JP2015198053A - spark plug - Google Patents

spark plug Download PDF

Info

Publication number
JP2015198053A
JP2015198053A JP2014076481A JP2014076481A JP2015198053A JP 2015198053 A JP2015198053 A JP 2015198053A JP 2014076481 A JP2014076481 A JP 2014076481A JP 2014076481 A JP2014076481 A JP 2014076481A JP 2015198053 A JP2015198053 A JP 2015198053A
Authority
JP
Japan
Prior art keywords
ground electrode
mass
chip
tip
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076481A
Other languages
Japanese (ja)
Other versions
JP6061307B2 (en
Inventor
吉本 修
Osamu Yoshimoto
修 吉本
柴田 勉
Tsutomu Shibata
勉 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014076481A priority Critical patent/JP6061307B2/en
Priority to DE102015105015.3A priority patent/DE102015105015B4/en
Priority to CN201510155748.3A priority patent/CN104979753B/en
Publication of JP2015198053A publication Critical patent/JP2015198053A/en
Application granted granted Critical
Publication of JP6061307B2 publication Critical patent/JP6061307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spark plug including a ground electrode from which a chip is less likely to be peeled.SOLUTION: In a spark plug including a chip 9 forming a gap between a center electrode held on one end side of the shaft hole of an insulator, and a ground electrode 8 having one end to be joined to a main metal fitting provided on the outer periphery of the insulator, and the other end to which the chip is joined by resistance-welding, the ground electrode is composed of a Ni alloy mainly composed of Ni, and ∫f(X)dX is 30-1000 mass% nm, where X (nm) is the distance in the depth direction from the outer surface in a range of 100×100 μm of the outer surface 41 of the ground electrode, f(X)(mass%) is the oxygen concentration at a distance X in the depth direction, and X' is the value of the distance X in the depth direction when the oxygen concentration f(X) is 10.

Description

この発明は、チップが抵抗溶接により接合された接地電極を備えたスパークプラグに関する。   The present invention relates to a spark plug having a ground electrode in which a tip is joined by resistance welding.

スパークプラグは、自動車エンジン等の内燃機関の点火用に使用される。スパークプラグは、一般に、筒状の主体金具と、この主体金具の内孔に配置される筒状の絶縁体と、この絶縁体の先端側内孔に配置される中心電極と、一端部が主体金具の先端側に接合され他端部が中心電極の先端部との間に間隙を有する接地電極とを備える。そして、スパークプラグは、この間隙に火花放電され、内燃機関の燃焼室内の燃料を燃焼させる。   Spark plugs are used for ignition of internal combustion engines such as automobile engines. Generally, a spark plug is mainly composed of a cylindrical metal shell, a cylindrical insulator disposed in an inner hole of the metal shell, a center electrode disposed in a front-end inner hole of the insulator, and one end portion. A ground electrode having a gap between the other end of the metal fitting and the front end of the center electrode is provided. Then, the spark plug is sparked in the gap to burn the fuel in the combustion chamber of the internal combustion engine.

中心電極及び接地電極(以下において電極と称することがある)を形成する材料としては、一般にNi合金等が使用される。Ni合金は、耐酸化性及び耐消耗性に関してPt及びIr等の貴金属を主成分とした貴金属合金に比べると多少劣る。しかし、Ni合金は貴金属に比べて安価であるため電極を形成する材料として使用されることが多い。   As a material for forming the center electrode and the ground electrode (hereinafter sometimes referred to as an electrode), a Ni alloy or the like is generally used. Ni alloys are somewhat inferior to noble metal alloys mainly composed of noble metals such as Pt and Ir in terms of oxidation resistance and wear resistance. However, since Ni alloys are less expensive than noble metals, they are often used as materials for forming electrodes.

ところで、近年、燃焼室内の温度が高温化する傾向にある。また、着火性向上のために火花放電間隙を形成する放電部を燃焼室の内部に突き出させるように配置するエンジンが使用されるようになってきている。そのため、Ni合金等で形成された、接地電極の先端部と中心電極の先端部との間で火花放電が生じると、接地電極及び中心電極との対向するそれぞれの先端部が消耗し易くなることがある。そこで、接地電極及び/又は中心電極の先端部に貴金属製のチップを設け、このチップで火花放電が生じるようにすることで接地電極及び中心電極の消耗を抑制させる方法が開発されている。   By the way, in recent years, the temperature in the combustion chamber tends to increase. In addition, in order to improve ignitability, an engine has been used in which a discharge portion that forms a spark discharge gap is arranged to protrude into the combustion chamber. Therefore, when spark discharge occurs between the tip of the ground electrode and the tip of the center electrode formed of Ni alloy or the like, each tip facing the ground electrode and the center electrode is likely to be consumed. There is. Therefore, a method has been developed in which a noble metal tip is provided at the tip of the ground electrode and / or the center electrode, and spark discharge is generated at the tip, thereby suppressing the consumption of the ground electrode and the center electrode.

一方、冷熱サイクルを伴う環境下に曝されるチップは電極から剥離し易い。したがって、従来から、チップが電極から剥離し難いスパークプラグの開発が行われている。   On the other hand, a chip that is exposed to an environment with a thermal cycle is easily peeled off from the electrode. Therefore, conventionally, development of a spark plug in which the chip is difficult to peel from the electrode has been performed.

例えば、特許文献1には、Niを主成分としてAlを0.8wt%以上含む合金からなる接地電極への貴金属チップの耐剥離性を向上することを目的として、「・・溶接した貴金属チップを含む半断面の貴金属チップの下20μmの範囲の断面積中、Al凝集物の面積占有率が30%以下であることを特徴とするスパークプラグ」(特許文献1の請求項1)が開示されている。   For example, in Patent Document 1, for the purpose of improving the peel resistance of a noble metal tip to a ground electrode made of an alloy containing Ni as a main component and containing 0.8 wt% or more of Al, “··· “A spark plug characterized in that the area occupancy of Al aggregates is 30% or less in the cross-sectional area in the range of 20 μm below the noble metal tip having a half cross section” (Claim 1 of Patent Document 1) is disclosed. Yes.

特開2004−186152号公報JP 2004-186152 A

特許文献1に代表されるように、チップの電極からの耐剥離性を向上させる方法について、様々な観点から開発が行われている。しかしながら、チップ材料や電極材料の開発が行われ、また、スパークプラグが置かれる環境等が変化すると、それに伴ってチップの耐剥離性が低下することがある。そのため、チップ材料等の開発と共にチップの耐剥離性を確保するための研究が続けられている。   As typified by Patent Document 1, a method for improving the peel resistance from the electrode of the chip has been developed from various viewpoints. However, if a chip material or an electrode material is developed and the environment in which the spark plug is placed changes, the peeling resistance of the chip may decrease accordingly. For this reason, research for ensuring the anti-peeling resistance of the chip is continued along with the development of the chip material and the like.

本発明は、冷熱サイクル環境下においてもチップが剥離し難い接地電極を備えたスパークプラグを提供することを目的とする。   An object of this invention is to provide the spark plug provided with the ground electrode which a chip | tip does not peel easily even in a cold-heat cycle environment.

前記課題を解決するための手段は、
(1) 絶縁体の軸線方向に延びる軸孔の一端側に保持された中心電極と、
前記中心電極との間に間隙を形成するチップと、
前記絶縁体の外周に設けられた主体金具に接合される一端部を有すると共に、前記チップが抵抗溶接により接合された他端部を有する接地電極と、を備えるスパークプラグにおいて、
前記接地電極は、Niを主成分とするNi合金からなり、
前記接地電極の外表面のうち100μm×100μmの範囲における前記外表面からの深さ方向の距離をX(nm)、前記深さ方向の距離Xにおける酸素濃度をf(X)(質量%)、前記酸素濃度f(X)が10となるときの前記深さ方向の距離Xの値をX’としたときに、

Figure 2015198053
が、30〜1000質量%・nmであるスパークプラグである。 Means for solving the problems are as follows:
(1) a center electrode held on one end side of an axial hole extending in the axial direction of the insulator;
A chip that forms a gap with the central electrode;
In the spark plug comprising: one end portion joined to a metal shell provided on the outer periphery of the insulator; and a ground electrode having the other end portion joined to the tip by resistance welding.
The ground electrode is made of a Ni alloy containing Ni as a main component,
The distance in the depth direction from the outer surface in the range of 100 μm × 100 μm of the outer surface of the ground electrode is X (nm), the oxygen concentration at the distance X in the depth direction is f (X) (mass%), When the value of the distance X in the depth direction when the oxygen concentration f (X) is 10 is X ′,
Figure 2015198053
Is a spark plug of 30 to 1000 mass% · nm.

前記(1)の好ましい態様として、次の態様を挙げることができる。
(2)前記接地電極は、Niの含有量が50質量%以上である。
(3)前記(1)又は(2)のスパークプラグにおいて、前記接地電極は、Crの含有量が10質量%以上30質量%以下である。
(4)前記(1)〜(3)のいずれか一つのスパークプラグにおいて、前記接地電極は、Y又はZrの含有量が0.1質量%以上0.5質量%以下である。
(5)前記(1)〜(4)のいずれか一つのスパークプラグにおいて、前記接地電極は、Alの含有量が0質量%以上1.8質量%以下である。
(6)前記(1)〜(5)のいずれか一つのスパークプラグにおいて、前記接地電極は、Siの含有量が0質量%以上2質量%以下である。
The following aspects can be mentioned as a preferable aspect of said (1).
(2) The ground electrode has a Ni content of 50% by mass or more.
(3) In the spark plug of (1) or (2), the ground electrode has a Cr content of 10% by mass to 30% by mass.
(4) In the spark plug according to any one of (1) to (3), the ground electrode has a Y or Zr content of 0.1% by mass or more and 0.5% by mass or less.
(5) In the spark plug according to any one of (1) to (4), the ground electrode has an Al content of 0% by mass to 1.8% by mass.
(6) In the spark plug according to any one of (1) to (5), the ground electrode has a Si content of 0% by mass to 2% by mass.

