JP2015198065A - Metal-air secondary battery - Google Patents

Metal-air secondary battery Download PDF

Info

Publication number
JP2015198065A
JP2015198065A JP2014076914A JP2014076914A JP2015198065A JP 2015198065 A JP2015198065 A JP 2015198065A JP 2014076914 A JP2014076914 A JP 2014076914A JP 2014076914 A JP2014076914 A JP 2014076914A JP 2015198065 A JP2015198065 A JP 2015198065A
Authority
JP
Japan
Prior art keywords
metal
positive electrode
secondary battery
perovskite oxide
air secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014076914A
Other languages
Japanese (ja)
Inventor
忠俊 室田
Tadatoshi Murota
忠俊 室田
基史 松田
Motofumi Matsuda
基史 松田
竜弥 竹口
Tatsuya Takeguchi
竜弥 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Santoku Corp
Original Assignee
Hokkaido University NUC
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Santoku Corp filed Critical Hokkaido University NUC
Priority to JP2014076914A priority Critical patent/JP2015198065A/en
Publication of JP2015198065A publication Critical patent/JP2015198065A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal-air secondary battery reduced in a reaction over voltage at a positive electrode-air interface and a positive electrode-electrolyte interface, thereby having excellent discharge characteristics.SOLUTION: In a metal-air secondary battery including a positive electrode, a negative electrode and a solid electrolyte, a reaction represented by the following formula (1) is performed on a positive electrode side. The positive electrode includes a Ruddlesden-Popper (RP) type layered perovskite oxide, and the solid electrolyte includes an RP type layered perovskite oxide having been subjected to humidifying reduction treatment. 4OH→O+ 2HO + 4e...(1)

Description

本発明は、金属−空気二次電池に関する。   The present invention relates to a metal-air secondary battery.

金属−空気二次電池は、負極に、Zn、Li、Al、Feなどの金属を活物質として用い、正極に、空気中の酸素を活物質として用いた二次電池である。小型で高容量が可能であり、自動車用の電源、携帯用の電源、定置用の電源などへの応用が期待されている。
負極にZnを用いた金属−空気二次電池の充電反応及び放電反応は以下のようにして表わされる。
(充電反応)
正極:4OH → O +2HO + 4e
負極:ZnO + HO + 2e → Zn + 2OH
(放電反応)
正極:O +2HO + 4e → 4OH
負極:Zn + 2OH → ZnO + HO + 2e
The metal-air secondary battery is a secondary battery in which a metal such as Zn, Li, Al, or Fe is used as an active material for a negative electrode, and oxygen in the air is used as an active material for a positive electrode. It is small and has a high capacity, and is expected to be applied to automobile power supplies, portable power supplies, stationary power supplies, and the like.
The charge reaction and discharge reaction of the metal-air secondary battery using Zn for the negative electrode are expressed as follows.
(Charge reaction)
Positive electrode: 4OH → O 2 + 2H 2 O + 4e
Negative electrode: ZnO + H 2 O + 2e → Zn + 2OH
(Discharge reaction)
Positive electrode: O 2 + 2H 2 O + 4e → 4OH
Negative electrode: Zn + 2OH → ZnO + H 2 O + 2e

しかし、金属−空気二次電池は、充放電時において、正極での高い反応過電圧のため、エネルギー変換効率が低くなるという課題がある。事実、空気亜鉛電池の放電時における理論起電力は1.65Vにもかかわらず、実用電圧は1.2V程度であり、一部の用途を除いて本格的な普及に至っていない。
特許文献1には、イリジウム及び/又はイリジウム酸化物を担持させたニッケル粉末と、白金などの酸素還元触媒を担持させたニッケル粉末と、結着剤とを混合し成型して金属−空気二次電池の空気極を製造することが開示されている。
また、非特許文献1には、正極触媒として、ペロブスカイト酸化物の一種であるLaNiOを用いると、放電時の反応過電圧を320mVに低減できるという報告がある。
However, the metal-air secondary battery has a problem that the energy conversion efficiency is low due to a high reaction overvoltage at the positive electrode during charging and discharging. In fact, although the theoretical electromotive force at the time of discharging of the zinc-air battery is 1.65V, the practical voltage is about 1.2V, and it has not been fully spread except for some applications.
In Patent Document 1, nickel powder carrying iridium and / or iridium oxide, nickel powder carrying an oxygen reduction catalyst such as platinum, and a binder are mixed and molded to form a metal-air secondary. Manufacturing an air electrode of a battery is disclosed.
Non-Patent Document 1 reports that the reaction overvoltage at the time of discharge can be reduced to 320 mV when LaNiO 3 which is a kind of perovskite oxide is used as the positive electrode catalyst.

特開2002−158013号公報JP 2002-158013 A

Nature Chemistry,3,(2011),546−550ページNature Chemistry, 3, (2011), pages 546-550.

しかしながら、金属−空気二次電池の実用化を図るには、充放電時における正極での反応過電圧の更なる低減が望まれている。本発明者らの検討により、特に、正極−空気界面及び正極−電解質界面での反応過電圧の低減が重要であることが分かってきた。
よって、本発明の課題は、正極−空気界面及び正極−電解質界面での反応過電圧が低減されて、放電特性に優れる金属−空気二次電池を提供することにある。
However, in order to put the metal-air secondary battery into practical use, it is desired to further reduce the reaction overvoltage at the positive electrode during charging and discharging. From the study by the present inventors, it has been found that it is particularly important to reduce the reaction overvoltage at the positive electrode-air interface and the positive electrode-electrolyte interface.
Accordingly, an object of the present invention is to provide a metal-air secondary battery in which the reaction overvoltage at the positive electrode-air interface and the positive electrode-electrolyte interface is reduced, and the discharge characteristics are excellent.

本発明者らが鋭意検討した結果、正極に高い触媒能を持つルドルスデン−ポッパー(Ruddlesden−Popper)型(以後、RP型と略称することもある)層状ペロブスカイト酸化物を用い、電解質にも正極と同様に、RP型層状ペロブスカイト酸化物を用いることで、金属−空気二次電池の充放電時における正極−空気界面及び正極−電解質界面の反応過電圧が低くなることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, a Rudolsden-Popper type (hereinafter also abbreviated as RP type) layered perovskite oxide having a high catalytic ability is used for the positive electrode, and the positive electrode is also used for the electrolyte. Similarly, by using the RP-type layered perovskite oxide, it has been found that the reaction overvoltage at the positive electrode-air interface and the positive electrode-electrolyte interface at the time of charge / discharge of the metal-air secondary battery is reduced, and the present invention is completed. It came.

