記載の暖房制御機構。
A running state detection sensor (110) for detecting the running state of the vehicle;
The adjustment unit predicts the amount of charge and discharge of the battery based on not only the information supplied from the storage unit but also the information supplied from the running state detection sensor, and supplies the predicted amount to the heater. The heating control mechanism according to claim 10, wherein the amount of current is adjusted.
前記ヒータは前記内燃機関の動力によって発電する前記発電部の発電電流よりも電流変化が速くなっており、
前記調整部は、前記電池の電池容量の時間変化量が小さくなるように、前記駆動部の調整よりも早く前記電池の充放電電流を調整するために前記ヒータに供給する電流量を調整することを特徴とする請求項1〜11いずれか1項に記載の暖房制御機構。
The heater has a faster current change than the generated current of the power generation unit that generates power by the power of the internal combustion engine,
The adjustment unit adjusts the amount of current supplied to the heater in order to adjust the charge / discharge current of the battery earlier than the adjustment of the drive unit so that the amount of time change of the battery capacity of the battery is small. The heating control mechanism according to any one of claims 1 to 11.
前記電池の保有電力を検出する保有電力検出部(120)を有し、
前記調整部は、前記電池の目標保有電力を有し、前記目標保有電力と前記保有電力とに基づいて、前記電池の電池容量の時間変化量が小さくなるように、前記ヒータに供給する電流量を調整することを特徴とする請求項12に記載の暖房制御機構。
Having a retained power detection unit (120) for detecting the retained power of the battery;
The adjustment unit has a target held power of the battery, and based on the target held power and the held power, an amount of current supplied to the heater so that a time change amount of the battery capacity of the battery becomes small The heating control mechanism according to claim 12, wherein the heating control mechanism is adjusted.
前記調整部は、前記ヒータに供給する電流量の調整量に基づいて、前記ヒータの所定時間内における総発熱量が変動しないように、前記内燃機関の動力によって発電される前記発電部の発電量を調整することを特徴とする請求項12に記載の暖房制御機構。   The adjustment unit generates power by the power generation unit that is generated by the power of the internal combustion engine so that the total heat generation amount of the heater within a predetermined time does not vary based on the adjustment amount of the current amount supplied to the heater. The heating control mechanism according to claim 12, wherein the heating control mechanism is adjusted.
JP2014079611A 2014-04-08 2014-04-08 Heating control mechanism Active JP6252323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079611A JP6252323B2 (en) 2014-04-08 2014-04-08 Heating control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014079611A JP6252323B2 (en) 2014-04-08 2014-04-08 Heating control mechanism

Publications (2)

Publication Number Publication Date
JP2015199429A true JP2015199429A (en) 2015-11-12
JP6252323B2 JP6252323B2 (en) 2017-12-27

Family

ID=54551128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079611A Active JP6252323B2 (en) 2014-04-08 2014-04-08 Heating control mechanism

Country Status (1)

Country Link
JP (1) JP6252323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056213A (en) * 2016-11-18 2018-05-28 현대자동차주식회사 Apparatus and Method for controlling charging battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239508B2 (en) 2020-02-18 2023-03-14 トヨタ自動車株式会社 bearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131207U (en) * 1980-03-07 1981-10-05
JPS6167617A (en) * 1984-09-11 1986-04-07 Isuzu Motors Ltd Car heating device
JP2002247774A (en) * 2001-02-21 2002-08-30 Denso Corp Air-conditioning charge control device for vehicle and charge control device for vehicle battery
JP2007245753A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Controller of hybrid vehicle
JP2008013115A (en) * 2006-07-07 2008-01-24 Nissan Motor Co Ltd Vehicular air conditioner
JP2013193549A (en) * 2012-03-19 2013-09-30 Japan Climate Systems Corp Vehicle air conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131207U (en) * 1980-03-07 1981-10-05
JPS6167617A (en) * 1984-09-11 1986-04-07 Isuzu Motors Ltd Car heating device
JP2002247774A (en) * 2001-02-21 2002-08-30 Denso Corp Air-conditioning charge control device for vehicle and charge control device for vehicle battery
JP2007245753A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Controller of hybrid vehicle
JP2008013115A (en) * 2006-07-07 2008-01-24 Nissan Motor Co Ltd Vehicular air conditioner
JP2013193549A (en) * 2012-03-19 2013-09-30 Japan Climate Systems Corp Vehicle air conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056213A (en) * 2016-11-18 2018-05-28 현대자동차주식회사 Apparatus and Method for controlling charging battery
US10232729B2 (en) 2016-11-18 2019-03-19 Hyundai Motor Company Apparatus and method for controlling charging battery

Also Published As

Publication number Publication date
JP6252323B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
KR101856825B1 (en) Fuel cell system, fuel cell vehicle and control method of fuel cell system
KR101679927B1 (en) System for cooling in electric vehicle and method thereof
KR101896581B1 (en) Temperature-raising device and temperature-raising method for in-car battery
JP5076378B2 (en) Battery temperature control device
KR101039678B1 (en) Cooling control method for invertor and ldc of hev
JP5673452B2 (en) Battery pack temperature control device
JP6299728B2 (en) Secondary battery management device
JP6229690B2 (en) Vehicle drive device
JP5067611B2 (en) Vehicle battery control device
US20120082871A1 (en) Thermal Management Controls for a Vehicle Having a Rechargeable Energy Storage System
JP6264258B2 (en) Vehicle control device
EP3209517B1 (en) Method for driving and thermally regulating a range extending system for a motor vehicle
JP2017105290A (en) Temperature control device of battery for driving
JP6252323B2 (en) Heating control mechanism
JP2019214309A (en) Power generation control device for vehicle
CN105569801A (en) Method and device for operating an engine compartment fan for a motor vehicle
JP6024562B2 (en) Battery temperature control system
JP5602079B2 (en) Fuel cell system and method
KR101388046B1 (en) Temperature control system and method associated with charging of electric vehicles
JP6127911B2 (en) Cooling control device for vehicle power unit
JP6503649B2 (en) Control device and control method for hybrid vehicle
JP5954188B2 (en) Secondary battery management device
JP4096885B2 (en) Cooling device for power conversion mechanism mounted on vehicle
JP2012183958A (en) Method and system for heating interior of electric vehicle
JP6260400B2 (en) Electric vehicle heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250