本発明のスパークプラグは、Ni合金からなる接地電極が、その外表面から深さ方向に所定の距離までの表面部分に所定の酸素濃度を有する高酸素濃度領域を有する。
チップが抵抗溶接された従来の接地電極は、未酸化部分と酸化部分とを有している。すなわち、チップが接合される接地電極の表面部分は、チップ直下のため空気に曝されていないので酸化され難い(未酸化部分)が、その周辺部分は空気に曝されているので酸化され得る(酸化部分)。一方、本発明における接地電極は、チップが抵抗溶接される接地電極の表面部分が高酸素濃度領域を有するので、高酸素濃度領域に含まれる酸素により均一に酸化される。
高酸素濃度領域のない従来の接地電極では、チップと接地電極における未酸化部分と酸化部分との3つの異なる材料が隣接する部分が存在する。これらはそれぞれ熱膨張率が相違するので、冷熱サイクル環境下ではこの部分に大きな応力が発生し、この部分からチップが剥離し易い。一方、本発明のスパークプラグは、チップが接合される接地電極の表面部分が均一に酸化されている。そのため、チップと接地電極における酸化部分とが面で隣接し、冷熱サイクル環境下で発生する応力がこの面全体に分散するので、従来の接地電極に比べてチップが剥離し難い。
したがって、本発明によると、冷熱サイクル環境下においてもチップが剥離し難い接地電極を備えたスパークプラグを提供することができる。特に、本発明によると、いかなるチップ材料であっても、チップと酸化した接地電極との熱膨張率の差を考慮して抵抗溶接の条件を決定するだけで、所望の溶接強度を確保することができる。
In the spark plug of the present invention, the ground electrode made of an Ni alloy has a high oxygen concentration region having a predetermined oxygen concentration on the surface portion from the outer surface to a predetermined distance in the depth direction.
A conventional ground electrode in which a tip is resistance-welded has an unoxidized portion and an oxidized portion. That is, the surface part of the ground electrode to which the chip is bonded is not exposed to air because it is directly under the chip and is not easily oxidized (unoxidized part), but the peripheral part can be oxidized because it is exposed to air ( Oxidation part). On the other hand, the ground electrode in the present invention is uniformly oxidized by oxygen contained in the high oxygen concentration region because the surface portion of the ground electrode to which the tip is resistance welded has a high oxygen concentration region.
In a conventional ground electrode without a high oxygen concentration region, there are portions where three different materials of an unoxidized portion and an oxidized portion of the chip and the ground electrode are adjacent to each other. Since these have different coefficients of thermal expansion, a large stress is generated in this portion under a thermal cycle environment, and the chip is easily peeled off from this portion. On the other hand, in the spark plug of the present invention, the surface portion of the ground electrode to which the chip is bonded is uniformly oxidized. For this reason, the chip and the oxidized portion of the ground electrode are adjacent to each other on the surface, and the stress generated in the cold cycle environment is dispersed over the entire surface, so that the chip is less likely to be peeled than the conventional ground electrode.
Therefore, according to the present invention, it is possible to provide a spark plug including a ground electrode that is difficult to peel off even in a cold cycle environment. In particular, according to the present invention, a desired welding strength can be ensured for any chip material simply by determining resistance welding conditions in consideration of the difference in thermal expansion coefficient between the chip and the oxidized ground electrode. Can do.

図1は、この発明に係るスパークプラグの一実施例であるスパークプラグの一部断面全体説明図である。FIG. 1 is a partial cross-sectional explanatory view of a spark plug as an embodiment of the spark plug according to the present invention. 図2は、図1に示すスパークプラグにおけるチップと接地電極との接合部分を拡大して示す要部概略断面説明図である。FIG. 2 is a schematic cross-sectional explanatory view of a main part showing an enlarged joint portion between the tip and the ground electrode in the spark plug shown in FIG. 図3は、従来のスパークプラグにおけるチップと接地電極との接合部分を拡大して示す要部概略断面説明図である。FIG. 3 is an enlarged schematic cross-sectional view of a main part showing a joint portion between a tip and a ground electrode in a conventional spark plug. 図4は、耐剥離性の評価試験における亀裂進展長の測定位置を示す要部概略断面説明図である。FIG. 4 is a schematic cross-sectional explanatory view of the main part showing the measurement position of the crack growth length in the peel resistance evaluation test.

この発明に係るスパークプラグの一実施例であるスパークプラグを図1に示す。図1はこの発明に係るスパークプラグの一実施例であるスパークプラグ1の一部断面全体説明図である。なお、図1では紙面下方すなわち後述する接地電極が配置されている側を軸線Oの先端方向、紙面上方を軸線Oの後端方向として説明する。   FIG. 1 shows a spark plug as an embodiment of the spark plug according to the present invention. FIG. 1 is a partial cross-sectional explanatory view of a spark plug 1 which is an embodiment of a spark plug according to the present invention. In FIG. 1, the lower side of the page, that is, the side on which a ground electrode (to be described later) is disposed is described as the front end direction of the axis O, and the upper side of the page is described as the rear end direction of the axis O.

このスパークプラグ1は、図1に示されるように、軸線O方向に延びる軸孔2を有する略円筒形状の絶縁体3と、前記軸孔2内の先端側に配置された略棒状の中心電極4と、前記軸孔2内の後端側に配置された端子金具5と、前記中心電極4と前記端子金具5とを前記軸孔2内で電気的に接続する接続部6と、前記絶縁体3の外周に設けられた略円筒形状の主体金具7と、前記中心電極4との間に間隙Gを形成するチップ9と、前記主体金具7に接合される一端部を有すると共に、前記チップ9が抵抗溶接により接合された他端部を有する接地電極8とを備える。   As shown in FIG. 1, the spark plug 1 includes a substantially cylindrical insulator 3 having a shaft hole 2 extending in the direction of the axis O, and a substantially rod-shaped center electrode disposed on the distal end side in the shaft hole 2. 4, a terminal fitting 5 disposed on the rear end side in the shaft hole 2, a connecting portion 6 for electrically connecting the center electrode 4 and the terminal fitting 5 in the shaft hole 2, and the insulation A substantially cylindrical metal shell 7 provided on the outer periphery of the body 3, a chip 9 that forms a gap G between the central electrode 4, and one end joined to the metal shell 7, and the chip 9 includes a ground electrode 8 having the other end joined by resistance welding.

前記絶縁体3は、軸線O方向に延びる軸孔2を有し、略円筒形状を有している。また、絶縁体3は、後端側胴部11と、大径部12と、先端側胴部13と、脚長部14とを備えている。後端側胴部11は、端子金具5を収容し、端子金具5と主体金具7とを絶縁する。大径部12は、該後端側胴部11よりも先端側において径方向外向きに突出する。先端側胴部13は、該大径部12の先端側において接続部6を収容し、大径部12よりも小さい外径を有する。脚長部14は、この先端側胴部13の先端側において中心電極4を収容し、先端側胴部13より小さい外径及び内径を有する。先端側胴部13と脚長部14との内周面は棚部15を介して接続されている。この棚部15に後述する中心電極4の鍔部16が当接するように配置され、中心電極4が軸孔2内に固定されている。先端側胴部13と脚長部14との外周面は段部17を介して接続されている。この段部17に後述する主体金具7のテーパ部18が板パッキン19を介して当接し、絶縁体3が主体金具7に対して固定されている。絶縁体3は、絶縁体3における先端方向の端部が主体金具7の先端面から突出した状態で、主体金具7に固定されている。絶縁体3は、機械的強度、熱的強度、電気的強度を有する材料で形成されることが望ましい。このような材料として、例えば、アルミナを主体とするセラミック焼結体が挙げられる。   The insulator 3 has a shaft hole 2 extending in the direction of the axis O and has a substantially cylindrical shape. The insulator 3 includes a rear end side body portion 11, a large diameter portion 12, a front end side body portion 13, and a leg length portion 14. The rear end side body portion 11 accommodates the terminal fitting 5 and insulates the terminal fitting 5 from the metallic shell 7. The large-diameter portion 12 protrudes outward in the radial direction on the distal end side with respect to the rear end side body portion 11. The distal end side body portion 13 accommodates the connecting portion 6 on the distal end side of the large diameter portion 12 and has an outer diameter smaller than that of the large diameter portion 12. The long leg portion 14 accommodates the center electrode 4 on the distal end side of the distal end side body portion 13 and has an outer diameter and an inner diameter smaller than the distal end side body portion 13. The inner peripheral surfaces of the front end side body portion 13 and the leg long portion 14 are connected via a shelf portion 15. The rack portion 15 is disposed so that a flange portion 16 of the center electrode 4 to be described later comes into contact with the shelf portion 15, and the center electrode 4 is fixed in the shaft hole 2. The outer peripheral surfaces of the front end side body portion 13 and the leg long portion 14 are connected via a step portion 17. A taper portion 18 of the metal shell 7 to be described later is in contact with the stepped portion 17 via a plate packing 19, and the insulator 3 is fixed to the metal shell 7. The insulator 3 is fixed to the metal shell 7 with the end of the insulator 3 in the distal direction protruding from the tip surface of the metal shell 7. The insulator 3 is desirably formed of a material having mechanical strength, thermal strength, and electrical strength. An example of such a material is a ceramic sintered body mainly composed of alumina.

前記絶縁体3の軸孔2内には、その先端側に中心電極4、後端側に端子金具5、中心電極4と端子金具5との間には中心電極4及び端子金具5を軸孔2内に固定すると共にこれらを電気的に接続する接続部6が設けられている。前記接続部6は、伝播雑音を低減するための抵抗体21と、該抵抗体21と中心電極4との間に設けられた第1シール体22と、該抵抗体21と端子金具5との間に設けられた第2シール体23とにより形成されている。抵抗体21は、ガラス粉末、非金属導電性粉末及び金属粉末等を含有する組成物を焼結して形成され、その抵抗値は通常100Ω以上である。第1シール体22及び第2シール体23は、ガラス粉末及び金属粉末等を含有する組成物を焼結して形成され、これらの抵抗値は通常100mΩ以下である。この実施態様における接続部6は、抵抗体21と第1シール体22と第2シール体23とにより形成されているが、抵抗体21と第1シール体22と第2シール体23の少なくとも1つにより形成されていてもよい。   In the shaft hole 2 of the insulator 3, the center electrode 4 is provided at the front end side, the terminal fitting 5 is provided at the rear end side, and the center electrode 4 and the terminal fitting 5 are provided between the center electrode 4 and the terminal fitting 5. A connecting portion 6 is provided which is fixed in the housing 2 and electrically connects them. The connection portion 6 includes a resistor 21 for reducing propagation noise, a first seal body 22 provided between the resistor 21 and the center electrode 4, and the resistor 21 and the terminal fitting 5. It is formed by a second seal body 23 provided therebetween. The resistor 21 is formed by sintering a composition containing glass powder, non-metallic conductive powder, metal powder and the like, and its resistance value is usually 100Ω or more. The 1st seal body 22 and the 2nd seal body 23 are formed by sintering the composition containing glass powder, metal powder, etc., and these resistance values are usually 100 m (ohm) or less. The connection portion 6 in this embodiment is formed by the resistor 21, the first seal body 22, and the second seal body 23. At least one of the resistor 21, the first seal body 22, and the second seal body 23 is used. It may be formed by one.