すなわち、本発明においては、正極と負極と固体電解質とを備え、正極側において下記式(1)で表される反応が行われる金属−空気二次電池であって、前記正極は、ルドルスデン−ポッパー型層状ペロブスカイト酸化物を有し、前記固体電解質は、加湿還元処理がなされたルドルスデン−ポッパー型層状ペロブスカイト酸化物を有する、金属−空気二次電池が提供される。
4OH → O + 2HO + 4e ・・・(1)
また、正極は、下記式(2)で表されるRP型層状ペロブスカイト酸化物を有することが好ましい。
(La1−x)(Fe1−y(Sr1−z10−a ・・・(2)
[式(2)において、AはLa以外の希土類元素である。BはFe以外の遷移金属である。CはSr以外のアルカリ土類金属である。xは0≦x<1である。yは0≦y<1である。zは0≦z<1である。aは0≦a≦3である。]
That is, in the present invention, a metal-air secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte, and performing a reaction represented by the following formula (1) on the positive electrode side, wherein the positive electrode is a Rudolsden-Popper There is provided a metal-air secondary battery having a type layered perovskite oxide, wherein the solid electrolyte has a Rudolsden-Popper type layered perovskite oxide that has been subjected to a humidification reduction treatment.
4OH → O 2 + 2H 2 O + 4e (1)
Moreover, it is preferable that a positive electrode has RP type layered perovskite oxide represented by following formula (2).
(La 1-x A x) (Fe 1-y B y) 3 (Sr 1-z C z) 3 O 10-a ··· (2)
[In Formula (2), A is rare earth elements other than La. B is a transition metal other than Fe. C is an alkaline earth metal other than Sr. x is 0 ≦ x <1. y is 0 ≦ y <1. z is 0 ≦ z <1. a is 0 ≦ a ≦ 3. ]

さらに、固体電解質に含有される加湿還元処理がなされたRP型層状ペロブスカイト酸化物は、前記式(2)のRP型層状ペロブスカイト酸化物を加湿還元処理したものであることが好ましい。   Furthermore, the RP-type layered perovskite oxide subjected to the humidification reduction treatment contained in the solid electrolyte is preferably a product obtained by humidifying and reducing the RP-type layered perovskite oxide of the above formula (2).

本発明の負極は、アルカリ金属、アルカリ土類金属、第一遷移金属及びAlから選ばれる元素を含む負極活性物質を含有することが好ましく、特にLi、Na、Ca、Mg、Al、ZnおよびFeから選択される1種またはそれ以上の元素を活物質として含むことが好ましい。   The negative electrode of the present invention preferably contains a negative electrode active material containing an element selected from alkali metals, alkaline earth metals, first transition metals and Al, and in particular, Li, Na, Ca, Mg, Al, Zn and Fe It is preferable that one or more elements selected from the above are included as an active material.

本発明の金属−空気二次電池は、負極または負極と固体電解質が着脱でき、メカニカルチャージが可能であることが好ましい。   In the metal-air secondary battery of the present invention, it is preferable that the negative electrode or the negative electrode and the solid electrolyte can be attached and detached and mechanical charging is possible.

本発明の金属−空気二次電池は、正極に高い触媒能を持つRP型層状ペロブスカイト酸化物を有し、さらに、固体電解質として、加湿還元処理がなされたRP型層状ペロブスカイト酸化物を有しているので、正極で行われる上記式(1)の反応の反応過電圧を顕著に低減することができる。   The metal-air secondary battery of the present invention has an RP-type layered perovskite oxide having high catalytic ability at the positive electrode, and further has, as a solid electrolyte, an RP-type layered perovskite oxide that has been subjected to humidification reduction treatment. Therefore, the reaction overvoltage of the reaction of the above formula (1) performed at the positive electrode can be significantly reduced.

金属−空気二次電池の概略構成図である。It is a schematic block diagram of a metal-air secondary battery. 実施例1の金属−空気二次電池の正極での充放電反応の実験結果を示す図である。FIG. 3 is a diagram illustrating experimental results of a charge / discharge reaction at the positive electrode of the metal-air secondary battery of Example 1.

本発明の金属−空気二次電池は、正極と負極と固体電解質とを備え、正極側において下記式(1)で表される反応が行われる金属−空気二次電池であって、正極及び固体電解質が共にRP型層状ペロブスカイト酸化物を有し、固体電解質に含有されるRP型層状ペロブスカイト酸化物は加湿還元処理がなされたものであることを特徴とする。
4OH → O + 2HO + 4e ・・・(1)
本発明において、「加湿還元処理」とは、加湿処理と還元処理の両処理を意味し、具体的には、例えば、水素等の還元ガスと水蒸気の混合ガス中で加熱還元する処理方法を挙げることができる。
The metal-air secondary battery of the present invention is a metal-air secondary battery that includes a positive electrode, a negative electrode, and a solid electrolyte, and in which a reaction represented by the following formula (1) is performed on the positive electrode side. Both electrolytes have an RP-type layered perovskite oxide, and the RP-type layered perovskite oxide contained in the solid electrolyte is subjected to humidification reduction treatment.
4OH → O 2 + 2H 2 O + 4e (1)
In the present invention, the “humidification reduction treatment” means both the humidification treatment and the reduction treatment, and specifically includes, for example, a treatment method in which heat reduction is performed in a mixed gas of a reducing gas such as hydrogen and water vapor. be able to.

