JP2015198463A - Inverter controller - Google Patents

Inverter controller Download PDF

Info

Publication number
JP2015198463A
JP2015198463A JP2014073591A JP2014073591A JP2015198463A JP 2015198463 A JP2015198463 A JP 2015198463A JP 2014073591 A JP2014073591 A JP 2014073591A JP 2014073591 A JP2014073591 A JP 2014073591A JP 2015198463 A JP2015198463 A JP 2015198463A
Authority
JP
Japan
Prior art keywords
control
voltage
inverter
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073591A
Other languages
Japanese (ja)
Other versions
JP6201867B2 (en
Inventor
スブラタ サハ
Suburata Saha
スブラタ サハ
有礼 島田
Arinori Shimada
有礼 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2014073591A priority Critical patent/JP6201867B2/en
Publication of JP2015198463A publication Critical patent/JP2015198463A/en
Application granted granted Critical
Publication of JP6201867B2 publication Critical patent/JP6201867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase in DC link voltage of an inverter and a total amount of a reflux current when a contactor for connecting the inverter and a DC power supply is in an open state.SOLUTION: The inverter controller executes a charging/discharging control for performing a switching control of an inverter by controlling a voltage phase against a current phase so as to repeat a capacitor charging mode in which power generated by a rotary electric machine is charged in a DC link capacitor and a capacitor discharging mode in which the DC link capacitor is discharged until a DC link voltage Vdc exceeds charging/discharging upper limit voltage THH when the contactor is in an open state during rotation of the rotary electric machine.

Description

本発明は、交流の回転電機を駆動制御する技術に関する。   The present invention relates to a technique for driving and controlling an AC rotating electrical machine.

例えば、電気自動車やハイブリッド自動車などの動力に用いられる大出力の交流の回転電機は高い電圧で駆動される。また、このような自動車に搭載される高電圧の電源は、直流のバッテリであるから、スイッチング素子を用いたインバータ回路によって例えば3相交流に変換される。回転電機は、電気エネルギーにより車両を駆動する動力を出力するモータとしての機能に留まらず、車両や内燃機関などの運動エネルギーにより発電を行う発電機としての機能も併せ持っている。回転電機により発電された電力は、バッテリに回生されて蓄電される。   For example, a high-output AC rotating electrical machine used for power of an electric vehicle or a hybrid vehicle is driven at a high voltage. Moreover, since the high voltage power supply mounted in such a motor vehicle is a direct current battery, it is converted into, for example, a three-phase alternating current by an inverter circuit using a switching element. The rotating electrical machine has not only a function as a motor that outputs power for driving a vehicle by electric energy but also a function as a generator that generates electric power by kinetic energy of a vehicle, an internal combustion engine, or the like. The electric power generated by the rotating electrical machine is regenerated and stored in the battery.

ところで、バッテリと回転電機の間、より具体的にはバッテリとインバータとの間には、開閉装置(コンタクタ)が備えられている場合がある。コンタクタは、例えばリレーを用いて構成されたシステムメインリレー(SMR)であり、車両のイグニッションキー(IGキー)がオン状態(有効状態)の際に接点が閉じて導通状態となり、IGキーがオフ状態(非有効状態)の際に接点が開いて非導通状態となる。即ち、SMRが閉状態においてバッテリとインバータ(及び回転電機)とが電気的に接続され、SMRが開状態においてバッテリとインバータ(及び回転電機)との電気的接続が遮断される。通常動作時には、IGキーの状態に応じてSMRの開閉状態も制御される。しかし、IGキーがオン状態の際に、車両の故障や衝突等によって、SMRが開放される場合がある。例えば、SMRへの電源供給が遮断された場合、SMRの駆動回路に異常が生じた場合、SMRが振動・衝撃やノイズ等によって機械的に故障した場合、SMR周辺の回路に断線が生じた場合、等にSMRの接点が開状態となり、コンタクタが開放状態となる可能性がある。   By the way, an opening / closing device (contactor) may be provided between the battery and the rotating electrical machine, more specifically between the battery and the inverter. The contactor is, for example, a system main relay (SMR) configured using a relay. When the ignition key (IG key) of the vehicle is on (valid), the contact is closed and the IG key is off. In the state (invalid state), the contact opens and becomes non-conductive. That is, the battery and the inverter (and the rotating electrical machine) are electrically connected when the SMR is closed, and the electrical connection between the battery and the inverter (and the rotating electrical machine) is disconnected when the SMR is open. During normal operation, the open / close state of the SMR is also controlled according to the state of the IG key. However, when the IG key is on, the SMR may be released due to a vehicle failure or a collision. For example, when the power supply to the SMR is cut off, when an abnormality occurs in the SMR drive circuit, when the SMR mechanically fails due to vibration, shock, noise, etc., or when the circuit around the SMR is disconnected , Etc., the contact of the SMR may be opened, and the contactor may be opened.

このため、コンタクタが開放状態となった場合には、インバータを構成するスイッチング素子を全てオフ状態とするシャットダウン制御(SD制御)が実施される場合がある。インバータの直流側(直流リンク部)には、直流電圧(直流リンク電圧)を平滑化する平滑コンデンサ(直流リンクコンデンサ)が備えられていることが多いが、SD制御が実施された場合、ステータコイルに蓄積された電力が、スイッチング素子に逆並列接続されたフリーホイールダイオード(FWD)を介して平滑コンデンサを充電する。このため、平滑コンデンサの端子間電圧(直流リンク電圧)が短時間で上昇する可能性がある。直流リンク電圧の上昇に備えて平滑コンデンサを大容量化、高耐圧化すると、平滑コンデンサの体格の増大につながる。また、インバータの高耐圧化も必要となる。その結果、回転電機駆動装置の小型化の妨げとなり、部品コスト、製造コスト、製品コストにも影響する。   For this reason, when a contactor will be in an open state, shutdown control (SD control) which makes all the switching elements which constitute an inverter into an OFF state may be performed. On the DC side (DC link portion) of the inverter, a smoothing capacitor (DC link capacitor) that smoothes the DC voltage (DC link voltage) is often provided. When SD control is performed, the stator coil The electric power accumulated in the capacitor charges the smoothing capacitor via a free wheel diode (FWD) connected in antiparallel to the switching element. For this reason, the voltage between the terminals of the smoothing capacitor (DC link voltage) may increase in a short time. Increasing the capacity and withstand voltage of the smoothing capacitor in preparation for an increase in the DC link voltage leads to an increase in the size of the smoothing capacitor. In addition, it is necessary to increase the breakdown voltage of the inverter. As a result, downsizing of the rotating electrical machine drive device is hindered, and the component cost, manufacturing cost, and product cost are also affected.

また、コンタクタが開放状態となった場合に、いくつかのスイッチング素子をオン状態にして電流を還流させるアクティブショート制御(アクティブショートサーキット制御(ASC制御))〜例えばゼロベクトルシーケンス制御(ZVS制御)〜が実行される場合もある。例えば、特開2011−55582号公報(特許文献1)には、インバータの上段側のスイッチング素子を全てオフ状態とし、下段側のスイッチング素子の何れか1つ以上をオン状態とする制御方法が開示されている(特許文献1:図2、第158、159、165段落等)。ASC制御では、直流リンク電圧の上昇は抑制できるが、スイッチング素子やステータコイルを大電流(還流電流)が流れることになる。また、熱等によってステータコイルに蓄積された電力が消費されるまで、大電流が流れ続けることになる。このため、スイッチング素子やステータコイルを消耗させ、寿命を低下させる可能性がある。また、大電流に対応したスイッチング素子などを用いる必要が生じて、部品コスト、製造コスト、製品コストにも影響する可能性がある。   In addition, when the contactor is in an open state, an active short control (active short circuit control (ASC control)) in which some switching elements are turned on to return the current to, for example, zero vector sequence control (ZVS control) May be executed. For example, Japanese Patent Laying-Open No. 2011-55582 (Patent Document 1) discloses a control method in which all upper switching elements of an inverter are turned off and one or more of lower switching elements are turned on. (Patent Document 1: FIG. 2, paragraphs 158, 159, 165, etc.). In the ASC control, an increase in the DC link voltage can be suppressed, but a large current (reflux current) flows through the switching element and the stator coil. Further, a large current continues to flow until the electric power accumulated in the stator coil is consumed due to heat or the like. For this reason, a switching element and a stator coil may be consumed, and a lifetime may be reduced. Moreover, it becomes necessary to use a switching element corresponding to a large current, which may affect the component cost, manufacturing cost, and product cost.

特開2011−55582号公報JP 2011-55582 A

上記背景に鑑みて、インバータと直流電源とを接続するコンタクタが開放状態となった際に、インバータの直流リンク電圧の上昇や、還流電流の総量を抑制しつつ、回転電機に流れる電流をゼロにする技術が望まれる。   In view of the above background, when the contactor connecting the inverter and the DC power supply is opened, the current flowing to the rotating electrical machine is reduced to zero while suppressing the increase of the DC link voltage of the inverter and the total amount of return current. Technology to do is desired.

上記課題に鑑みた本発明に係るインバータ制御装置の特徴構成は、
直流電源にコンタクタを介して接続されると共に交流の回転電機に接続されて、直流と3相交流との間で電力変換を行うインバータと、前記インバータの直流側の電圧である直流リンク電圧を平滑化する直流リンクコンデンサと、を備えて前記回転電機を駆動する回転電機駆動装置を制御対象として、前記インバータを構成するスイッチング素子をスイッチング制御するインバータ制御装置であって、
前記回転電機による生成電力を前記直流リンクコンデンサに充電させるコンデンサ充電モードと、前記直流リンクコンデンサを放電させるコンデンサ放電モードとで、前記インバータを制御可能であり、
前記回転電機の回転中に前記コンタクタが開放状態となった場合には、それぞれ前記直流リンク電圧に対して予め規定された充放電上限電圧と充放電下限電圧との間の範囲内で、前記コンデンサ充電モードと前記コンデンサ放電モードとを繰り返すように、電流位相に対する電圧位相を制御して前記インバータをスイッチング制御する充放電制御を、前記直流リンク電圧が前記充放電上限電圧を越えるまで、又は、前記回転電機の回転に同期して回転する2軸の直交ベクトル座標系において前記回転電機の界磁磁束の方向に沿ったd軸電流が上限値である上限d軸電流を越えるまで実行する点にある。
In view of the above problems, the characteristic configuration of the inverter control device according to the present invention is:
An inverter connected to a DC power source via a contactor and connected to an AC rotating electrical machine to convert power between DC and three-phase AC, and a DC link voltage that is a voltage on the DC side of the inverter is smoothed An inverter control device that controls a switching element that constitutes the inverter, with a rotating electrical machine drive device that drives the rotating electrical machine provided with a DC link capacitor to be controlled,
The inverter can be controlled in a capacitor charging mode for charging the DC link capacitor with power generated by the rotating electrical machine and a capacitor discharging mode for discharging the DC link capacitor,
When the contactor is in an open state during the rotation of the rotating electrical machine, the capacitor is within a range between a charge / discharge upper limit voltage and a charge / discharge lower limit voltage defined in advance for the DC link voltage. Charge / discharge control for switching the inverter by controlling the voltage phase with respect to the current phase so as to repeat the charge mode and the capacitor discharge mode until the DC link voltage exceeds the charge / discharge upper limit voltage, or In a two-axis orthogonal vector coordinate system that rotates in synchronization with the rotation of the rotating electrical machine, the process is executed until the d-axis current along the direction of the field magnetic flux of the rotating electrical machine exceeds the upper limit d-axis current that is the upper limit value. .

回転電機の回転中にコンタクタが開放状態となった場合には、回転電機によって生成された電力が回生されて直流リンクコンデンサを充電し、直流リンクコンデンサの端子間電圧(直流リンク電圧)が大きく上昇する。しかし、本構成のように、コンデンサ充電モードとコンデンサ放電モードとが、繰り返されることによって、直流リンク電圧の上昇を抑制することができる。例えば、シャットダウン制御では還流電流を抑制できるが直流リンクコンデンサの端子間電圧(直流リンク電圧)が大きく上昇し、アクティブショート制御では直流リンク電圧の上昇を抑制できるが大電流が還流し続けるという課題を有する。しかし、充放電を繰り返すことによって、大電流が還流し続けることなく、直流リンク電圧の上昇も緩和させることができる。このように、本構成によれば、インバータと直流電源とを接続するコンタクタが開放状態となった際に、インバータの直流リンク電圧の上昇や、還流電流の総量を抑制しつつ、回転電機に流れる電流をゼロにすることができる。   If the contactor opens during rotation of the rotating electrical machine, the power generated by the rotating electrical machine is regenerated to charge the DC link capacitor, and the DC link capacitor terminal voltage (DC link voltage) increases significantly. To do. However, as in this configuration, the capacitor charging mode and the capacitor discharging mode are repeated, so that an increase in the DC link voltage can be suppressed. For example, the shutdown current can be suppressed in shutdown control, but the voltage between DC link capacitors (DC link voltage) rises greatly. In active short control, the increase in DC link voltage can be suppressed, but large current continues to flow. Have. However, by repeating charging and discharging, the increase in the DC link voltage can be mitigated without the large current continuing to recirculate. Thus, according to this configuration, when the contactor connecting the inverter and the DC power supply is in an open state, the increase in the DC link voltage of the inverter and the total amount of the return current are suppressed, and the current flows to the rotating electrical machine. The current can be zero.

本発明に係るインバータ制御装置は、前記充放電制御の終了後、前記回転電機による生成電力を前記直流リンクコンデンサに充電させるコンデンサ充電ループと、前記生成電力を前記インバータ及び前記回転電機の間で循環させる還流ループとが1つずつ形成されるように、前記インバータを構成する前記スイッチング素子の内の1つ又は2つである対象スイッチング素子をオン状態とする混合ループ制御を実行すると好適である。上述したように、充放電制御が実行されるのは、直流リンク電圧が充放電上限電圧を越えたり、d軸電流が上限d軸電流を越えたりするなど、予め規定された終了条件を満たしたときである。

本構成によれば、充放電制御が終了する時点において、回転電機によって生成された電力が残っている場合のために、コンデンサ充電ループと還流ループとが1つずつ形成されるように混合ループ制御が実行される。換言すれば、コンデンサ充電ループが形成されるシャットダウン制御と、還流ループが形成されるアクティブショート制御とが同時に行われるように、混合ループ制御が実行される。シャットダウン制御では直流リンクコンデンサの端子間電圧(直流リンク電圧)が大きく上昇し、アクティブショート制御では大電流が還流し続けるという課題を有する。しかし、この構成のように、シャットダウン制御とアクティブショート制御とが同時進行的に実行されることによって、シャットダウン制御による電圧上昇を抑制し、アクティブショート制御により生じる大電流を抑制することができる。
The inverter control device according to the present invention includes a capacitor charging loop for charging the DC link capacitor with generated power by the rotating electrical machine after the end of the charge / discharge control, and circulating the generated power between the inverter and the rotating electrical machine. It is preferable to execute the mixed loop control for turning on the target switching elements which are one or two of the switching elements constituting the inverter so that the reflux loops to be formed are formed one by one. As described above, the charge / discharge control is executed because the DC link voltage exceeds the charge / discharge upper limit voltage, or the d-axis current exceeds the upper limit d-axis current, and the predetermined termination conditions are satisfied. Is the time.

According to this configuration, when the charge / discharge control is finished, the mixed loop control is performed so that one capacitor charging loop and one return loop are formed for the case where the electric power generated by the rotating electrical machine remains. Is executed. In other words, the mixing loop control is executed so that the shutdown control in which the capacitor charging loop is formed and the active short control in which the return loop is formed are performed simultaneously. The shutdown control has a problem that the voltage between the terminals of the DC link capacitor (DC link voltage) greatly increases, and the active short control has a problem that a large current continues to circulate. However, as in this configuration, the shutdown control and the active short control are executed simultaneously, whereby the voltage increase due to the shutdown control can be suppressed and the large current generated by the active short control can be suppressed.

本発明に係るインバータ制御装置は、さらに、前記混合ループ制御の開始後、3相の電流が全てゼロとなる際に、前記対象スイッチング素子を全てオフ状態とするように制御するシャットダウン制御を実行すると好適である。混合ループ制御からシャットダウン制御への移行時には、シャットダウンされるアームの電流、つまり還流ループを形成するアームの電流がゼロであるから、シャットダウンによって直流リンク電圧の上昇を招くことが抑制される。また、還流ループが解消されるので還流電流が流れ続けることによって、スイッチング素子や回転電機のステータコイルが消耗することも抑制される。   The inverter control device according to the present invention further executes a shutdown control for controlling the target switching elements to be in an OFF state when all of the three-phase currents are zero after the start of the mixed loop control. Is preferred. At the time of transition from the mixed loop control to the shutdown control, the current of the arm to be shut down, that is, the current of the arm forming the return loop is zero, so that the DC link voltage is prevented from increasing due to the shutdown. In addition, since the return loop is eliminated, the return current continues to flow, so that the switching element and the stator coil of the rotating electrical machine are also prevented from being consumed.