前記主体金具7は、略円筒形状を有しており、絶縁体3を内装することにより絶縁体3を保持するように形成されている。主体金具7における先端方向の外周面にはネジ部24が形成されており、このネジ部24を利用して図示しない内燃機関のシリンダヘッドにスパークプラグ1が装着される。前記主体金具7は、ネジ部24の後端側にフランジ状のガスシール部25を有し、ガスシール部25の後端側にスパナやレンチ等の工具を係合させるための工具係合部26、工具係合部26の後端側に加締め部27を有する。加締め部27及び工具係合部26の内周面と絶縁体3の外周面との間に形成される環状の空間にはリング状のパッキン28,29及び滑石30が配置され、絶縁体3が主体金具7に対して固定されている。ネジ部24の内周面における先端側は、脚長部14に対して空間を有するように配置され、径方向内向きに突出する突起部32における後端側のテーパ状に拡径するテーパ部18と絶縁体3の段部17とが環状の板パッキン19を介して当接している。主体金具7は、導電性の鉄鋼材料、例えば、低炭素鋼により形成されることができる。   The metal shell 7 has a substantially cylindrical shape, and is formed so as to hold the insulator 3 by incorporating the insulator 3 therein. A threaded portion 24 is formed on the outer peripheral surface in the front end direction of the metal shell 7, and the spark plug 1 is attached to a cylinder head of an internal combustion engine (not shown) using the threaded portion 24. The metal shell 7 has a flange-shaped gas seal portion 25 on the rear end side of the screw portion 24, and a tool engagement portion for engaging a tool such as a spanner or a wrench on the rear end side of the gas seal portion 25. 26, a caulking portion 27 is provided on the rear end side of the tool engaging portion 26. Ring-shaped packings 28 and 29 and a talc 30 are arranged in an annular space formed between the inner peripheral surface of the crimping portion 27 and the tool engaging portion 26 and the outer peripheral surface of the insulator 3, and the insulator 3. Is fixed to the metal shell 7. The front end side of the inner peripheral surface of the screw portion 24 is disposed so as to have a space with respect to the leg long portion 14, and the tapered portion 18 that expands in a taper shape on the rear end side of the protruding portion 32 that protrudes radially inward. And the step portion 17 of the insulator 3 are in contact with each other via an annular plate packing 19. The metal shell 7 can be formed of a conductive steel material, for example, low carbon steel.

端子金具5は、中心電極4とチップ9との間で火花放電を行うための電圧を外部から中心電極4に印加するための端子であり、絶縁体3の後端側からその一部が露出した状態で軸孔2内に挿入されて第2シール体23により固定されている。端子金具5は、低炭素鋼等の金属材料により形成されることができる。   The terminal fitting 5 is a terminal for applying a voltage for performing a spark discharge between the center electrode 4 and the chip 9 to the center electrode 4 from the outside, and a part thereof is exposed from the rear end side of the insulator 3. In this state, it is inserted into the shaft hole 2 and fixed by the second seal body 23. The terminal fitting 5 can be formed of a metal material such as low carbon steel.

前記中心電極4は、前記接続部6に接する後端部34と、前記後端部34から先端側に延びる棒状部35とを有する。後端部34は、径方向外向きに突出する鍔部16を有する。該鍔部16が絶縁体3の棚部15に当接するように配置され、前記絶縁体3の内周面と後端部34の外周面との間に第1シール体22が充填されていることで、中心電極4は、その先端が絶縁体3の先端面から突出した状態で絶縁体3の軸孔2内に固定され、主体金具7に対して絶縁保持されている。中心電極4における後端部34と棒状部35とは、Ni又はNiを主成分とするNi合金等の中心電極4に使用される公知の材料で形成されることができる。中心電極4は、Ni合金等により形成される外層と、Ni合金よりも熱伝導率の高い材料により形成され、該外層の内部の軸心部に同心に埋め込まれるように形成されてなる芯部とにより形成されてもよい。芯部を形成する材料としては、例えば、Cu、Cu合金、Ag、Ag合金、純Ni等を挙げることができる。また、中心電極4は、前記棒状部35の先端面にチップを有していてもよい。チップを形成する材料としては、Pt合金及びIr合金等を挙げることができる。チップは、例えば、抵抗溶接及び/又はレーザ溶接等により棒状部35に接合される。   The center electrode 4 has a rear end portion 34 in contact with the connection portion 6 and a rod-shaped portion 35 extending from the rear end portion 34 to the front end side. The rear end portion 34 has a flange portion 16 protruding outward in the radial direction. The flange 16 is disposed so as to contact the shelf 15 of the insulator 3, and the first seal body 22 is filled between the inner peripheral surface of the insulator 3 and the outer peripheral surface of the rear end portion 34. Thus, the center electrode 4 is fixed in the shaft hole 2 of the insulator 3 with its tip protruding from the tip surface of the insulator 3, and is insulated and held with respect to the metal shell 7. The rear end portion 34 and the rod-shaped portion 35 in the center electrode 4 can be formed of a known material used for the center electrode 4 such as Ni or a Ni alloy containing Ni as a main component. The center electrode 4 is formed of an outer layer formed of a Ni alloy or the like, and a core formed of a material having a higher thermal conductivity than that of the Ni alloy, and is formed so as to be concentrically embedded in the axial center portion of the outer layer. May be formed. Examples of the material for forming the core include Cu, Cu alloy, Ag, Ag alloy, and pure Ni. The center electrode 4 may have a tip on the tip surface of the rod-like portion 35. Examples of the material forming the chip include a Pt alloy and an Ir alloy. The tip is joined to the rod-like portion 35 by, for example, resistance welding and / or laser welding.

抵抗溶接により接地電極8に接合されている前記チップ9は、この実施形態においては円柱状である。前記チップ9の形状は特に限定されず、円柱状以外の形状として楕円柱状、角柱状、及び板状等の適宜の形状を採用することができる。前記チップ9は、接地電極8を形成する材料よりも耐酸化性及び耐火花消耗性に優れた材料により形成され、例えば、Ptを主成分とするPt合金、Rhを主成分とするRh合金、Pdを主成分とするPd合金により形成される。前記チップに含有される主成分以外の成分としては、Rh、Pt、Pd等が挙げられる。Pt合金又はRh合金により形成されたチップ9は、これを接地電極8に抵抗溶接する際の発熱量が他の貴金属に比べて小さく、接合強度を確保し難い。しかし、後述するように、この発明における接地電極8は高酸素濃度領域を有するので、発熱量の小さいチップ材料であっても所望の接合強度を確保することができる。なお、「主成分」とは、チップ9に含有される成分の中で最も含有量の多い成分のことをいう。   The tip 9 joined to the ground electrode 8 by resistance welding has a cylindrical shape in this embodiment. The shape of the chip 9 is not particularly limited, and an appropriate shape such as an elliptical column shape, a rectangular column shape, or a plate shape can be adopted as a shape other than the columnar shape. The chip 9 is made of a material having better oxidation resistance and spark wear resistance than the material forming the ground electrode 8, for example, a Pt alloy mainly containing Pt, an Rh alloy mainly containing Rh, It is made of a Pd alloy containing Pd as a main component. Examples of components other than the main component contained in the chip include Rh, Pt, and Pd. The tip 9 formed of a Pt alloy or Rh alloy has a smaller amount of heat generated when it is resistance-welded to the ground electrode 8 than other noble metals, and it is difficult to ensure the bonding strength. However, as will be described later, since the ground electrode 8 in the present invention has a high oxygen concentration region, a desired bonding strength can be ensured even with a chip material having a small calorific value. The “main component” means a component having the highest content among the components contained in the chip 9.

前記間隙Gは、この実施形態においては、接地電極8の先端部の側面に設けられたチップ9の先端面とこの先端面に対向する中心電極4の棒状部35の先端面との間の最短距離である。この間隙Gは、通常、0.3〜1.5mmに設定される。この間隙Gで火花放電が生じる。中心電極がチップを有する中心電極である場合には、接地電極に設けられたチップの先端面と中心電極のチップの先端面との間の最短距離が間隙Gとなる。中心電極の側面と接地電極の先端部に設けられたチップとが対向するように設けられている横放電型のスパークプラグの場合には、中心電極の側面と接地電極の先端部に設けられたチップとの対向するそれぞれの対向面の間の最短距離が間隙Gとなる。   In this embodiment, the gap G is the shortest distance between the distal end surface of the tip 9 provided on the side surface of the distal end portion of the ground electrode 8 and the distal end surface of the rod-shaped portion 35 of the central electrode 4 facing the distal end surface. Distance. This gap G is normally set to 0.3 to 1.5 mm. Spark discharge occurs in the gap G. When the center electrode is a center electrode having a tip, the shortest distance between the tip end surface of the tip provided on the ground electrode and the tip end surface of the tip of the center electrode is the gap G. In the case of a horizontal discharge type spark plug provided so that the side surface of the center electrode and the tip provided at the tip of the ground electrode face each other, it is provided on the side of the center electrode and the tip of the ground electrode. The shortest distance between the facing surfaces facing the chip is the gap G.

前記接地電極8は、一端部が主体金具7の先端部に接合され、途中で略L字状に屈曲され、他端部にチップ9が抵抗溶接により接合され、このチップ9の先端部と中心電極4の先端部とが間隙Gを介して対向するように形成されている。前記接地電極8は、棒状体であり、棒状体の軸線に直交する断面形状は、特に限定されず、例えば、方形、多角形、円形、楕円形等が挙げられる。前記接地電極8は、Niを主成分とするNi合金により形成されている。前記接地電極8は、中心電極4と同様に、Ni合金により形成される外層と、Ni合金よりも熱伝導率の高い材料により形成され、該外層の内部の軸芯部に同心に埋め込まれるように形成されて成る芯部とにより形成されてもよい。芯部を形成する材料としては、例えば、Cu、Cu合金、Ag、Ag合金、純Ni等を挙げることができる。   One end of the ground electrode 8 is joined to the tip of the metal shell 7, bent in a substantially L shape in the middle, and a tip 9 is joined to the other end by resistance welding. The tip of the electrode 4 is formed to face the gap G. The ground electrode 8 is a rod-shaped body, and the cross-sectional shape orthogonal to the axis of the rod-shaped body is not particularly limited, and examples thereof include a square, a polygon, a circle, and an ellipse. The ground electrode 8 is made of a Ni alloy containing Ni as a main component. Like the center electrode 4, the ground electrode 8 is formed of an outer layer formed of a Ni alloy and a material having a higher thermal conductivity than the Ni alloy, and is concentrically embedded in the shaft core portion inside the outer layer. It may be formed by the core part formed in this. Examples of the material for forming the core include Cu, Cu alloy, Ag, Ag alloy, and pure Ni.