また、本発明において、RP型層状ペロブスカイト酸化物とは、ペロブスカイト層と、岩塩構造層とがc軸方向に交互に積層した構造をなしている金属酸化物のことである。RP型層状ペロブスカイト酸化物としては、下記式(2)が好ましい一例として挙げられる。
(La1−x)(Fe1−y(Sr1−z10−a ・・・(2)
[式(2)において、AはLa以外の希土類元素である。BはFe以外の遷移金属である。CはSr以外のアルカリ土類金属である。xは0≦x<1である。yは0≦y<1である。zは0≦z<1である。aは0≦a≦3である。]
式(2)のRP型層状ペロブスカイト酸化物の具体例としては、LaFeSr10、LaCo1.5Fe1.5Sr10などが挙げられる。
In the present invention, the RP-type layered perovskite oxide is a metal oxide having a structure in which perovskite layers and rock salt structure layers are alternately laminated in the c-axis direction. As the RP-type layered perovskite oxide, the following formula (2) may be mentioned as a preferred example.
(La 1-x A x) (Fe 1-y B y) 3 (Sr 1-z C z) 3 O 10-a ··· (2)
[In Formula (2), A is rare earth elements other than La. B is a transition metal other than Fe. C is an alkaline earth metal other than Sr. x is 0 ≦ x <1. y is 0 ≦ y <1. z is 0 ≦ z <1. a is 0 ≦ a ≦ 3. ]
Specific examples of the RP-type layered perovskite oxide of the formula (2) include LaFe 3 Sr 3 O 10 and LaCo 1.5 Fe 1.5 Sr 3 O 10 .

RP型層状ペロブスカイト酸化物は、次の理由により、式(1)で表される反応において良好な触媒活性が得られると推測される。一つは、高い電子伝導性によるものであり、もう一つは酸化還元が容易に生じることによるものであると推測される。特に、式(2)のRP型層状ペロブスカイト酸化物は、結晶格子内の積層したFeO八面体に起因する高い電子伝導性を有し、更には、酸化還元が容易に生じるため、式(1)で表される反応において、特に高い触媒活性を有している。 The RP-type layered perovskite oxide is presumed to have good catalytic activity in the reaction represented by the formula (1) for the following reason. One is due to high electron conductivity, and the other is presumed to be due to the easy occurrence of redox. In particular, the RP-type layered perovskite oxide of formula (2) has high electron conductivity due to the stacked FeO 6 octahedron in the crystal lattice, and furthermore, oxidation and reduction easily occur. In the reaction represented by), the catalyst has particularly high catalytic activity.

RP型層状ペロブスカイト酸化物は、原料粉末をRP型層状ペロブスカイト酸化物の量論比となるように混合し、固相反応させることで調製できる。
例えば、具体的酸化物のLaFeSr10は、次のようにして調製できる。まず、La成分、Sr成分、Fe成分の酸化物、炭酸塩等の原料粉末を、La、Sr、Feの元素比が1:3:3となるようにボールミルに投入し、各成分が十分に均一に混合するまで混合処理を行う。La成分としては、La、LaC、La(CO、La(NO等が挙げられる。Sr成分としては、SrCO、SrC、SrO、SrO、Sr(NO等が挙げられる。また、Fe成分としては、Fe、Fe、FeO、FeCO、Fe(CO等が挙げられる。
混合処理後、得られた試料をペレット状に成型する。次に、ペレット状に成型した試料を1400℃以上1500℃以下、120分間以上3000分間以下で焼成し、粉砕処理して、層状の結晶構造を有するLaFeSr10が得られる。
The RP-type layered perovskite oxide can be prepared by mixing the raw material powder so as to have a stoichiometric ratio of the RP-type layered perovskite oxide and causing a solid phase reaction.
For example, the specific oxide LaFe 3 Sr 3 O 10 can be prepared as follows. First, raw material powders such as La component, Sr component, Fe component oxide, carbonate and the like are put into a ball mill so that the element ratio of La, Sr, Fe is 1: 3: 3, and each component is sufficiently Mixing is performed until the mixture is uniformly mixed. Examples of the La component include La 2 O 3 , LaC 2 , La 2 (CO 3 ) 3 , La (NO 3 ) 3 and the like. Examples of the Sr component include SrCO 3 , SrC 2 , SrO, SrO 2 , Sr (NO 3 ) 2 and the like. As the Fe component, Fe 2 O 3, Fe 3 O 4, FeO, FeCO 3, Fe 2 (CO 3) 3 and the like.
After the mixing process, the obtained sample is formed into a pellet. Next, the pellet-shaped sample is fired at 1400 ° C. to 1500 ° C. for 120 minutes to 3000 minutes and pulverized to obtain LaFe 3 Sr 3 O 10 having a layered crystal structure.

また別の例の、LaCo1.5Fe1.5Sr10は、次のようにして調製できる。すなわち、La成分、Sr成分、Fe成分、Co成分の酸化物、炭酸塩等の原料粉末を、La、Sr、Fe、Coの元素比が1:3:1.5:1.5となるようにボールミルに投入し、各成分が十分に均一に混合するまで混合処理を行う。La成分、Sr成分、Fe成分は上述したものと同じものを使用できる。Co成分としては、Co、Co、CoO、CoCO等が挙げられる。
混合処理後、得られた試料をペレット状に成型する。次に、ペレット状に成型した試料を1400℃以上1500℃以下、120分間以上3000分間以下で焼成し、粉砕処理して、層状の結晶構造を有するLaCo1.5Fe1.5Sr10が得られる。
Another example, LaCo 1.5 Fe 1.5 Sr 3 O 10 can be prepared as follows. That is, the raw material powders such as La component, Sr component, Fe component, Co component oxide, carbonate, etc., so that the element ratio of La, Sr, Fe, Co is 1: 3: 1.5: 1.5 Into the ball mill, mixing is performed until each component is sufficiently uniformly mixed. The La component, the Sr component, and the Fe component can be the same as those described above. Examples of the Co component include Co 3 O 4 , Co 2 O 3 , CoO, and CoCO 3 .
After the mixing process, the obtained sample is formed into a pellet. Then, a sample was molded into pellets 1400 ° C. or higher 1500 ° C. or less and then calcined at not more than 120 minutes 3000 minutes, and pulverized, LaCo 1.5 Fe 1.5 Sr 3 O 10 having a layered crystal structure Is obtained.