また、本発明に係るインバータ制御装置は、前記直流リンク電圧に基づいて前記コンタクタが開放状態となったことを判定可能であり、前記充放電上限電圧は、前記インバータの最大許容電圧に対して予め規定された余裕電圧を減じた電圧であり、前記充放電下限電圧は、前記コンタクタが開放状態となったことを判定する際のコンタクタ開放判定電圧であると好適である。コンタクタ開放判定電圧を充放電下限電圧とすることで、コンデンサ放電モードにおいて充分に直流リンクコンデンサの電荷を利用することができる。また、インバータの最大許容電圧から余裕電圧を減じた電圧を充放電上限電圧とすることで、直流リンク電圧が充放電上限電圧に達した場合に、余裕電圧分のマージンを有して、他の制御に移行することができる。   The inverter control device according to the present invention can determine that the contactor is in an open state based on the DC link voltage, and the charge / discharge upper limit voltage is set in advance with respect to a maximum allowable voltage of the inverter. It is a voltage obtained by subtracting a specified marginal voltage, and the charge / discharge lower limit voltage is preferably a contactor open determination voltage when determining that the contactor is in an open state. By making the contactor open determination voltage the charge / discharge lower limit voltage, the charge of the DC link capacitor can be sufficiently utilized in the capacitor discharge mode. Also, by setting the voltage obtained by subtracting the marginal voltage from the maximum allowable voltage of the inverter as the charge / discharge upper limit voltage, when the DC link voltage reaches the charge / discharge upper limit voltage, it has a margin for the marginal voltage, Control can be transferred.

回転電機駆動装置のシステム構成を模式的に示す回路ブロック図Circuit block diagram schematically showing the system configuration of the rotating electrical machine drive device コンタクタ開放時の制御例を模式的に示す波形図Waveform diagram schematically showing a control example when the contactor is open 電流位相及び電圧位相と充電モード及び放電モードとの関係を示す図The figure which shows the relationship between a current phase and a voltage phase, and charge mode and discharge mode 電流位相と電圧位相との関係を空間ベクトルにおいて示す図Diagram showing the relationship between current phase and voltage phase in space vector 回生電力抑制制御の原理を電流ベクトル空間において模式的に示す説明図Explanatory diagram schematically showing the principle of regenerative power suppression control in the current vector space 混合ループ制御による制御例を模式的に示す波形図Waveform diagram schematically showing an example of control by mixed loop control 混合ループ制御によるIGBTの制御例と電流の流れを示す等価回路図Example of IGBT control by mixed loop control and equivalent circuit diagram showing current flow 混合ループ制御によるIGBTの制御例と電流の流れを示す等価回路図Example of IGBT control by mixed loop control and equivalent circuit diagram showing current flow 混合ループ制御の対象アームと3相電流波形との関係を示す説明図Explanatory diagram showing the relationship between the target arm of the mixed loop control and the three-phase current waveform 混合ループ制御を開始するタイミングを示す説明図Explanatory drawing which shows the timing which starts mixed loop control コンタクタ開放時に適した制御方法と回転電機の動作状態との関係を示す図The figure which shows the relationship between the control method suitable when the contactor is opened and the operating state of the rotating electrical machine

以下、本発明のインバータ制御装置の実施形態を図面に基づいて説明する。インバータ制御装置20は、図1に示すように、インバータ10と直流リンクコンデンサ4とを備える回転電機駆動装置1を制御対象とし、回転電機駆動装置1を介して回転電機80を駆動制御する。後述するように、インバータ10は、直流電源(11)にコンタクタ9を介して接続されると共に、交流の回転電機80に接続されて直流と多相交流(ここでは3相交流)との間で電力変換を行う電力変換装置であり、交流1相分のアームが上段側スイッチング素子と下段側スイッチング素子との直列回路により構成されている。直流リンクコンデンサ4は、このインバータ10の直流側の電圧である直流リンク電圧Vdcを平滑化する。回転電機駆動装置1及びインバータ制御装置20による駆動対象の回転電機80は、例えばハイブリッド自動車や電気自動車等の車両の駆動力源となる回転電機である。車両の駆動力源としての回転電機80は、多相交流(ここでは3相交流)により動作する回転電機であり、電動機としても発電機としても機能することができる。   Embodiments of an inverter control device according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, the inverter control device 20 controls the rotary electric machine drive device 1 including the inverter 10 and the DC link capacitor 4 and controls the rotary electric machine 80 via the rotary electric machine drive device 1. As will be described later, the inverter 10 is connected to the DC power source (11) via the contactor 9, and is connected to an AC rotating electrical machine 80 to connect between DC and multiphase AC (here, three-phase AC). The power conversion device performs power conversion, and an AC one-phase arm is configured by a series circuit of an upper-stage switching element and a lower-stage switching element. The DC link capacitor 4 smoothes the DC link voltage Vdc that is the voltage on the DC side of the inverter 10. The rotating electrical machine 80 to be driven by the rotating electrical machine drive device 1 and the inverter control device 20 is a rotating electrical machine that serves as a driving force source for a vehicle such as a hybrid vehicle or an electric vehicle. The rotating electrical machine 80 as a vehicle driving force source is a rotating electrical machine that operates by multiphase alternating current (here, three-phase alternating current), and can function as both an electric motor and a generator.

鉄道のように架線から電力の供給を受けることができない自動車のような車両では、回転電機80を駆動するための電力源としてニッケル水素電池やリチウムイオン電池などの二次電池(バッテリ)や、電気二重層キャパシタなどの直流電源を搭載している。本実施形態では、回転電機80に電力を供給するための大電圧大容量の直流電源として、例えば電源電圧200〜400[V]の高圧バッテリ11(直流電源)が備えられている。回転電機80は、交流の回転電機であるから、高圧バッテリ11と回転電機80との間には、直流と交流(ここでは3相交流)との間で電力変換を行うインバータ10が備えられている。インバータ10の直流側の正極電源ラインPと負極電源ラインNとの間の電圧は、以下“直流リンク電圧Vdc”と称する。高圧バッテリ11は、インバータ10を介して回転電機80に電力を供給可能であると共に、回転電機80が発電して得られた電力を蓄電可能である。   In a vehicle such as an automobile that cannot receive power from an overhead line such as a railway, a secondary battery (battery) such as a nickel metal hydride battery or a lithium ion battery is used as a power source for driving the rotating electrical machine 80, It is equipped with a DC power supply such as a double layer capacitor. In the present embodiment, for example, a high voltage battery 11 (DC power supply) with a power supply voltage of 200 to 400 [V] is provided as a DC power supply with a large voltage and a large capacity for supplying electric power to the rotating electrical machine 80. Since the rotating electrical machine 80 is an alternating current rotating electrical machine, an inverter 10 that performs power conversion between direct current and alternating current (here, three-phase alternating current) is provided between the high voltage battery 11 and the rotating electrical machine 80. Yes. The voltage between the positive power supply line P and the negative power supply line N on the DC side of the inverter 10 is hereinafter referred to as “DC link voltage Vdc”. The high voltage battery 11 can supply electric power to the rotating electrical machine 80 via the inverter 10 and can store electric power obtained by the rotating electrical machine 80 generating electric power.

インバータ10と高圧バッテリ11との間には、インバータ10の直流側の正負両極間電圧(直流リンク電圧Vdc)を平滑化する平滑コンデンサ(直流リンクコンデンサ4)が備えられている。直流リンクコンデンサ4は、回転電機80の消費電力の変動に応じて変動する直流電圧(直流リンク電圧Vdc)を安定化させる。直流リンクコンデンサ4と高圧バッテリ11との間には、直流リンクコンデンサ4から回転電機80までの回路と、高圧バッテリ11との電気的な接続を切り離すことが可能なコンタクタ9が備えられている。本実施形態において、このコンタクタ9は、車両の最も上位の制御装置の1つである車両ECU(Electronic Control Unit)90からの指令に基づいて開閉するメカニカルリレーであり、例えばシステムメインリレー(SMR:System Main Relay)と称される。コンタクタ9は、車両のイグニッションキー(IGキー)がオン状態(有効状態)の際にSMRの接点が閉じて導通状態(接続状態)となり、IGキーがオフ状態(非有効状態)の際にSMRの接点が開いて非導通状態(開放状態)となる。インバータ10は、高圧バッテリ11と回転電機80との間にコンタクタ9を介して介在され、コンタクタ9が接続状態において高圧バッテリ11とインバータ10(及び回転電機80)とが電気的に接続され、コンタクタ9が開放状態において高圧バッテリ11とインバータ10(及び回転電機80)との電気的接続が遮断される。   Between the inverter 10 and the high voltage battery 11, a smoothing capacitor (DC link capacitor 4) for smoothing the voltage between the positive and negative electrodes (DC link voltage Vdc) on the DC side of the inverter 10 is provided. The DC link capacitor 4 stabilizes a DC voltage (DC link voltage Vdc) that fluctuates according to fluctuations in power consumption of the rotating electrical machine 80. Between the DC link capacitor 4 and the high voltage battery 11, a contactor 9 capable of disconnecting the electrical connection between the circuit from the DC link capacitor 4 to the rotating electrical machine 80 and the high voltage battery 11 is provided. In the present embodiment, the contactor 9 is a mechanical relay that opens and closes based on a command from a vehicle ECU (Electronic Control Unit) 90 that is one of the highest-level control devices of the vehicle. For example, a system main relay (SMR: System Main Relay). When the ignition key (IG key) of the vehicle is on (valid), the contactor 9 closes the contact of the SMR and becomes conductive (connected), and when the IG key is off (invalid), the contactor 9 The contact of is opened and becomes a non-conductive state (open state). The inverter 10 is interposed between the high voltage battery 11 and the rotating electrical machine 80 via the contactor 9, and when the contactor 9 is in the connected state, the high voltage battery 11 and the inverter 10 (and the rotating electrical machine 80) are electrically connected to each other. When 9 is open, the electrical connection between the high voltage battery 11 and the inverter 10 (and the rotating electrical machine 80) is cut off.

インバータ10は、直流リンク電圧Vdcを有する直流電力を複数相(nを自然数としてn相、ここでは3相)の交流電力に変換して回転電機80に供給すると共に、回転電機80が発電した交流電力を直流電力に変換して直流電源に供給する。インバータ10は、複数のスイッチング素子を有して構成される。スイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSiC−MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC−SIT(SiC - Static Induction Transistor)、GaN−MOSFET(Gallium Nitride - MOSFET)などの高周波での動作が可能なパワー半導体素子を適用すると好適である。図1に示すように、本実施形態では、スイッチング素子としてIGBT3が用いられる。   The inverter 10 converts the DC power having the DC link voltage Vdc into AC power of a plurality of phases (n is a natural number, n-phase, here, three phases) and supplies the AC power to the rotating electrical machine 80, and the AC generated by the rotating electrical machine 80 The power is converted to DC power and supplied to the DC power supply. The inverter 10 includes a plurality of switching elements. Switching elements include IGBTs (Insulated Gate Bipolar Transistors), power MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), SiC-MOSFETs (Silicon Carbide-Metal Oxide Semiconductor FETs), SiC-SITs (SiC-Static Induction Transistors), GaN- It is preferable to apply a power semiconductor element capable of operating at a high frequency, such as a MOSFET (Gallium Nitride-MOSFET). As shown in FIG. 1, in this embodiment, IGBT3 is used as a switching element.

例えば直流と多相交流(ここでは3相交流)との間で電力変換するインバータ10は、よく知られているように多相(ここでは3相)のそれぞれに対応する数のアームを有するブリッジ回路により構成される。つまり、図1に示すように、インバータ10の直流正極側(直流電源の正極側の正極電源ラインP)と直流負極側(直流電源の負極側の負極電源ラインN)との間に2つのIGBT3が直列に接続されて1つのアームが構成される。3相交流の場合には、この直列回路(1つのアーム)が3回線(3相)並列接続される。つまり、回転電機80のU相、V相、W相に対応するステータコイル8のそれぞれに一組の直列回路(アーム)が対応したブリッジ回路が構成される。図1及び図7等に示すように、インバータ10は、交流1相分のアームが、相補的にスイッチング制御される上段側スイッチング素子(上段側IGBT(31,33,35))と下段側スイッチング素子(下段側IGBT(32,34,36))との直列回路により構成される。   For example, an inverter 10 that converts power between direct current and multiphase alternating current (here, three-phase alternating current) has a number of arms corresponding to each of the multiple phases (here, three phases) as is well known. Consists of a circuit. That is, as shown in FIG. 1, two IGBTs 3 are provided between the DC positive side (positive power supply line P on the positive side of the DC power supply) and the DC negative side (negative power supply line N on the negative side of the DC power supply) of the inverter 10. Are connected in series to form one arm. In the case of three-phase alternating current, this series circuit (one arm) is connected in parallel with three lines (three phases). That is, a bridge circuit in which a set of series circuits (arms) corresponds to each of the stator coils 8 corresponding to the U phase, the V phase, and the W phase of the rotating electrical machine 80 is configured. As shown in FIG. 1 and FIG. 7 and the like, the inverter 10 includes an upper-stage switching element (upper-stage IGBT (31, 33, 35)) and lower-stage switching whose arms for one AC phase are complementarily switched. It is constituted by a series circuit with an element (lower stage IGBT (32, 34, 36)).

対となる各相のIGBT3による直列回路(アーム)の中間点、つまり、正極電源ラインPの側のIGBT3(上段側IGBT(上段側スイッチング素子)31,33,35:図7等参照)と負極電源ラインN側のIGBT3(下段側IGBT(下段側スイッチング素子)32,34,36:図7等参照)との接続点は、回転電機80のステータコイル8(8u,8v,8w:図7等参照)にそれぞれ接続される。尚、各IGBT3には、負極“N”から正極“P”へ向かう方向(下段側から上段側へ向かう方向)を順方向として、並列にフリーホイールダイオード(FWD)5が備えられている。   The intermediate point of the series circuit (arm) of each pair of IGBTs 3, that is, the IGBT 3 on the positive power supply line P side (upper side IGBT (upper side switching elements) 31, 33, 35: see FIG. 7 etc.) and the negative electrode The connection point with the IGBT 3 on the power supply line N side (lower stage IGBTs (lower stage switching elements) 32, 34, 36: see FIG. 7 etc.) is the stator coil 8 (8u, 8v, 8w: FIG. 7 etc.) of the rotating electrical machine 80. Connected to each other). Each IGBT 3 is provided with a free wheel diode (FWD) 5 in parallel with the direction from the negative electrode “N” to the positive electrode “P” (the direction from the lower side to the upper side) as the forward direction.

図1に示すように、インバータ10は、インバータ制御装置20により制御される。インバータ制御装置20は、マイクロコンピュータ等の論理回路を中核部材として構築されている。例えば、インバータ制御装置20は、車両ECU90等の他の制御装置等からCAN(Controller Area Network)などを介して要求信号として提供される回転電機80の目標トルクTMに基づきインバータ10を介して回転電機80を制御する。   As shown in FIG. 1, the inverter 10 is controlled by an inverter control device 20. The inverter control device 20 is constructed using a logic circuit such as a microcomputer as a core member. For example, the inverter control device 20 is connected to the rotating electrical machine via the inverter 10 based on the target torque TM of the rotating electrical machine 80 provided as a request signal from another control device such as the vehicle ECU 90 via a CAN (Controller Area Network). 80 is controlled.

インバータ制御装置20は、インバータ10を構成するIGBT3のスイッチングパターンの形態(電圧波形制御の形態)として、少なくともパルス幅変調(PWM:Pulse Width Modulation)制御と矩形波制御(1パルス制御)との2つの制御形態を有している。また、インバータ制御装置20は、ステータの界磁制御の形態として、モータ電流に対して最大トルクを出力する最大トルク制御や、モータ電流に対して最大効率でモータを駆動する最大効率制御などの通常界磁制御、及び、トルクに寄与しない界磁電流を流して界磁磁束を弱める弱め界磁制御や、逆に界磁磁束を強める強め界磁制御などの界磁調整制御を有している。   The inverter control device 20 has at least two of pulse width modulation (PWM) control and rectangular wave control (one pulse control) as the switching pattern form (voltage waveform control form) of the IGBT 3 constituting the inverter 10. There are two control modes. Further, the inverter control device 20 is a normal field control such as a maximum torque control that outputs a maximum torque with respect to a motor current and a maximum efficiency control that drives a motor with a maximum efficiency with respect to the motor current, as a form of field control of the stator In addition, field adjustment control such as field weakening control that weakens the field flux by flowing a field current that does not contribute to torque, and conversely strong field control that strengthens the field flux.