図2は、図1に示すスパークプラグにおけるチップと接地電極との接合部分を拡大して示す要部概略断面説明図である。前記接地電極8は、図2に示すように、その外表面41から内部方向に所定の距離までの表面部分44に次の条件(1)を満たす領域を有する。
条件(1):
前記接地電極8の外表面41のうち100μm×100μmの範囲における前記外表面41からの深さ方向の距離をX(nm)、前記深さ方向の距離Xにおける酸素濃度をf(X)(質量%)、前記酸素濃度f(X)が10となるときの前記深さ方向の距離Xの値をX’としたときに、

Figure 2015198053
が、30〜1000質量%・nmである。
換言すると、前記接地電極8は、その外表面41から内部方向に所定の距離までの表面部分44の少なくとも一部に高酸素濃度領域を有する。高酸素濃度領域における酸素濃度は、所定領域における酸素濃度の積分値として表すことができる。すなわち、前記接地電極8は、外表面41から深さ方向の距離Xにおける、外表面に平行な100μm×100μmの範囲での酸素濃度をf(X)として、外表面(X=0)から酸素濃度f(X)が10質量%になるときの距離(X=X’)までの酸素濃度f(X)の積分値が30〜1000質量%・nmである高酸素濃度領域を有する。接地電極8は、後述するように、接地電極の製造工程において、特定の条件で焼鈍を施すことにより、その外表面に高酸素濃度領域を形成することができるので、接地電極8における空気に曝されている外表面全体に条件(1)を満たす領域が存在することが多い。チップ9の接地電極8からの耐剥離性の向上の観点から、接地電極8はチップ9の接合が予定されている面の表面部分44に条件(1)を満たす領域を少なくとも有していればよい。したがって、接地電極8が角柱形状である場合には、6面中チップの接合が予定されている面の表面部分44のみに条件(1)を満たす領域を有していてもよい。前記接地電極8が条件(1)を満たすと、チップ9の接地電極8からの耐剥離性を向上させることができる。 FIG. 2 is a schematic cross-sectional explanatory view of a main part showing an enlarged joint portion between the tip and the ground electrode in the spark plug shown in FIG. As shown in FIG. 2, the ground electrode 8 has a region satisfying the following condition (1) in the surface portion 44 from the outer surface 41 to a predetermined distance in the inner direction.
Condition (1):
The distance in the depth direction from the outer surface 41 in the range of 100 μm × 100 μm of the outer surface 41 of the ground electrode 8 is X (nm), and the oxygen concentration at the distance X in the depth direction is f (X) (mass). %), When the value of the distance X in the depth direction when the oxygen concentration f (X) is 10 is X ′,
Figure 2015198053
However, it is 30-1000 mass% * nm.
In other words, the ground electrode 8 has a high oxygen concentration region in at least a part of the surface portion 44 from the outer surface 41 to a predetermined distance in the inner direction. The oxygen concentration in the high oxygen concentration region can be expressed as an integrated value of the oxygen concentration in the predetermined region. That is, the ground electrode 8 has an oxygen concentration in the range of 100 μm × 100 μm parallel to the outer surface at a distance X in the depth direction from the outer surface 41, and the oxygen concentration from the outer surface (X = 0) to the oxygen concentration. It has a high oxygen concentration region where the integrated value of the oxygen concentration f (X) up to a distance (X = X ′) when the concentration f (X) becomes 10% by mass is 30 to 1000% by mass · nm. As will be described later, the ground electrode 8 can be exposed to the air in the ground electrode 8 because a high oxygen concentration region can be formed on the outer surface of the ground electrode 8 by annealing it under specific conditions in the manufacturing process of the ground electrode. In many cases, a region satisfying the condition (1) exists on the entire outer surface. From the viewpoint of improving the peel resistance of the chip 9 from the ground electrode 8, the ground electrode 8 should have at least a region satisfying the condition (1) in the surface portion 44 of the surface on which the chip 9 is to be joined. Good. Therefore, when the ground electrode 8 has a prismatic shape, only the surface portion 44 of the surface on which the chip is to be bonded may have a region satisfying the condition (1). When the ground electrode 8 satisfies the condition (1), the peel resistance of the chip 9 from the ground electrode 8 can be improved.

図3は、従来のスパークプラグにおけるチップと接地電極との接合部分を拡大して示す要部概略断面説明図である。図3に示されるように、従来の接地電極108では、接地電極108の外表面141から内部方向に所定の距離までの表面部分に、前述した高酸素濃度領域が存在しない。チップ109を抵抗溶接により接地電極108に溶接した場合には、チップ109が接合されているチップ109直下の接地電極108の表面部分142は空気に曝されていないので酸化され難い。一方、前記表面部分142に隣接する接地電極108の表面部分143すなわちチップ109が設けられている接合面Cの外周付近の外表面141から内部方向に所定の距離までの表面部分143は空気中の酸素によって酸化され、酸化物が形成され易い。したがって、チップ109直下の未酸化部分142とこれに隣接する酸化部分143とは熱膨張率が相違する。また、チップ109は、接地電極108に比べて耐酸化性及び耐火花消耗性の良好な材料で形成されているので、チップ109を形成する材料と接地電極108を形成する材料とは相違する。よって、チップ109と接地電極108における未酸化部分142と酸化部分143とは材料が相違し、熱膨張率も相違する。したがって、チップ109の接地電極108に接合されている接合面Cにおける外周線Pでは、チップ109と接地電極108における未酸化部分142と酸化部分143との熱膨張率の異なる3つの材料が隣接している。その結果、冷熱サイクル環境下に曝されるスパークプラグ1は、熱膨張率の異なる3つの材料が隣接しているこの外周線Pに大きな応力が発生し、外周線Pを起点として剥離し易くなる。 FIG. 3 is an enlarged schematic cross-sectional view of a main part showing a joint portion between a tip and a ground electrode in a conventional spark plug. As shown in FIG. 3, in the conventional ground electrode 108, the above-described high oxygen concentration region does not exist on the surface portion from the outer surface 141 of the ground electrode 108 to a predetermined distance in the inner direction. When the tip 109 is welded to the ground electrode 108 by resistance welding, the surface portion 142 of the ground electrode 108 immediately below the tip 109 to which the tip 109 is bonded is not exposed to air and is not easily oxidized. On the other hand, the surface portion 143 or surface portion 143 from the outer surface 141 near the outer periphery of the joint surface C 1 of the chip 109 is provided to a predetermined distance toward the inside of the ground electrode 108 which is adjacent to the surface portions 142 are in the air Oxidized with oxygen, an oxide is easily formed. Therefore, the unoxidized portion 142 directly below the chip 109 and the oxidized portion 143 adjacent thereto are different in thermal expansion coefficient. In addition, since the chip 109 is made of a material having better oxidation resistance and spark wear resistance than the ground electrode 108, the material forming the chip 109 is different from the material forming the ground electrode 108. Therefore, the materials of the non-oxidized portion 142 and the oxidized portion 143 in the chip 109 and the ground electrode 108 are different, and the thermal expansion coefficients are also different. Therefore, in the outer peripheral line P 1 at the joint surface C 1 joined to the ground electrode 108 of the chip 109, three materials having different thermal expansion coefficients of the unoxidized portion 142 and the oxidized portion 143 in the chip 109 and the ground electrode 108 are formed. Adjacent. As a result, the spark plug 1 to be exposed to a thermal cycle environment, a large stress to the peripheral line P 1 of three materials having different coefficients of thermal expansion are adjacent occurs, peeling off the peripheral line P 1 as a starting point It becomes easy.

一方、本発明における接地電極8は、図2に示されるように、接地電極8の外表面41から深さ方向に所定の距離までの表面部分44に高酸素濃度領域を有する。そのため、チップ9を抵抗溶接により接地電極8に溶接した場合に、チップ9が接合される接地電極8の表面付近が均一に酸化され、形成された酸化物が均一に分散される。すなわち、チップ9直下の接地電極8の表面部分42と前記表面部分42に隣接する接地電極8の表面部分43すなわちチップ9が設けられている接合面Cの外周付近の外表面41から内部方向に所定の距離までの表面部分43とが、高酸素濃度領域に含まれる酸素によって均一に酸化される。したがって、本発明における接地電極8は、チップ9と接合される表面付近に、図3に示される従来の接地電極108のように未酸化部分142と酸化部分143という熱膨張率の異なる材料が存在しない。したがって、このスパークプラグ1は、従来のスパークプラグのように、チップ9と接地電極8との接合面Cの外周線Pに3つの異なる熱膨張率を有する材料が隣接する部分がなく、剥離に弱い部分が点や線で存在せず、チップ9と接地電極8における酸化部分42、43という熱膨張率の異なる2つの材料が面で接しているので、従来のスパークプラグに比べて耐剥離性が向上する。本発明のスパークプラグ1は、接地電極8の表面部分4に高酸素濃度領域を有するので、いかなるチップ材料であっても、チップ9と接地電極8における酸化部分42、43との熱膨張率の差を考慮して抵抗溶接の条件を決定するだけで、所望の溶接強度を確保することができる。   On the other hand, as shown in FIG. 2, the ground electrode 8 in the present invention has a high oxygen concentration region on the surface portion 44 from the outer surface 41 of the ground electrode 8 to a predetermined distance in the depth direction. Therefore, when the tip 9 is welded to the ground electrode 8 by resistance welding, the vicinity of the surface of the ground electrode 8 to which the tip 9 is joined is uniformly oxidized, and the formed oxide is uniformly dispersed. That is, the surface portion 42 of the ground electrode 8 immediately below the chip 9 and the surface portion 43 of the ground electrode 8 adjacent to the surface portion 42, that is, the outer surface 41 near the outer periphery of the bonding surface C on which the chip 9 is provided, are directed inward. The surface portion 43 up to a predetermined distance is uniformly oxidized by oxygen contained in the high oxygen concentration region. Therefore, in the ground electrode 8 according to the present invention, materials having different coefficients of thermal expansion such as an unoxidized portion 142 and an oxidized portion 143 are present near the surface to be joined to the chip 9 as in the conventional ground electrode 108 shown in FIG. do not do. Therefore, unlike the conventional spark plug, this spark plug 1 does not have a portion where three materials having different coefficients of thermal expansion are adjacent to the outer peripheral line P of the joint surface C between the chip 9 and the ground electrode 8, and can be peeled off. The weak part does not exist as a point or a line, and two materials having different coefficients of thermal expansion such as the oxidized part 42 and 43 in the chip 9 and the ground electrode 8 are in contact with each other, so that the peel resistance is higher than that of the conventional spark plug. Will improve. Since the spark plug 1 of the present invention has a high oxygen concentration region on the surface portion 4 of the ground electrode 8, the thermal expansion coefficient between the tip 9 and the oxidized portions 42, 43 in the ground electrode 8 can be any chip material. A desired welding strength can be ensured only by determining the resistance welding conditions in consideration of the difference.

前記高酸素濃度領域は、所定領域の酸素濃度の積分値が30〜1000質量%・nmであればよい。接地電極8の表面部分44における所定領域の酸素濃度の積分値が30質量%・nm未満であると、前記効果が得られ難い。接地電極8の表面部分44における所定領域の酸素濃度の積分値が1000質量%・nmを超えると、チップ9を接地電極8に抵抗溶接する際に、抵抗溶接による熱によって表面部分42、43に形成される酸化物が増大し、抵抗溶接する際の電流が流れ難くなり、却って接合強度が低下する。   The high oxygen concentration region may have an integrated value of oxygen concentration in a predetermined region of 30 to 1000 mass% · nm. If the integrated value of the oxygen concentration in the predetermined region on the surface portion 44 of the ground electrode 8 is less than 30 mass% · nm, the above effect is difficult to obtain. When the integrated value of the oxygen concentration in a predetermined region in the surface portion 44 of the ground electrode 8 exceeds 1000 mass% · nm, when the tip 9 is resistance-welded to the ground electrode 8, the surface portions 42 and 43 are heated by resistance welding. The formed oxide increases, and it becomes difficult for a current to flow when resistance welding is performed. On the contrary, the bonding strength decreases.