本発明の正極は、RP型層状ペロブスカイト酸化物の他に、導電性材料、イオン導電性材料等を含有してもよい。導電性材料としては、Ni,Ti等の金属や黒鉛等が挙げられる。導電性材料を含有させることで、正極の電子導電性を高めることができる。イオン導電性材料としてはアニオン交換膜、LiOH、KOH、NaOH等のアルカリ水溶液が挙げられる。イオン導電性材料を含有させることで、正極のイオン導電性を高めることができる。
また、本発明の正極は、RP型層状ペロブスカイト酸化物を有する正極触媒層と、充電時に発生する酸素ガスを放出するためのガス拡散層から形成されていることが好ましい。
The positive electrode of the present invention may contain a conductive material, an ion conductive material or the like in addition to the RP-type layered perovskite oxide. Examples of the conductive material include metals such as Ni and Ti, graphite, and the like. By including a conductive material, the electronic conductivity of the positive electrode can be increased. Examples of the ion conductive material include an anion exchange membrane and an alkaline aqueous solution such as LiOH, KOH, or NaOH. By including the ion conductive material, the ion conductivity of the positive electrode can be increased.
The positive electrode of the present invention is preferably formed of a positive electrode catalyst layer having an RP-type layered perovskite oxide and a gas diffusion layer for releasing oxygen gas generated during charging.

次に、本発明の金属−空気二次電池に使用される固体電解質について説明する。
金属−空気二次電池に用いられる固体電解質はイオン伝導度が高く、電子伝導性の低いものが好ましい。これは固体電解質の電子伝導性が高いと電池内部で短絡が起こるためである。
本発明に用いられるRP型層状ペロブスカイト酸化物、例えば、式(2)のRP型層状ペロブスカイト酸化物は、高い電子伝導性を持っているため、このままの状態では固体電解質として用いることができない。そのため、本発明においては、固体電解質として用いるRP型層状ペロブスカイト酸化物としては、加湿還元処理がなされたものを使用する。
Next, the solid electrolyte used for the metal-air secondary battery of the present invention will be described.
The solid electrolyte used for the metal-air secondary battery preferably has a high ionic conductivity and a low electronic conductivity. This is because if the solid electrolyte has a high electronic conductivity, a short circuit occurs inside the battery.
Since the RP-type layered perovskite oxide used in the present invention, for example, the RP-type layered perovskite oxide of the formula (2) has high electron conductivity, it cannot be used as a solid electrolyte as it is. Therefore, in the present invention, as the RP-type layered perovskite oxide used as the solid electrolyte, one subjected to humidification reduction treatment is used.

本発明における加湿還元処理は、RP型層状ペロブスカイト酸化物を還元処理と加湿処理を行うものであり、下記に示す加湿還元性ガス雰囲気中で加熱することで行うことができるが、還元処理と加湿処理を個別に行うこともできる。還元処理はRP型層状ペロブスカイト酸化物に酸素欠損を導入するために行われる。還元処理に用いるガスは水素、一酸化炭素、硫化水素等が挙げられる。処理温度は100℃以上800℃以下であり、150℃以上600℃以下が好ましく、200℃以上500℃以下が最も好ましい。RP型層状ペロブスカイト酸化物は1100℃以上の温度で焼成することにより、大気中であっても酸素欠損が導入されるため、そのような材料に対しては、還元処理は必要ない。   The humidification reduction treatment in the present invention is a reduction treatment and humidification treatment of RP-type layered perovskite oxide, and can be performed by heating in a humidified reducing gas atmosphere shown below. Processing can also be performed individually. The reduction treatment is performed to introduce oxygen vacancies into the RP type layered perovskite oxide. Examples of the gas used for the reduction treatment include hydrogen, carbon monoxide, and hydrogen sulfide. The treatment temperature is from 100 ° C. to 800 ° C., preferably from 150 ° C. to 600 ° C., and most preferably from 200 ° C. to 500 ° C. Since the RP-type layered perovskite oxide is baked at a temperature of 1100 ° C. or higher, oxygen vacancies are introduced even in the air. Therefore, no reduction treatment is necessary for such a material.

また、加湿処理は酸素欠損の導入されたRP型層状ペロブスカイト酸化物に水蒸気を接触させることで行われる。この際の雰囲気は、水蒸気のみでも良いが、不活性ガスと水蒸気の混合ガスでも使用できる。また、還元処理と同時に行う際は、還元性ガスと水蒸気の混合ガスを選択できる。処理温度は100℃以上800℃以下であり、150℃以上600℃以下が好ましく、200℃以上500℃以下が最も好ましい。   Further, the humidification treatment is performed by bringing water vapor into contact with the RP type layered perovskite oxide into which oxygen deficiency is introduced. The atmosphere at this time may be only water vapor, but a mixed gas of an inert gas and water vapor can also be used. Moreover, when performing simultaneously with a reduction process, the mixed gas of reducing gas and water vapor | steam can be selected. The treatment temperature is from 100 ° C. to 800 ° C., preferably from 150 ° C. to 600 ° C., and most preferably from 200 ° C. to 500 ° C.

加湿還元処理を行う際は、上記で得られた粉末状のRP型層状ペロブスカイト酸化物をあらかじめ使用形状に合わせてプレス成型および焼結処理を行っておくことが好ましい。得られた成型体は、例えば加湿水素雰囲気中で、300℃で30分間処理することで、加湿還元処理することができる。RP型層状ペロブスカイト酸化物は、加湿還元処理を行うことで水や水酸基をインターカレートすることが知られている。インターカレートした水や水酸基はRP型層状ペロブスカイト酸化物の層間に位置してその層間を拡大させるため、該ペロブスカイト酸化物の電子伝導性を大きく低下させる。同時に、これら水や水酸基はアニオン伝導体として機能する。すなわち、加湿還元処理を行うことで該ペロブスカイト酸化物は電解質として機能する。   When performing the humidification reduction treatment, it is preferable to perform press molding and sintering treatment in advance on the powdery RP-type layered perovskite oxide obtained above according to the shape of use. The obtained molded body can be subjected to a humidification reduction treatment, for example, by treating at 300 ° C. for 30 minutes in a humidified hydrogen atmosphere. RP-type layered perovskite oxides are known to intercalate water and hydroxyl groups by performing a humidification reduction treatment. Intercalated water and hydroxyl groups are located between the layers of the RP-type layered perovskite oxide and expand the layers, greatly reducing the electronic conductivity of the perovskite oxide. At the same time, these water and hydroxyl groups function as anion conductors. That is, the perovskite oxide functions as an electrolyte by performing a humidification reduction treatment.