本実施形態では、回転電機80の回転に同期して回転する2軸の直交ベクトル空間(座標系)における電流ベクトル制御法を用いた電流フィードバック制御を実行して回転電機80を制御する。電流ベクトル制御法では、例えば、永久磁石による界磁磁束の方向に沿ったd軸と、このd軸に対して電気的にπ/2進んだq軸との2軸の直交ベクトル空間において電流フィードバック制御を行う。インバータ制御装置20は、制御対象となる回転電機80の目標トルクTMに基づいてトルク指令を決定し、d軸及びq軸の電流指令を決定する。そして、インバータ制御装置20は、電流指令と回転電機80の各相のステータコイル8との間を流れる実電流との偏差を求めて比例積分制御演算(PI制御演算)や比例積分微分制御演算(PID制御演算)を行い、最終的に3相の電圧指令を決定する。この電圧指令に基づいて、スイッチング制御信号が生成される。回転電機80の実際の3相空間と2軸の直交ベクトル空間との間の相互の座標変換は、例えばレゾルバなどの回転センサ13により検出された磁極位置に基づいて行われる。また、回転電機80の回転速度(角速度)や回転数[rpm]は、回転センサ13の検出結果より導出される。回転電機80の各相のステータコイル8を流れる実電流は電流センサ12により検出される。   In this embodiment, the rotating electrical machine 80 is controlled by executing current feedback control using a current vector control method in a two-axis orthogonal vector space (coordinate system) that rotates in synchronization with the rotation of the rotating electrical machine 80. In the current vector control method, for example, current feedback is performed in a two-axis orthogonal vector space of a d-axis along the direction of the field magnetic flux by a permanent magnet and a q-axis that is electrically advanced by π / 2 with respect to the d-axis. Take control. The inverter control device 20 determines a torque command based on the target torque TM of the rotating electrical machine 80 to be controlled, and determines d-axis and q-axis current commands. Then, the inverter control device 20 obtains a deviation between the current command and the actual current flowing between the stator coils 8 of each phase of the rotating electrical machine 80 to obtain a proportional integral control calculation (PI control calculation) or a proportional integral differential control calculation ( PID control calculation) is performed, and finally a three-phase voltage command is determined. A switching control signal is generated based on this voltage command. The mutual coordinate conversion between the actual three-phase space of the rotating electrical machine 80 and the biaxial orthogonal vector space is performed based on the magnetic pole position detected by the rotation sensor 13 such as a resolver. Further, the rotation speed (angular speed) and the rotation speed [rpm] of the rotating electrical machine 80 are derived from the detection result of the rotation sensor 13. The actual current flowing through the stator coil 8 of each phase of the rotating electrical machine 80 is detected by the current sensor 12.

上述したように、インバータ10のスイッチング形態には、PWM制御モードと矩形波制御モードとがある。PWM制御は、U,V,Wの各相のインバータ10の出力電圧波形であるPWM波形が、上段側スイッチング素子がオン状態となるハイレベル期間と、下段側スイッチング素子がオン状態となるローレベル期間とにより構成されるパルスの集合で構成されると共に、その基本波成分が一定期間で略正弦波状となるように、各パルスのデューティが設定される制御である。公知の正弦波PWM(SPWM : Sinusoidal PWM)や、空間ベクトルPWM(SVPWM : Space Vector PWM)、過変調PWM制御などが含まれる。本実施形態においては、PWM制御では、直交ベクトル空間の各軸に沿った界磁電流(d軸電流)と駆動電流(q軸電流)との合成ベクトルである電機子電流を制御してインバータ10を駆動制御する。つまり、インバータ制御装置20は、d−q軸ベクトル空間における電機子電流の電流位相角(q軸電流ベクトルと電機子電流ベクトルとの為す角)を制御してインバータ10を駆動制御する。従って、PWM制御は、電流位相制御とも称される。   As described above, the switching mode of the inverter 10 includes the PWM control mode and the rectangular wave control mode. In the PWM control, the PWM waveform that is the output voltage waveform of the inverter 10 of each phase of U, V, and W is in a high level period in which the upper switching element is turned on and in the low level in which the lower switching element is turned on. This is a control in which the duty of each pulse is set so that the fundamental wave component becomes a substantially sine wave shape for a certain period, as well as a set of pulses composed of periods. Known sine wave PWM (SPWM), space vector PWM (SVPWM), overmodulation PWM control, etc. are included. In the present embodiment, in the PWM control, the armature current, which is a combined vector of the field current (d-axis current) and the drive current (q-axis current) along each axis of the orthogonal vector space, is controlled to control the inverter 10. Is controlled. That is, the inverter control device 20 controls the drive of the inverter 10 by controlling the current phase angle of the armature current (angle formed by the q-axis current vector and the armature current vector) in the dq-axis vector space. Therefore, the PWM control is also referred to as current phase control.

これに対して、矩形波制御(1パルス制御)は、3相交流電力の電圧位相を制御してインバータ10を制御する方式である。3相交流電力の電圧位相とは、3相の電圧指令値の位相に相当する。例えば、矩形波制御は、インバータ10の各スイッチング素子のオン及びオフが回転電機80の電気角1周期に付き1回ずつ行われ、各相について電気角1周期に付き1パルスが出力される回転同期制御である。矩形波制御は、3相電圧の電圧位相を制御することによってインバータ10を駆動するので、電圧位相制御と称される。   On the other hand, the rectangular wave control (one pulse control) is a method of controlling the inverter 10 by controlling the voltage phase of the three-phase AC power. The voltage phase of the three-phase AC power corresponds to the phase of the three-phase voltage command value. For example, in the rectangular wave control, each switching element of the inverter 10 is turned on and off once per electrical angle cycle of the rotating electrical machine 80, and one pulse is output per electrical angle cycle for each phase. Synchronous control. The rectangular wave control is called voltage phase control because the inverter 10 is driven by controlling the voltage phase of the three-phase voltage.

また、上述したように、インバータ制御装置20は、界磁制御の形態として、通常界磁制御と、界磁調整制御とを有している。最大トルク制御や最大効率制御などの通常界磁制御は、回転電機80の目標トルクTMに基づいて設定される基本的な電流指令値(d軸電流指令、q軸電流指令)を用いた制御形態である。これに対して、弱め界磁制御とは、ステータからの界磁磁束を弱めるために、この基本的な電流指令値の内のd軸電流指令を調整する制御形態である。また、強め界磁制御とは、ステータからの界磁磁束を強めるために、この基本的な電流指令値の内のd軸電流指令を調整する制御形態である。弱め界磁制御や強め界磁制御などに際してd軸電流を調整するための調整値を界磁調整電流と称する。   In addition, as described above, the inverter control device 20 has normal field control and field adjustment control as forms of field control. Normal field control such as maximum torque control and maximum efficiency control is a control mode using basic current command values (d-axis current command, q-axis current command) set based on the target torque TM of the rotating electrical machine 80. . On the other hand, field weakening control is a control mode in which the d-axis current command is adjusted among the basic current command values in order to weaken the field magnetic flux from the stator. Further, the strong field control is a control mode in which the d-axis current command is adjusted among the basic current command values in order to increase the field magnetic flux from the stator. An adjustment value for adjusting the d-axis current in the field weakening control or the field strengthening control is referred to as a field adjustment current.

車両には、高圧バッテリ11の他に、高圧バッテリ11よりも低電圧の電源である低圧バッテリ(不図示)も搭載されている。低圧バッテリの電源電圧は、例えば12〜24[V]である。低圧バッテリと高圧バッテリ11とは、互いに絶縁されており、互いにフローティングの関係にある。低圧バッテリは、インバータ制御装置20や車両ECU90の他、オーディオシステムや灯火装置、室内照明、計器類のイルミネーション、パワーウィンドウなどの電装品や、これらを制御する制御装置に電力を供給する。車両ECU90やインバータ制御装置20などの電源電圧は、例えば5[V]や3.3[V]である。   In addition to the high voltage battery 11, a low voltage battery (not shown), which is a power source having a lower voltage than the high voltage battery 11, is mounted on the vehicle. The power supply voltage of the low voltage battery is, for example, 12 to 24 [V]. The low voltage battery and the high voltage battery 11 are insulated from each other and have a floating relationship with each other. The low-voltage battery supplies electric power to the inverter control device 20 and the vehicle ECU 90 as well as to electrical components such as an audio system, a lighting device, room lighting, instrument illumination, and a power window, and a control device that controls these components. The power supply voltage of the vehicle ECU 90 and the inverter control device 20 is, for example, 5 [V] or 3.3 [V].

ところで、インバータ10を構成する各IGBT3の制御端子であるゲート端子は、ドライバ回路30を介してインバータ制御装置20に接続されており、それぞれ個別にスイッチング制御される。回転電機80を駆動するための高圧系回路と、マイクロコンピュータなどを中核とするインバータ制御装置20などの低圧系回路とは、動作電圧(回路の電源電圧)が大きく異なる。このため、このため、各IGBT3に対するゲート駆動信号(スイッチング制御信号)の駆動能力(例えば電圧振幅や出力電流など、後段の回路を動作させる能力)をそれぞれ高めて中継するドライバ回路30(制御信号駆動回路)が備えられている。低圧系回路のインバータ制御装置20により生成されたIGBT3のゲート駆動信号は、ドライバ回路30を介して高圧回路系のゲート駆動信号としてインバータ10に供給される。ドライバ回路30は、例えばフォトカプラやトランスなどの絶縁素子やドライバICを利用して構成される。   By the way, the gate terminal which is a control terminal of each IGBT3 which comprises the inverter 10 is connected to the inverter control apparatus 20 via the driver circuit 30, and each switching control is carried out individually. The high voltage system circuit for driving the rotating electrical machine 80 and the low voltage system circuit such as the inverter control device 20 having a microcomputer as a core are greatly different in operating voltage (circuit power supply voltage). For this reason, the driver circuit 30 (control signal drive) relays the gate drive signal (switching control signal) for each IGBT 3 by increasing the drive ability (for example, the ability to operate the subsequent circuit such as voltage amplitude and output current). Circuit). The gate drive signal of the IGBT 3 generated by the inverter control device 20 of the low voltage system circuit is supplied to the inverter 10 through the driver circuit 30 as a gate drive signal of the high voltage circuit system. The driver circuit 30 is configured using an insulating element such as a photocoupler or a transformer, or a driver IC, for example.

上述したように、コンタクタ9は、車両のイグニッションキー(IGキー)がオン状態(有効状態)の際に接続状態となり、IGキーがオフ状態(非有効状態)の際に開放状態となる。通常動作時には、IGキーの状態に応じてコンタクタ9の開閉状態も制御される。しかし、IGキーがオン状態の際に、車両の故障や衝突等によって、コンタクタ9が開放状態となる場合がある。例えば、コンタクタ9への電源供給が遮断された場合、コンタクタ9の駆動回路に異常が生じた場合、コンタクタ9が振動・衝撃やノイズ等によって機械的に故障した場合、コンタクタ9周辺の回路に断線が生じた場合、等にコンタクタ9が開放状態となる可能性がある。コンタクタ9が開放状態となると、高圧バッテリ11からインバータ10側への電力の供給は直ちに遮断される。同様に、回転電機80からインバータ10を介して高圧バッテリ11への電力の回生もコンタクタ9によって遮断される。   As described above, the contactor 9 is connected when the ignition key (IG key) of the vehicle is on (valid), and is open when the IG key is off (invalid). During normal operation, the open / close state of the contactor 9 is also controlled according to the state of the IG key. However, when the IG key is in the ON state, the contactor 9 may be in an open state due to a vehicle failure or a collision. For example, when the power supply to the contactor 9 is interrupted, when the drive circuit of the contactor 9 is abnormal, when the contactor 9 is mechanically damaged due to vibration, shock, noise, etc., the circuit around the contactor 9 is disconnected. If this occurs, there is a possibility that the contactor 9 will be open. When the contactor 9 is in an open state, the supply of power from the high voltage battery 11 to the inverter 10 side is immediately cut off. Similarly, the regeneration of electric power from the rotating electrical machine 80 to the high voltage battery 11 via the inverter 10 is also blocked by the contactor 9.

このため、コンタクタ9が開放状態となった場合には、インバータ10を構成するIGBT3を全てオフ状態とするシャットダウン制御(SD制御)が実施される場合がある。SD制御が実施された場合、ステータコイル8に蓄積された電力が、FWD5を介して直流リンクコンデンサ4を充電する。このため、直流リンクコンデンサ4の端子間電圧(直流リンク電圧Vdc)が短時間で上昇する可能性がある。直流リンク電圧Vdcの上昇に備えて直流リンクコンデンサ4を大容量化、高耐圧化すると、コンデンサの体格の増大につながる。また、インバータ10の高耐圧化も必要となる。その結果、回転電機駆動装置1の小型化の妨げとなり、部品コスト、製造コスト、製品コストにも影響する。   For this reason, when the contactor 9 is in an open state, shutdown control (SD control) that turns off all the IGBTs 3 constituting the inverter 10 may be performed. When the SD control is performed, the electric power stored in the stator coil 8 charges the DC link capacitor 4 via the FWD 5. For this reason, the voltage between the terminals of the DC link capacitor 4 (DC link voltage Vdc) may rise in a short time. Increasing the capacity and withstand voltage of the DC link capacitor 4 in preparation for the rise of the DC link voltage Vdc leads to an increase in the size of the capacitor. Further, it is necessary to increase the breakdown voltage of the inverter 10. As a result, downsizing of the rotating electrical machine drive device 1 is hindered, and the component cost, manufacturing cost, and product cost are also affected.

また、コンタクタ9が開放状態となった場合に、いくつかのIGBT3をオン状態にして電流を還流させるアクティブショート制御(アクティブショートサーキット制御(ASC制御))〜例えばゼロベクトルシーケンス制御(ZVS制御)〜が実行される場合もある。電流(還流電流)の有するエネルギーは、IGBT3やステータコイル8などにおいて熱などによって消費される。ASC制御では、直流リンク電圧Vdcの上昇は抑制できるが、IGBT3やステータコイル8を大電流が流れることになる。還流電流は、ステータコイル8に蓄積された電力が消費されるまで流れ続けるので、IGBT3やステータコイル8の寿命を低下させる可能性がある。また、大電流に対応した素子などを用いる必要が生じて、部品コスト、製造コスト、製品コストにも影響する可能性がある。また、大電流等によって発生する熱によって、回転電機80のロータに備えられた永久磁石が減磁し、回転電機80の耐久性が低下する可能性もある。   Also, when the contactor 9 is in an open state, active short control (active short circuit control (ASC control)) in which some of the IGBTs 3 are turned on to return the current to, for example, zero vector sequence control (ZVS control) May be executed. The energy of the current (return current) is consumed by heat or the like in the IGBT 3 or the stator coil 8. In the ASC control, an increase in the DC link voltage Vdc can be suppressed, but a large current flows through the IGBT 3 and the stator coil 8. Since the reflux current continues to flow until the electric power accumulated in the stator coil 8 is consumed, there is a possibility that the lifetime of the IGBT 3 and the stator coil 8 may be reduced. In addition, it is necessary to use an element corresponding to a large current, which may affect part cost, manufacturing cost, and product cost. Further, due to heat generated by a large current or the like, the permanent magnet provided in the rotor of the rotating electrical machine 80 may be demagnetized, and the durability of the rotating electrical machine 80 may be reduced.

本実施形態のインバータ制御装置20は、回転電機80による生成電力を直流リンクコンデンサ4に充電させるコンデンサ充電モードと、直流リンクコンデンサ4を放電させるコンデンサ放電モードとを繰り返して、回生電力を抑制しつつ、回転電機80に流れる電流をゼロにする制御(回生電力抑制制御)を実行する点に特徴を有する。即ち、インバータ制御装置20は、インバータ10と高圧バッテリ11とを接続するコンタクタ9が開放状態となった際に、直流リンク電圧Vdcの上昇や、還流電流の総量を抑制しつつ、回転電機80に流れる電流をゼロにする。尚、上述したように、高圧バッテリ11とは別に、不図示の低圧バッテリが備えられており、インバータ制御装置20や車両ECU90は、低圧バッテリから電力を供給されて動作する。本実施形態においては、コンタクタ9が開放状態となっても、低圧バッテリからインバータ制御装置20や車両ECU90への電力供給は維持されているものとして説明する。   The inverter control device 20 according to the present embodiment repeatedly suppresses regenerative power by repeating a capacitor charging mode in which the DC link capacitor 4 is charged with power generated by the rotating electrical machine 80 and a capacitor discharging mode in which the DC link capacitor 4 is discharged. The present embodiment is characterized in that a control (regenerative power suppression control) for reducing the current flowing through the rotating electrical machine 80 to zero is executed. That is, when the contactor 9 that connects the inverter 10 and the high-voltage battery 11 is opened, the inverter control device 20 controls the rotating electrical machine 80 while suppressing an increase in the DC link voltage Vdc and the total amount of return current. Zero the flowing current. As described above, a low voltage battery (not shown) is provided separately from the high voltage battery 11, and the inverter control device 20 and the vehicle ECU 90 are operated by being supplied with electric power from the low voltage battery. In the present embodiment, description will be made assuming that power supply from the low-voltage battery to the inverter control device 20 and the vehicle ECU 90 is maintained even when the contactor 9 is in an open state.