前記接地電極8は、外表面41における酸素濃度が最も高く、内部に向かって次第に酸素濃度が低くなることが多い。外表面41における100μm×100μmの範囲における酸素濃度は、50質量%以下であるのが好ましい。前記酸素濃度が50質量%を超えると、接地電極の外表面41にニッケル酸化被膜(NiO)が形成され易くなり、チップ9の接合強度が低下するおそれがある。また、接地電極8における高酸素濃度領域の厚みは、5nm以上100nm以下であるのが好ましい。高酸素濃度領域の厚みが前記範囲内であると、チップ9を接地電極8に抵抗溶接する際に、チップ9が接合される接地電極8の表面部分42、43が均一に酸化され易い。   The ground electrode 8 has the highest oxygen concentration on the outer surface 41 and the oxygen concentration gradually decreases toward the inside. The oxygen concentration in the range of 100 μm × 100 μm on the outer surface 41 is preferably 50% by mass or less. If the oxygen concentration exceeds 50 mass%, a nickel oxide film (NiO) is likely to be formed on the outer surface 41 of the ground electrode, and the bonding strength of the chip 9 may be reduced. The thickness of the high oxygen concentration region in the ground electrode 8 is preferably 5 nm or more and 100 nm or less. When the thickness of the high oxygen concentration region is within the above range, the surface portions 42 and 43 of the ground electrode 8 to which the tip 9 is bonded are easily oxidized when the tip 9 is resistance-welded to the ground electrode 8.

前記接地電極8が条件(1)を満たすことは、接地電極8の外表面41から深さ方向にオージェ電子分光装置を用いて元素分析を行うことにより確認することができる。元素分析は、具体的には次のようにして行う。接地電極8の外表面41すなわち接地電極8における空気に曝されている表面の任意の位置で元素分析を行う。なお、チップ9及び主体金具7が接合されている付近は、抵抗溶接による熱の影響を受けているおそれがあるので、チップ9及び主体金具7から所定距離、例えば5mm離れた位置で元素分析を行うのがよい。外表面41における分析範囲は100μm×100μmとして、電子線の照射をこの分析範囲でランニングさせて元素分析を行う。得られたスペクトルのピーク強度比から検出された全元素に対する酸素の質量割合を算出して、これを酸素濃度(質量%)とする。前記条件(1)では、外表面41における酸素濃度をf(0)(質量%)として示す。外表面41における元素分析の後、Ar等を照射するイオン銃で外表面41をスパッタリングして、外表面41から深さ方向に数nmの位置で、例えば2nmの位置で、同様にして元素分析を行う。前記条件(1)では、外表面41から深さ方向に距離2(nm)における酸素濃度をf(2)(質量%)として示す。スパッタリングと元素分析とを同様にして交互に繰り返し行い、酸素濃度が10質量%より小さくなるまで深さ方向に元素分析を行う。本発明における接地電極8の表面部分における酸素濃度は、通常、外表面41から内部に向かって次第に減少するので、オージェ電子分光分析を外表面41から深さ方向に進めていくうちに酸素濃度が10質量%よりも小さくなる領域に到達する。外表面(X=0)から酸素濃度f(X)が10質量%になる深さ方向の距離(X=X’)までの酸素濃度f(X)の積分値を算出する。この値が30〜1000質量%・nmであるとき、接地電極8は前記条件(1)を満たす。 It can be confirmed that the ground electrode 8 satisfies the condition (1) by performing elemental analysis using an Auger electron spectrometer in the depth direction from the outer surface 41 of the ground electrode 8. The elemental analysis is specifically performed as follows. Elemental analysis is performed at an arbitrary position on the outer surface 41 of the ground electrode 8, that is, the surface of the ground electrode 8 exposed to air. Since the vicinity where the tip 9 and the metal shell 7 are joined may be affected by heat due to resistance welding, elemental analysis is performed at a predetermined distance, for example, 5 mm away from the tip 9 and the metal shell 7. Good to do. The analysis range on the outer surface 41 is 100 μm × 100 μm, and electron beam irradiation is run in this analysis range to perform elemental analysis. The mass ratio of oxygen with respect to all elements detected from the peak intensity ratio of the obtained spectrum is calculated, and this is defined as the oxygen concentration (mass%). In the condition (1), the oxygen concentration at the outer surface 41 is indicated as f (0) (mass%). After the elemental analysis on the outer surface 41, the outer surface 41 is sputtered by an ion gun that irradiates Ar + or the like, and the element is similarly formed at a position of several nm in the depth direction from the outer surface 41, for example, at a position of 2 nm. Perform analysis. In the condition (1), the oxygen concentration at a distance 2 (nm) in the depth direction from the outer surface 41 is indicated as f (2) (mass%). Sputtering and elemental analysis are alternately repeated in the same manner, and elemental analysis is performed in the depth direction until the oxygen concentration becomes less than 10% by mass. Since the oxygen concentration in the surface portion of the ground electrode 8 in the present invention generally decreases gradually from the outer surface 41 toward the inside, the oxygen concentration increases as the Auger electron spectroscopic analysis proceeds from the outer surface 41 in the depth direction. It reaches an area smaller than 10% by mass. An integrated value of the oxygen concentration f (X) from the outer surface (X = 0) to the distance (X = X ′) in the depth direction where the oxygen concentration f (X) becomes 10 mass% is calculated. When this value is 30 to 1000 mass% · nm, the ground electrode 8 satisfies the condition (1).

前記接地電極8は、Niを主成分とするNi合金からなる。前記接地電極は、Niの含有量が50質量%以上99質量%以下であるのが好ましく、55質量%以上90質量%以下であるのが特に好ましい。前記接地電極8におけるNiの含有量が前記範囲内にあるとき条件(1)を満たすと、チップ9の接地電極8からの耐剥離性がより一層向上する。前記接地電極8は、Ni以外の成分として、例えば、Cr、Zr、Y、Al、Si、Fe、Mn、Mo、W等を含有する。なお、「主成分」とは、接地電極8に含有される成分の中で最も含有量の多い成分のことをいう。   The ground electrode 8 is made of a Ni alloy containing Ni as a main component. The ground electrode preferably has a Ni content of 50 mass% to 99 mass%, particularly preferably 55 mass% to 90 mass%. When the condition (1) is satisfied when the Ni content in the ground electrode 8 is within the above range, the peel resistance of the chip 9 from the ground electrode 8 is further improved. The ground electrode 8 contains, for example, Cr, Zr, Y, Al, Si, Fe, Mn, Mo, W, etc. as components other than Ni. The “main component” means a component having the largest content among the components contained in the ground electrode 8.

前記接地電極8は、Crを含有するのが好ましく、Crの含有量が10質量%以上30質量%以下であるのがより好ましい。接地電極8におけるCrの含有量が多くなるほど、室温(25℃)における比抵抗値が大きくなる。比抵抗値が大きくなると、チップ9を接地電極8に抵抗溶接する際に発熱量が大きくなり、チップ9と接地電極8との接合強度を確保し易くなる。また、接地電極8におけるCrの含有量が多くなるほど、接地電極8の耐食性が向上するので、チップ9と接地電極8との接合強度を確保し易くなる。接地電極8におけるCrの含有量が10質量%未満であると、前記効果が得られ難くなる。接地電極8におけるCrの含有量が30質量%を超えると、γ’相と称される硬く変形し難い金属間化合物が、チップ9と接合される接地電極8の表面部分42、43に析出し易くなる。このようなγ’相が接地電極8の表面部分42、43に析出すると、抵抗溶接の際にチップ9が接地電極8に沈み込むのが阻害され、チップ9と接地電極8との接合強度が低下するおそれがある。   The ground electrode 8 preferably contains Cr, and more preferably has a Cr content of 10% by mass or more and 30% by mass or less. As the Cr content in the ground electrode 8 increases, the specific resistance value at room temperature (25 ° C.) increases. When the specific resistance value increases, the amount of heat generated when the tip 9 is resistance-welded to the ground electrode 8 increases, and it becomes easy to ensure the bonding strength between the tip 9 and the ground electrode 8. Further, as the Cr content in the ground electrode 8 increases, the corrosion resistance of the ground electrode 8 improves, so that it is easy to ensure the bonding strength between the chip 9 and the ground electrode 8. When the content of Cr in the ground electrode 8 is less than 10% by mass, it is difficult to obtain the effect. When the Cr content in the ground electrode 8 exceeds 30% by mass, a hard and hardly deformable intermetallic compound called γ ′ phase is deposited on the surface portions 42 and 43 of the ground electrode 8 joined to the chip 9. It becomes easy. When such a γ ′ phase is deposited on the surface portions 42 and 43 of the ground electrode 8, the tip 9 is prevented from sinking into the ground electrode 8 during resistance welding, and the bonding strength between the tip 9 and the ground electrode 8 is reduced. May decrease.

前記接地電極8は、Y又はZrを含有するのが好ましく、Y又はZrの含有量が0.1質量%以上0.5質量%以下であるのがより好ましい。接地電極8にY又はZrが含有されていると、Y又はZrが接地電極8の表面部分42、43に含まれる酸化物を接地電極8の母材45の表面すなわち抵抗溶接により酸化されていない部位の表面にピン止めして、母材45と酸化された表面部分42、43との密着性が向上する。したがって、接地電極8におけるY又はZrの含有量が多くなるほど、チップ9と接地電極8との接合強度を確保し易くなる。接地電極8におけるY又はZrの含有量が0.1質量%未満であると、前記効果が得られず、母材45と酸化された表面部分42、43との界面で剥離が生じるおそれがある。接地電極8におけるY又はZrの含有量が0.5質量%を超えると、接地電極8を製造する際に所定の形状に加工し難くなる。すなわち、接地電極8を熱間加工で形成することはできるが、冷間加工での加工がし難くなり、生産性に劣る。   The ground electrode 8 preferably contains Y or Zr, more preferably the content of Y or Zr is 0.1% by mass or more and 0.5% by mass or less. When the ground electrode 8 contains Y or Zr, the oxide contained in the surface portions 42 and 43 of the ground electrode 8 is not oxidized by the surface of the base material 45 of the ground electrode 8, that is, resistance welding. Pinning to the surface of the part improves the adhesion between the base material 45 and the oxidized surface portions 42 and 43. Therefore, as the Y or Zr content in the ground electrode 8 increases, it becomes easier to ensure the bonding strength between the chip 9 and the ground electrode 8. If the content of Y or Zr in the ground electrode 8 is less than 0.1% by mass, the above effect cannot be obtained, and peeling may occur at the interface between the base material 45 and the oxidized surface portions 42 and 43. . If the content of Y or Zr in the ground electrode 8 exceeds 0.5 mass%, it becomes difficult to process the ground electrode 8 into a predetermined shape when the ground electrode 8 is manufactured. That is, although the ground electrode 8 can be formed by hot working, it is difficult to work by cold working, resulting in poor productivity.