次に、本発明の金属−空気二次電池の一実施形態について、図1を用いて説明する。
図1に示す金属−空気二次電池は、正極2と、負極3との間に固体電解質層1が配置されている。
固体電解質層1は、水酸化物イオン(OH)の伝導を担う層であり、加湿還元処理されたRP型層状ペロブスカイト酸化物により構成されている。RP型層状ペロブスカイト酸化物としては、LaFeSr10、LaCo1.5Fe1.5Sr10等が挙げられる。
Next, an embodiment of the metal-air secondary battery of the present invention will be described with reference to FIG.
In the metal-air secondary battery shown in FIG. 1, the solid electrolyte layer 1 is disposed between the positive electrode 2 and the negative electrode 3.
The solid electrolyte layer 1, the hydroxide ion (OH -) is a layer responsible for conduction, it is formed by humidified reduction processed RP type layered perovskite oxide. Examples of the RP-type layered perovskite oxide include LaFe 3 Sr 3 O 10 and LaCo 1.5 Fe 1.5 Sr 3 O 10 .

正極2は、RP型層状ペロブスカイト酸化物を有する正極触媒層と、カーボンペーパー、カーボンクロス、カーボンフェルト、金属メッシュ等の導電性を有する多孔質シートで形成されたガス拡散層とで構成されていることが好ましい。この場合、正極触媒層は、ガス拡散層の固体電解質層1側の面に形成されている。
また、正極触媒層は、スラリーコート法、スプレーコート法、焼成法など従来公知の方法により形成できる。
The positive electrode 2 is composed of a positive electrode catalyst layer having an RP-type layered perovskite oxide and a gas diffusion layer formed of a porous sheet having conductivity such as carbon paper, carbon cloth, carbon felt, and metal mesh. It is preferable. In this case, the positive electrode catalyst layer is formed on the surface of the gas diffusion layer on the solid electrolyte layer 1 side.
The positive electrode catalyst layer can be formed by a conventionally known method such as a slurry coating method, a spray coating method, or a firing method.

本発明の一実施形態である金属−空気二次電池は、固体電解質層1、正極2、負極3、ガスケット4、アダプター5、及び集電体6が図1のように配置され、セル治具7によって挟まれた構成となっている。正極側のセル治具7に酸素、負極側のセル治具7にアルカリ溶液を導入することによって、放電が行われる。
集電体6の材料としては、導電性を有するものであればよく、特に限定はなく、ステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。なお、図示していないが、集電体6は正極2と正極側のセル治具7との間にも配置されていてもよい。
A metal-air secondary battery according to an embodiment of the present invention includes a solid electrolyte layer 1, a positive electrode 2, a negative electrode 3, a gasket 4, an adapter 5, and a current collector 6 arranged as shown in FIG. 7 between the two. Discharge is performed by introducing oxygen into the cell jig 7 on the positive electrode side and an alkaline solution into the cell jig 7 on the negative electrode side.
The material for the current collector 6 is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon. Although not shown, the current collector 6 may be disposed between the positive electrode 2 and the cell jig 7 on the positive electrode side.

負極3は、アルカリ金属、アルカリ土類金属、第一遷移金属及びアルミニウムから選ばれる元素を含む負極活性物質を含有する負極層で構成されている。アルカリ金属としては、Li、Na、K等が挙げられる。アルカリ土類金属としては、Mg、Ca等が挙げられる。第一遷移金属としては、Zn、Fe、Ti、Ni、Co、Cu、Mn、Cr等が挙げられる。負極活性物質としては、上記元素からなる金属、上記元素を含む合金、上記元素を含む化合物等が挙げられる。化合物としては、上記元素の酸化物、窒化物、炭酸塩等が挙げられる。
負極3は、負極活性物質の他に、導電性材料、イオン導電性材料等を含有してもよい。導電性材料、イオン導電性材料としては、上述したものと同様のものを用いることができる。
The negative electrode 3 is composed of a negative electrode layer containing a negative electrode active material containing an element selected from alkali metals, alkaline earth metals, first transition metals, and aluminum. Examples of the alkali metal include Li, Na, and K. Examples of the alkaline earth metal include Mg and Ca. Examples of the first transition metal include Zn, Fe, Ti, Ni, Co, Cu, Mn, and Cr. Examples of the negative electrode active material include metals composed of the above elements, alloys containing the above elements, and compounds containing the above elements. Examples of the compound include oxides, nitrides and carbonates of the above elements.
The negative electrode 3 may contain a conductive material, an ion conductive material, or the like in addition to the negative electrode active substance. As the conductive material and the ion conductive material, the same materials as described above can be used.

例えば、負極活性物質にZnを用いた場合、金属−空気二次電池の充電反応及び放電反応は以下のようにして表わされる。
(充電反応)
正極:4OH → O +2HO + 4e
負極:ZnO + HO + 2e → Zn + 2OH
(放電反応)
正極:O +2HO + 4e → 4OH
負極:Zn + 2OH → ZnO + HO + 2e
For example, when Zn is used as the negative electrode active material, the charge reaction and discharge reaction of the metal-air secondary battery are expressed as follows.
(Charge reaction)
Positive electrode: 4OH → O 2 + 2H 2 O + 4e
Negative electrode: ZnO + H 2 O + 2e → Zn + 2OH
(Discharge reaction)
Positive electrode: O 2 + 2H 2 O + 4e → 4OH
Negative electrode: Zn + 2OH → ZnO + H 2 O + 2e

本発明では、正極及び固体電解質として共にRP型層状ペロブスカイト酸化物を用いたことにより、充放電時に正極−空気界面及び正極−電解質界面で行われる反応の反応過電圧を低減することができ、過電圧ロスが小さい、つまりOCVが大きい、高いエネルギー変換効率を有する金属−空気二次電池とすることができる。   In the present invention, by using the RP type layered perovskite oxide as both the positive electrode and the solid electrolyte, the reaction overvoltage of the reaction performed at the positive electrode-air interface and the positive electrode-electrolyte interface during charge / discharge can be reduced, and the overvoltage loss is reduced. Is small, that is, the OCV is large, and a metal-air secondary battery having high energy conversion efficiency can be obtained.

以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these.

