JP2015198059A - Flow type storage battery - Google Patents

Flow type storage battery Download PDF

Info

Publication number
JP2015198059A
JP2015198059A JP2014076612A JP2014076612A JP2015198059A JP 2015198059 A JP2015198059 A JP 2015198059A JP 2014076612 A JP2014076612 A JP 2014076612A JP 2014076612 A JP2014076612 A JP 2014076612A JP 2015198059 A JP2015198059 A JP 2015198059A
Authority
JP
Japan
Prior art keywords
electrode
specific surface
surface area
electrolytic cell
electrode electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014076612A
Other languages
Japanese (ja)
Inventor
杉政 昌俊
Masatoshi Sugimasa
昌俊 杉政
寛人 内藤
Hiroto Naito
寛人 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014076612A priority Critical patent/JP2015198059A/en
Publication of JP2015198059A publication Critical patent/JP2015198059A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a flow type storage battery that can implement high output and large capacity.SOLUTION: In a flow type storage battery which has a first electrode electrolytic bath 5 in which a first electrode is held, a second electrode electrolytic bath 6 in which a second electrode is held, a separator 4 for separating the first electrode electrolytic bath and the second electrode electrolytic bath from each other, and electrolytic solution supply means 9, 10 for circulating and supplying electrolytic solution containing activation material to the first electrode electrolytic bath and the second electrode electrolytic bath and in which at least one of the first electrode electrolytic bath and the second electrode electrolytic bath performs charging and discharging by dissolution and precipitation reactions of metal ions, the first electrode or the second electrode at which the dissolution and precipitation reactions of metal ions are performed has a structure that plural porous base materials having different specific surface areas are laminated, and the porous base material having the highest specific surface area is disposed on the surface confronting the other electrode.

Description

本発明はフロー型畜電池に関し、特にフロー型畜電池の電極構造に関するものである。   The present invention relates to a flow type battery, and more particularly to an electrode structure of a flow type battery.

近年、自然エネルギーを発電に利用した風力発電、太陽光発電等の再生可能エネルギー発電の普及が進められている。このような自然エネルギーを利用した発電は、風況や天候等の影響を受け易く、単独で電力の安定的な供給を担う能力に乏しいことから、火力発電設備や揚水発電設備等を併設することによって、電力需給ギャップの補填を行うことが多くなっている。しかしながら、火力発電や揚水発電の設備を設置するための場所や費用は膨大なものとなるため、これらを再生可能エネルギー発電設備に併設するのが困難な場合がある。そこで、近年、大電力を貯蔵することが可能な蓄電池を利用する蓄電システムが注目されている。   In recent years, renewable energy power generation such as wind power generation and solar power generation using natural energy for power generation has been promoted. Such power generation using natural energy is easily affected by wind conditions, weather, etc., and lacks the ability to stably supply power alone. Increasingly, the gap between power supply and demand is being compensated. However, since the place and cost for installing thermal power generation and pumped-storage power generation facilities are enormous, it may be difficult to install them in a renewable energy power generation facility. Therefore, in recent years, a power storage system using a storage battery capable of storing a large amount of electric power has attracted attention.

蓄電池の一種として、レドックスフロー電池等のフロー型蓄電池が知られている。フロー型蓄電池は、金属イオン等の活物質を溶解させた電解液を電極電解槽に循環させることによって、活物質の酸化還元反応を進行させて充放電を行う蓄電池である。フロー型蓄電池によると、充電電力を溶液の形態で電解液タンクに貯蔵することができるため、電池容量の大容量化が容易である。そのため、電力平準化用をはじめとした蓄電システムへの適用が検討されている。特に、フロー型蓄電池は、活物質が溶解している電解液を、複数の蓄電池に共通の電解液タンクから供給する構成とされるため、電解液の流量を調整することによって、出力の調節を適切に行うことができる利点を有している。   As a kind of storage battery, a flow-type storage battery such as a redox flow battery is known. A flow-type storage battery is a storage battery that charges and discharges by advancing an oxidation-reduction reaction of an active material by circulating an electrolytic solution in which an active material such as metal ions is dissolved in an electrode electrolytic cell. According to the flow type storage battery, the charging power can be stored in the electrolyte tank in the form of a solution, so that the battery capacity can be easily increased. Therefore, application to power storage systems including those for power leveling is being studied. In particular, a flow-type storage battery is configured to supply an electrolytic solution in which an active material is dissolved from a common electrolytic solution tank to a plurality of storage batteries. Therefore, the output can be adjusted by adjusting the flow rate of the electrolytic solution. It has the advantage that it can be done properly.

