JP2015198026A - Method for procuring ink for fuel cell electrode - Google Patents

Method for procuring ink for fuel cell electrode Download PDF

Info

Publication number
JP2015198026A
JP2015198026A JP2014075676A JP2014075676A JP2015198026A JP 2015198026 A JP2015198026 A JP 2015198026A JP 2014075676 A JP2014075676 A JP 2014075676A JP 2014075676 A JP2014075676 A JP 2014075676A JP 2015198026 A JP2015198026 A JP 2015198026A
Authority
JP
Japan
Prior art keywords
fuel cell
ink
catalyst
electrode
ionomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014075676A
Other languages
Japanese (ja)
Inventor
一樹 雨宮
Kazuki Amamiya
一樹 雨宮
三浦 房美
Fusayoshi Miura
房美 三浦
神谷 厚志
Atsushi Kamiya
厚志 神谷
長谷川 直樹
Naoki Hasegawa
直樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2014075676A priority Critical patent/JP2015198026A/en
Publication of JP2015198026A publication Critical patent/JP2015198026A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing ink exhibiting excellent discharge characteristics when being used for a fuel cell electrode.SOLUTION: In a method for procuring ink for a fuel cell electrode, a fuel cell catalyst including catalyst metal supported on a carbon carrier, an ionomer having proton conductivity, and a dispersion medium including glycolic acid and water are mixed.

Description

本発明は、燃料電池の電極に使用された際に優れた放電特性を示すインクを製造できる方法に関する。   The present invention relates to a method capable of producing an ink exhibiting excellent discharge characteristics when used for an electrode of a fuel cell.

燃料電池電極の形成には、触媒金属とアイオノマの混合物を分散媒中に分散させてなる触媒インクを用いるのが一般的である。特許文献1には、触媒担持粒子を高分子電解質溶液中に分散させて触媒インクを得る方法が開示されている。また、特許文献2には、電極触媒を分散媒に分散させて電極触媒組成物を調製する際に、シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸を分散剤として用いる旨の記載がある。   In forming a fuel cell electrode, a catalyst ink in which a mixture of a catalyst metal and an ionomer is dispersed in a dispersion medium is generally used. Patent Document 1 discloses a method of obtaining catalyst ink by dispersing catalyst-carrying particles in a polymer electrolyte solution. Patent Document 2 discloses that an organic acid such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid is used as a dispersing agent when preparing an electrode catalyst composition by dispersing an electrode catalyst in a dispersion medium. There is a description.

特開2005−310545号公報JP 2005-310545 A 特開2012−035218号公報JP 2012-035218 A

本発明者らが検討した結果、上記特許文献1及び2に開示された方法は、いずれも分散媒中に触媒を十分に分散させることができず、その結果、得られたインクを用いた電極を備える膜・電極接合体の性能が満足のいくものではないことが明らかとなった。
本発明は、上記実状を鑑みて成し遂げられたものであり、燃料電池の電極に使用された際に優れた放電特性を示すインクを製造できる方法を提供することを目的とする。
As a result of investigations by the present inventors, none of the methods disclosed in Patent Documents 1 and 2 described above can sufficiently disperse the catalyst in the dispersion medium, and as a result, an electrode using the obtained ink It became clear that the performance of the membrane / electrode assembly comprising
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a method capable of producing an ink exhibiting excellent discharge characteristics when used for an electrode of a fuel cell.

本発明の燃料電池電極用インクの製造方法は、触媒金属がカーボン担体に担持されている燃料電池用触媒と、プロトン伝導性を有するアイオノマと、グリコール酸及び水を含む分散媒と、を混合することを特徴とする。   In the method for producing an ink for a fuel cell electrode of the present invention, a catalyst for a fuel cell in which a catalytic metal is supported on a carbon carrier, an ionomer having proton conductivity, and a dispersion medium containing glycolic acid and water are mixed. It is characterized by that.