(実施例1)
1.負極の作製
亜鉛粉末(WAKO製 Zn powder 75−150μm)10mgを、5mm径(電極面積0.196cm)のホルダーに充填し(51mg/cm)、負極3を作製した。なお、電池性能の測定直前に、当該ホルダー内へ5M KOH溶液を注入した。また、図1においては、負極3はホルダーを含めて表している。
(Example 1)
1. Preparation of zinc powder (WAKO Ltd. Zn powder 75-150μm) 10mg of the negative electrode, and filling the holder of 5mm diameter (electrode area 0.196cm 2) (51mg / cm 2 ), to prepare a negative electrode 3. Note that a 5M KOH solution was injected into the holder immediately before measuring the battery performance. In FIG. 1, the negative electrode 3 is shown including a holder.

2.正極の作製
La、SrCO、及びFeの各粉末を、La、Sr、及びFeの各元素比が1:3:3となるように秤量し、ボールミルにて300rpm、1時間混合、粉砕して混合粉末を調製した。
次に、上記混合粉末をアルミナ乳鉢に移し、さらに粉砕した。
つづいて、上記粉末を成形機にてペレット型に20MPaで5分間加圧成形した。
さらに、マッフル炉にて空気中で1000℃まで1時間40分で昇温し、次に、1400℃まで8時間で昇温し、さらに同温度で3時間保持の熱プログラムで焼成した。
上記1400℃焼成体をアルミナ乳鉢で粉砕し、さらにボールミルにて300rpm、1時間粉砕した。
2. Preparation of positive electrode Each powder of La 2 O 3 , SrCO 3 , and Fe 2 O 3 was weighed so that each element ratio of La, Sr, and Fe was 1: 3: 3, and 300 rpm, 1 The mixed powder was prepared by mixing and grinding for a time.
Next, the mixed powder was transferred to an alumina mortar and further pulverized.
Subsequently, the powder was pressure molded into a pellet mold at 20 MPa for 5 minutes with a molding machine.
Furthermore, the temperature was raised to 1000 ° C. in air in a muffle furnace in 1 hour and 40 minutes, then heated to 1400 ° C. in 8 hours, and further baked with a heat program that was maintained at the same temperature for 3 hours.
The 1400 ° C. fired product was pulverized with an alumina mortar, and further pulverized with a ball mill at 300 rpm for 1 hour.

上記で合成したLaFeSr10焼結体粉末を、カーボン粉末(VulcanXC72−R Cabot社製)と2:1の割合で混合し、適量のエタノールと混合した。この混合液を3分間超音波分散させた後、撥水製カーボンシート(Ballard社製 P50T)上にLaFeSr10焼結体粉末の担持量が10mg/cmとなるよう塗布し、空気中にて静置乾燥させた。以上の工程により、RP型層状ペロブスカイト酸化物の正極2を作製した。 The LaFe 3 Sr 3 O 10 sintered powder synthesized above, carbon powder (manufactured by Vulcan XC72-R Cabot Corp.) and 2: 1 ratio was mixed with an appropriate amount of ethanol. After ultrasonically dispersing this mixed solution for 3 minutes, it was applied on a water-repellent carbon sheet (P50T made by Ballard) so that the supported amount of LaFe 3 Sr 3 O 10 sintered powder was 10 mg / cm 2 , It was allowed to stand and dry in air. The positive electrode 2 of RP type layered perovskite oxide was produced by the above process.

3.固体電解質(層)の作製
正極2と同様にして、ボールミル及びアルミナ乳鉢による粉砕によって、LaFeSr10焼結体粉末を得た。この焼結体粉末1.5gをφ20mmの成形器に入れ、60MPaで10分間圧縮し、約1mmの厚さでφ20mmのペレット型にした後、マッフル炉にて空気中で900℃、10時間焼成した。
次に、得られたLaFeSr10ペレットを加湿水素雰囲気中で、300℃で30分間加湿還元後、自然冷却した。以上の工程により、加湿還元処理がなされたRP型層状ペロブスカイト酸化物の固体電解質層1を作製した。
3. Preparation of Solid Electrolyte (Layer) LaFe 3 Sr 3 O 10 sintered powder was obtained by pulverization with a ball mill and an alumina mortar in the same manner as the positive electrode 2. 1.5 g of this sintered powder is put into a molding machine with a diameter of 20 mm, compressed at 60 MPa for 10 minutes, made into a pellet mold with a thickness of about 1 mm and a diameter of 20 mm, and then fired in air at 900 ° C. for 10 hours in a muffle furnace. did.
Next, the obtained LaFe 3 Sr 3 O 10 pellet was humidified and reduced at 300 ° C. for 30 minutes in a humidified hydrogen atmosphere, and then naturally cooled. Through the above steps, the RP-type layered perovskite oxide solid electrolyte layer 1 subjected to the humidification reduction treatment was produced.

4.金属−空気二次電池の作製
上記の通り作製した負極3、正極2及び固体電解質層1、並びに図1に示す他の構成材料を用いて、図1に示す金属−空気二次電池を作製した。
4). Production of Metal-Air Secondary Battery The metal-air secondary battery shown in FIG. 1 was produced using the negative electrode 3, the positive electrode 2 and the solid electrolyte layer 1 produced as described above, and the other constituent materials shown in FIG. 1. .

5.電池性能測定
上記のようにして作製した金属−空気二次電池の電池性能として、その放電特性を測定した。
測定にはAutolab社のポテンショガルバノスタットを使用した。空気極ガスの温度、湿度、供給量およびセル温度の調整はチノー社製PEFC評価機を使用した。空気極ガスとして70℃飽和加湿酸素を80mL/分で供給し、セル温度は70℃に設定した。10分間の静置の後、開回路電圧(OCV)が安定してから電流を10mA/sの割合で印加し、放電時の電流-電圧曲線を測定した。結果を図2に示す。
図2から分かるように、得られた放電特性は、OCV:1.52V、最大電流密度:816mA/cm、最大出力密度:171mW/cmであった。
また図2より、実用的な電流領域である1〜10mA/cmでの電圧は1.4V以上を示した。
5. Battery performance measurement As battery performance of the metal-air secondary battery produced as described above, its discharge characteristics were measured.
For the measurement, a potentogalvanostat manufactured by Autolab was used. Adjustment of the temperature, humidity, supply amount, and cell temperature of the air electrode gas was performed using a PEFC evaluation machine manufactured by Chino. 70 ° C. saturated humidified oxygen was supplied as an air electrode gas at 80 mL / min, and the cell temperature was set to 70 ° C. After standing for 10 minutes, the current was applied at a rate of 10 mA / s after the open circuit voltage (OCV) was stabilized, and the current-voltage curve during discharge was measured. The results are shown in FIG.
As can be seen from FIG. 2, the obtained discharge characteristics were OCV: 1.52 V, maximum current density: 816 mA / cm 2 , and maximum output density: 171 mW / cm 2 .
Moreover, from FIG. 2, the voltage in 1-10 mA / cm < 2 > which is a practical electric current area | region showed 1.4V or more.