インバータ制御装置20は、回転電機80の回転中にコンタクタ9が開放状態となった場合に、コンデンサ充電モードとコンデンサ放電モードとを繰り返すように、電流位相に対する電圧位相を制御してインバータ10をスイッチング制御する充放電制御を実行する。充放電制御は、それぞれ直流リンク電圧Vdcに対して予め規定された充放電上限電圧THHと充放電下限電圧THLとの間の範囲内で実行される(図2参照)。尚、充放電制御は、予め規定された終了条件が満たされるまで実行される。具体的には、充放電制御は、直流リンク電圧Vdcが充放電上限電圧THHを越えるまで、又は、回転電機80の回転に同期して回転する2軸の直交ベクトル座標系において回転電機80の界磁磁束の方向に沿ったd軸電流が上限値である上限d軸電流を越えるまで実行される。即ち、充電制御は、電圧制御/電流制御の何れでも実行可能である。充放電制御の実行中に、これらの終了条件が成立した場合には、後述するように、充放電制御とは別の制御方式(混合ループ制御)を用いた回生電力抑制制御が引き続き実行される。   The inverter control device 20 switches the inverter 10 by controlling the voltage phase with respect to the current phase so that the capacitor charging mode and the capacitor discharging mode are repeated when the contactor 9 is opened while the rotating electrical machine 80 is rotating. The charge / discharge control to be controlled is executed. The charge / discharge control is executed within a range between the charge / discharge upper limit voltage THH and the charge / discharge lower limit voltage THL respectively defined in advance for the DC link voltage Vdc (see FIG. 2). Note that the charge / discharge control is executed until a predetermined termination condition is satisfied. Specifically, the charge / discharge control is performed in the field of the rotating electrical machine 80 in the two-axis orthogonal vector coordinate system that rotates until the DC link voltage Vdc exceeds the charge / discharge upper limit voltage THH or in synchronization with the rotation of the rotating electrical machine 80. It is executed until the d-axis current along the direction of the magnetic flux exceeds the upper limit d-axis current which is the upper limit value. That is, the charging control can be executed by either voltage control / current control. When these termination conditions are satisfied during the execution of the charge / discharge control, the regenerative power suppression control using a control method (mixed loop control) different from the charge / discharge control is continuously executed as will be described later. .

図3は、電流位相(I)及び電圧位相(V)とコンデンサ充電モード及びコンデンサ放電モードとの関係を示している。電圧位相(I)及び電圧位相(V)の振幅中心を基準とした正負の状態が排他的である時(T1及びT3)はコンデンサ充電モードとなり、正負の状態が同一である時(T2及びT4)はコンデンサ放電モードとなる。インバータ制御装置20は、電流位相(I)に対する電圧位相(V)を制御して、インバータ10を、コンデンサ充電モード又はコンデンサ放電モードでスイッチング制御し、充放電制御を実行する。上述したように、インバータ制御装置20は、電流位相制御や電圧位相制御を実行可能であり、それらの制御機能を利用して充放電制御が実行される。   FIG. 3 shows the relationship between the current phase (I) and voltage phase (V) and the capacitor charging mode and capacitor discharging mode. When the positive and negative states based on the amplitude centers of the voltage phase (I) and the voltage phase (V) are exclusive (T1 and T3), the capacitor charging mode is set, and when the positive and negative states are the same (T2 and T4). ) Is the capacitor discharge mode. The inverter control device 20 controls the voltage phase (V) with respect to the current phase (I), performs switching control of the inverter 10 in the capacitor charge mode or the capacitor discharge mode, and executes charge / discharge control. As described above, the inverter control device 20 can execute current phase control and voltage phase control, and charge / discharge control is executed using these control functions.

図4は、電流位相と電圧位相との関係を空間ベクトルにおいて示している。“IV”は電流ベクトルを示し、“VV”は電圧ベクトルを示している。本実施形態では、電流位相に対する電圧位相を制御してインバータ10をスイッチング制御するので、“IV”は実電流の電流ベクトルに対応し、“VV”はフードバック制御における電圧指令のベクトルに対応する。具体的な電圧位相の制御についての説明に先だって、図4に示すベクトルについて説明する。   FIG. 4 shows the relationship between the current phase and the voltage phase in the space vector. “IV” indicates a current vector, and “VV” indicates a voltage vector. In the present embodiment, since the inverter 10 is switched by controlling the voltage phase with respect to the current phase, “IV” corresponds to the current vector of the actual current, and “VV” corresponds to the voltage command vector in the food back control. . Prior to the description of the specific voltage phase control, the vectors shown in FIG. 4 will be described.

インバータ10は、6つのスイッチング素子のオン/オフ状態によって、2つのゼロベクトル及び6つの基本ベクトルを出力可能である。これらのベクトルは、UVW相のスイッチング素子のオン/オフ状態によって表現される。例えば、上段側のUVW相のスイッチング素子がそれぞれオン・オフ・オンであり、下段側のUVW相のスイッチング素子がそれぞれオフ・オン・オフである場合には、オンを“1”、オフを“0”とした6桁の2進数により“101010”と表される。但し、UVW相の各アームの上側スイッチング素子と下段側スイッチング素子とは、相補的にスイッチングされるので、6桁の2進数の上位3桁及び下位3桁は互いに排他的な値を取る。従って、上段側及び下段側の何れかのスイッチング素子のオン/オフ状態を3桁の2進数で表せばベクトルを特定することができる。図4では、UVW相の上段側スイッチング素子のオン/オフ状態で示した3桁の2進数で各基本ベクトルを表している。尚、ゼロベクトルは“000”及び“111”であり、この場合には電流は還流するため、図4では中心点に対応する。つまり、方向及び長さのないゼロベクトルとなる。   The inverter 10 can output two zero vectors and six basic vectors according to the on / off states of the six switching elements. These vectors are expressed by the on / off states of the UVW phase switching elements. For example, when the upper UVW phase switching elements are ON / OFF / ON and the lower UVW phase switching elements are OFF / ON / OFF, ON is “1” and OFF is “ It is expressed as “101010” by a 6-digit binary number of “0”. However, since the upper switching element and the lower switching element of each arm of the UVW phase are switched complementarily, the upper 3 digits and the lower 3 digits of the 6-digit binary number take mutually exclusive values. Therefore, the vector can be specified by representing the on / off state of the switching element on either the upper stage side or the lower stage side with a three-digit binary number. In FIG. 4, each basic vector is represented by a three-digit binary number indicated by the on / off state of the upper switching element of the UVW phase. Note that the zero vectors are “000” and “111”. In this case, the current flows back, and thus corresponds to the center point in FIG. That is, the zero vector has no direction and no length.

電圧指令ベクトル“VV”を実電流ベクトル“IV”に対して、30〜90度進めるとコンデンサ放電モードとなる。一方、電圧指令ベクトル“VV”を実電流ベクトル“IV”に対して、90〜150度進めるとコンデンサ充電モードとなる。実用的には、電圧指令ベクトル“VV”が実電流ベクトル“IV”に対して、60〜120度の範囲で進むように調整するとよい。この範囲で位相を調整するとq軸電流を早く減少させることができる。q軸電流を減少させることの意図については、以下図5を参照して説明する。   When the voltage command vector “VV” is advanced by 30 to 90 degrees with respect to the actual current vector “IV”, the capacitor discharge mode is set. On the other hand, when the voltage command vector “VV” is advanced by 90 to 150 degrees with respect to the actual current vector “IV”, the capacitor charging mode is set. Practically, the voltage command vector “VV” may be adjusted to advance in the range of 60 to 120 degrees with respect to the actual current vector “IV”. If the phase is adjusted within this range, the q-axis current can be reduced quickly. The intention of reducing the q-axis current will be described below with reference to FIG.

図5は、上述したd軸及びq軸の2相ベクトル空間(座標系)、具体的には2相電流ベクトル空間(座標系)を示している。図5において、曲線100(101〜103)は、それぞれ回転電機80が、あるトルクを出力する電機子電流Ia(Ia^2=Id^2+Iq^2)のベクトル軌跡を示す等トルク線である。等トルク線101よりも等トルク線102の方が低トルクであり、さらに等トルク線102よりも等トルク線103の方が低トルクである。曲線200(201〜204)は、定電流円を示しており、曲線300は電圧速度楕円(電圧制限楕円)を示している。定電流円は、電機子電流が一定値となるベクトル軌跡である。電圧速度楕円は、回転電機80の回転速度及びインバータ10の直流電圧(直流リンク電圧Vdc)の値に応じて設定可能な電流指令の範囲を示すベクトル軌跡である。電圧速度楕円300の大きさは、直流リンク電圧Vdcと回転電機80の回転速度(又は回転数)とに基づいて定まる。具体的には、電圧速度楕円300の径は直流リンク電圧Vdcに比例し、回転電機80の回転速度に反比例する。d軸及びq軸の電流指令は、このような電流ベクトル空間において電圧速度楕円300内に存在する等トルク線100の線上の動作点における値として設定される。   FIG. 5 shows the two-phase vector space (coordinate system) of the d-axis and the q-axis, specifically, the two-phase current vector space (coordinate system). In FIG. 5, curves 100 (101 to 103) are isotorque lines indicating the vector locus of the armature current Ia (Ia ^ 2 = Id ^ 2 + Iq ^ 2) at which the rotating electrical machine 80 outputs a certain torque. The equal torque line 102 has a lower torque than the equal torque line 101, and the equal torque line 103 has a lower torque than the equal torque line 102. A curve 200 (201 to 204) indicates a constant current circle, and a curve 300 indicates a voltage speed ellipse (voltage limit ellipse). The constant current circle is a vector locus in which the armature current has a constant value. The voltage speed ellipse is a vector locus indicating a current command range that can be set according to the rotation speed of the rotating electrical machine 80 and the value of the DC voltage (DC link voltage Vdc) of the inverter 10. The size of the voltage speed ellipse 300 is determined based on the DC link voltage Vdc and the rotational speed (or rotational speed) of the rotating electrical machine 80. Specifically, the diameter of voltage speed ellipse 300 is proportional to DC link voltage Vdc and inversely proportional to the rotational speed of rotating electrical machine 80. The d-axis and q-axis current commands are set as values at operating points on the isotorque line 100 existing in the voltage velocity ellipse 300 in such a current vector space.

ここで、直流リンクコンデンサ4に供給される電力(充電電力)を抑制する上では、トルクに寄与しないd軸電流については、電流量を減らすことなく、より多く流し続けて損失を増大させると好適である(いわゆる高損失制御)。例えば、現在の動作点P1からq軸電流を減少させてトルクをゼロに近づけていきながら、d軸電流を増加させる。つまり、図5にブロック矢印で示すように、現在の動作点P1から、q軸電流がゼロでd軸電流の絶対値が動作点P1よりも大きい動作点P2まで動作点を遷移させる。ここでは、動作点P2は電圧速度楕円300の中心である。動作点P2に達した後は、図5にブロック矢印で示すように、d軸電流の絶対値を減少させて動作点P0まで動作点を遷移させる。動作点P1から動作点P2を経由して動作点P0に至る制御に際しては、上述した界磁調整機能も利用されると好適である。   Here, in order to suppress the electric power (charging power) supplied to the DC link capacitor 4, it is preferable to increase the loss by continuously flowing more d-axis current that does not contribute to torque without reducing the amount of current. (So-called high loss control). For example, the d-axis current is increased while decreasing the q-axis current from the current operating point P1 to bring the torque close to zero. That is, as indicated by a block arrow in FIG. 5, the operating point is shifted from the current operating point P1 to the operating point P2 where the q-axis current is zero and the absolute value of the d-axis current is larger than the operating point P1. Here, the operating point P <b> 2 is the center of the voltage speed ellipse 300. After reaching the operating point P2, as indicated by a block arrow in FIG. 5, the absolute value of the d-axis current is decreased and the operating point is shifted to the operating point P0. In the control from the operating point P1 to the operating point P0 via the operating point P2, it is preferable that the field adjustment function described above is also used.

尚、図4を参照して上述したように、電圧指令ベクトル“VV”が実電流ベクトル“IV”に対して、60〜120度の範囲で進むように調整されるとq軸電流を早く減少させることができるので好適である。また、動作点P1から動作点P2への遷移を示すブロック矢印は波線によって示されているが、この遷移に際しては、充放電制御が実行されることを表している。後述するように、図2における時刻“t1”から時刻“t23”までの期間は、図5における動作点P1から動作点P2まで動作点を遷移させている期間である。また、時刻“t23”から時刻“t3”までの期間は、図5における動作点P2から動作点P0まで動作点を遷移させている期間である。本実施形態では、動作点P1から動作点P2まで動作点を遷移させている期間の内、図2における時刻“t1”から時刻“t2”までの期間に充放電制御が実行される。   As described above with reference to FIG. 4, when the voltage command vector “VV” is adjusted to advance within the range of 60 to 120 degrees with respect to the actual current vector “IV”, the q-axis current is quickly reduced. This is preferable. In addition, a block arrow indicating a transition from the operating point P1 to the operating point P2 is indicated by a wavy line. In this transition, charge / discharge control is executed. As will be described later, the period from time “t1” to time “t23” in FIG. 2 is a period in which the operating point is changed from operating point P1 to operating point P2 in FIG. A period from time “t23” to time “t3” is a period in which the operating point is changed from the operating point P2 to the operating point P0 in FIG. In the present embodiment, charge / discharge control is executed in a period from time “t1” to time “t2” in FIG. 2 in a period in which the operating point is changed from the operating point P1 to the operating point P2.

図2に示すように、コンタクタ9が時刻“t0”において開放状態となると、直流リンク電圧Vdcが上昇し始める。インバータ制御装置20は、コンタクタ9が開放状態(コンタクタオープン)であると判定すると、回生電力抑制制御(充放電制御)を開始する(時刻“t1”)。コンタクタオープンであるとの判定は、例えば、車両ECU90からの通信に基づいて実施されても良いし、直流リンク電圧Vdcを検出する電圧センサ14の検出結果に基づいて実施されても良い。また、コンタクタオープンであるとの判定は、バッテリ電流センサ15により検出された高圧バッテリ11の電流(バッテリ電流)の急激な変化に基づいて判定されてもよい。ここでは、電圧センサ14により検出された直流リンク電圧Vdcが、回生電力抑制制御の要否を判定する判定しきい値(コンタクタ開放判定電圧(THL))を超えているか否かによって、回生電力抑制制御(充放電制御)の開始が判定されるものとする。   As shown in FIG. 2, when the contactor 9 is opened at time “t0”, the DC link voltage Vdc starts to rise. When the inverter control device 20 determines that the contactor 9 is in the open state (contactor open), it starts regenerative power suppression control (charge / discharge control) (time “t1”). The determination that the contactor is open may be performed based on, for example, communication from the vehicle ECU 90, or may be performed based on the detection result of the voltage sensor 14 that detects the DC link voltage Vdc. The determination that the contactor is open may be made based on a rapid change in the current (battery current) of the high-voltage battery 11 detected by the battery current sensor 15. Here, depending on whether or not the DC link voltage Vdc detected by the voltage sensor 14 exceeds a determination threshold value (contactor release determination voltage (THL)) for determining whether or not the regenerative power suppression control is necessary, the regenerative power suppression is performed. The start of control (charge / discharge control) is determined.

本実施形態では、回生電力抑制制御として、時刻“t1”より充放電制御が実行される。充放電制御は、それぞれ直流リンク電圧Vdcに対して予め規定された充放電上限電圧THHと充放電下限電圧THLとの間の範囲内で実行される。充放電上限電圧THHは、インバータ10の最大許容電圧に対して予め規定された余裕電圧(例えば最大許容電圧の10〜15[%])を減じた電圧であると好適である。また、充放電下限電圧THLは、コンタクタ9が開放状態となったことを判定する際の判定しきい値(コンタクタ開放判定電圧)であると好適である。本実施形態では、時刻“t2”において、直流リンク電圧Vdcが充放電上限電圧THHに達し、充放電制御が終了する。つまり、充放電制御は、時刻“t1”から時刻“t2”の期間(Phase1)に実行される。   In the present embodiment, charge / discharge control is executed from time “t1” as regenerative power suppression control. The charge / discharge control is executed within a range between the charge / discharge upper limit voltage THH and the charge / discharge lower limit voltage THL that are defined in advance for each DC link voltage Vdc. The charge / discharge upper limit voltage THH is preferably a voltage obtained by subtracting a predetermined margin voltage (for example, 10 to 15% of the maximum allowable voltage) from the maximum allowable voltage of the inverter 10. Further, the charge / discharge lower limit voltage THL is preferably a determination threshold value (contactor open determination voltage) for determining that the contactor 9 is in the open state. In the present embodiment, at time “t2”, the DC link voltage Vdc reaches the charge / discharge upper limit voltage THH, and the charge / discharge control ends. That is, the charge / discharge control is executed during a period (Phase 1) from time “t1” to time “t2”.