一方、レドックスフロー電池は単位当たりのエネルギー密度が低く、大容量貯蔵には大型のタンクを設置する必要がある。これに対して、レドックスフロー電池の高エネルギー密度化を図る手法として、金属の溶解析出を利用する方式が挙げられ、ハーフフロー電池やハイブリッドフロー電池と呼ばれている。比容量の大きなZn、Fe、Snなどの金属もしくは合金の溶解析出反応を充放電に用いることでエネルギー密度は2〜10倍程度の向上が見込まれる。また、レドックスフロー電池は電流密度が低いため、実用上は広い電極面積が必要となる。従来、電極の高比表面積化を図るために、多孔体、メッシュ、エキスパンドメタル、繊維、フェルト、不織布などの電極形状が用いられている(例えば、特許文献1等)。   On the other hand, the redox flow battery has a low energy density per unit, and it is necessary to install a large tank for large-capacity storage. On the other hand, as a technique for increasing the energy density of the redox flow battery, there is a system using dissolution and precipitation of metal, which is called a half flow battery or a hybrid flow battery. The energy density is expected to be improved by about 2 to 10 times by using the dissolution and precipitation reaction of metals or alloys such as Zn, Fe, and Sn having a large specific capacity for charging and discharging. In addition, since the redox flow battery has a low current density, a large electrode area is required for practical use. Conventionally, electrode shapes such as porous bodies, meshes, expanded metals, fibers, felts, and nonwoven fabrics have been used to increase the specific surface area of the electrodes (for example, Patent Document 1).

特開2014−10999号公報JP 2014-10999 A

高出力化のためには電極の高比表面積化を図る必要がある。このため電極は比表面積の高い三次元的な形態を有することが望ましい。また高比表面積電極を用いることで単位面積当たりの電流密度が低下するため、デンドライト形成が生じにくい利点がある。一方で、フロー電池の利点である大容量化を実現するためには金属が析出する空間が必要であるため、微細な空間しか存在しない電極では大容量化の面で課題がある。   In order to increase the output, it is necessary to increase the specific surface area of the electrode. For this reason, it is desirable that the electrode has a three-dimensional form with a high specific surface area. Moreover, since the current density per unit area is reduced by using the high specific surface area electrode, there is an advantage that dendrite formation is less likely to occur. On the other hand, in order to realize a large capacity, which is an advantage of the flow battery, a space in which metal is deposited is necessary. Therefore, there is a problem in terms of increasing the capacity in an electrode having only a minute space.

本発明の目的は、高出力化かつ大容量化を実現するフロー型畜電池を提供することである。   An object of the present invention is to provide a flow type live battery that realizes high output and large capacity.

上記課題を解決するため、本発明の要旨は以下である。   In order to solve the above problems, the gist of the present invention is as follows.

第1電極が保持される第1電極電解槽と、第2電極が保持される第2電極電解槽と、第1電極電解槽と第2電極電解槽とを隔離するセパレータと、第1電極電解槽および第2電極電解槽に活物質を含む電解液を循環供給する電解液供給手段とを備え、第1電極電解槽および第2電極電解槽の少なくとも一方が金属イオンの溶解析出反応によって充放電を行うフロー型畜電池において、金属イオンの溶解析出反応が行われる第1電極または第2電極は、比表面積の異なる複数の多孔質基材が積層された構造を有し、他方の電極と対面する面に最も比表面積の高い多孔質基材が配置されていることを特徴とするフロー型畜電池。   A first electrode electrolytic cell in which a first electrode is held; a second electrode electrolytic cell in which a second electrode is held; a separator that separates the first electrode electrolytic cell and the second electrode electrolytic cell; And an electrolytic solution supply means for circulatingly supplying an electrolytic solution containing an active material to the tank and the second electrode electrolytic cell, and at least one of the first electrode electrolytic cell and the second electrode electrolytic cell is charged and discharged by a dissolution precipitation reaction of metal ions In the flow type live battery, the first electrode or the second electrode where the metal ion dissolution and precipitation reaction is performed has a structure in which a plurality of porous substrates having different specific surface areas are laminated, and faces the other electrode. A flow-type live battery characterized in that a porous substrate having the highest specific surface area is disposed on the surface to be processed.

本発明により、高出力化かつ大容量化を実現するフロー型畜電池を提供できる。   According to the present invention, it is possible to provide a flow-type live battery that achieves high output and large capacity.

本実施形態のフロー型畜電池の構成図である。It is a block diagram of the flow type livestock battery of this embodiment. 本実施形態の電極構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the electrode structure of this embodiment. 本実施例によるZnを析出させた比表面積の異なる網状電極表面の外観である。It is the external appearance of the mesh electrode surface from which the specific surface area which precipitated Zn by a present Example differs.

本発明のフロー型畜電池の実施形態について説明する。図1にフロー型畜電池の基本構成の一例を示す。図1に示すように、フロー型電池は、充放電を行う電極電解槽と、電解液貯槽(7,8)と、電解液供給手段9,10とを備えている。また、電極電解槽と、電解液貯槽(7,8)とを接続する複数の配管11,12を備えている。   An embodiment of the flow type live battery of the present invention will be described. FIG. 1 shows an example of the basic configuration of a flow type battery. As shown in FIG. 1, the flow type battery includes an electrode electrolytic cell for charging and discharging, an electrolytic solution storage tank (7, 8), and electrolytic solution supply means 9, 10. Moreover, the some piping 11 and 12 which connects an electrode electrolytic cell and electrolyte storage tank (7, 8) is provided.