本発明によれば、グリコール酸の使用により主にカーボン担体とアイオノマとの親和性が高まり、カーボン担体に対しアイオノマがよく吸着するようになるため、燃料電池用触媒とアイオノマとが分散媒中に高分散化される結果、得られるインクを用いた電極を備える膜・電極接合体の放電特性を従来の膜・電極接合体よりも向上させることができる。   According to the present invention, the use of glycolic acid mainly increases the affinity between the carbon support and the ionomer, and the ionomer is well adsorbed to the carbon support. Therefore, the fuel cell catalyst and the ionomer are contained in the dispersion medium. As a result of high dispersion, the discharge characteristics of the membrane / electrode assembly including the electrode using the obtained ink can be improved as compared with the conventional membrane / electrode assembly.

放電試験1からそれぞれ得られた実施例2及び比較例2のI−V曲線を重ねて示したグラフである。It is the graph which piled up and showed the IV curve of Example 2 and Comparative Example 2 which were obtained from the discharge test 1, respectively. 放電試験2からそれぞれ得られた実施例2及び比較例2のI−V曲線を重ねて示したグラフである。It is the graph which piled up and showed the IV curve of Example 2 and Comparative Example 2 which were obtained from the discharge test 2, respectively.

本発明の燃料電池電極用インクの製造方法は、触媒金属がカーボン担体に担持されている燃料電池用触媒と、プロトン伝導性を有するアイオノマと、グリコール酸及び水を含む分散媒と、を混合することを特徴とする。   In the method for producing an ink for a fuel cell electrode of the present invention, a catalyst for a fuel cell in which a catalytic metal is supported on a carbon carrier, an ionomer having proton conductivity, and a dispersion medium containing glycolic acid and water are mixed. It is characterized by that.

本発明者らは、優れた性能を有する燃料電池用電極を得るため、電極触媒層の原料となる触媒インク中におけるアイオノマと燃料電池用触媒との親和性に着目し、触媒インクの組成や、混合及び分散方法について鋭意検討を重ねた。その努力の結果、本発明者らは、触媒インクの分散媒にグリコール酸を用いることによりアイオノマの燃料電池用触媒に対する吸着性が向上し、その結果、得られる燃料電池用電極が放電性能に優れることを見出し、本発明を完成させた。   In order to obtain a fuel cell electrode having excellent performance, the inventors focused on the affinity between the ionomer and the fuel cell catalyst in the catalyst ink used as the raw material of the electrode catalyst layer, and the composition of the catalyst ink, The diligent investigation was repeated about the mixing and dispersion method. As a result of the efforts, the present inventors have improved the adsorptivity of the ionomer to the fuel cell catalyst by using glycolic acid as the dispersion medium of the catalyst ink, and as a result, the obtained fuel cell electrode has excellent discharge performance. As a result, the present invention has been completed.

本発明においては、燃料電池用触媒、アイオノマ、及び分散媒を混合する。混合時には、分散媒中に燃料電池用触媒及びアイオノマを十分に分散させることが好ましい。
本発明に使用される燃料電池用触媒は、触媒金属がカーボン担体に担持されてなるものであれば、特に限定されない。
触媒金属としては、燃料電池のアノード電極に供給される燃料の酸化反応、又はカソード電極に供給される酸化剤の還元反応に対して触媒活性を有しているものであれば特に限定されず、燃料電池電極に一般的に用いられているものを使用することができる。例えば、白金、又はルテニウム、鉄、ニッケル、マンガン、コバルト、銅等の金属と白金との合金等を用いることができる。
カーボン担体としては、カーボンブラック等の炭素粒子や炭素繊維のような導電性炭素材料等が使用できる。カーボン担体は、触媒層に導電性を付与する役割も担っている。
In the present invention, a fuel cell catalyst, an ionomer, and a dispersion medium are mixed. At the time of mixing, it is preferable to sufficiently disperse the fuel cell catalyst and ionomer in the dispersion medium.
The fuel cell catalyst used in the present invention is not particularly limited as long as the catalyst metal is supported on a carbon support.
The catalyst metal is not particularly limited as long as it has catalytic activity for the oxidation reaction of the fuel supplied to the anode electrode of the fuel cell or the reduction reaction of the oxidant supplied to the cathode electrode, What is generally used for the fuel cell electrode can be used. For example, platinum or an alloy of platinum and a metal such as ruthenium, iron, nickel, manganese, cobalt, and copper can be used.
As the carbon support, carbon particles such as carbon black, conductive carbon materials such as carbon fibers, and the like can be used. The carbon support also plays a role of imparting conductivity to the catalyst layer.