インバータ制御装置20は、充放電制御の終了後、回転電機80による生成電力を直流リンクコンデンサ4に充電させるコンデンサ充電ループと、生成電力をインバータ10及び回転電機80の間で循環させる還流ループとが1つずつ形成されるように、混合ループ制御を実行する(Phase2)。換言すれば、コンデンサ充電ループが形成されるSD制御と、還流ループが形成されるASC制御とが同時に行われるように、混合ループ制御が実行される。混合ループ制御は、インバータ10を構成するスイッチング素子の内の1つ又は2つである対象スイッチング素子をオン状態とする制御である。詳細については図6〜図10を参照して後述する。   The inverter control device 20 includes a capacitor charging loop that charges the DC link capacitor 4 with power generated by the rotating electrical machine 80 after the end of charge / discharge control, and a reflux loop that circulates the generated power between the inverter 10 and the rotating electrical machine 80. The mixed loop control is executed so that the loops are formed one by one (Phase 2). In other words, the mixing loop control is executed so that the SD control in which the capacitor charging loop is formed and the ASC control in which the reflux loop is formed are simultaneously performed. The mixed loop control is a control for turning on a target switching element that is one or two of the switching elements constituting the inverter 10. Details will be described later with reference to FIGS.

混合ループ制御では、コンデンサ充電ループが形成されるため、混合ループ制御の開始以降も時刻“t2”以降も直流リンク電圧Vdcは上昇を続ける。しかし、コンデンサ充電ループを形成する相のステータコイル8に蓄えられたエネルギーを放出した時点で、コンデンサ充電ループは解消され、直流リンク電圧Vdcの上昇は電圧“V1”で止まる(時刻“t21”)。時刻“t21”以降は、コンデンサ充電ループが解消されており、混合ループ制御は続行されているが、還流ループのみを電流が流れ続ける。混合ループ制御が実行されるPhase2の内、時刻“t2”から時刻“t21”までの期間(Phase21)は、コンデンサ充電ループと還流ループとが形成される期間である。以下に説明するように、混合ループ制御が実行されるPhase2の内、時刻“t21”から時刻“t3”までの期間(Phase22)は、還流ループのみが形成される期間である。   In the mixed loop control, since the capacitor charging loop is formed, the DC link voltage Vdc continues to increase both after the start of the mixed loop control and after the time “t2”. However, when the energy stored in the stator coil 8 of the phase forming the capacitor charging loop is released, the capacitor charging loop is canceled and the increase in the DC link voltage Vdc stops at the voltage “V1” (time “t21”). . After time “t21”, the capacitor charging loop is canceled and the mixing loop control is continued, but the current continues to flow only through the reflux loop. Of Phase 2 in which the mixed loop control is executed, a period (Phase 21) from time “t2” to time “t21” is a period in which a capacitor charging loop and a reflux loop are formed. As will be described below, in Phase 2 in which the mixed loop control is executed, a period (Phase 22) from time “t21” to time “t3” is a period in which only the reflux loop is formed.

インバータ制御装置20は、3相の電流が全てゼロとなる際に、全ての対象スイッチング素子をオフ状態とするように制御する。本実施形態では、還流ループの電流がゼロとなる際に、対象スイッチング素子をオフ状態とするように制御するシャットダウン制御を実行する(時刻“t3”)。つまり、インバータ制御装置20は、還流ループを形成する2相のアームの電流が共にゼロとなる際に、オン状態に制御されている対象スイッチング素子をオフ状態とするように制御する。シャットダウンが実施された場合には、ステータコイル8に蓄積された電力が、FWD5を介して直流リンクコンデンサ4を充電するが、全ての相電流がゼロの状態でシャットダウンを行っているため、直流リンク電圧Vdcは上昇しない。時刻“t3”以降は、全相の電流がゼロとなる(Phase3)。尚、SD制御は、時刻“t3”において実行されると好適であるが、厳密ではなく、時刻“t3”の前後において実行されればよい。電流がゼロとなったことを検出した後では、SD制御の実行が遅れるため、例えば、SD制御は、相電流がゼロの時を予想して実行されると好適である。   The inverter control device 20 performs control so that all the target switching elements are turned off when all the three-phase currents become zero. In the present embodiment, when the current in the return loop becomes zero, shutdown control is performed to control the target switching element to be in an off state (time “t3”). That is, the inverter control device 20 performs control so that the target switching element that is controlled to the on state is turned off when both of the currents of the two-phase arms that form the reflux loop become zero. When the shutdown is performed, the electric power stored in the stator coil 8 charges the DC link capacitor 4 via the FWD 5, but the DC link capacitor 4 is shut down with all the phase currents being zero. The voltage Vdc does not increase. After time “t3”, the current of all phases becomes zero (Phase 3). The SD control is preferably executed at time “t3”, but is not strict, and may be executed before and after time “t3”. Since the execution of the SD control is delayed after detecting that the current has become zero, for example, the SD control is preferably executed in anticipation of the phase current being zero.

発明者によるシミュレーションによれば、例えば、コンタクタオープンに応答して単純にSD制御を実行した場合と比較して、直流リンクコンデンサ4の静電容量を概ね1/2としても、直流リンク電圧Vdcの上昇電圧は2/5〜1/2程度となることが確認されている。つまり、回生電力抑制制御によって直流リンク電圧Vdcの上昇が抑制され、直流リンクコンデンサ4の小型化も可能となる。また、コンタクタオープンに応答して単純にASC制御を実行した場合と比べて、相電流の最大値は概ね2/5〜1/2程度程度に収まっている。つまり、回生電力抑制制御によって相電流も抑制されている。従って、ステータコイル8やIGBT3の消耗による寿命の低下を抑制することができる。即ち、シミュレーションによって、最大の回生電力ポイントと、インバータ10の最大電圧の条件で、定格電流と耐圧電圧とを満足することが確認されている。   According to the simulation by the inventor, for example, compared with the case where the SD control is simply executed in response to the contactor open, the DC link voltage Vdc is reduced even if the capacitance of the DC link capacitor 4 is approximately ½. It has been confirmed that the increased voltage is about 2/5 to 1/2. In other words, the increase in the DC link voltage Vdc is suppressed by the regenerative power suppression control, and the DC link capacitor 4 can be downsized. Further, the maximum value of the phase current is approximately in the range of about 2/5 to 1/2 as compared with the case where the ASC control is simply executed in response to the contactor opening. That is, the phase current is also suppressed by the regenerative power suppression control. Therefore, it is possible to suppress a decrease in life due to the consumption of the stator coil 8 and the IGBT 3. That is, it has been confirmed by simulation that the rated current and the withstand voltage are satisfied under the conditions of the maximum regenerative power point and the maximum voltage of the inverter 10.

以下、充放電制御に続いて実行される混合ループ制御について、図6〜図10を参照して詳細に説明する。理解を容易にするために、ここでは、コンタクタオープンに際して直ちに混合ループ制御が実行される場合を例として説明する。即ち、ここでは、インバータ制御装置20が、回転電機80の回転中にコンタクタ9が開放状態となった場合に、回転電機80による生成電力を直流リンクコンデンサ4に充電させるコンデンサ充電ループと、生成電力をインバータ10及び回転電機80の間で循環させる還流ループとが1つずつ形成されるように、混合ループ制御を実行する場合を例として説明する。図6におけるPhase2が混合ループ制御の実行期間に相当する。   Hereinafter, the mixing loop control executed following the charge / discharge control will be described in detail with reference to FIGS. In order to facilitate understanding, here, a case will be described as an example where the mixed loop control is immediately executed when the contactor is opened. That is, here, the inverter control device 20 includes a capacitor charging loop that charges the DC link capacitor 4 with the power generated by the rotating electrical machine 80 when the contactor 9 is in an open state while the rotating electrical machine 80 is rotating, and the generated power. As an example, a description will be given of a case where the mixed loop control is performed so that a reflux loop that circulates between the inverter 10 and the rotating electrical machine 80 is formed one by one. Phase 2 in FIG. 6 corresponds to the execution period of the mixed loop control.

混合ループ制御は、インバータ10を構成するスイッチング素子の内の1つ又は2つである対象スイッチング素子(図7ではU相下段側IGBT32の1つ)をオン状態とする制御である。より詳細には、混合ループ制御は、インバータ10を構成するスイッチング素子の内の1つ又は2つのみである対象スイッチング素子をオン状態とする制御である。つまり、混合ループ制御は、対象スイッチング素子としての1つのスイッチング素子のみをオン状態とする制御、又は、対象スイッチング素子としての2つのスイッチング素子のみをオン状態とする制御である。コンデンサ充電ループは、例えば図7に一点鎖線で示すループであり、還流ループは、例えば図7及び図8に実線で示すループである。尚、充放電制御が実行される場合の説明と同様に、インバータ制御装置20は、さらに、混合ループ制御の開始後、還流ループの電流がゼロとなる際に、対象スイッチング素子をオフ状態とするように制御するシャットダウン制御(SD制御)を実行する(Phase3)。   The mixed loop control is a control for turning on the target switching element (one of the U-phase lower-stage IGBTs 32 in FIG. 7) that is one or two of the switching elements constituting the inverter 10. More specifically, the mixed loop control is a control for turning on the target switching element that is only one or two of the switching elements constituting the inverter 10. That is, the mixed loop control is control for turning on only one switching element as the target switching element, or control for turning on only two switching elements as the target switching elements. The capacitor charging loop is, for example, a loop indicated by a one-dot chain line in FIG. 7, and the reflux loop is, for example, a loop indicated by a solid line in FIGS. As in the case where charge / discharge control is executed, the inverter control device 20 further turns off the target switching element when the current in the return loop becomes zero after the start of the mixing loop control. The shutdown control (SD control) is controlled as described above (Phase 3).

図6は、コンタクタ9の開放時の制御例を模式的に示す波形図であり、図7は、時刻“t1”から時刻“t21”までの期間(Phase21)におけるIGBT3の制御例と電流の流れを示す等価回路図であり、図8は、時刻“t21”から時刻“t3”までの期間(Phase22)におけるIGBT3の制御例と電流の流れを示す等価回路図である。図6に示す時刻“t0”は、コンタクタ9が開放状態となった時刻を示している。コンタクタ9が開放状態となると、直流リンク電圧Vdcが上昇し始める。インバータ制御装置20は、コンタクタ9が開放状態(コンタクタオープン)であると判定すると、混合ループ制御を開始する(時刻“t1”)。   FIG. 6 is a waveform diagram schematically showing a control example when the contactor 9 is opened, and FIG. 7 is a control example and current flow of the IGBT 3 in a period (Phase 21) from time “t1” to time “t21”. FIG. 8 is an equivalent circuit diagram showing a control example of the IGBT 3 and a current flow in a period (Phase 22) from time “t21” to time “t3”. The time “t0” shown in FIG. 6 indicates the time when the contactor 9 is opened. When the contactor 9 is opened, the DC link voltage Vdc starts to rise. When the inverter control device 20 determines that the contactor 9 is in the open state (contactor open), the inverter control device 20 starts the mixing loop control (time “t1”).

混合ループ制御では、対象スイッチング素子がオン状態に制御され、回転電機80による生成電力を直流リンクコンデンサ4に充電させるコンデンサ充電ループと、生成電力をインバータ10及び回転電機80の間で循環させる還流ループとが1つずつ形成される。混合ループ制御により、コンデンサ充電ループが形成されるため、時刻“t1”以降も直流リンク電圧Vdcは上昇を続ける。しかし、コンデンサ充電ループを形成する相のステータコイル8に蓄えられたエネルギーを放出した時点で、コンデンサ充電ループは解消され、直流リンク電圧Vdcの上昇は電圧“V2”で止まる(時刻“t21”)。混合ループ制御の開始からコンデンサ充電ループが解消されて直流リンク電圧Vdcの上昇が止まるまでの期間がPhase21である。   In the mixed loop control, the target switching element is controlled to be in an ON state, a capacitor charging loop that charges the DC link capacitor 4 with the generated power by the rotating electrical machine 80, and a reflux loop that circulates the generated power between the inverter 10 and the rotating electrical machine 80. Are formed one by one. Since the capacitor charging loop is formed by the mixing loop control, the DC link voltage Vdc continues to increase after time “t1”. However, when the energy stored in the stator coil 8 of the phase forming the capacitor charging loop is released, the capacitor charging loop is canceled and the increase in the DC link voltage Vdc stops at the voltage “V2” (time “t21”). . Phase 21 is a period from the start of the mixing loop control until the capacitor charging loop is canceled and the increase of the DC link voltage Vdc stops.

時刻“t21”以降は、コンデンサ充電ループが解消されており、還流ループのみを電流が流れ続ける。インバータ制御装置20は、3相の電流が全てゼロとなる際に、全ての対象スイッチング素子をオフ状態とするように制御する。本実施形態では、還流ループの電流がゼロとなる際に、対象スイッチング素子をオフ状態とするように制御するシャットダウン制御を実行する(時刻“t3”)。ここでは、インバータ制御装置20は、還流ループを形成する2相のアームの電流が共にゼロとなる際に対象アームにおいてオン状態に制御されているスイッチング素子をオフ状態とするように制御する。シャットダウンが実施された場合には、ステータコイル8に蓄積された電力が、FWD5を介して直流リンクコンデンサ4を充電するが、全ての相電流がゼロの状態でシャットダウンを行っているため、直流リンク電圧Vdcが後述する逆起電圧以上の場合、直流リンク電圧Vdcは上昇しない。時刻“t3”以降は、全相の電流がゼロとなる(Phase3)。   After the time “t21”, the capacitor charging loop is canceled, and the current continues to flow only through the reflux loop. The inverter control device 20 performs control so that all the target switching elements are turned off when all the three-phase currents become zero. In the present embodiment, when the current in the return loop becomes zero, shutdown control is performed to control the target switching element to be in an off state (time “t3”). Here, the inverter control device 20 controls the switching element that is controlled to be in the on state in the target arm to be in the off state when both of the currents of the two-phase arms forming the reflux loop become zero. When the shutdown is performed, the electric power stored in the stator coil 8 charges the DC link capacitor 4 via the FWD 5, but the DC link capacitor 4 is shut down with all the phase currents being zero. When the voltage Vdc is equal to or higher than the back electromotive voltage described later, the DC link voltage Vdc does not increase. After time “t3”, the current of all phases becomes zero (Phase 3).

図7は、Phase21におけるIGBT3の制御例と電流の流れを示している。図7において、破線で示すIGBT3は、オフ状態にスイッチング制御されていることを示し、実線で示すIGBT3はオン状態に制御されていることを示す。また、破線で示すFWD5は非導通状態であることを示し、実線で示すFWD5は導通状態であることを示す。本実施形態では、対象スイッチング素子(後述する主対象スイッチング素子)は、U相下段側IGBT32である。ここでは、U相下段側IGBT32のみがオン状態に制御され、他のIGBT3は全てオフ状態に制御される。つまり、後述する主対象スイッチング素子のみがオン状態に制御され、他の全てのスイッチング素子はオフ状態に制御される。U相電流Iuは、W相下段側FWD56を経由する還流ループを循環する。V相電流Ivは、V相上段側FWD53及びW相下段側FWD56を経由するコンデンサ充電ループを流れて直流リンクコンデンサ4を充電する。W相下段側FWD56が還流ループとコンデンサ充電ループの双方を構成するため、W相電流Iwは、U相電流IuとV相電流Ivとを合算した大きさの電流となる。   FIG. 7 shows a control example of the IGBT 3 in Phase 21 and a current flow. In FIG. 7, an IGBT 3 indicated by a broken line indicates that switching control is performed in an off state, and an IGBT 3 indicated by a solid line indicates that it is controlled in an on state. Further, FWD5 indicated by a broken line indicates a non-conductive state, and FWD5 indicated by a solid line indicates a conductive state. In the present embodiment, the target switching element (main target switching element to be described later) is the U-phase lower stage IGBT 32. Here, only the U-phase lower-stage IGBT 32 is controlled to be in the on state, and the other IGBTs 3 are all controlled to be in the off state. That is, only a main target switching element to be described later is controlled to be in an on state, and all other switching elements are controlled to be in an off state. The U-phase current Iu circulates in the reflux loop via the W-phase lower stage FWD 56. The V-phase current Iv flows through the capacitor charging loop via the V-phase upper stage FWD 53 and the W-phase lower stage FWD 56 to charge the DC link capacitor 4. Since the W-phase lower stage FWD 56 constitutes both the return loop and the capacitor charging loop, the W-phase current Iw is a current having a magnitude that is the sum of the U-phase current Iu and the V-phase current Iv.