電極電解槽は、筺体1の内部に、第1電極2と、第2電極3と、第1電極電解槽5と、第2電極電解槽6と、セパレータ4とを有している。筺体1の内部は、イオン伝導性のセパレータ4によって、第1電極電解槽5と、第2電極電解槽6との二槽にそれぞれ区画されている。   The electrode electrolytic cell has a first electrode 2, a second electrode 3, a first electrode electrolytic cell 5, a second electrode electrolytic cell 6, and a separator 4 inside the housing 1. The inside of the housing 1 is divided into two tanks, a first electrode electrolytic cell 5 and a second electrode electrolytic cell 6, by an ion conductive separator 4.

セパレータ4は、筺体の内部に保持される電解液の組成成分の移動を制約し、第1電極電解槽5には第1電極側電解液、第2電極電解槽6には第2電極側電解液が保持されるように区画している。なお、セパレータ4を介しては、一部のキャリアイオンのみの移動が許容される状態となる。セパレータ4は、例えば、多孔性とした樹脂材料等で構成され、具体的には、ポリエチレン、ポリプロピレン、ポリイミド、フッ素樹脂、その他イオン交換膜等が用いられる。   The separator 4 restricts the movement of the composition component of the electrolytic solution held inside the housing. The first electrode electrolytic cell 5 has a first electrode side electrolytic solution, and the second electrode electrolytic cell 6 has a second electrode side electrolytic. It is partitioned so that the liquid is retained. Note that only some carrier ions are allowed to move through the separator 4. The separator 4 is made of, for example, a porous resin material, and specifically, polyethylene, polypropylene, polyimide, fluororesin, and other ion exchange membranes are used.

第1電極2は、第1電極電解槽5に保持され、第1電極側電解液に浸漬されている。この第1電極2から引き出された引出配線は、電源部の正極(+)側に接続される。また、第2電極3は、第2電極電解槽6に保持され、第2電極側電解液に浸漬されている。この第2電極3から引き出された引出配線は、電源部の負極(−)側に接続される。 電解液貯槽(7,8)としては、第1電極側電解液貯槽7と、第2電極側電解液貯槽8とが備えられている。第1電極側電解液貯槽7と、第2電極側電解液貯槽8とには、電気化学的に活性な活物質を含有する第1電極側電解液、第2電極側電解液がそれぞれ貯留されている。 電解液に含有させる活物質としては、酸化還元反応の可逆性が良好な公知の第1電極活物質と第2電極活物質とを組み合わせて用いることができる。第1電極活物質としては、例えば、銅、ニッケル、コバルト、銀、マンガン、バナジウム、鉄等の金属や、これらの合金や、臭素、ヨウ素等のハロゲン類や、酸素、酸化物と水酸化物との間の状態変化により充放電が可能なニッケル、マンガン、イリジウム等の金属化合物が挙げられる。一方、第2電極活物質としては、金属の溶解析出反応により充放電が可能な材料であり、エネルギー密度が高いものが好ましい。具体的には、亜鉛(Zn)、錫(Sn)、鉄(Fe)、コバルト(Co)、銅(Cu)のいずれか、もしくはこれらの合金がよい。また、電解液としては、第1電極活物質及び第2電極活物質の種類に応じて、適宜の導電性溶液が使用される。電解液には上記した活物質のイオンが含まれ、例えば、第2電極活物質を亜鉛、第1電極活物質を臭素とした場合は、臭化亜鉛、臭化アンモニウム等を用いることができる。また、より平坦な金属析出層を得るために添加剤を電解液に加えても良い。   The 1st electrode 2 is hold | maintained at the 1st electrode electrolytic vessel 5, and is immersed in the 1st electrode side electrolyte solution. The lead wiring drawn from the first electrode 2 is connected to the positive electrode (+) side of the power supply unit. Moreover, the 2nd electrode 3 is hold | maintained at the 2nd electrode electrolytic vessel 6, and is immersed in the 2nd electrode side electrolyte solution. The lead-out wiring led out from the second electrode 3 is connected to the negative electrode (−) side of the power supply unit. As the electrolytic solution storage tanks (7, 8), a first electrode side electrolytic solution storage tank 7 and a second electrode side electrolytic solution storage tank 8 are provided. The first electrode-side electrolyte storage tank 7 and the second electrode-side electrolyte storage tank 8 store a first electrode-side electrolyte solution and a second electrode-side electrolyte solution containing an electrochemically active active material, respectively. ing. As the active material to be contained in the electrolytic solution, a known first electrode active material and a second electrode active material having good reversibility of the oxidation-reduction reaction can be used in combination. Examples of the first electrode active material include metals such as copper, nickel, cobalt, silver, manganese, vanadium, and iron, alloys thereof, halogens such as bromine and iodine, oxygen, oxides and hydroxides. And metal compounds such as nickel, manganese and iridium that can be charged and discharged by a change in state between the two. On the other hand, the second electrode active material is a material that can be charged and discharged by a metal dissolution and precipitation reaction, and preferably has a high energy density. Specifically, zinc (Zn), tin (Sn), iron (Fe), cobalt (Co), copper (Cu), or an alloy thereof is preferable. As the electrolytic solution, an appropriate conductive solution is used according to the types of the first electrode active material and the second electrode active material. For example, when the second electrode active material is zinc and the first electrode active material is bromine, zinc bromide, ammonium bromide, or the like can be used. Further, an additive may be added to the electrolytic solution in order to obtain a flatter metal deposition layer.