アイオノマとしては、プロトン伝導性を有しかつ燃料電池において通常使用される高分子電解質が使用でき、例えば、ナフィオン(商品名)に代表されるパーフルオロカーボンスルホン酸樹脂のようなフッ素系高分子電解質の他、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリパラフェニレン等のエンジニアリングプラスチックや、ポリエチレン、ポリプロピレン、ポリスチレン等の汎用プラスチック等の炭化水素系高分子にスルホン酸基、カルボン酸基、リン酸基、ボロン酸基等のプロトン酸基(プロトン伝導性基)を導入した炭化水素系高分子電解質等が挙げられる。   As the ionomer, a polymer electrolyte having proton conductivity and commonly used in a fuel cell can be used. For example, a fluorine-based polymer electrolyte such as a perfluorocarbon sulfonic acid resin represented by Nafion (trade name) can be used. In addition, sulfonic acid groups can be added to hydrocarbon polymers such as engineering plastics such as polyether ether ketone, polyether ketone, polyether sulfone, polyphenylene sulfide, polyphenylene ether, and polyparaphenylene, and general-purpose plastics such as polyethylene, polypropylene, and polystyrene. And hydrocarbon polymer electrolytes into which proton acid groups (proton conductive groups) such as carboxylic acid groups, phosphoric acid groups, and boronic acid groups are introduced.

本発明は、分散媒としてグリコール酸水溶液を用いることが主な特徴の1つである。グリコール酸を用いることにより、主にカーボン担体とアイオノマとの間の親和性が高まり、カーボン担体に対しアイオノマがよく吸着する。そのため、本発明により製造されるインク(以下、触媒インクと称する場合がある。)中において燃料電池用触媒及びカーボン担体が高分散し、その結果、高性能な燃料電池電極が得られる。   One of the main features of the present invention is to use an aqueous glycolic acid solution as a dispersion medium. By using glycolic acid, the affinity between the carbon support and the ionomer is mainly increased, and the ionomer is well adsorbed to the carbon support. Therefore, the fuel cell catalyst and the carbon carrier are highly dispersed in the ink produced by the present invention (hereinafter sometimes referred to as catalyst ink), and as a result, a high-performance fuel cell electrode is obtained.

本発明における分散媒中のグリコール酸の濃度は、0.01〜10mol/Lであることが好ましく、0.05〜6mol/Lであることがより好ましい。グリコール酸の濃度が0.01mol/L未満の場合には、燃料電池用触媒及びカーボン担体が触媒インク中において高分散する本発明の効果を十分享受できないおそれがある。一方、グリコール酸の濃度が10mol/Lを超える場合には、グリコール酸の濃度が高すぎるため、カーボン担体に対するアイオノマの吸着がグリコール酸によりかえって妨げられるおそれや、触媒金属がグリコール酸によって被毒されるおそれがある。   The concentration of glycolic acid in the dispersion medium in the present invention is preferably 0.01 to 10 mol / L, more preferably 0.05 to 6 mol / L. When the concentration of glycolic acid is less than 0.01 mol / L, the effect of the present invention in which the fuel cell catalyst and the carbon carrier are highly dispersed in the catalyst ink may not be sufficiently enjoyed. On the other hand, when the concentration of glycolic acid exceeds 10 mol / L, since the concentration of glycolic acid is too high, the adsorption of ionomer to the carbon support may be hindered by glycolic acid, or the catalyst metal is poisoned by glycolic acid. There is a risk.