図8は、Phase22におけるIGBT3の制御例と電流の流れを示している。上述したように、コンデンサ充電ループを形成する相(V相)のステータコイル8に蓄えられたエネルギーが放出されると、当該相電流(V相電流Iv)がゼロとなり、コンデンサ充電ループは解消される。対象スイッチング素子(U相下段側IGBT32)をオン状態とする混合ループ制御は継続しているので、還流ループは維持されている。図8に示すように、U相電流Iuは、U相下段側IGBT32を流れ、W相電流Iwは、W相下段側FWD56を流れる。V相電流Ivはゼロとなっているため、U相電流IuとW相電流Iwとは平衡する。従って、図2に示すように、U相電流IuとW相電流Iwとは同じ時刻(ここでは時刻“t3”)においてゼロとなる。インバータ制御装置20は、混合ループ制御の開始後、還流ループの電流がゼロとなる際にSD制御を実行する。つまり、対象スイッチング素子としてのU相下段側IGBT32をオフ状態とするように制御し、還流ループを解消させて、インバータ10を構成する全てのIGBT3をオフ状態としてインバータ10をシャットダウンする。シャットダウンが実施された場合には、ステータコイル8に蓄積された電力が、FWD5を介して直流リンクコンデンサ4を充電するが、相電流(Iu,Iw)がゼロの状態でシャットダウンを行っているため、直流リンク電圧Vdcは上昇しない。   FIG. 8 shows an example of control of the IGBT 3 in Phase 22 and the flow of current. As described above, when the energy stored in the phase (V phase) stator coil 8 forming the capacitor charging loop is released, the phase current (V phase current Iv) becomes zero, and the capacitor charging loop is eliminated. The Since the mixed loop control for turning on the target switching element (U-phase lower stage IGBT 32) is continued, the reflux loop is maintained. As shown in FIG. 8, U-phase current Iu flows through U-phase lower stage IGBT 32, and W-phase current Iw flows through W-phase lower stage FWD 56. Since the V-phase current Iv is zero, the U-phase current Iu and the W-phase current Iw are balanced. Therefore, as shown in FIG. 2, the U-phase current Iu and the W-phase current Iw become zero at the same time (here, time “t3”). The inverter control device 20 executes SD control when the current in the reflux loop becomes zero after the start of the mixing loop control. That is, the U-phase lower-stage IGBT 32 as the target switching element is controlled to be turned off, the reflux loop is eliminated, and all the IGBTs 3 constituting the inverter 10 are turned off to shut down the inverter 10. When the shutdown is performed, the electric power stored in the stator coil 8 charges the DC link capacitor 4 via the FWD 5, but the shutdown is performed with the phase currents (Iu, Iw) being zero. The DC link voltage Vdc does not rise.

尚、図6において、時刻“t1”から時刻“t23”までの期間は、図5における動作点P1から動作点P2まで動作点を遷移させている期間に対応する。また、時刻“t23”から時刻“t3”までの期間は、図5における動作点P2から動作点P0まで動作点を遷移させている期間に対応する。   In FIG. 6, a period from time “t1” to time “t23” corresponds to a period in which the operating point is changed from operating point P1 to operating point P2 in FIG. Further, the period from time “t23” to time “t3” corresponds to the period during which the operating point is changed from the operating point P2 to the operating point P0 in FIG.

ところで、上述したように、混合ループ制御においては、インバータ10を構成するIGBT3の内、対象スイッチング素子としてのIGBT3がオン状態に制御される。この対象スイッチング素子は、以下のような基準で選定されると好適である。ここでは、1つの対象スイッチング素子(後述する主対象スイッチング素子)を選定する基準について説明する。図6に示すように、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも正側の場合には、当該2相の内、電流波形が下降している相の上段側スイッチング素子が対象スイッチング素子に設定されると好適である。また、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも負側の場合には、当該2相の内、電流波形が上昇している相の下段側スッチング素子が対象スイッチング素子に設定されると好適である。   Incidentally, as described above, in the mixed loop control, the IGBT 3 as the target switching element is controlled to be in the ON state among the IGBTs 3 configuring the inverter 10. This target switching element is preferably selected based on the following criteria. Here, the criteria for selecting one target switching element (main target switching element to be described later) will be described. As shown in FIG. 6, when the execution of the mixed loop control is started, if the current waveform of two phases of the three phases is on the positive side of the amplitude center, the current waveform of the two phases decreases. It is preferable that the upper switching element of the phase being set is set as the target switching element. Further, when the execution of the mixed loop control is started, if the current waveform of two phases out of the three phases is on the negative side with respect to the amplitude center, the phase of the phase in which the current waveform is rising among the two phases. It is preferable that the lower switching element is set as the target switching element.

例えば、図9における“A”では、混合ループ制御の実行を開始する際(時刻“t1”)に、3相の内のU相とV相の電流波形が振幅中心よりも負側であるから、U相とV相との内、電流波形が上昇しているU相の下段側スイッチング素子であるU相下段側IGBT32が対象スイッチング素子に設定される。図6から図8に例示した形態は、この選定基準に応じて対象スイッチング素子を決定したものである。   For example, in “A” in FIG. 9, when the execution of the mixed loop control is started (time “t1”), the current waveforms of the U phase and the V phase among the three phases are on the negative side with respect to the amplitude center. The U-phase lower-stage IGBT 32 that is the lower-stage switching element of the U-phase whose current waveform is rising among the U-phase and the V-phase is set as the target switching element. In the embodiments illustrated in FIGS. 6 to 8, the target switching element is determined according to this selection criterion.

下記表1は、3相電流の波形と、各IGBT3のオン/オフ制御の状態とを表している。表1に示すように、3相電流(Iu,Iv,Iw)の波形に応じて6つの状態が存在する。これをSectorで示している。表中の“Su+,Sv+,Sw+,Su−,Sv−,Sw−”はそれぞれ、U相上段側IGBT31、V相上段側IGBT33、W相上段側IGBT35、U相下段側IGBT32、V相下段側IGBT34、W相下段側IGBT36を示している。即ち、“S”はスイッチング素子、“u,v,w”の添え字は3相各相、“+”は上段側、“−”は下段側を示している。また、表中の“0”はオフ状態を示し、“1”はオン状態を示している。   Table 1 below shows the waveform of the three-phase current and the state of the on / off control of each IGBT 3. As shown in Table 1, there are six states depending on the waveform of the three-phase current (Iu, Iv, Iw). This is indicated by Sector. “Su +, Sv +, Sw +, Su−, Sv−, Sw−” in the table are U phase upper stage IGBT 31, V phase upper stage IGBT 33, W phase upper stage IGBT 35, U phase lower stage IGBT 32, V phase lower stage side, respectively. An IGBT 34 and a W-phase lower stage IGBT 36 are shown. That is, “S” indicates a switching element, “u, v, w” subscripts indicate three phases, “+” indicates an upper stage side, and “−” indicates a lower stage side. In the table, “0” indicates an off state, and “1” indicates an on state.

3相電流と対象スイッチング素子(主対象スイッチング素子)との関係
(後述する単相スイッチング制御における3相電流と対象スイッチング素子との関係)

Figure 2015198463
Relationship between three-phase current and target switching element (main target switching element) (Relationship between three-phase current and target switching element in single-phase switching control described later)
Figure 2015198463

上述した条件に従えば、図9に示すように、3相上下段の6つのIGBT(31〜36)がそれぞれ選択される判定フェーズ(A〜F)が、電気角60度ごとに重複することなく現れる。即ち、“A”ではU相下段側IGBT32が、“B”ではV相上段側IGBT33が、“C”ではW相下段側IGBT36が、“D”ではU相上段側IGBT31が、“E”ではV相下段側IGBT34が、“F”ではW相上段側IGBT35が対象スイッチング素子として設定される。従って、どのような状況であっても適切なIGBT3(31〜36)を対象スイッチング素子として設定することができる。   If the above-mentioned conditions are followed, as shown in FIG. 9, the determination phases (A to F) in which the six IGBTs (31 to 36) in the three-phase upper and lower stages are selected overlap every 60 electrical angles. Appear without. That is, “A” is the U-phase lower IGBT 32, “B” is the V-phase upper IGBT 33, “C” is the W-phase lower IGBT 36, “D” is the U-phase upper IGBT 31 and “E”. When the V-phase lower stage IGBT 34 is “F”, the W-phase upper stage IGBT 35 is set as the target switching element. Therefore, an appropriate IGBT 3 (31 to 36) can be set as the target switching element in any situation.

即ち、2相の内の一方の電流を還流ループに流し、他方の電流をコンデンサ充電ループに流すと好適であるから、振幅中心を挟んで2相の電流波形が存在する側から対象スイッチング素子を選択すると好適である。全てのスッチング素子がオフ状態で、2相の電流が負側を流れているとすれば、当該2相の上段側のフリーホイールダイオードが導通状態となる。この内の1相について、アームを流れる電流の方向を変えて還流させるためには、当該2相の内の一方の相の下段側スイッチング素子を導通させればよい。つまり、当該2相の内の一方の相の上段側のフリーホイールダイオードが非導通状態となるように、当該相の下段側スイッチング素子を導通させればよい。一方、全てのスッチング素子がオフ状態で、2相の電流が正側を流れているとすれば、当該2相の下段側のフリーホイールダイオードが導通状態となる。当該2相の内の一方の相の上段側スイッチング素子を導通させれば、当該1相のアームを流れる電流の方向が変わって還流する。従って、当該相の下段側のフリーホイールダイオードが非導通状態となるように、当該相の上段側スイッチング素子を導通させればよい。   That is, it is preferable to flow one of the currents of the two phases to the return loop and the other current to the capacitor charging loop, so that the target switching element is connected from the side where the two-phase current waveform exists across the amplitude center. Selection is preferred. Assuming that all switching elements are off and two-phase current is flowing on the negative side, the upper freewheel diode on the upper side of the two phases is turned on. In order to change the direction of the current flowing through the arm and recirculate one of the phases, the lower switching element of one of the two phases may be made conductive. That is, the lower-stage switching element of the phase may be made conductive so that the upper freewheel diode of one of the two phases becomes non-conductive. On the other hand, if all the switching elements are in an off state and a two-phase current flows on the positive side, the free-wheel diode on the lower stage side of the two phases becomes conductive. If the upper switching element of one of the two phases is made conductive, the direction of the current flowing through the one-phase arm is changed and refluxed. Accordingly, the upper switching element of the phase may be made conductive so that the freewheel diode on the lower stage of the phase is in a non-conductive state.

具体的には、例えば、全てのIGBT3がオフ状態で、U相電流IuとV相電流Ivとの2相の電流が負側を流れているとき、U相上段側FWD51とV相上段側FWD53とが導通状態となる。これは、2つのコンデンサ充電ループが形成される状態である。ここで、U相アーム及びV相アームの一方を流れる電流の方向を変えると、1つのコンデンサ充電ループは解消され、1つの還流ループが形成される。共にFWD5を経由して電流が流れているU相アーム及びV相アームの一方を流れる電流の方向を変えるためには、上段側及び下段側の内、FWD5を経由して電流が流れている側とは反対側のIGBT3を導通させればよい。従って、U相上段側FWD51及びV相上段側FWD53が導通状態となっている場合には、U相下段側IGBT32及びV相下段側IGBT34の何れか一方を導通させればよい。   Specifically, for example, when all of the IGBTs 3 are in an OFF state and a two-phase current of a U-phase current Iu and a V-phase current Iv flows on the negative side, the U-phase upper stage FWD51 and the V-phase upper stage FWD53 And become conductive. This is a state where two capacitor charging loops are formed. Here, when the direction of the current flowing through one of the U-phase arm and the V-phase arm is changed, one capacitor charging loop is canceled and one reflux loop is formed. In order to change the direction of the current flowing through one of the U-phase arm and the V-phase arm both of which current is flowing through the FWD 5, the current is flowing through the FWD 5 of the upper stage side and the lower stage side. What is necessary is just to make IGBT3 on the opposite side to conduct. Therefore, when the U-phase upper stage side FWD 51 and the V-phase upper stage side FWD 53 are in the conductive state, either the U-phase lower stage IGBT 32 or the V-phase lower stage IGBT 34 may be made conductive.

図6に例示するように、混合ループ制御が実行されると(時刻“t1”)、U相電流Iu及びV相電流Ivの増減方向が反転する。電気角60度ずつの各判定フェーズ(A〜F)の前半(0〜30度の範囲)において混合ループ制御が実行されるとすれば、コンデンサ充電ループを流れる電流が早くゼロに達するのはV相電流Ivである。各判定フェーズ(A〜F)の前半(0〜30度の範囲)において混合ループ制御が実行される場合に、直流リンク電圧Vdcの上昇を抑制できるのは、V相電流Ivをコンデンサ充電ループに流し、U相電流Iuを還流ループに流した場合である。従って、1つの態様として、U相電流Iuが還流ループを流れるように、U相下段側IGBT32を対象スイッチング素子として設定すると好適である。U相下段側IGBT32は、電流波形が振幅中心よりも負側の2相の内、電流波形が上昇している相の下段側スッチング素子である。   As illustrated in FIG. 6, when the mixed loop control is executed (time “t1”), the increasing and decreasing directions of the U-phase current Iu and the V-phase current Iv are reversed. If the mixed loop control is executed in the first half (range of 0 to 30 degrees) of each determination phase (A to F) with an electrical angle of 60 degrees, the current that flows through the capacitor charging loop quickly reaches zero. Phase current Iv. When the mixed loop control is executed in the first half (range of 0 to 30 degrees) of each determination phase (A to F), the increase in the DC link voltage Vdc can be suppressed by using the V-phase current Iv in the capacitor charging loop. In this case, the U-phase current Iu is passed through the reflux loop. Therefore, as one aspect, it is preferable to set the U-phase lower stage IGBT 32 as the target switching element so that the U-phase current Iu flows in the return loop. The U-phase lower-stage IGBT 32 is a lower-stage switching element in which the current waveform is rising among the two phases whose current waveforms are on the negative side of the amplitude center.

当業者であれば、上記の説明から推察可能であろうが、混合ループ制御の実行が開始されるタイミングによって、コンデンサ充電ループ及び還流ループを流れる電流の比率は異なる。従って、混合ループ制御の実行が開始されるタイミングによって、直流リンク電圧Vdcが上昇する大きさや、還流電流の大きさが異なる。発明者によるシミュレーションによれば、例えば、図10に示すように、混合ループ制御が実行される時刻“t1”が判定フェーズ“A”の30度の時点の場合には、15度の時点の場合と比べて、直流リンク電圧Vdcの上昇電圧は1/3〜1/4であり、相電流の最大値は1.2〜2倍であった。シミュレーションは、最大の回生電力ポイントと、インバータ10の最大電圧の条件で、定格電流と耐圧電圧とを満足するように実施されたものである。   Those skilled in the art will be able to infer from the above description, and the ratio of the current flowing through the capacitor charging loop and the return loop varies depending on the timing at which execution of the mixing loop control is started. Therefore, the magnitude at which the DC link voltage Vdc rises and the magnitude of the return current differ depending on the timing at which execution of the mixed loop control is started. According to the simulation by the inventor, for example, as shown in FIG. 10, when the time “t1” at which the mixed loop control is executed is 30 degrees in the determination phase “A”, the time is 15 degrees. As compared with the above, the rising voltage of the DC link voltage Vdc was 1/3 to 1/4, and the maximum value of the phase current was 1.2 to 2 times. The simulation was performed so as to satisfy the rated current and the withstand voltage under the condition of the maximum regenerative power point and the maximum voltage of the inverter 10.

このように、混合ループ制御を開始するタイミングによって、直流リンク電圧Vdcや相電流の値は異なる。例えば、直流リンク電圧Vdcの上昇をより抑制したいような場合には、コンタクタ9が図10に示す時刻“t0”で開放状態となり、判定フェーズにおける電気角15度の時点で混合ループ制御を開始することが可能であったとしても、“delay”を設定して電気角30度の時点から混合ループ制御を開始してもよい。また、判定フェーズの終了間際、例えば電気角50度以上の時点で、コンタクタ9が開放状態となったことを判定したり、混合ループ制御を開始可能となったりした場合には、当該判定フェーズにおける判定基準ではなく、次の判定フェーズ(例えば“A”に対する“F”)の判定基準に基づいて対象スイッチング素子を設定すると好適である。   Thus, the values of the DC link voltage Vdc and the phase current differ depending on the timing at which the mixed loop control is started. For example, when it is desired to further suppress the increase in the DC link voltage Vdc, the contactor 9 is opened at the time “t0” shown in FIG. 10, and the mixing loop control is started at the time when the electrical angle is 15 degrees in the determination phase. Even if it is possible, “delay” may be set and the mixing loop control may be started from the point of time when the electrical angle is 30 degrees. In addition, when it is determined that the contactor 9 is in an open state or the mixed loop control can be started at the time when the determination phase is about to end, for example, at an electrical angle of 50 degrees or more, in the determination phase It is preferable to set the target switching element based on the determination criterion of the next determination phase (for example, “F” with respect to “A”) instead of the determination criterion.