電極電解槽と、電解液貯槽(7,8)とを接続する複数の配管11,12には、電解液供給ポンプ9,10がそれぞれ備えられている。電解液供給ポンプ9,10は、不図示の制御装置からの制御信号を受けて吐出量、回転速度等を可変させ、電解液の供給量が調節される。そして、電解液供給ポンプ9,10によって、第1電極電解槽5、第2電極電解槽6にそれぞれ第1電極側電解液、第2電極側電解液が供給されると共に、第1電極電解槽5、第2電極電解槽6から各電解液貯槽(7,8)に、反応後の電解液が返流されるようになっている。   Electrolytic solution supply pumps 9 and 10 are provided in the plurality of pipes 11 and 12 that connect the electrode electrolytic cell and the electrolytic solution storage tanks (7 and 8), respectively. The electrolyte supply pumps 9 and 10 receive control signals from a control device (not shown) to vary the discharge amount, rotation speed, etc., and adjust the supply amount of the electrolyte. Then, the first electrode side electrolytic solution and the second electrode side electrolytic solution are respectively supplied to the first electrode electrolytic cell 5 and the second electrode electrolytic cell 6 by the electrolytic solution supply pumps 9 and 10, and the first electrode electrolytic cell 5. The electrolyte solution after reaction is returned from the second electrode electrolytic cell 6 to each electrolytic solution storage tank (7, 8).

フロー型畜電池の充放電は以下のように行われる。充電時においては、第1電極2を保持する第1電極電解槽5で活物質の酸化反応が進行し、プロトン等のキャリアイオンがセパレータ4を透過して、第2電極電解槽6に移動する。そして、第2電極3を保持する第2電極電解槽6で活物質の還元反応(溶解)が進行する。このとき、電解液供給ポンプ9,10が稼働されることによって、第1電極電解槽5には、第1電極側電解液貯槽7から、活物質が還元状態にある第1電極側電解液が供給され、第2電極電解槽6には、第2電極側電解液貯槽8から、活物質が酸化状態にある第2電極側電解液が供給されて、充電反応が継続的に行われる。そして、活物質が酸化状態にある第1電極側電解液は、第1電極電解槽5から第1電極側電解液貯槽7に返流され、活物質が還元状態にある第2電極側電解液は、第2電極電解槽6から第2電極側電解液貯槽8に返流されて、それぞれ貯蔵されることになる。また、放電時においては、前記の充電時の逆反応(放電反応)が進行することになり、第2電極3を保持する第2電極電解槽6で活物質の酸化反応(析出)が進行する。充放電における極性変換は、不図示の極性変換器を設置して行ってよく、電力変換器において行ってもよい。   The charge and discharge of the flow type battery is performed as follows. During charging, the oxidation reaction of the active material proceeds in the first electrode electrolytic cell 5 holding the first electrode 2, and carrier ions such as protons pass through the separator 4 and move to the second electrode electrolytic cell 6. . Then, the reduction reaction (dissolution) of the active material proceeds in the second electrode electrolytic cell 6 that holds the second electrode 3. At this time, when the electrolyte supply pumps 9 and 10 are operated, the first electrode-side electrolytic solution 5 in which the active material is in the reduced state is transferred from the first electrode-side electrolyte storage tank 7 to the first electrode electrolytic bath 5. The second electrode electrolytic cell 6 is supplied with the second electrode side electrolytic solution in which the active material is in an oxidized state from the second electrode side electrolytic solution storage tank 8, and the charging reaction is continuously performed. Then, the first electrode side electrolytic solution in which the active material is in the oxidized state is returned from the first electrode electrolytic bath 5 to the first electrode side electrolytic solution storage tank 7, and the second electrode side electrolytic solution in which the active material is in the reduced state. Is returned from the second electrode electrolytic cell 6 to the second electrode side electrolytic solution storage cell 8 and stored therein. Further, at the time of discharging, the reverse reaction (discharge reaction) at the time of charging proceeds, and the oxidation reaction (precipitation) of the active material proceeds in the second electrode electrolytic cell 6 holding the second electrode 3. . The polarity conversion in charging / discharging may be performed by installing a polarity converter (not shown) or in a power converter.