燃料電池用触媒、アイオノマ、及び分散媒を混合する方法は、分散媒中に燃料電池用触媒及びアイオノマが十分分散する方法であれば、特に限定されない。混合方法としては、例えば、乳鉢を用いた混合や、メカニカルミリング(ボールミル、ビーズミル)を用いた混合等が挙げられる。これら混合方法の中でも、効率よく混合できる方法であることから、ビーズミルが好ましい。
燃料電池用触媒及びアイオノマ以外にも、必要に応じて結着剤や撥水性樹脂等のその他の成分を混合してもよい。
The method for mixing the fuel cell catalyst, the ionomer, and the dispersion medium is not particularly limited as long as the fuel cell catalyst and the ionomer are sufficiently dispersed in the dispersion medium. Examples of the mixing method include mixing using a mortar and mixing using mechanical milling (ball mill, bead mill). Among these mixing methods, a bead mill is preferable because it can be efficiently mixed.
In addition to the fuel cell catalyst and ionomer, other components such as a binder and a water repellent resin may be mixed as necessary.

以下、触媒インクの使用方法について説明する。
燃料電池用電極は、通常、触媒層及びガス拡散層を備える。触媒インクは、このうち触媒層の形成に使用される。ガス拡散層については、従来から燃料電池に使用されているものを用いることができる。
触媒層の形成方法は特に限定されず、例えば、触媒インクをガス拡散シートの表面に塗布、乾燥することによって、ガス拡散シート表面に触媒層を形成してもよいし、或いは、高分子電解質膜表面に触媒インクを塗布、乾燥することによって、高分子電解質膜表面に触媒層を形成してもよい。或いは、転写用基材表面に触媒インクを塗布、乾燥することによって、転写シートを作製し、当該転写シートを、高分子電解質膜又はガス拡散シートと熱圧着等により接合した後、転写シートの基材フィルムを剥離する方法で、高分子電解質膜表面上に触媒層を形成するか、ガス拡散シート表面に触媒層を形成してもよい。
Hereinafter, a method for using the catalyst ink will be described.
A fuel cell electrode usually includes a catalyst layer and a gas diffusion layer. Of these, the catalyst ink is used to form a catalyst layer. As the gas diffusion layer, those conventionally used in fuel cells can be used.
The method for forming the catalyst layer is not particularly limited. For example, the catalyst layer may be formed on the surface of the gas diffusion sheet by applying catalyst ink to the surface of the gas diffusion sheet and drying, or the polymer electrolyte membrane. A catalyst layer may be formed on the surface of the polymer electrolyte membrane by applying a catalyst ink on the surface and drying. Alternatively, a transfer sheet is prepared by applying and drying a catalyst ink on the surface of the transfer substrate, and the transfer sheet is joined to the polymer electrolyte membrane or the gas diffusion sheet by thermocompression bonding or the like. A catalyst layer may be formed on the surface of the polymer electrolyte membrane or a catalyst layer may be formed on the surface of the gas diffusion sheet by a method of peeling the material film.

触媒インクの塗布方法、乾燥方法等は適宜選択することができる。例えば、塗布方法としては、スプレー法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。また、乾燥方法としては、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥等が挙げられる。減圧乾燥、加熱乾燥における具体的な条件に制限はなく、適宜設定すればよい。また、触媒層の膜厚は、特に限定されないが、1〜50μm程度とすればよい。   The method for applying the catalyst ink, the drying method, and the like can be selected as appropriate. For example, examples of the coating method include a spray method, a screen printing method, a doctor blade method, a gravure printing method, a die coating method, and the like. Examples of the drying method include reduced pressure drying, heat drying, and reduced pressure heat drying. There is no restriction | limiting in the specific conditions in reduced pressure drying and heat drying, What is necessary is just to set suitably. The thickness of the catalyst layer is not particularly limited, but may be about 1 to 50 μm.

触媒インクを用いた燃料電池について説明する。
燃料電池は、通常、膜・電極接合体を備える。膜・電極接合体は、水素イオン伝導性を有する高分子電解質膜、及び当該高分子電解質膜を挟む一対のカソード電極及びアノード電極を備える。燃料電池は、膜・電極接合体の他に、当該膜・電極接合体を電極の外側から挟む一対のセパレータを備える。セパレータと電極との境界にはガス流路が設けられていてもよい。
電極としては、上記燃料電池用電極を使用する。高分子電解質膜、及びセパレータについては、従来から燃料電池に使用されているものを用いることができる。
A fuel cell using catalyst ink will be described.
A fuel cell usually includes a membrane / electrode assembly. The membrane / electrode assembly includes a polymer electrolyte membrane having hydrogen ion conductivity, and a pair of cathode and anode electrodes sandwiching the polymer electrolyte membrane. In addition to the membrane / electrode assembly, the fuel cell includes a pair of separators that sandwich the membrane / electrode assembly from the outside of the electrode. A gas flow path may be provided at the boundary between the separator and the electrode.
As the electrode, the electrode for a fuel cell is used. As the polymer electrolyte membrane and the separator, those conventionally used in fuel cells can be used.