尚、図2に示すように、インバータ制御装置20は、コンタクタ9が開放状態となった後、直流と3相交流との間で電力変換を行う3相駆動制御から、SD制御やASC制御を挟むことなく充放電制御に制御方式を移行させる。従って、SD制御による直流リンク電圧Vdcの急上昇や、ASC制御による大電流の還流が抑制される。尚、3相駆動制御には、上述したPWM制御及び矩形波制御が含まれる。また、常時3相の全てが変調される必要はなく、何れか1相が固定され、他の2相が変調される状態が繰り返されるような2相変調も、3相駆動制御に含まれる。   As shown in FIG. 2, the inverter control device 20 performs SD control and ASC control from the three-phase drive control in which power conversion is performed between direct current and three-phase alternating current after the contactor 9 is opened. The control method is shifted to charge / discharge control without pinching. Therefore, a sudden rise in the DC link voltage Vdc due to the SD control and a large current return due to the ASC control are suppressed. The three-phase drive control includes the above-described PWM control and rectangular wave control. Further, it is not always necessary to modulate all three phases, and two-phase modulation in which one of the phases is fixed and the other two phases are modulated is also included in the three-phase drive control.

充放電制御を実行する本実施形態のインバータ制御装置20は、コンタクタオープンに応答して、回生電力抑制制御(充放電制御)を実行する。コンタクタオープンに際してのインバータ10の制御方式には、一般的にSD制御やASC制御が知られている。SD制御、ASC制御、回生電力抑制制御(充放電制御)には、コンタクタオープンの際の回転電機80の動作状態に応じてそれぞれ適した領域が存在する。図11は、回転電機80の回転速度とトルクとによって表された動作マップ上において、それぞれの制御方式が適した領域を示している。回転速度が高い領域、図11における領域“defg”(領域“R2”)は、回転電機80による起電力(EMF:Electromotive Force)が高いため、ASC制御が適している。線“dg”は、逆起電圧(BEMF:Back Electromotive Force)が、直流リンク電圧Vdc以上となる境界を表している。回転速度が低い領域、図11における領域“0acdg”(領域“R1+R3”)は、SD制御が適している。即ち、SD制御は、直流リンク電圧Vdcが回転電機80による起電力よりも大きい場合に実行される。   The inverter control device 20 of the present embodiment that executes charge / discharge control executes regenerative power suppression control (charge / discharge control) in response to the contactor opening. SD control and ASC control are generally known as a control method of the inverter 10 when the contactor is opened. In the SD control, the ASC control, and the regenerative power suppression control (charge / discharge control), there are suitable areas according to the operating state of the rotating electrical machine 80 when the contactor is open. FIG. 11 shows regions where the respective control methods are suitable on the operation map represented by the rotational speed and torque of the rotating electrical machine 80. In the region where the rotational speed is high, the region “defg” (region “R2”) in FIG. 11 has a high electromotive force (EMF) by the rotating electrical machine 80, and therefore ASC control is suitable. A line “dg” represents a boundary where the back electromotive force (BEMF) is equal to or higher than the DC link voltage Vdc. SD control is suitable for the region where the rotation speed is low, the region “0acdg” (region “R1 + R3”) in FIG. That is, the SD control is executed when the DC link voltage Vdc is larger than the electromotive force generated by the rotating electrical machine 80.

このSD制御が適している領域“0acdg”の全てにおいてSD制御が可能なようにインバータ制御装置20を構築すると、当該領域における直流リンク電圧Vdcの上昇に鑑みた設計が必要となる。例えば、IGBT3などのスッチング素子に高い耐圧が求められ、直流リンクコンデンサ4にも大きな容量や高い耐圧が求められる。しかし、回転速度及びトルクが高い領域“bcd”(領域“R3”)において、直流リンク電圧Vdcの上昇を抑制できれば、それらの要求を緩和することができる。従って、上述した回生電力抑制制御(充放電制御)は、図11における領域“bcd”(領域“R3”)において適用されると好適である。   If the inverter control device 20 is constructed so that SD control is possible in all areas “0acdg” where SD control is suitable, a design is required in consideration of the increase in the DC link voltage Vdc in the area. For example, a switching element such as an IGBT 3 is required to have a high breakdown voltage, and the DC link capacitor 4 is also required to have a large capacity and a high breakdown voltage. However, if the increase in the DC link voltage Vdc can be suppressed in the region “bcd” (region “R3”) where the rotational speed and torque are high, those requirements can be relaxed. Therefore, the above-described regenerative power suppression control (charge / discharge control) is preferably applied in the region “bcd” (region “R3”) in FIG.

〔その他の実施形態〕
以下、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Hereinafter, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.

(1)上記説明においては、充放電制御の実行中に、直流リンク電圧Vdcが充放電上限電圧THHを超えた場合、インバータ制御装置20は、充放電制御を終了し、混合ループ制御を実行する形態を例示した。しかし、充放電制御の終了後に実行される制御方式は、混合ループ制御に限定されるものではなく、シャットダウン制御やアクティブショート制御、或いはそれらを組み合わせた制御方式であってもよい。 (1) In the above description, when the DC link voltage Vdc exceeds the charge / discharge upper limit voltage THH during the execution of the charge / discharge control, the inverter control device 20 ends the charge / discharge control and executes the mixed loop control. The form was illustrated. However, the control method executed after the end of the charge / discharge control is not limited to the mixed loop control, and may be a shutdown control, an active short control, or a control method combining them.

(2)上記説明においては、充放電上限電圧THHが、インバータ10の最大許容電圧に対して予め規定された余裕電圧を減じた電圧であり、充放電下限電圧THLが、コンタクタ9が開放状態となったことを判定する際のコンタクタ開放判定電圧である形態を例示した。しかし、充放電上限電圧THH及び充放電下限電圧THLは、他の基準に基づいて設定されてもよい。例えば、充放電上限電圧THHは、直流リンクコンデンサ4の静電容量や耐圧に基づいて設定されてもよい。また、充放電下限電圧THLは、コンタクタ開放判定電圧よりも低く、通常動作時の直流リンク電圧Vdcの値に基づいて設定されていてもよい。 (2) In the above description, the charge / discharge upper limit voltage THH is a voltage obtained by subtracting a predetermined margin voltage from the maximum allowable voltage of the inverter 10, and the charge / discharge lower limit voltage THL is the contactor 9 in the open state. The form which is a contactor open determination voltage at the time of determining that it became is illustrated. However, the charge / discharge upper limit voltage THH and the charge / discharge lower limit voltage THL may be set based on other criteria. For example, the charge / discharge upper limit voltage THH may be set based on the electrostatic capacity or withstand voltage of the DC link capacitor 4. Further, the charge / discharge lower limit voltage THL may be lower than the contactor open determination voltage and may be set based on the value of the DC link voltage Vdc during normal operation.

また、コンタクタ9が開放状態となった際には、直流リンク電圧Vdcが低下することが好ましく、充放電下限電圧THLは設定されず、無制限であってもよい。また、直流リンク電圧Vdcが充放電上限電圧を越えると充放電制御が終了するので、充放電下限電圧THLも設定されていなくてもよい。つまり、上記説明においては、充放電上限電圧THHと充放電下限電圧THLとの間の範囲内で、コンデンサ充電モードとコンデンサ放電モードとを繰り返すように、電流位相に対する電圧位相を制御してインバータ10をスイッチング制御する制御方式として充放電制御を例示したが、その形態に限定されるものではない。例えば、充放電制御は、範囲を定めずにコンデンサ充電モードとコンデンサ放電モードとを繰り返すように、電流位相に対する電圧位相を制御してインバータ10をスイッチング制御する制御方式であってもよい。   Further, when the contactor 9 is in an open state, the DC link voltage Vdc is preferably lowered, and the charge / discharge lower limit voltage THL is not set and may be unlimited. Further, when the DC link voltage Vdc exceeds the charge / discharge upper limit voltage, the charge / discharge control is terminated, and therefore the charge / discharge lower limit voltage THL may not be set. That is, in the above description, the inverter 10 is controlled by controlling the voltage phase with respect to the current phase so as to repeat the capacitor charging mode and the capacitor discharging mode within the range between the charging / discharging upper limit voltage THH and the charging / discharging lower limit voltage THL. Although charge / discharge control is illustrated as a control method for switching control, the present invention is not limited to this mode. For example, the charge / discharge control may be a control method in which the inverter 10 is switched by controlling the voltage phase with respect to the current phase so as to repeat the capacitor charge mode and the capacitor discharge mode without defining a range.

(3)上記説明においては、混合ループ制御の開始後、シャットダウン制御が実行される形態を例示したが、シャットダウン制御が実行されることなく、混合ループ制御が継続されてもよい。つまり、還流ループのみを維持して部分的なアクティブショート制御が実行されてもよい。 (3) In the above description, the mode in which the shutdown control is executed after the start of the mixing loop control is illustrated, but the mixing loop control may be continued without executing the shutdown control. That is, partial active short control may be executed while maintaining only the reflux loop.

(4)上記説明においては、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも負側の場合には、当該2相の内、電流波形が上昇している相の下段側スッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定される例を示した(図6〜図8参照)。また、対象スイッチング素子(主対象スイッチング素子)を選定する基準として、図9を参照して以下の態様が好適であると説明した。即ち、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも正側の場合には、当該2相の内、電流波形が下降している相の上段側スイッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定され、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも負側の場合には、当該2相の内、電流波形が上昇している相の下段側スッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定されると好適であると説明した。しかし、3相の内の2相の電流波形が振幅中心よりも正側の場合に、当該2相の内の何れかの相の上段側スイッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定される形態であってもよい。例えば、電流波形が上昇している相の上段側スイッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定されてもよい。同様に、3相の内の2相の電流波形が振幅中心よりも負側の場合に、当該2相の内の何れかの相の下段側スッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定される形態であってもよい。つまり、電流波形が下降している相の上段側スイッチング素子が対象スイッチング素子(主対象スイッチング素子)に設定されてもよい。 (4) In the above description, when the execution of the mixed loop control is started, if the current waveform of two phases of the three phases is on the negative side of the amplitude center, the current waveform of the two phases is An example is shown in which the lower switching element of the rising phase is set as the target switching element (main target switching element) (see FIGS. 6 to 8). Moreover, it demonstrated that the following aspects were suitable with reference to FIG. 9 as a reference | standard which selects an object switching element (main object switching element). That is, when the execution of the mixed loop control is started, if the current waveform of the two phases out of the three phases is on the positive side of the amplitude center, the phase of the phase in which the current waveform is falling is included in the two phases. When the upper switching element is set as the target switching element (main target switching element) and when the execution of the mixed loop control is started, if the current waveform of two phases out of the three phases is more negative than the amplitude center, It has been described that it is preferable that the lower switching element of the phase in which the current waveform is rising among the two phases is set as the target switching element (main target switching element). However, when the current waveform of the two phases of the three phases is on the positive side of the amplitude center, the upper switching element of any one of the two phases is set as the target switching element (main target switching element) It may be a form. For example, the upper switching element of the phase in which the current waveform is rising may be set as the target switching element (main target switching element). Similarly, when the current waveform of two phases of the three phases is on the negative side of the amplitude center, the lower switching element of any one of the two phases becomes the target switching element (main target switching element). It may be a form that is set. That is, the upper switching element of the phase in which the current waveform is decreasing may be set as the target switching element (main target switching element).

ところで、図7(及び図8)を参照すると、U相下段側IGBT32だけではなく、W相下段側IGBT36をオン状態としても、同様の還流ループとコンデンサ充電ループとが形成される。つまり、W相下段側FWD56が導通状態であるから、W相下段側IGBT36のオン/オフ状態に拘わらず、W相の下段側アームは導通するが、W相下段側IGBT36が導通していても問題はない。従って、図7に例示する形態の場合、W相下段側IGBT36も対象スイッチング素子として機能することができる。但し、U相下段側IGBT32は、並列接続されるU相下段側FWD52が非導通状態であるから、対象スイッチング素子としてオン状態とされることが必須であるのに対して、W相下段側IGBT36は、並列接続されるW相下段側FWD56が既に導通状態であるから、オン状態とされることが必須ではない。従って、オン状態とされることが必須のU相下段側IGBT32を主対象スイッチング素子と称し、オン状態とされることが必須ではないW相下段側IGBT36を副対象スイッチング素子と称する。   By the way, referring to FIG. 7 (and FIG. 8), not only the U-phase lower-stage IGBT 32 but also the W-phase lower-stage IGBT 36 is turned on, a similar reflux loop and capacitor charging loop are formed. That is, since the W-phase lower-stage FWD 56 is in a conductive state, the W-phase lower-stage arm is conductive regardless of whether the W-phase lower-stage IGBT 36 is on or off, but the W-phase lower-stage IGBT 36 is conductive. No problem. Therefore, in the case illustrated in FIG. 7, the W-phase lower stage IGBT 36 can also function as a target switching element. However, the U-phase lower-stage IGBT 32 is indispensable to be turned on as a target switching element because the U-phase lower-stage FWD 52 connected in parallel is in a non-conductive state, whereas the W-phase lower-stage IGBT 36 Since the W-phase lower stage FWD 56 connected in parallel is already in a conductive state, it is not essential to be in the on state. Therefore, the U-phase lower stage IGBT 32 that is indispensable to be turned on is referred to as a main target switching element, and the W-phase lower stage IGBT 36 that is not necessarily in the on state is referred to as a sub-target switching element.

即ち、インバータ制御装置20は、回転電機80の回転中にコンタクタ9が開放状態となった場合に、回転電機80による生成電力を直流リンクコンデンサ4に充電させるコンデンサ充電ループと、生成電力をインバータ10及び回転電機80の間で循環させる還流ループとが1つずつ形成されるように、インバータ10を構成するスイッチング素子(IGBT3)の内の1つ又は2つである対象スイッチング素子をオン状態とする混合ループ制御を実行する。ここで、対象スイッチング素子は、主対象スイッチング素子と、副対象スイッチング素子とを含む。即ち、インバータ制御装置20は、混合ループ制御に際して、1つの主対象スイッチング素子、又は、1つの主対象スイッチング素子及び1つの副対象スイッチング素子の2つをオン状態とする。換言すれば、インバータ制御装置20は、混合ループ制御に際して、対象スイッチング素子として、少なくとも1つの主対象スイッチング素子をオン状態とする。また、インバータ制御装置20は、混合ループ制御に際して、主対象スイッチング素子に加えて、副対象スイッチング素子をオン状態としてもよい。即ち、インバータ制御装置20は、3相上下段のインバータ10を構成する6つのスイッチング素子の内の1つのみ(主対象スイッチング素子)をオン状態とする混合ループ制御、又は、インバータ10を構成するスイッチング素子の内の2つのみ(主対象スイッチング素子及び副対象スイッチング素子)をオン状態とする混合ループ制御を実行することができる。   That is, the inverter control device 20 includes a capacitor charging loop that charges the DC link capacitor 4 with the generated power from the rotating electrical machine 80 when the contactor 9 is in an open state while the rotating electrical machine 80 is rotating, and the generated power to the inverter 10. And the target switching element which is one or two of the switching elements (IGBT3) constituting the inverter 10 are turned on so that one return loop circulated between the rotating electrical machines 80 is formed. Perform mixed loop control. Here, the target switching element includes a main target switching element and a sub target switching element. That is, the inverter control device 20 turns on one main target switching element or two main target switching elements and one sub target switching element in the mixed loop control. In other words, the inverter control device 20 turns on at least one main target switching element as the target switching element in the mixed loop control. Further, the inverter control device 20 may turn on the sub target switching element in addition to the main target switching element in the mixed loop control. That is, the inverter control device 20 configures the mixed loop control in which only one of the six switching elements constituting the three-phase upper and lower inverters 10 (main target switching element) is turned on, or configures the inverter 10. It is possible to execute mixed loop control in which only two of the switching elements (main target switching element and sub target switching element) are turned on.

下記表2は、上述した表1と同様に、3相電流の波形と、各IGBT3のオン/オフ制御の状態とを表している。表1は、混合ループ制御の実行に際して、3相上下段のインバータ10を構成する6つのスイッチング素子の内の1つのみ(主対象スイッチング素子)がオン状態とされる場合を例示している。一方、表2は、混合ループ制御の実行に際して、インバータ10を構成するスイッチング素子の内の2つのみ(主対象スイッチング素子及び副対象スイッチング素子)がオン状態とされる場合を例示している。表2中の記号については、表1と同様であるから説明を省略する。   Table 2 below shows the waveform of the three-phase current and the state of the on / off control of each IGBT 3 as in Table 1 described above. Table 1 illustrates a case where only one of the six switching elements (main target switching element) constituting the three-phase upper and lower inverters 10 is turned on when the mixed loop control is executed. On the other hand, Table 2 illustrates a case where only two of the switching elements constituting the inverter 10 (the main target switching element and the sub target switching element) are turned on when the mixed loop control is executed. Since symbols in Table 2 are the same as those in Table 1, description thereof is omitted.