本実施形態のフロー型畜電池は、特に活物質の溶解・析出が行われる第2電極3の構成に特徴を有する。図2に本実施形態による、比表面積の異なる2枚の多孔質体で構成される基材3A,3Bを重ねて構成した第2電極3の一般的な断面図を示す。比表面積の高い基材3A内部には空孔30が存在し、比表面積の低い基材3B内部には空孔40が存在し、電解液20でそれぞれの空孔内部を満たされている。ここで、第1電極2と対面する側に比表面積の高い基材3Aが配置される。比表面積の高い基材3Aを利用することで実際の電流密度を低減し、過電圧を抑えることが可能となる。これによって、蓄電装置の高出力化および安定な充放電が可能となる。しかしながら、空孔30は体積が小さいため金属の析出量が限られる。また小空間になるほど電解液の拡散が抑制されるため、金属の均一な析出が制限される可能性が考えられる。   The flow type livestock battery of this embodiment is particularly characterized by the configuration of the second electrode 3 where the active material is dissolved and deposited. FIG. 2 shows a general cross-sectional view of the second electrode 3 constituted by superposing base materials 3A and 3B made of two porous bodies having different specific surface areas according to the present embodiment. The pores 30 are present inside the base material 3A having a high specific surface area, the pores 40 are present inside the base material 3B having a low specific surface area, and the insides of the pores are filled with the electrolyte solution 20. Here, the base material 3A having a high specific surface area is arranged on the side facing the first electrode 2. By using the base material 3A having a high specific surface area, it is possible to reduce the actual current density and suppress overvoltage. As a result, high output of the power storage device and stable charge / discharge can be achieved. However, since the voids 30 have a small volume, the amount of deposited metal is limited. In addition, since the diffusion of the electrolytic solution is suppressed as the space becomes smaller, there is a possibility that uniform deposition of the metal is limited.

そこで、本実施形態では比表面積の異なる基材3Aと基材3Bを組み合わせることで、比表面積増加による高出力化と、析出空間の増加による容量増加を実現している。   Therefore, in this embodiment, by combining the base material 3A and the base material 3B having different specific surface areas, an increase in output due to an increase in specific surface area and an increase in capacity due to an increase in precipitation space are realized.

なお、第1電極電解槽5においても活物質の溶解析出反応を利用する場合には、第1電極2についても図2で説明した構造を採用することが好ましい。   In the first electrode electrolytic cell 5 as well, when the active material dissolution and precipitation reaction is used, it is preferable to adopt the structure described with reference to FIG.

第1電極2や第2電極3としては、例えば、ステンレス鋼、ニッケル、銅、チタン、金、白金、これらの合金等の金属材料や、カーボンフェルト等の炭素材料が用いられる。金属を析出させる基材の材料は電解液に不溶で、電池反応の阻害をしないことが好ましく、鉄、ニッケル、スチール、鉛、炭素などの不活性かつ導電性の高い材料が望ましい。析出する金属イオンと同種の金属材料を利用してもよい。形状は内部に三次元的な空間を有する形状が好ましく、平面に対して比表面積が1.1〜500倍の範囲であればさらに好ましい。具体的な形状としては網、エキスパンドメタル、多孔体、焼結体、フェルト、不織布、パンチングメタルなどの形状が挙げられるが、電解液の拡散性の良さ、コスト、調達の容易性や取り扱い性などの面で網もしくはエキスパンドメタル、パンチングメタル、不織布が好ましい。カーボンブラックや金属粉末などの高比表面積粒子をバインダで成膜した薄膜電極でもよい。電極として用いるため、導電性を有することが必要条件である。   As the 1st electrode 2 and the 2nd electrode 3, metal materials, such as stainless steel, nickel, copper, titanium, gold, platinum, and these alloys, and carbon materials, such as carbon felt, are used, for example. The base material on which the metal is deposited is preferably insoluble in the electrolytic solution and does not inhibit the battery reaction, and is preferably an inert and highly conductive material such as iron, nickel, steel, lead, or carbon. A metal material of the same kind as the metal ions to be deposited may be used. The shape is preferably a shape having a three-dimensional space inside, more preferably a specific surface area in the range of 1.1 to 500 times the plane. Specific shapes include nets, expanded metals, porous bodies, sintered bodies, felts, non-woven fabrics, punching metals, etc., but good diffusibility of electrolyte, cost, ease of procurement, ease of handling, etc. In view of the above, a net, expanded metal, punched metal, or non-woven fabric is preferable. A thin film electrode in which high specific surface area particles such as carbon black and metal powder are formed with a binder may be used. In order to use as an electrode, it is a necessary condition to have conductivity.