以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、この実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to only these examples.

1.燃料電池電極用インクの製造
[実施例1]
まず、以下に示す原料(燃料電池用触媒、アイオノマ、及び分散媒)を準備した。
・燃料電池用触媒:白金担持カーボン(白金平均粒径:2nm、白金担持質量比率:約30%)
・アイオノマ:ナフィオン(商品名)
・分散媒:水と70質量%グリコール酸水溶液とを、体積比が1:1となるように混合した水溶液(グリコール酸濃度:5.8mol/L)
1. Production of fuel cell electrode ink [Example 1]
First, the following raw materials (fuel cell catalyst, ionomer, and dispersion medium) were prepared.
-Fuel cell catalyst: platinum-supported carbon (platinum average particle diameter: 2 nm, platinum-supported mass ratio: about 30%)
・ Ionoma: Nafion (trade name)
-Dispersion medium: aqueous solution in which water and a 70 mass% glycolic acid aqueous solution are mixed so that the volume ratio is 1: 1 (glycolic acid concentration: 5.8 mol / L)

次に、以下の条件(1)及び(2)をいずれも満たすように、白金担持カーボン、アイオノマ、及び分散媒を混合した。
(1)白金担持カーボンにおけるカーボンとアイオノマとの体積比を1:1とする。
(2)白金担持カーボン及びアイオノマの合計の質量を、インクの総質量の3.0質量%とする。
Next, platinum-supporting carbon, ionomer, and dispersion medium were mixed so as to satisfy both of the following conditions (1) and (2).
(1) The volume ratio of carbon to ionomer in the platinum-supporting carbon is 1: 1.
(2) The total mass of platinum-supporting carbon and ionomer is 3.0 mass% of the total mass of the ink.

最後に、得られた混合物を遊星ビーズミル(Retsch製、製品番号:PM200)により150rpm/3hrの条件で混合することにより、分散媒中に白金担持カーボン及びアイオノマを高分散させ、実施例1の燃料電池電極用インク(以下、実施例1のインクと称する場合がある。)が得られた。   Finally, the obtained mixture was mixed with a planetary bead mill (manufactured by Retsch, product number: PM200) at 150 rpm / 3 hr to highly disperse the platinum-supporting carbon and ionomer in the dispersion medium. A battery electrode ink (hereinafter sometimes referred to as ink of Example 1) was obtained.

[比較例1]
分散媒として、グリコール酸水溶液の替わりに、水とエタノールとを体積比が1:1となるように混合した水溶液を用いたこと以外は、実施例1と同様にして、比較例1の燃料電池電極用インク(以下、比較例1のインクと称する場合がある。)を調製した。
[Comparative Example 1]
The fuel cell of Comparative Example 1 is the same as Example 1 except that an aqueous solution in which water and ethanol are mixed so that the volume ratio is 1: 1 is used instead of the glycolic acid aqueous solution as the dispersion medium. An electrode ink (hereinafter sometimes referred to as the ink of Comparative Example 1) was prepared.

2.膜・電極接合体の製造
[実施例2]
実施例1のインクを、単位面積当たりの電極における白金質量が0.1mg/cmとなるように、テフロン(登録商標)基板上にスプレー塗布して乾燥させた。次に、乾燥したインクを電解質膜の一方の面に150℃で熱転写し、カソード電極を形成した。一方、比較例1のインクを用いて、上記同様に塗布及び乾燥を行った後、電解質膜の他の一方の面に150℃で熱転写し、アノード電極を形成することにより、実施例2の膜・電極接合体を作製した。
2. Production of membrane / electrode assembly [Example 2]
The ink of Example 1 was spray-coated on a Teflon (registered trademark) substrate and dried so that the mass of platinum in the electrode per unit area was 0.1 mg / cm 2 . Next, the dried ink was thermally transferred to one surface of the electrolyte membrane at 150 ° C. to form a cathode electrode. On the other hand, after applying and drying in the same manner as described above using the ink of Comparative Example 1, the film of Example 2 was thermally transferred to the other surface of the electrolyte membrane at 150 ° C. to form an anode electrode. -An electrode assembly was prepared.