前記接地電極8は、Alの含有量が0質量%以上1.8質量%以下であるのが好ましい。すなわち、前記接地電極8は、Alを無含有であるか、或いはAlを含有するとしてもその含有量は1.8質量%以下であるのが好ましい。接地電極8は、接地電極8の耐酸化性の観点から、Alを含有するのが好ましく、0.3質量%以上含有するのがより好ましい。しかし、接地電極8におけるAlの含有量が1.8質量%を超えると、接地電極8を製造する際に窒素雰囲気で熱処理を行うので、表面に窒化アルミニウムの凝集層を形成し易くなる。窒化アルミニウムの凝集層が形成された接地電極8にチップ9を溶接すると、溶接による熱により凝集層表面の酸化が促進され、チップ9と接地電極8との接合界面に酸化アルミニウムが形成され易くなる。この酸化アルミニウムによってチップ9の接地電極8への接合強度が低下するおそれがある。   The ground electrode 8 preferably has an Al content of 0% by mass to 1.8% by mass. That is, the ground electrode 8 preferably does not contain Al, or even if it contains Al, its content is preferably 1.8% by mass or less. From the viewpoint of oxidation resistance of the ground electrode 8, the ground electrode 8 preferably contains Al, and more preferably contains 0.3% by mass or more. However, if the Al content in the ground electrode 8 exceeds 1.8% by mass, heat treatment is performed in a nitrogen atmosphere when the ground electrode 8 is manufactured, so that an aluminum nitride aggregate layer is easily formed on the surface. When the tip 9 is welded to the ground electrode 8 on which the aluminum nitride aggregate layer is formed, the oxidation of the surface of the aggregate layer is promoted by heat from the welding, and aluminum oxide is easily formed at the joint interface between the tip 9 and the ground electrode 8. . This aluminum oxide may reduce the bonding strength of the chip 9 to the ground electrode 8.

前記接地電極8は、Siの含有量が0質量%以上2質量%以下であるのが好ましい。すなわち、前記接地電極8は、Siを無含有であるか、或いはSiを含有するとしてもその含有量は2質量%以下であるのが好ましい。接地電極8は、接地電極8の耐酸化性の向上の観点から、Siを含有するのが好ましく、0.2質量%以上含有するのがより好ましい。しかし、例えば、チップ9がPt合金からなる場合に接地電極8におけるSiの含有量が2質量%を超えると、燃焼室内の高温環境下においてSiがチップ9に拡散し、共晶反応を生じ易くなる。チップ9における接地電極8との界面付近で共晶反応が生じると、主に粒界付近が低融点化し、内燃機関の稼働時にチップ9の一部に液相が生じ易くなるため、チップ9の接地電極8への接合強度が低下するおそれがある。   The ground electrode 8 preferably has a Si content of 0% by mass to 2% by mass. That is, it is preferable that the ground electrode 8 does not contain Si, or if Si is contained, the content thereof is 2% by mass or less. From the viewpoint of improving the oxidation resistance of the ground electrode 8, the ground electrode 8 preferably contains Si, more preferably 0.2% by mass or more. However, for example, when the tip 9 is made of a Pt alloy, if the Si content in the ground electrode 8 exceeds 2% by mass, Si diffuses into the tip 9 under a high temperature environment in the combustion chamber and easily causes a eutectic reaction. Become. If a eutectic reaction occurs near the interface of the chip 9 with the ground electrode 8, the vicinity of the grain boundary mainly has a low melting point, and a liquid phase is likely to be generated in a part of the chip 9 during operation of the internal combustion engine. There is a possibility that the bonding strength to the ground electrode 8 is lowered.

前記接地電極8に含まれる各成分の含有量は、次のようにして測定することができる。すなわち、まず接地電極8をその軸線を含む平面で切断して切断面を露出させる。この接地電極8の切断面において中心付近における任意の複数箇所を選択し、EPMAを利用して、WDS(Wavelength Dispersive X-ray Spectrometer)分析を行うことにより、各々の箇所の質量組成を測定する。次に、測定した複数箇所の測定値の算術平均値を算出して、この平均値を接地電極8の組成とする。   The content of each component contained in the ground electrode 8 can be measured as follows. That is, the ground electrode 8 is first cut along a plane including its axis to expose the cut surface. Arbitrary plural locations near the center are selected on the cut surface of the ground electrode 8, and the mass composition of each location is measured by performing WDS (Wavelength Dispersive X-ray Spectrometer) analysis using EPMA. Next, the arithmetic average value of the measured values at a plurality of measured positions is calculated, and this average value is used as the composition of the ground electrode 8.

前記接地電極8が条件(1)を満たす領域を有すると、冷熱サイクル環境下においてもチップ9が接地電極8から剥離し難い。また、前記接地電極8が前述したように特定の組成を有するNi合金からなり、かつ条件(1)を満たす領域を有すると、チップ9が接地電極8からより一層剥離し難くなる。   When the ground electrode 8 has a region satisfying the condition (1), the chip 9 is difficult to peel off from the ground electrode 8 even in a cold and hot cycle environment. Further, if the ground electrode 8 is made of a Ni alloy having a specific composition as described above and has a region satisfying the condition (1), the chip 9 becomes more difficult to peel from the ground electrode 8.

前記スパークプラグ1は、例えば次のようにして製造される。まず、中心電極4及び接地電極8は、例えば、真空溶解炉を用いて、所望の組成を有する合金の溶湯を調製し、真空鋳造にて各溶湯から鋳塊を調製した後、この鋳塊を、熱間加工、線引き加工等して、所定の形状及び所定の寸法に適宜調整した後、これを焼鈍することにより製造される。前記条件(1)を満たす領域を表面部分に有する接地電極8は、接地電極8を焼鈍する際の、雰囲気中の酸素濃度、温度、材料の送り速度等を適宜調整することにより、製造することができる。   The spark plug 1 is manufactured, for example, as follows. First, the center electrode 4 and the ground electrode 8 are prepared by, for example, using a vacuum melting furnace to prepare a molten alloy having a desired composition, and preparing ingots from the respective melts by vacuum casting. It is manufactured by appropriately adjusting to a predetermined shape and a predetermined dimension by hot working, drawing, etc., and then annealing it. The ground electrode 8 having a region satisfying the condition (1) on the surface portion is manufactured by appropriately adjusting the oxygen concentration, temperature, material feed rate, etc. in the atmosphere when the ground electrode 8 is annealed. Can do.

接地電極8が、外層とこの外層の軸心部に埋め込まれるように設けられた芯部とにより形成されている場合には、接地電極8はカップ状に形成したNi合金からなる外材に、外材より熱伝導率の高いCu合金等からなる内材を挿入し、押し出し加工等の塑性加工にて、外層の内部に芯部を有する接地電極8を形成する。中心電極4が、外層と芯部とにより形成されている場合には、接地電極8と同様にして中心電極4を形成する。   When the ground electrode 8 is formed of an outer layer and a core portion provided so as to be embedded in the axial center portion of the outer layer, the ground electrode 8 is formed of a Ni alloy formed in a cup shape. An inner material made of Cu alloy or the like having higher thermal conductivity is inserted, and the ground electrode 8 having a core portion inside the outer layer is formed by plastic processing such as extrusion. When the center electrode 4 is formed of the outer layer and the core portion, the center electrode 4 is formed in the same manner as the ground electrode 8.

接地電極8に接合されるチップ9は、所望の組成となるように金属材料を配合及び溶解して得られる溶解材を、例えば、圧延により板材に加工し、この板材を打ち抜き加工により所定のチップ形状に打ち抜いて形成することができる。また、チップ9は、所望の組成を有する合金を圧延、鍛造又は伸線により線状又はロッド状の素材に加工した後に、これを長さ方向に所定の長さに切断して形成することができる。また、材料の加工性によって、加工工程は熱間又は冷間のどちらかを適宜選択することができる。中心電極4がチップを有する場合には、接地電極9に接合されるチップ9と同様にしてチップを形成することができる。   The chip 9 to be bonded to the ground electrode 8 is formed by processing a melted material obtained by blending and melting a metal material so as to have a desired composition into a plate material by, for example, rolling, and punching the plate material into a predetermined chip. It can be formed by punching into a shape. The chip 9 may be formed by processing an alloy having a desired composition into a linear or rod-shaped material by rolling, forging or wire drawing, and then cutting the alloy into a predetermined length in the length direction. it can. In addition, depending on the workability of the material, the processing step can be appropriately selected between hot and cold. When the center electrode 4 has a chip, the chip can be formed in the same manner as the chip 9 joined to the ground electrode 9.

次いで、所定の形状に塑性加工等によって形成した主体金具7の端面に、接地電極8の一端部を電気抵抗溶接及び/又はレーザ溶接等によって接合する。次いで、接地電極8が接合された主体金具7にZnめっき又はNiめっきを施す。Znめっき又はNiめっきの後に3価クロメート処理を行ってもよい。また、接地電極に施されためっきは剥離してもよい。   Next, one end of the ground electrode 8 is joined to the end face of the metal shell 7 formed into a predetermined shape by plastic working or the like by electric resistance welding and / or laser welding or the like. Next, Zn plating or Ni plating is applied to the metal shell 7 to which the ground electrode 8 is bonded. Trivalent chromate treatment may be performed after Zn plating or Ni plating. Further, the plating applied to the ground electrode may be peeled off.

次いで、上述のように作製したチップ9を接地電極8に抵抗溶接により接合する。抵抗溶接は、チップ9を接地電極8の所定位置に設置して押し当てながら電流を流すことにより行う。中心電極4がチップを有する場合には、抵抗溶接及び/又はレーザ溶接等によりチップを中心電極4を形成する母材に接合する。   Next, the tip 9 produced as described above is joined to the ground electrode 8 by resistance welding. Resistance welding is performed by passing a current while placing and pressing the tip 9 at a predetermined position of the ground electrode 8. When the center electrode 4 has a tip, the tip is joined to a base material for forming the center electrode 4 by resistance welding and / or laser welding.

一方、絶縁体3は、セラミック等を所定の形状に焼成することによって作製される。この絶縁体3の軸孔2内に中心電極4を挿設し、第1シール体22を形成する組成物、抵抗体21を形成する組成物、第2シール体23を形成する組成物をこの順に前記軸孔2内に予備圧縮しつつ充填する。次いで前記軸孔2内の端部から端子金具5を圧入しつつ前記組成物を圧縮加熱する。こうして前記組成物が焼結して抵抗体21、第1シール体22及び第2シール体23が形成される。次いで接地電極8が接合された主体金具7にこの中心電極4等が固定された絶縁体3を組み付ける。最後に接地電極8の先端部を中心電極4側に折り曲げて、接地電極8の一端が中心電極4の先端部と対向するようにして、スパークプラグ1が製造される。   On the other hand, the insulator 3 is produced by firing ceramic or the like into a predetermined shape. The center electrode 4 is inserted into the shaft hole 2 of the insulator 3 to form a composition for forming the first seal body 22, a composition for forming the resistor 21, and a composition for forming the second seal body 23. The shaft hole 2 is sequentially filled while being pre-compressed. Next, the composition is compressed and heated while the terminal fitting 5 is press-fitted from the end in the shaft hole 2. Thus, the composition is sintered to form the resistor 21, the first seal body 22, and the second seal body 23. Next, the insulator 3 to which the center electrode 4 and the like are fixed is assembled to the metal shell 7 to which the ground electrode 8 is bonded. Finally, the tip of the ground electrode 8 is bent toward the center electrode 4, and the spark plug 1 is manufactured such that one end of the ground electrode 8 faces the tip of the center electrode 4.