本実施形態では対極と対面する側の比表面積を高く、反対側を低くすることを特徴とする。これにより高電流密度で金属イオンを析出することが可能となり、かつ析出するのに十分な体積を得ることが可能となる。比表面積の低い基材3Bは板材に対して1.1〜5倍程度であることが好ましい。これは、基材3Bの機能として金属イオンの析出体積の維持と電解液の良好な拡散が必要であるためである。このため、基材3Bは空隙の割合が多いほどよく、具体的には空隙率が50〜99%であることが好ましい。基材3Aは高電流密度を実現するため比表面積は高いほうが好ましく、基材3Bに対して比表面積の比が2〜100倍程度であることが好ましい。基材3Aでも円滑に析出反応を進めるため、基材3Aにも空隙は必要であり、空隙率としては5〜49%であることが好ましい。基材3Aと3Bを双方ともに電極として用いるためには、電気的な接触が必要である。基材の材料を金属とした場合、物理的な接触を持つように単純に重ねただけも十分であるが、スポット接合や溶接など化学的に接合することで接触抵抗を小さくできる。重ねる枚数に特に制限はなく、要求仕様、電極電解槽の大きさ等に応じて適宜設定すればよい。複数枚の基材を用いる場合、最も比表面積の高い基材が対極に対面していればよく、その他の基材は同じ比表面積でもよい。   The present embodiment is characterized in that the specific surface area on the side facing the counter electrode is high and the opposite side is low. As a result, metal ions can be deposited at a high current density, and a sufficient volume can be obtained. The substrate 3B having a low specific surface area is preferably about 1.1 to 5 times the plate material. This is because it is necessary to maintain the deposition volume of metal ions and to favorably diffuse the electrolyte as functions of the substrate 3B. For this reason, as for the base material 3B, it is preferable that there are many ratios of a space | gap, and, specifically, it is preferable that the porosity is 50 to 99%. The substrate 3A preferably has a high specific surface area to achieve a high current density, and the ratio of the specific surface area to the substrate 3B is preferably about 2 to 100 times. In order for the base material 3A to smoothly advance the precipitation reaction, the base material 3A also needs a void, and the porosity is preferably 5 to 49%. In order to use both the base materials 3A and 3B as electrodes, electrical contact is required. When the material of the base material is a metal, it is sufficient to simply stack them so as to have physical contact, but the contact resistance can be reduced by chemical bonding such as spot bonding or welding. There is no restriction | limiting in particular in the number of sheets to pile, What is necessary is just to set suitably according to a required specification, the magnitude | size of an electrode electrolytic cell, etc. In the case of using a plurality of substrates, the substrate having the highest specific surface area only needs to face the counter electrode, and the other substrates may have the same specific surface area.

(実施例1)
基材には亜鉛を析出させた鉄金網を使用した。基材3Bの形状は目開き0.8mm、線径0.28mmとし、基材3Aの形状は目開き0.3mm、線径0.23mmとした。空隙率は基材3Bが55%、基材3Aが32%である。図2の構成の電極を作製し、特性評価を行った。電解液はZnSO4水溶液を、対極には亜鉛板を使用した。参照極には銀/塩化銀電極を用いた。定電位(−1.2V)での電流密度は42mA/cm2であり、高い電流密度での析出が可能であることが確認できた。10分間析出させたところ、比表面積の低い基材3Bおよび比表面積の高い基材3Aの双方にZnが均一に析出できることが確認できた(図3)。
(Example 1)
An iron wire mesh on which zinc was deposited was used as the substrate. The shape of the base material 3B was 0.8 mm and the wire diameter was 0.28 mm, and the shape of the base material 3A was 0.3 mm and the wire diameter was 0.23 mm. The porosity is 55% for the base material 3B and 32% for the base material 3A. An electrode having the configuration shown in FIG. 2 was prepared and evaluated for characteristics. The electrolytic solution was a ZnSO 4 aqueous solution, and the counter electrode was a zinc plate. A silver / silver chloride electrode was used as a reference electrode. The current density at a constant potential (−1.2 V) was 42 mA / cm 2 , and it was confirmed that deposition at a high current density was possible. When deposited for 10 minutes, it was confirmed that Zn could be uniformly deposited on both the base material 3B having a low specific surface area and the base material 3A having a high specific surface area (FIG. 3).

(比較例1)
実施例1の基材3Bを2枚重ねて電極を作製し、特性評価を行った。電極、電解液、析出金属の種類は実施例1と同様の条件とした。定電位(−1.2V)での電流密度は29mA/cm2であり、実施例1より低い電流値となった。これより、低い比表面積の基材3Aだけでは高電流密度は実現できないことが確認できた。
(Comparative Example 1)
Two substrates 3B of Example 1 were stacked to produce an electrode, and the characteristics were evaluated. The electrode, electrolyte solution, and deposited metal were the same conditions as in Example 1. The current density at a constant potential (−1.2 V) was 29 mA / cm 2 , which was a lower current value than in Example 1. From this, it was confirmed that a high current density could not be realized only with the base material 3A having a low specific surface area.