(比較例1)
正極を以下のように作成した。50質量%のPt/C(TANAKA KIKINZOKU製)と、アニオン伝導性イオン交換樹脂(株式会社トクヤマ製)を、質量比で1:0.4の割合で混合し、超音波で10分間分散して作製した触媒ペーストとした。当該触媒ペーストを、PTFEで撥水処理したカーボンシート(Ballard社製 P50T)上に、スラリーコート法でPt担持量が0.3mg/cmになるように塗布して正極とした。それ以外は、実施例1と同様にして金属−空気二次電池を作製し、その電池性能を測定した。
得られた放電特性は、OCV:1.15V、最大電流密度:782mA/cm、最大出力密度:105mW/cmであった。
(Comparative Example 1)
A positive electrode was prepared as follows. 50 mass% Pt / C (manufactured by TANAKA KIKINZOKU) and anion conductive ion exchange resin (manufactured by Tokuyama Co., Ltd.) are mixed at a mass ratio of 1: 0.4 and dispersed with ultrasonic waves for 10 minutes. The produced catalyst paste was used. The catalyst paste was applied on a carbon sheet treated with PTFE (P50T manufactured by Ballard) so that the amount of Pt supported was 0.3 mg / cm 2 by a slurry coating method to obtain a positive electrode. Other than that was carried out similarly to Example 1, the metal-air secondary battery was produced, and the battery performance was measured.
The obtained discharge characteristics were OCV: 1.15 V, maximum current density: 782 mA / cm 2 , and maximum output density: 105 mW / cm 2 .

(比較例2)
正極用の触媒として、ペロブスカイト酸化物であるLaNiOを用いた以外は、実施例1と同様にして金属−空気二次電池を作製し、その電池性能を測定した。
得られた放電特性は、OCV:1.20V、最大電流密度:470mA/cm、最大出力密度:98mW/cmであった。
(Comparative Example 2)
A metal-air secondary battery was produced in the same manner as in Example 1 except that LaNiO 3 which is a perovskite oxide was used as the catalyst for the positive electrode, and the battery performance was measured.
The obtained discharge characteristics were OCV: 1.20 V, maximum current density: 470 mA / cm 2 , and maximum output density: 98 mW / cm 2 .

(比較例3)
正極の触媒として、マンガン酸化物と、アニオン伝導性イオン交換樹脂を、質量比で1:0.4の割合で混合し、超音波で10分間分散して作製した触媒ペーストを使用した。当該触媒ペーストを、PTFEで撥水処理したカーボンシート上に、スラリーコート法でマンガン酸化物担持量が0.3mg/cmになるように塗布して正極とした以外は、実施例1と同様にして金属−空気二次電池を作製し、その電池性能を測定した。
得られた放電特性は、OCV:1.08V、最大電流密度:450mA/cm2、最大出力密度:82mW/cm2であった。
(Comparative Example 3)
As a catalyst for the positive electrode, a catalyst paste prepared by mixing manganese oxide and an anion conductive ion exchange resin at a mass ratio of 1: 0.4 and dispersing by ultrasonic for 10 minutes was used. The catalyst paste, a carbon sheet which had been subjected to water-repellent treatment with PTFE, except that the manganese oxide support amount in the slurry coating method was then applied so that the 0.3 mg / cm 2 cathode, as in Example 1 Thus, a metal-air secondary battery was produced and its battery performance was measured.
The obtained discharge characteristics were OCV: 1.08 V, maximum current density: 450 mA / cm 2, and maximum output density: 82 mW / cm 2.

実施例1は、各比較例と比較して、電池性能(放電特性)であるOCV、最大電流密度、及び最大出力密度のいずれもが、顕著に良好であることが分かる。   It can be seen that Example 1 has significantly better OCV, maximum current density, and maximum output density, which are battery performance (discharge characteristics), as compared with each comparative example.

1:固体電解質層
2:正極
3:負極
4:ガスケット
5:アダプター
6:集電体
7:セル治具
1: Solid electrolyte layer 2: Positive electrode 3: Negative electrode 4: Gasket 5: Adapter 6: Current collector 7: Cell jig

Claims (5)