本発明に係るスパークプラグは、自動車用の内燃機関例えばガソリンエンジン等の点火栓として使用される。スパークプラグ1は、内燃機関の燃焼室を区画形成するヘッド(図示せず)に設けられたネジ穴に前記ネジ部24が螺合されて、所定の位置に固定される。この発明に係るスパークプラグは、冷熱サイクル環境下におけるチップ9の接地電極8からの耐剥離性に優れているので、燃焼室内の温度差の大きい内燃機関に特に好適である。   The spark plug according to the present invention is used as an ignition plug for an internal combustion engine for automobiles such as a gasoline engine. The spark plug 1 is fixed at a predetermined position by screwing the screw portion 24 into a screw hole provided in a head (not shown) that defines a combustion chamber of the internal combustion engine. The spark plug according to the present invention is particularly suitable for an internal combustion engine having a large temperature difference in the combustion chamber since it has excellent resistance to peeling from the ground electrode 8 of the chip 9 in a cold cycle environment.

この発明に係るスパークプラグ1は、前述した実施例に限定されることはなく、本発明の目的を達成することができる範囲において、種々の変更が可能である。例えば、前記スパークプラグ1は、中心電極4の先端面と接地電極8に設けられたチップ9の先端面とが、軸線O方向で、間隙Gを介して対向するように配置されているが、この発明において、中心電極の側面と接地電極に設けられたチップの先端面とが、中心電極の半径方向で、間隙を介して対向するように配置されていてもよい。この場合に、中心電極の側面に対向する接地電極は、単数が設けられても、複数が設けられてもよい。   The spark plug 1 according to the present invention is not limited to the above-described embodiment, and various modifications can be made within a range in which the object of the present invention can be achieved. For example, the spark plug 1 is arranged such that the tip surface of the center electrode 4 and the tip surface of the tip 9 provided on the ground electrode 8 face each other with the gap G in the direction of the axis O. In the present invention, the side surface of the center electrode and the tip surface of the tip provided on the ground electrode may be disposed so as to face each other with a gap in the radial direction of the center electrode. In this case, a single ground electrode facing the side surface of the center electrode may be provided, or a plurality of ground electrodes may be provided.

(試験番号1〜22)
<試験体の作製>
真空溶解炉を用いて合金の溶湯を調製し、真空鋳造にて各溶湯から鋳塊を調製した後、この鋳塊を熱間加工、線引き加工等して角柱形状(1.5mm×3.0mm×20.0mm)を有する接地電極母材を作製した。その後、接地電極母材に焼鈍を施して、表面部分の酸素濃度を高めた接地電極を作製した。接地電極の表面部分における酸素濃度は、接地電極母材を焼鈍する際の雰囲気中の酸素濃度、温度、接地電極母材の送り速度等の焼鈍条件を適宜変更することにより、調整した。
(Test numbers 1 to 22)
<Preparation of specimen>
After preparing a molten alloy using a vacuum melting furnace and preparing ingots from each molten metal by vacuum casting, this ingot is subjected to hot working, wire drawing, etc. to form a prism (1.5 mm × 3.0 mm) A ground electrode base material having × 20.0 mm) was produced. Thereafter, the ground electrode base material was annealed to produce a ground electrode in which the oxygen concentration in the surface portion was increased. The oxygen concentration in the surface portion of the ground electrode was adjusted by appropriately changing the annealing conditions such as the oxygen concentration in the atmosphere when annealing the ground electrode base material, the temperature, and the feed rate of the ground electrode base material.

作製した接地電極の先端部の側面すなわち角柱形状の接地電極における6面中、最大面積を有する2面のうちの一方の面の先端部に、Ptを80質量%及びNiを20質量%含有する円柱状のチップ(直径0.7mm、高さ0.3mm)を設置し、抵抗溶接により接合して試験体を作製した。抵抗溶接は、荷重300Nでチップを接地電極に押し当てながら電流値を適宜変更させて行った。   The side surface of the tip portion of the manufactured ground electrode, that is, the tip portion of one of the two surfaces having the largest area among the six surfaces of the prismatic ground electrode, contains 80% by mass of Pt and 20% by mass of Ni. A cylindrical tip (diameter 0.7 mm, height 0.3 mm) was placed and joined by resistance welding to prepare a test specimen. Resistance welding was performed by appropriately changing the current value while pressing the tip against the ground electrode with a load of 300N.

<接地電極の組成>
表1に示される接地電極の組成は、EPMA(日本電子株式会社製JXA-8500F)のWDS分析を行うことにより、測定した。まず、接地電極をその中心軸線を含む平面で切断し、この切断面において中心付近における任意の複数箇所を選択し、各々の箇所の質量組成を測定した。次に、測定した複数箇所の特定値の算術平均値を算出して、この平均値を接地電極の組成とした。結果を表1に示す。
<Composition of ground electrode>
The composition of the ground electrode shown in Table 1 was measured by performing WDS analysis of EPMA (JXA-8500F manufactured by JEOL Ltd.). First, the ground electrode was cut along a plane including its central axis, and a plurality of arbitrary locations near the center were selected on the cut surface, and the mass composition of each location was measured. Next, the arithmetic average value of the measured specific values at a plurality of locations was calculated, and this average value was used as the composition of the ground electrode. The results are shown in Table 1.

<酸素濃度の積分値>
角柱形状の接地電極における6面中、チップが接合されている面において、チップから5mm以上離れている任意の測定点を選択し、オージェ電子分光装置を用いて元素分析を行った。分析範囲を100μm×100μmとして、電子線の照射をこの分析範囲でランニングさせて、得られたスペクトルのピーク強度比から酸素濃度(質量%)を算出した。外表面における元素分析の後、Arイオン銃で前記分析範囲をスパッタリングして、外表面から数nmの位置でさらに元素分析を行った。元素分析とスパッタリングとを交互に繰り返し行い、酸素濃度f(X)が10質量%より小さくなるまで深さ方向に元素分析を行った。外表面(X=0)から酸素濃度f(X)が10質量%である深さ方向の距離(X=X’)までの酸素濃度の積分値

Figure 2015198053
を算出した。結果を表1に示す。 <Integrated value of oxygen concentration>
Of the six surfaces of the prismatic ground electrode, on the surface where the chip is bonded, an arbitrary measurement point that is 5 mm or more away from the chip was selected, and elemental analysis was performed using an Auger electron spectrometer. The analysis range was set to 100 μm × 100 μm, electron beam irradiation was run in this analysis range, and the oxygen concentration (mass%) was calculated from the peak intensity ratio of the obtained spectrum. After the elemental analysis on the outer surface, the analysis range was sputtered with an Ar ion gun, and further elemental analysis was performed at a position several nm from the outer surface. Elemental analysis and sputtering were alternately repeated, and elemental analysis was performed in the depth direction until the oxygen concentration f (X) was less than 10% by mass. The integrated value of the oxygen concentration from the outer surface (X = 0) to the distance (X = X ′) in the depth direction where the oxygen concentration f (X) is 10 mass%.
Figure 2015198053
Was calculated. The results are shown in Table 1.

<耐剥離性の評価>
接地電極におけるチップが接合されている部分をガスバーナで950℃に2分間加熱し、次いで1分間空冷するサイクルを1000回繰り返し行う冷熱サイクル試験を行った。次に、チップの軸線を通る面にて切断及び研磨して、研磨面を拡大鏡にて観察し、チップと接地電極との接合面に発生した亀裂の測定を行った。図4に示すように、接合面の両端から亀裂が進展している場合には、それぞれの亀裂進展長r、rを測定し、接合面の全長Rに対する亀裂進展長の合計(r+r)を亀裂進展率{(r+r)/R}として算出した。この亀裂進展率が50%を超えた場合には、チップを接地電極に抵抗溶接する際の電流値を上げることにより接合強度を高めた試験体を作製し、この試験体で冷熱サイクル試験を行い、同様に亀裂進展率を求めた。亀裂進展率が50%未満になるまで電流値を変更して試験を繰り返し、亀裂進展率が50%未満になる電流値の下限値を求めた。
<Evaluation of peel resistance>
A portion of the ground electrode where the chip was bonded was heated to 950 ° C. for 2 minutes with a gas burner, and then a cooling cycle test was performed in which a cycle of air cooling for 1 minute was repeated 1000 times. Next, cutting and polishing were performed on a surface passing through the axis of the chip, the polished surface was observed with a magnifying glass, and cracks generated on the bonding surface between the chip and the ground electrode were measured. As shown in FIG. 4, when cracks propagate from both ends of the joint surface, the crack propagation lengths r 1 and r 2 are measured, and the total crack propagation length with respect to the total length R of the joint surface (r 1 + R 2 ) was calculated as crack growth rate {(r 1 + r 2 ) / R}. When the crack growth rate exceeds 50%, a test specimen with increased joint strength is prepared by increasing the current value when resistance welding the tip to the ground electrode, and a thermal cycle test is performed on this specimen. Similarly, the crack growth rate was obtained. The test was repeated while changing the current value until the crack growth rate was less than 50%, and the lower limit value of the current value at which the crack growth rate was less than 50% was determined.

耐剥離性の評価は、以下の基準にしたがって行った。結果を表1に示す。
◎:亀裂進展率が50%未満になる電流値の下限値が800A未満
○:亀裂進展率が50%未満になる電流値の下限値が800A以上1000A未満
△:亀裂進展率が50%未満になる電流値の下限値が1000A以上1200A未満
×:亀裂進展率が50%未満になる電流値の下限値が1200A以上
−:評価せず
The peel resistance was evaluated according to the following criteria. The results are shown in Table 1.
A: Lower limit of current value at which crack growth rate is less than 50% is less than 800 A. O: Lower limit value of current value at which crack growth rate is less than 50% is 800 A or more and less than 1000 A. Δ: Crack progress rate is less than 50%. The lower limit value of the current value is 1000 A or more and less than 1200 A ×: The lower limit value of the current value at which the crack growth rate is less than 50% is 1200 A or more −: Not evaluated

Figure 2015198053
Figure 2015198053

表1に示されるように、接地電極の表面部分における「酸素濃度の積分値」が30〜1000質量%・nmの範囲にある試験体は、耐剥離性の評価結果が良好であった。一方、「酸素濃度の積分値」が30質量%・nm未満である試験体及び1000質量%・nmを超える試験体は、耐剥離性の評価結果に劣っていた。なお、接地電極におけるZr又はYの含有量が0.5質量%を超える試験体は、冷間加工をする際の加工性が悪かったため、耐剥離性の評価を行わなかった。   As shown in Table 1, the test results in which the “integrated value of the oxygen concentration” in the surface portion of the ground electrode is in the range of 30 to 1000 mass% · nm had good peel resistance evaluation results. On the other hand, the test specimens having an “integrated value of oxygen concentration” of less than 30 mass% · nm and the test specimens exceeding 1000 mass% · nm were inferior in the peel resistance evaluation results. In addition, the test body in which the content of Zr or Y in the ground electrode exceeds 0.5% by mass was not evaluated for peel resistance because the workability during cold working was poor.