(比較例2)
実施例1の基材3Aを2枚重ねて電極を作製し、特性評価を行った。電極、電解液、析出金属の種類は実施例1と同様の条件とした。定電位(−1.2V)での電流密度は41mA/cm2であり、比表面積としては実施例1の電極より高くなっているが、実施例1より低い電流値となった。これは、電解液中のイオンの拡散が律速になるためと推測される。
(Comparative Example 2)
Two substrates 3A of Example 1 were stacked to produce an electrode, and the characteristics were evaluated. The electrode, electrolyte solution, and deposited metal were the same conditions as in Example 1. The current density at a constant potential (−1.2 V) was 41 mA / cm 2 , and the specific surface area was higher than that of the electrode of Example 1, but the current value was lower than that of Example 1. This is presumed to be because the diffusion of ions in the electrolytic solution becomes rate limiting.

(比較例3)
亜鉛板を電極とし、特性評価を行った。電極、電解液、析出金属の種類は実施例1と同様の条件とした。定電位(−1.2V)での電流密度は27mA/cm2であり、実施例1、比較例1,2よりも低い電流値となった。
(Comparative Example 3)
Characteristic evaluation was performed using a zinc plate as an electrode. The electrode, electrolyte solution, and deposited metal were the same conditions as in Example 1. The current density at a constant potential (−1.2 V) was 27 mA / cm 2 , which was a lower current value than Example 1 and Comparative Examples 1 and 2.

1 筺体
2 第1電極
3 第2電極
3A 比表面積の高い基材
3B 比表面積の低い基材
4 セパレータ
5 第1電極電解槽
6 第2電極電解槽
7 第1電解液貯槽
8 第2電解液貯槽
9,10 電解液供給手段
11,12 配管
20 電解液
30,40 空孔
DESCRIPTION OF SYMBOLS 1 Housing 2 1st electrode 3 2nd electrode 3A Base material with a high specific surface area 3B Base material with a low specific surface area 4 Separator 5 1st electrode electrolytic cell 6 2nd electrode electrolytic cell 7 1st electrolyte solution storage tank 8 2nd electrolyte solution storage tank 9,10 Electrolyte supply means 11,12 Piping 20 Electrolyte 30,40 Air hole

Claims (5)

第1電極が保持される第1電極電解槽と、第2電極が保持される第2電極電解槽と、第1電極電解槽と第2電極電解槽とを隔離するセパレータと、第1電極電解槽および第2電極電解槽に活物質を含む電解液を循環供給する電解液供給手段とを備え、第1電極電解槽および第2電極電解槽の少なくとも一方が金属イオンの溶解析出反応によって充放電を行うフロー型畜電池において、
金属イオンの溶解析出反応が行われる第1電極または第2電極は、比表面積の異なる複数の多孔質基材が積層された構造を有し、他方の電極と対面する面に最も比表面積の高い多孔質基材が配置されていることを特徴とするフロー型畜電池。
A first electrode electrolytic cell in which a first electrode is held; a second electrode electrolytic cell in which a second electrode is held; a separator that separates the first electrode electrolytic cell and the second electrode electrolytic cell; And an electrolytic solution supply means for circulatingly supplying an electrolytic solution containing an active material to the tank and the second electrode electrolytic cell, and at least one of the first electrode electrolytic cell and the second electrode electrolytic cell is charged and discharged by a dissolution precipitation reaction of metal ions In a flow type battery that performs
The first electrode or the second electrode in which the metal ion dissolution and precipitation reaction is performed has a structure in which a plurality of porous substrates having different specific surface areas are laminated, and has the highest specific surface area on the surface facing the other electrode. A flow-type live battery characterized in that a porous substrate is disposed.
請求項1において、溶解析出する金属イオンがZn、Sn、Fe、Co、Cuのいずれか、もしくはこれらの合金であることを特徴とするフロー型畜電池。   2. The flow type live battery according to claim 1, wherein the metal ions to be dissolved and precipitated are any one of Zn, Sn, Fe, Co, and Cu, or an alloy thereof. 請求項1において、前記多孔質基材が網、エキスパンドメタル、パンチングメタル、不織布のいずれかであり、平面に対して比表面積が1.1〜500倍の範囲であることを特徴とするフロー型畜電池。   2. The flow type according to claim 1, wherein the porous base material is any one of a net, an expanded metal, a punching metal, and a non-woven fabric, and a specific surface area is in a range of 1.1 to 500 times with respect to a plane. Livestock battery. 請求項3において、前記複数の多孔質基材のうち比表面積の低い多孔質基材が、平面に対して1.1〜1.5倍の比表面積を有し、50〜99%の空隙率を有することを特徴とするフロー型畜電池。   4. The porous substrate having a low specific surface area among the plurality of porous substrates has a specific surface area of 1.1 to 1.5 times the plane, and a porosity of 50 to 99%. A flow-type live battery characterized by comprising: 請求項3において、前記複数の多孔質基材のうち最も比表面積の高い多孔質基材が、比表面積の低い多孔質基材に対して2〜100倍の比表面積を有し、5〜49%の空隙率を有することを特徴とするフロー型畜電池。   The porous substrate having the highest specific surface area among the plurality of porous substrates in claim 3 has a specific surface area of 2 to 100 times that of the porous substrate having a low specific surface area. % Flow-type live battery characterized by having a porosity of%.
JP2014076612A 2014-04-03 2014-04-03 Flow type storage battery Pending JP2015198059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076612A JP2015198059A (en) 2014-04-03 2014-04-03 Flow type storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076612A JP2015198059A (en) 2014-04-03 2014-04-03 Flow type storage battery