3相電流と対象スイッチング素子(主/副対象スイッチング素子)との関係
(後述する2相スイッチング制御における3相電流と対象スイッチング素子との関係)

Figure 2015198463
Relationship between three-phase current and target switching element (main / sub target switching element) (Relationship between three-phase current and target switching element in two-phase switching control described later)
Figure 2015198463

以上整理すると、主対象スイッチング素子は、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも正側の場合には、当該2相の何れか一方の上段側スイッチング素子に設定され、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも負側の場合には、当該2相の何れか一方の下段側スッチング素子に設定される。好適には、図9を参照して上述したように、主対象スイッチング素子は、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも正側の場合には、当該2相の内、電流波形が下降している相の上段側スイッチング素子に設定され、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも負側の場合には、当該2相の内、電流波形が上昇している相の下段側スッチング素子に設定される。また、副対象スイッチング素子は、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも正側の場合には、当該2相とは別の上段側スイッチング素子に設定され、混合ループ制御の実行を開始する際に、3相の内の2相の電流波形が振幅中心よりも負側の場合には、当該2相とは別の下段側スッチング素子に設定される。尚、主対象スイッチング素子のみがオン状態とされて実行される混合ループ制御は、単相スイッチング(Single Phase Switching)制御と称することができ、主対象スイッチング素子及び副対象スイッチング素子の2つがオン状態とされて実行される混合ループ制御は、2相スイッチング(Two Phase Switching)制御と称することができる。   In summary, when the main target switching element starts execution of the mixed loop control, if the current waveform of two phases out of the three phases is on the positive side of the amplitude center, one of the two phases is selected. When the two-phase current waveform of the three phases is on the negative side with respect to the amplitude center when starting the execution of the mixed loop control when set to the upper stage switching element of either one of the two phases Set to the lower switching element. Preferably, as described above with reference to FIG. 9, when the main switching element starts executing the mixed loop control, the current waveform of two phases of the three phases is more positive than the amplitude center. In this case, the current waveform of the two phases out of the three phases is set to the upper switching element of the phase in which the current waveform is falling among the two phases, and when the execution of the mixed loop control is started, In the case of the negative side from the center, the switching element is set to the lower switching element of the phase in which the current waveform is rising among the two phases. In addition, when the sub target switching element starts executing the mixed loop control, if the current waveform of two phases out of the three phases is on the positive side of the amplitude center, the sub switching element is on the upper side different from the two phases. When the two-phase current waveform of the three phases is set to the negative side with respect to the amplitude center when starting the execution of the mixed loop control when set to the switching element, the lower-stage switching element different from the two-phase Set to Note that the mixed loop control executed when only the main target switching element is turned on can be referred to as single phase switching control, and the main target switching element and the sub target switching element are in the on state. The mixed loop control executed as described above can be referred to as two-phase switching control.

(5)上述したように、コンタクタ9が開放状態となると直流リンク電圧Vdcが直ぐに上昇する。従って、インバータ制御装置20は、コンタクタ9が開放状態となったことを迅速に判定して、回生電力抑制制御を開始することが望ましい。従って、上記説明においては、一般的に通信時間を要するCANなどを利用して車両ECU90経由でコンタクタ9の状態を取得するのではなく、直流リンク電圧Vdcの検出結果に基づいて、迅速にコンタクタ9が開放状態となったことを判定できる例を示した。また、他の1つの態様として、高圧バッテリ11と直流リンクコンデンサ4との間に設けられたバッテリ電流センサ15により検出された高圧バッテリ11の電流(バッテリ電流)の急激な変化に基づいてコンタクタオープンが判定されてもよい。コンタクタ9が開放状態となると、高圧バッテリ11と、その後段の回路(直流リンクコンデンサ4、インバータ10、回転電機80等)との電気的な接続状態が急激に変化する。このため、高圧バッテリ11を出入りする電流も急激に変化する。従って、この場合も、CANなどを利用して車両ECU90経由でコンタクタ9の状態を取得するよりも、インバータ制御装置20は、高圧バッテリ11の電流の検出結果に基づいて、コンタクタ9が開放状態となったことを迅速に判定することができる。このように、コンタクタオープンによって平滑コンデンサ(直流リンクコンデンサ4)の端子間電圧(直流リンク電圧Vdc)が短時間で上昇するのを防止するためには、コンタクタオープンを迅速に検出することが特に肝要である。 (5) As described above, when the contactor 9 is opened, the DC link voltage Vdc immediately rises. Therefore, it is desirable that the inverter control device 20 quickly determines that the contactor 9 is in the open state and starts the regenerative power suppression control. Therefore, in the above description, the state of the contactor 9 is not acquired via the vehicle ECU 90 by using CAN or the like that generally requires communication time, but based on the detection result of the DC link voltage Vdc, the contactor 9 can be quickly obtained. An example is shown in which it can be determined that is in an open state. As another aspect, the contactor is opened based on a sudden change in the current (battery current) of the high voltage battery 11 detected by the battery current sensor 15 provided between the high voltage battery 11 and the DC link capacitor 4. May be determined. When the contactor 9 is in the open state, the electrical connection state between the high voltage battery 11 and the subsequent circuit (DC link capacitor 4, inverter 10, rotating electrical machine 80, etc.) changes abruptly. For this reason, the current flowing in and out of the high voltage battery 11 also changes abruptly. Therefore, in this case as well, the inverter control device 20 determines that the contactor 9 is in the open state based on the detection result of the current of the high voltage battery 11 rather than acquiring the state of the contactor 9 via the vehicle ECU 90 using CAN or the like. It is possible to quickly determine that it has become. Thus, in order to prevent the voltage between the terminals (DC link voltage Vdc) of the smoothing capacitor (DC link capacitor 4) from rising in a short time due to the contactor opening, it is particularly important to detect the contactor open quickly. It is.

本発明は、インバータを介して交流の回転電機を駆動制御するインバータ制御装置に利用することができる。   The present invention can be used in an inverter control device that drives and controls an AC rotating electrical machine via an inverter.

1 :回転電機駆動装置
3 :IGBT(スイッチング素子)
4 :直流リンクコンデンサ
5 :フリーホイールダイオード
9 :コンタクタ
10 :インバータ
11 :高圧バッテリ(直流電源)
20 :インバータ制御装置
31〜36:IGBT(スイッチング素子)
51〜56:フリーホイールダイオード
80 :回転電機
THH :充放電上限電圧
THL :充放電下限電圧
Vdc :直流リンク電圧
1: Rotating electrical machine drive device 3: IGBT (switching element)
4: DC link capacitor 5: Freewheel diode 9: Contactor 10: Inverter 11: High voltage battery (DC power supply)
20: Inverter control devices 31-36: IGBT (switching element)
51-56: Freewheel diode 80: Rotary electric machine THH: Charge / discharge upper limit voltage THL: Charge / discharge lower limit voltage Vdc: DC link voltage

Claims (4)

直流電源にコンタクタを介して接続されると共に交流の回転電機に接続されて、直流と3相交流との間で電力変換を行うインバータと、前記インバータの直流側の電圧である直流リンク電圧を平滑化する直流リンクコンデンサと、を備えて前記回転電機を駆動する回転電機駆動装置を制御対象として、前記インバータを構成するスイッチング素子をスイッチング制御するインバータ制御装置であって、
前記回転電機による生成電力を前記直流リンクコンデンサに充電させるコンデンサ充電モードと、前記直流リンクコンデンサを放電させるコンデンサ放電モードとで、前記インバータを制御可能であり、
前記回転電機の回転中に前記コンタクタが開放状態となった場合には、それぞれ前記直流リンク電圧に対して予め規定された充放電上限電圧と充放電下限電圧との間の範囲内で、前記コンデンサ充電モードと前記コンデンサ放電モードとを繰り返すように、電流位相に対する電圧位相を制御して前記インバータをスイッチング制御する充放電制御を、前記直流リンク電圧が前記充放電上限電圧を越えるまで、又は、前記回転電機の回転に同期して回転する2軸の直交ベクトル座標系において前記回転電機の界磁磁束の方向に沿ったd軸電流が上限値である上限d軸電流を越えるまで実行するインバータ制御装置。
An inverter connected to a DC power source via a contactor and connected to an AC rotating electrical machine to convert power between DC and three-phase AC, and a DC link voltage that is a voltage on the DC side of the inverter is smoothed An inverter control device that controls a switching element that constitutes the inverter, with a rotating electrical machine drive device that drives the rotating electrical machine provided with a DC link capacitor to be controlled,
The inverter can be controlled in a capacitor charging mode for charging the DC link capacitor with power generated by the rotating electrical machine and a capacitor discharging mode for discharging the DC link capacitor,
When the contactor is in an open state during the rotation of the rotating electrical machine, the capacitor is within a range between a charge / discharge upper limit voltage and a charge / discharge lower limit voltage defined in advance for the DC link voltage. Charge / discharge control for switching the inverter by controlling the voltage phase with respect to the current phase so as to repeat the charge mode and the capacitor discharge mode until the DC link voltage exceeds the charge / discharge upper limit voltage, or Inverter control apparatus that executes until the d-axis current along the direction of the field magnetic flux of the rotating electrical machine exceeds the upper limit d-axis current, which is the upper limit value, in a 2-axis orthogonal vector coordinate system that rotates in synchronization with the rotation of the rotating electrical machine .
前記充放電制御の終了後、前記回転電機による生成電力を前記直流リンクコンデンサに充電させるコンデンサ充電ループと、前記生成電力を前記インバータ及び前記回転電機の間で循環させる還流ループとが1つずつ形成されるように、前記インバータを構成する前記スイッチング素子の内の1つ又は2つである対象スイッチング素子をオン状態とする混合ループ制御を実行する請求項1に記載のインバータ制御装置。   After completion of the charge / discharge control, a capacitor charging loop for charging the DC link capacitor with the generated power by the rotating electrical machine and a reflux loop for circulating the generated power between the inverter and the rotating electrical machine are formed one by one The inverter control device according to claim 1, wherein the mixed loop control is performed to turn on a target switching element that is one or two of the switching elements constituting the inverter. 前記混合ループ制御の開始後、3相の電流が全てゼロとなる際に、前記対象スイッチング素子を全てオフ状態とするように制御するシャットダウン制御を実行する請求項2に記載のインバータ制御装置。   3. The inverter control device according to claim 2, wherein after the start of the mixed loop control, shutdown control is executed to control all the target switching elements to be turned off when all three-phase currents become zero. 前記直流リンク電圧に基づいて前記コンタクタが開放状態となったことを判定可能であり、
前記充放電上限電圧は、前記インバータの最大許容電圧に対して予め規定された余裕電圧を減じた電圧であり、前記充放電下限電圧は、前記コンタクタが開放状態となったことを判定する際のコンタクタ開放判定電圧である請求項1から3の何れか一項に記載のインバータ制御装置。
It can be determined that the contactor is in an open state based on the DC link voltage,
The charge / discharge upper limit voltage is a voltage obtained by subtracting a preliminarily specified margin voltage with respect to the maximum allowable voltage of the inverter, and the charge / discharge lower limit voltage is determined when the contactor is in an open state. The inverter control device according to claim 1, wherein the inverter control device is a contactor open determination voltage.
JP2014073591A 2014-03-31 2014-03-31 Inverter control device Active JP6201867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073591A JP6201867B2 (en) 2014-03-31 2014-03-31 Inverter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073591A JP6201867B2 (en) 2014-03-31 2014-03-31 Inverter control device

Publications (2)

Publication Number Publication Date
JP2015198463A true JP2015198463A (en) 2015-11-09
JP6201867B2 JP6201867B2 (en) 2017-09-27

Family

ID=54547890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073591A Active JP6201867B2 (en) 2014-03-31 2014-03-31 Inverter control device

Country Status (1)

Country Link
JP (1) JP6201867B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065882A1 (en) 2017-09-28 2019-04-04 アイシン・エィ・ダブリュ株式会社 Inverter control device
WO2019171836A1 (en) * 2018-03-08 2019-09-12 日立オートモティブシステムズ株式会社 Vehicle control device
JP2019193568A (en) * 2016-04-26 2019-10-31 ダイソン テクノロジー リミテッド Method for controlling electric motor
DE102018123206A1 (en) * 2018-09-20 2020-03-26 Valeo Siemens Eautomotive Germany Gmbh Control device for an inverter, inverter for an asynchronous machine, vehicle and method for operating an inverter
JP2020080610A (en) * 2018-11-13 2020-05-28 富士電機株式会社 Motor drive system
WO2023037823A1 (en) 2021-09-07 2023-03-16 株式会社デンソー Heating control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271884A (en) * 1997-01-27 1998-10-09 Hitachi Ltd Controller for permanent magnet synchronous motor and controller for electric vehicle
JP2006288926A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Motor controller of washing machine
JP2008035688A (en) * 2006-06-26 2008-02-14 Sanyo Electric Co Ltd Drive unit of motor
JP2013013198A (en) * 2011-06-28 2013-01-17 Aisin Aw Co Ltd Rotary electric machine controller
WO2013145486A1 (en) * 2012-03-30 2013-10-03 富士電機株式会社 Alternating-current electrical device system, and method for controlling same
JP2014155393A (en) * 2013-02-13 2014-08-25 Nagaoka Univ Of Technology Ac electric machine system and control method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271884A (en) * 1997-01-27 1998-10-09 Hitachi Ltd Controller for permanent magnet synchronous motor and controller for electric vehicle
JP2006288926A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Motor controller of washing machine
JP2008035688A (en) * 2006-06-26 2008-02-14 Sanyo Electric Co Ltd Drive unit of motor
JP2013013198A (en) * 2011-06-28 2013-01-17 Aisin Aw Co Ltd Rotary electric machine controller
WO2013145486A1 (en) * 2012-03-30 2013-10-03 富士電機株式会社 Alternating-current electrical device system, and method for controlling same
JP2014155393A (en) * 2013-02-13 2014-08-25 Nagaoka Univ Of Technology Ac electric machine system and control method therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296621B2 (en) 2016-04-26 2022-04-05 Dyson Technology Limited Method for controlling an electric motor
JP2019193568A (en) * 2016-04-26 2019-10-31 ダイソン テクノロジー リミテッド Method for controlling electric motor
US11682988B2 (en) 2016-04-26 2023-06-20 Dyson Technology Limited Method for controlling an electric motor
KR102319796B1 (en) * 2016-04-26 2021-11-01 다이슨 테크놀러지 리미티드 A method for controlling an electric motor
KR20210012063A (en) * 2016-04-26 2021-02-02 다이슨 테크놀러지 리미티드 A method for controlling an electric motor
WO2019065882A1 (en) 2017-09-28 2019-04-04 アイシン・エィ・ダブリュ株式会社 Inverter control device
US11296617B2 (en) 2017-09-28 2022-04-05 Aisin Corporation Inverter control device
JPWO2019171836A1 (en) * 2018-03-08 2020-12-03 日立オートモティブシステムズ株式会社 Vehicle control device
WO2019171836A1 (en) * 2018-03-08 2019-09-12 日立オートモティブシステムズ株式会社 Vehicle control device
JP2022502989A (en) * 2018-09-20 2022-01-11 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハーValeo Siemens eAutomotive Germany GmbH Inverter controllers, inverters for asynchronous machines, vehicles, and how to operate inverters
US11539320B2 (en) 2018-09-20 2022-12-27 Valeo Siemens Eautomotive Germany Gmbh Control device for an inverter, inverter for an asynchronous machine, vehicle and method for operating an inverter
DE102018123206A1 (en) * 2018-09-20 2020-03-26 Valeo Siemens Eautomotive Germany Gmbh Control device for an inverter, inverter for an asynchronous machine, vehicle and method for operating an inverter
JP2020080610A (en) * 2018-11-13 2020-05-28 富士電機株式会社 Motor drive system
JP7205176B2 (en) 2018-11-13 2023-01-17 富士電機株式会社 motor drive system
WO2023037823A1 (en) 2021-09-07 2023-03-16 株式会社デンソー Heating control device

Also Published As

Publication number Publication date
JP6201867B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6394030B2 (en) Inverter control device
JP6256597B2 (en) Inverter control device
JP6711412B2 (en) Inverter control device
JP6201867B2 (en) Inverter control device
JP4450082B2 (en) Electric motor drive device and control method thereof
JP2016181949A (en) Power converter
CN111095778B (en) Inverter control device
JP6253850B2 (en) AC rotating electrical machine control device
JP6645297B2 (en) Inverter control device
US9379597B2 (en) System for driving electromagnetic appliance and motor driven vehicle
US20170313193A1 (en) Method for switching an operating state of an electric machine and device for switching an operating state of an electric machine
US20160352269A1 (en) Apparatus for controlling rotary electric machine
US10027271B2 (en) Rotating electrical machine control device
JP6307983B2 (en) Inverter control device
JP6610381B2 (en) Inverter control device
CN111201705B (en) Control device for rotating electrical machine
JP2020005389A (en) Power supply system
JP6173516B1 (en) Electric motor control apparatus and electric motor control method
JP2018082508A (en) Inverter controller and inverter control method
US20230378896A1 (en) Rotating electrical machine control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150