正極と負極と固体電解質とを備え、正極側において下記式(1)で表される反応が行われる金属−空気二次電池であって、
前記正極は、ルドルスデン−ポッパー(Ruddlesden−Popper)型層状ペロブスカイト酸化物を有し、
前記固体電解質は、加湿還元処理がなされたルドルスデン−ポッパー型層状ペロブスカイト酸化物を有する、
金属−空気二次電池。
4OH → O + 2HO + 4e ・・・(1)
A metal-air secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte, wherein a reaction represented by the following formula (1) is performed on the positive electrode side,
The positive electrode has a Rudolsden-Popper type layered perovskite oxide,
The solid electrolyte has a Rudolsden-Popper type layered perovskite oxide that has been subjected to a humidification reduction treatment.
Metal-air secondary battery.
4OH → O 2 + 2H 2 O + 4e (1)
前記正極は、下記式(2)で表されるルドルスデン−ポッパー型層状ペロブスカイト酸化物を有する、
請求項1に記載の金属−空気二次電池。
(La1−x)(Fe1−y(Sr1−z10−a ・・・(2)
[式(2)において、AはLa以外の希土類元素である。BはFe以外の遷移金属である。CはSr以外のアルカリ土類金属である。xは0≦x<1である。yは0≦y<1である。zは0≦z<1である。aは0≦a≦3である。]
The positive electrode has a Rudolsden-Popper layered perovskite oxide represented by the following formula (2):
The metal-air secondary battery according to claim 1.
(La 1-x A x) (Fe 1-y B y) 3 (Sr 1-z C z) 3 O 10-a ··· (2)
[In Formula (2), A is rare earth elements other than La. B is a transition metal other than Fe. C is an alkaline earth metal other than Sr. x is 0 ≦ x <1. y is 0 ≦ y <1. z is 0 ≦ z <1. a is 0 ≦ a ≦ 3. ]
前記加湿還元処理がなされたルドルスデン−ポッパー型層状ペロブスカイト酸化物は、請求項2に記載の前記式(2)で表されるルドルスデン−ポッパー型層状ペロブスカイト酸化物を加湿還元処理したものである、
請求項1又は2に記載の金属−空気二次電池。
The Rudolsden-Popper type layered perovskite oxide that has been subjected to the humidification reduction treatment is obtained by humidifying and reducing the Rudolsden-Popper type layered perovskite oxide represented by the formula (2) according to claim 2,
The metal-air secondary battery according to claim 1 or 2.
前記負極が、アルカリ金属、アルカリ土類金属、第一遷移金属及びアルミニウムから選ばれる元素から選択される1種またはそれ以上の元素を負極活物質として含む、
請求項1〜3いずれか一項に記載の金属−空気二次電池。
The negative electrode contains one or more elements selected from elements selected from alkali metals, alkaline earth metals, first transition metals and aluminum as a negative electrode active material,
The metal-air secondary battery as described in any one of Claims 1-3.
前記負極又は前記負極と前記固体電解質が着脱でき、メカニカルチャージが可能である、
請求項1〜4いずれか一項に記載の金属−空気二次電池。
The negative electrode or the negative electrode and the solid electrolyte can be detached and mechanically charged.
The metal-air secondary battery as described in any one of Claims 1-4.
JP2014076914A 2014-04-03 2014-04-03 Metal-air secondary battery Pending JP2015198065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076914A JP2015198065A (en) 2014-04-03 2014-04-03 Metal-air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076914A JP2015198065A (en) 2014-04-03 2014-04-03 Metal-air secondary battery

Publications (1)

Publication Number Publication Date
JP2015198065A true JP2015198065A (en) 2015-11-09

Family

ID=54547623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076914A Pending JP2015198065A (en) 2014-04-03 2014-04-03 Metal-air secondary battery

Country Status (1)

Country Link
JP (1) JP2015198065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550936B (en) * 2016-02-18 2016-09-21 財團法人工業技術研究院 Metal-air flow secondary battery
CN111564626A (en) * 2019-02-14 2020-08-21 丰田自动车株式会社 Air battery, air battery system, and vehicle equipped with air battery system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745270A (en) * 1993-07-30 1995-02-14 Electric Fuel Efl Ltd Zinc-battery anode and its manufacture
WO2013161516A1 (en) * 2012-04-26 2013-10-31 日本碍子株式会社 Lithium air secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745270A (en) * 1993-07-30 1995-02-14 Electric Fuel Efl Ltd Zinc-battery anode and its manufacture
WO2013161516A1 (en) * 2012-04-26 2013-10-31 日本碍子株式会社 Lithium air secondary cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
" ", J.AM.CHEM.SOC., vol. 135, JPN6018004723, 2013, pages 11125 - 11130, ISSN: 0003854224 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550936B (en) * 2016-02-18 2016-09-21 財團法人工業技術研究院 Metal-air flow secondary battery
CN111564626A (en) * 2019-02-14 2020-08-21 丰田自动车株式会社 Air battery, air battery system, and vehicle equipped with air battery system
CN111564626B (en) * 2019-02-14 2023-05-23 丰田自动车株式会社 Air battery, air battery system, and vehicle equipped with air battery system

Similar Documents

Publication Publication Date Title
Wang et al. Nickel-doped La0. 8Sr0. 2Mn1–x Ni x O3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium–air batteries
JP5184212B2 (en) Lithium air secondary battery and lithium air secondary battery manufacturing method
JP5961709B2 (en) Cathode catalyst and equipment
JP6731199B2 (en) Catalyst for oxygen reduction reaction and air electrode for metal-air secondary battery
Gao et al. Preparation and characterization of La1− xSrxNiyFe1− yO3− δ cathodes for low-temperature solid oxide fuel cells
Trocino et al. Iron–air battery operating at high temperature
CN108493460B (en) Perovskite/cerium oxide oxygen catalyst and desolvation composite preparation method thereof
JP5802189B2 (en) Solid electrolyte material and metal-air all-solid secondary battery using the same
Ju et al. Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
Meng et al. Highly efficient and stable intermediate-temperature solid oxide fuel cells using Bi-deficient perovskite cathode
KR101586403B1 (en) Cathode Catalyst for Metal-Air Battery, Method of Manufacturing the Same, and Metal-Air Battery Comprising the Same
Ishihara et al. Effects of Fe addition on the surface reaction of the anode of intermediate temperature solid oxide fuel cells
JP2015198065A (en) Metal-air secondary battery
JP6178758B2 (en) Lithium air secondary battery
Toriumi et al. High-valence-state manganate (v) Ba 3 Mn 2 O 8 as an efficient anode of a proton-conducting solid oxide steam electrolyzer
JP6963596B2 (en) Electrochemical cell
KR101564609B1 (en) Method for manufacturing catalyst material for metal air battery
JP6367636B2 (en) Steam electrolysis cell
JP2012164608A (en) ELECTRODE CATALYST CONTAINING Fe, Co, AND Ni, AND METHOD FOR MANUFACTURING THE SAME
KR20160038833A (en) Electrolyte membrane, fuel cell comprising the same, battery module comprising the fuel cell and method for manufacturing the electrolyte membrane
Anandan et al. Mixed metal oxide catalysts for rechargeable lithium-air batteries
WO2014041800A1 (en) METAL Na CELL
US10752515B2 (en) Lithium-substituted magnesium ferrite material based hydroelectric cell and process for preparation thereof
JP2016197498A (en) Lithium air secondary battery, method of manufacturing catalyst for air electrode of the same and method of manufacturing lithium air secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807