Publications (1)

Publication Number Publication Date
JP2015198059A true JP2015198059A (en) 2015-11-09

Family

ID=54547618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076612A Pending JP2015198059A (en) 2014-04-03 2014-04-03 Flow type storage battery

Country Status (1)

Country Link
JP (1) JP2015198059A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224486A (en) * 2016-06-15 2017-12-21 昭和電工株式会社 Redox flow battery
WO2018117192A1 (en) * 2016-12-21 2018-06-28 京セラ株式会社 Flow battery
WO2018198252A1 (en) * 2017-04-26 2018-11-01 日立化成株式会社 Secondary battery, secondary battery system, and electricity-generating system
WO2018207367A1 (en) * 2017-05-12 2018-11-15 日立化成株式会社 Aqueous solution secondary battery, charge-discharge method for aqueous solution secondary battery, electrolytic solution for use in aqueous solution secondary battery, flow battery system and power-generation system
JP2019523524A (en) * 2016-07-08 2019-08-22 イーエヌアイ ソシエタ ペル アチオニEni S.P.A. Non-aqueous redox flow battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287938A (en) * 1995-02-16 1996-11-01 Kashimakita Kyodo Hatsuden Kk Redox battery
JP2013539177A (en) * 2010-08-25 2013-10-17 アプライド マテリアルズ インコーポレイテッド Flow battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287938A (en) * 1995-02-16 1996-11-01 Kashimakita Kyodo Hatsuden Kk Redox battery
JP2013539177A (en) * 2010-08-25 2013-10-17 アプライド マテリアルズ インコーポレイテッド Flow battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224486A (en) * 2016-06-15 2017-12-21 昭和電工株式会社 Redox flow battery
JP2019523524A (en) * 2016-07-08 2019-08-22 イーエヌアイ ソシエタ ペル アチオニEni S.P.A. Non-aqueous redox flow battery
WO2018117192A1 (en) * 2016-12-21 2018-06-28 京セラ株式会社 Flow battery
WO2018198252A1 (en) * 2017-04-26 2018-11-01 日立化成株式会社 Secondary battery, secondary battery system, and electricity-generating system
WO2018207367A1 (en) * 2017-05-12 2018-11-15 日立化成株式会社 Aqueous solution secondary battery, charge-discharge method for aqueous solution secondary battery, electrolytic solution for use in aqueous solution secondary battery, flow battery system and power-generation system

Similar Documents

Publication Publication Date Title
Arenas et al. The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage
Zheng et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities
EP2715841B1 (en) Iron based flow batteries
Caramia et al. Materials science aspects of zinc–air batteries: a review
CN104106157B (en) Rechargeable zinc-air battery and its operating method
JP2015198059A (en) Flow type storage battery
CN105576325B (en) Two-phase electrolysis matter for air-metal batteries
US20150162571A1 (en) Concave cell design for an alkaline battery with a comb spacer
KR20170126436A (en) Coopper based flow batteries
WO2015119041A1 (en) Air electrode and metal air battery
JP5740357B2 (en) Large capacity storage device
CN104882637A (en) Electrolyte solutions and electrochemical energy storage device
JP6211800B2 (en) Electrolyte flow type secondary battery
JP2014010999A5 (en)
US9627694B2 (en) Zinc-water battery and system
JP2020511599A (en) Electrochemical cells and batteries
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
US11367877B1 (en) Aqueous battery current collectors
Zhang Zinc as an energy carrier for energy conversion and storage
WO2015019845A1 (en) Metal electrode and metal-air battery
Wang et al. Research and development of metal-air fuel cells
US9029027B2 (en) Degenerate doping of metallic anodes
JP2017004934A (en) Aluminum-manganese electrochemical cell
Jörissen Secondary aqueous zinc-air battery—Electrically rechargeable
JP2019071238A (en) Method of manufacturing nickel metal hydride battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180529