[比較例2]
電解質膜の両面に対し比較例1のインクを用いたこと以外は、実施例2と同様に電極の形成を行い、比較例2の膜・電極接合体を作製した。
[Comparative Example 2]
An electrode was formed in the same manner as in Example 2 except that the ink of Comparative Example 1 was used on both surfaces of the electrolyte membrane, and a membrane / electrode assembly of Comparative Example 2 was produced.

3.膜・電極接合体の放電試験
実施例2及び比較例2の膜・電極接合体をそれぞれ燃料電池セルに組み込み、以下の異なる温度において飽和湿度条件よりも多量に水を送った過加湿条件で放電試験を行った。
(放電試験1)
・セル温度:40℃
・湿度:過加湿条件
(放電試験2)
・セル温度:80℃
・湿度:過加湿条件
なお、放電試験1及び2に共通する条件は以下の通りである。
・電極面積:13cm
・アノードガス:水素ガス
・アノードガス流速:1.0L/min
・アノードガス出口圧:150kPa−abs.
・カソードガス:空気
・カソードガス流速:2.0L/min
・カソードガス出口圧:150kPa−abs.
3. Discharge test of membrane / electrode assembly The membrane / electrode assembly of Example 2 and Comparative Example 2 were incorporated into fuel cells, respectively, and discharged under excessive humidification conditions in which a larger amount of water was sent than saturated humidity conditions at the following different temperatures. A test was conducted.
(Discharge test 1)
-Cell temperature: 40 ° C
・ Humidity: Over-humidified condition (Discharge test 2)
-Cell temperature: 80 ° C
-Humidity: Over-humidifying conditions The conditions common to the discharge tests 1 and 2 are as follows.
-Electrode area: 13 cm 2
・ Anode gas: Hydrogen gas ・ Anode gas flow rate: 1.0 L / min
Anode gas outlet pressure: 150 kPa-abs.
・ Cathode gas: Air ・ Cathode gas flow rate: 2.0 L / min
Cathode gas outlet pressure: 150 kPa-abs.

図1は、放電試験1からそれぞれ得られた実施例2及び比較例2のI−V曲線を重ねて示したグラフである。図1は、縦軸にセル電圧(V)を、横軸に電流密度(A/cm)を、それぞれとったグラフである。また、図1中の黒三角のプロットは実施例2のデータを、白丸のプロットは比較例2のデータを、それぞれ示す。
図1から分かるように、実施例2の膜・電極接合体は、電流密度のほぼ全ての範囲にわたって、比較例2の膜・電極接合体よりも最大0.02V高い電圧を示す。
FIG. 1 is a graph in which the IV curves of Example 2 and Comparative Example 2 obtained from the discharge test 1 are superimposed. FIG. 1 is a graph in which the vertical axis represents the cell voltage (V) and the horizontal axis represents the current density (A / cm 2 ). Further, the black triangle plot in FIG. 1 shows the data of Example 2, and the white circle plot shows the data of Comparative Example 2, respectively.
As can be seen from FIG. 1, the membrane / electrode assembly of Example 2 shows a voltage that is 0.02 V higher than the membrane / electrode assembly of Comparative Example 2 over almost the entire range of current density.