(試験番号23〜27)
接地電極の組成を変更し、抵抗溶接の際の電流値を0.8kAにしたこと以外は試験番号1〜22と同様にして試験体を作製し、「接地電極の組成」及び「酸素濃度の積分値」を測定した。
接地電極におけるチップが接合されている部分をガスバーナで1000℃に2分間加熱して、次いで1分間空冷するサイクルを1000回繰り返し行ったこと以外は、試験番号1〜22と同様に冷熱サイクル試験を行い、チップと接地電極との接合面における亀裂進展率を求めた。
(Test numbers 23-27)
A test specimen was prepared in the same manner as in test numbers 1 to 22 except that the composition of the ground electrode was changed and the current value during resistance welding was changed to 0.8 kA. The “integrated value” was measured.
The thermal cycle test was conducted in the same manner as in test numbers 1 to 22, except that the part where the tip of the ground electrode was joined was heated to 1000 ° C. for 2 minutes with a gas burner and then air-cooled for 1 minute 1000 times. The crack growth rate at the joint surface between the tip and the ground electrode was determined.

耐剥離性の評価は、以下の基準にしたがって行った。結果を表2に示す。
○: 亀裂進展率が50%未満
×: 亀裂進展率は50%以上
The peel resistance was evaluated according to the following criteria. The results are shown in Table 2.
○: Crack growth rate is less than 50% ×: Crack growth rate is 50% or more

Figure 2015198053
Figure 2015198053

表2に示されるように、接地電極におけるAlの含有量が1.8質量%以下である試験体は、Alの含有量が1.8質量%を超える試験体に比べて、耐剥離性の評価結果が良好であった。   As shown in Table 2, the specimen having an Al content of 1.8% by mass or less in the ground electrode is more resistant to peeling than the specimen having an Al content exceeding 1.8% by mass. The evaluation result was good.

(試験番号28〜32)
接地電極の組成を変更し、抵抗溶接の際の電流値を0.8kAにしたこと以外は試験番号1〜22と同様にして試験体を作製し、「接地電極の組成」及び「酸素濃度の積分値」を測定した。
作製した試験体を1200℃で500時間、真空中にて焼鈍を行う拡散処理を行った。
次に、チップの軸線を通る面にて切断して、得られた切断面に対して、エネルギー分散型X線分光装置(EDS)によりマッピング分析を行い、PtとSiとの共晶の発生の有無を調べた。
観察画面に共晶が観察されなかった場合を「○」、共晶が観察された場合を「×」として、結果を表3に示す。
(Test numbers 28-32)
A test specimen was prepared in the same manner as in test numbers 1 to 22 except that the composition of the ground electrode was changed and the current value during resistance welding was changed to 0.8 kA. The “integrated value” was measured.
The prepared specimen was subjected to a diffusion treatment in which annealing was performed in a vacuum at 1200 ° C. for 500 hours.
Next, cutting is performed on a plane passing through the axis of the chip, and mapping analysis is performed on the obtained cut plane by an energy dispersive X-ray spectrometer (EDS), and the generation of eutectic of Pt and Si is observed. The presence or absence was examined.
The results are shown in Table 3, where “O” indicates that no eutectic was observed on the observation screen, and “X” indicates that the eutectic was observed.

Figure 2015198053
Figure 2015198053

表3に示されるように、接地電極におけるSiの含有量が2質量%を超える試験体は、接地電極に含まれるSiがチップに拡散し、共晶反応により共晶が形成されていることが確認された。チップにおける接地電極との界面付近で共晶反応が生じると、主に粒界付近が低融点化し、内燃機関の稼働時にチップの一部に液相が生じ易くなるため、チップの接地電極への接合強度が低下し易くなる。   As shown in Table 3, in the test specimen in which the Si content in the ground electrode exceeds 2% by mass, Si contained in the ground electrode diffuses into the chip, and eutectic is formed by the eutectic reaction. confirmed. When a eutectic reaction occurs near the interface with the ground electrode in the chip, the melting point mainly decreases near the grain boundary, and a liquid phase tends to be generated in a part of the chip when the internal combustion engine is operated. Bonding strength tends to decrease.

1 スパークプラグ
2 軸孔
3 絶縁体
4 中心電極
5 端子金具
6 接続部
7 主体金具
8、108 接地電極
9、109 チップ
11 後端側胴部
12 大径部
13 先端側胴部
14 脚長部
15 棚部
16 鍔部
17 段部
18 テーパ部
19 板パッキン
21 抵抗体
22 第1シール体
23 第2シール体
24 ネジ部
25 ガスシール部
26 工具係合部
27 加締め部
28,29 パッキン
30 滑石
32 突起部
34 後端部
35 棒状部
36 溶融部
37 境界面
38 表面
41、141 外表面
42、43、44、142、143、144 表面部分
45 母材
DESCRIPTION OF SYMBOLS 1 Spark plug 2 Shaft hole 3 Insulator 4 Center electrode 5 Terminal metal fitting 6 Connection part 7 Main metal fitting 8, 108 Ground electrode 9, 109 Tip 11 Rear end side trunk | drum 12 Large diameter part 13 Front end side trunk | drum 14 Leg long part 15 Shelf Part 16 flange part 17 step part 18 taper part 19 plate packing 21 resistor 22 first seal body 23 second seal body 24 screw part 25 gas seal part 26 tool engaging part 27 caulking part 28, 29 packing 30 talc 32 projection Portion 34 rear end portion 35 rod-shaped portion 36 melting portion 37 boundary surface 38 surface 41, 141 outer surface 42, 43, 44, 142, 143, 144 surface portion 45 base material

Claims (6)

絶縁体の軸線方向に延びる軸孔の一端側に保持された中心電極と、
前記中心電極との間に間隙を形成するチップと、
前記絶縁体の外周に設けられた主体金具に接合される一端部を有すると共に、前記チップが抵抗溶接により接合された他端部を有する接地電極と、を備えるスパークプラグにおいて、
前記接地電極は、Niを主成分とするNi合金からなり、
前記接地電極の外表面のうち100μm×100μmの範囲における前記外表面からの深さ方向の距離をX(nm)、前記深さ方向の距離Xにおける酸素濃度をf(X)(質量%)、前記酸素濃度f(X)が10となるときの前記深さ方向の距離Xの値をX’としたときに、
Figure 2015198053
が、30〜1000質量%・nmであるスパークプラグ。
A central electrode held on one end side of an axial hole extending in the axial direction of the insulator;
A chip that forms a gap with the central electrode;
In the spark plug comprising: one end portion joined to a metal shell provided on the outer periphery of the insulator; and a ground electrode having the other end portion joined to the tip by resistance welding.
The ground electrode is made of a Ni alloy containing Ni as a main component,
The distance in the depth direction from the outer surface in the range of 100 μm × 100 μm of the outer surface of the ground electrode is X (nm), the oxygen concentration at the distance X in the depth direction is f (X) (mass%), When the value of the distance X in the depth direction when the oxygen concentration f (X) is 10 is X ′,
Figure 2015198053
However, the spark plug is 30 to 1000 mass% · nm.
前記接地電極は、Niの含有量が50質量%以上である請求項1に記載のスパークプラグ。   The spark plug according to claim 1, wherein the ground electrode has a Ni content of 50 mass% or more. 前記接地電極は、Crの含有量が10質量%以上30質量%以下である請求項1又は2に記載のスパークプラグ。   The spark plug according to claim 1 or 2, wherein the ground electrode has a Cr content of 10 mass% or more and 30 mass% or less. 前記接地電極は、Y又はZrの含有量が0.1質量%以上0.5質量%以下である請求項1〜3のいずれか1項に記載のスパークプラグ。   The spark plug according to any one of claims 1 to 3, wherein the ground electrode has a Y or Zr content of 0.1 mass% or more and 0.5 mass% or less. 前記接地電極は、Alの含有量が0質量%以上1.8質量%以下である請求項1〜4のいずれか1項に記載のスパークプラグ。   The spark plug according to any one of claims 1 to 4, wherein the ground electrode has an Al content of 0% by mass or more and 1.8% by mass or less. 前記接地電極は、Siの含有量が0質量%以上2質量%以下である請求項1〜5のいずれか1項に記載のスパークプラグ。   The spark plug according to any one of claims 1 to 5, wherein the ground electrode has a Si content of 0 mass% or more and 2 mass% or less.
JP2014076481A 2014-04-02 2014-04-02 Spark plug Active JP6061307B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014076481A JP6061307B2 (en) 2014-04-02 2014-04-02 Spark plug
DE102015105015.3A DE102015105015B4 (en) 2014-04-02 2015-03-31 Spark plug and method of manufacture
CN201510155748.3A CN104979753B (en) 2014-04-02 2015-04-02 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076481A JP6061307B2 (en) 2014-04-02 2014-04-02 Spark plug

Publications (2)

Publication Number Publication Date
JP2015198053A true JP2015198053A (en) 2015-11-09
JP6061307B2 JP6061307B2 (en) 2017-01-18

Family

ID=54146575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076481A Active JP6061307B2 (en) 2014-04-02 2014-04-02 Spark plug

Country Status (3)

Country Link
JP (1) JP6061307B2 (en)
CN (1) CN104979753B (en)
DE (1) DE102015105015B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196235B2 (en) * 2017-05-19 2021-12-07 Sumitomo Electric Industries, Ltd. Electrode material spark plug electrode, and spark plug
JP7429725B2 (en) 2022-02-18 2024-02-08 日本特殊陶業株式会社 Spark plug main metal fittings and spark plugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269436A (en) * 2001-03-16 2006-10-05 Denso Corp Spark plug and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171206B2 (en) * 2001-03-16 2008-10-22 株式会社デンソー Spark plug and manufacturing method thereof
JP4219260B2 (en) * 2002-11-22 2009-02-04 日本特殊陶業株式会社 Spark plug and manufacturing method thereof
JP2005228562A (en) * 2004-02-12 2005-08-25 Denso Corp Spark plug
JP4753432B2 (en) * 2005-11-16 2011-08-24 日本特殊陶業株式会社 Spark plug for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269436A (en) * 2001-03-16 2006-10-05 Denso Corp Spark plug and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196235B2 (en) * 2017-05-19 2021-12-07 Sumitomo Electric Industries, Ltd. Electrode material spark plug electrode, and spark plug
JP7429725B2 (en) 2022-02-18 2024-02-08 日本特殊陶業株式会社 Spark plug main metal fittings and spark plugs

Also Published As

Publication number Publication date
CN104979753A (en) 2015-10-14
DE102015105015B4 (en) 2021-02-25
JP6061307B2 (en) 2017-01-18
CN104979753B (en) 2017-07-28
DE102015105015A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5978348B1 (en) Spark plug
JP5341752B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
JP5619843B2 (en) Spark plug
JP5978250B2 (en) Electrode tip for spark plug and spark plug
JP5325947B2 (en) Spark plug
JP6320354B2 (en) Spark plug and manufacturing method thereof
US10312669B2 (en) Spark plug
JP4944433B2 (en) Spark plug
JP6061307B2 (en) Spark plug
JP6312723B2 (en) Spark plug
JP5815649B2 (en) Spark plug
JPWO2012086206A1 (en) Spark plug
JP5750490B2 (en) Spark plug
JP6280899B2 (en) Spark plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6061307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250