図2は、放電試験2からそれぞれ得られた実施例2及び比較例2のI−V曲線を重ねて示したグラフである。図2の縦軸、横軸及びプロットは、図1と同様である。
図2から分かるように、実施例2の膜・電極接合体は、電流密度のほぼ全ての範囲にわたって、比較例2の膜・電極接合体よりも高い電圧を示す。特に、高電流密度条件下においてその差が顕著となり、例えば、電流密度が1.8A/cmの条件下において、比較例2の電圧は0.35Vであるのに対し、実施例2の電圧は0.42Vと高い。
FIG. 2 is a graph in which the IV curves of Example 2 and Comparative Example 2 obtained from the discharge test 2 are superimposed. The vertical axis, horizontal axis, and plot in FIG. 2 are the same as those in FIG.
As can be seen from FIG. 2, the membrane / electrode assembly of Example 2 exhibits a higher voltage than the membrane / electrode assembly of Comparative Example 2 over almost the entire range of current density. In particular, the difference becomes conspicuous under high current density conditions. For example, the voltage of Comparative Example 2 is 0.35 V under the current density of 1.8 A / cm 2 , whereas the voltage of Example 2 is high. Is as high as 0.42V.

以上のように、セル温度40℃かつ過加湿条件、セル温度80℃かつ過加湿条件のいずれの条件においても、実施例2の膜・電極接合体の方が、比較例2の膜・電極接合体よりも優れた放電特性を示した。このように、実施例2の方が比較例2よりもI−V特性に優れる理由は、インク調製時のグリコール酸を含む分散媒の働きにより、カーボン担体に対しアイオノマがよく吸着した結果、白金担持カーボンとアイオノマとが分散媒中に十分に高分散化されたためであると考えられる。
また、ナフィオン(商品名)以外のスルホン酸ポリマーをアイオノマとして用いた電極でも、同様の効果が確認できた。
As described above, the membrane / electrode assembly of Example 2 is more suitable for the membrane / electrode assembly of Comparative Example 2 under any conditions of the cell temperature of 40 ° C. and the excessive humidification condition and the cell temperature of 80 ° C. and the excessive humidification condition. It showed better discharge characteristics than the body. Thus, the reason why Example 2 has better IV characteristics than Comparative Example 2 is that the ionomer is well adsorbed to the carbon carrier by the action of the dispersion medium containing glycolic acid at the time of ink preparation. This is probably because the supported carbon and ionomer were sufficiently dispersed in the dispersion medium.
Moreover, the same effect was confirmed also with the electrode using sulfonic acid polymers other than Nafion (trade name) as an ionomer.

Claims (1)

燃料電池電極用インクの製造方法であって、
触媒金属がカーボン担体に担持されている燃料電池用触媒と、
プロトン伝導性を有するアイオノマと、
グリコール酸及び水を含む分散媒と、を混合することを特徴とする、燃料電池電極用インクの製造方法。
A method for producing an ink for a fuel cell electrode, comprising:
A catalyst for a fuel cell in which a catalytic metal is supported on a carbon support;
An ionomer having proton conductivity;
A method for producing an ink for a fuel cell electrode, comprising mixing a dispersion medium containing glycolic acid and water.
JP2014075676A 2014-04-01 2014-04-01 Method for procuring ink for fuel cell electrode Pending JP2015198026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075676A JP2015198026A (en) 2014-04-01 2014-04-01 Method for procuring ink for fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075676A JP2015198026A (en) 2014-04-01 2014-04-01 Method for procuring ink for fuel cell electrode

Publications (1)

Publication Number Publication Date
JP2015198026A true JP2015198026A (en) 2015-11-09

Family

ID=54547596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075676A Pending JP2015198026A (en) 2014-04-01 2014-04-01 Method for procuring ink for fuel cell electrode

Country Status (1)

Country Link
JP (1) JP2015198026A (en)

Similar Documents

Publication Publication Date Title
JP3872784B2 (en) FUEL CELL UNIT, ITS MANUFACTURING METHOD, AND FUEL CELL USING THE FUEL CELL UNIT
US8309276B2 (en) Process for preparing of a catalyst solution for fuel cell and a membrane electrode assembly using the same
JP2009140927A (en) Independent electrode catalyst layer for fuel cell and method of manufacturing membrane-electrode assembly using this
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
KR101985064B1 (en) Catalyst layer for a fuel cell and method for the production thereof
TWI728612B (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
JP2018147675A (en) Catalyst ink for fuel cell, catalyst layer for fuel cell, and membrane electrode assembly
JP2007214008A (en) Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and solid polymer fuel cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
KR102602407B1 (en) The composition for manufacturing electrode of membrane-electrode assembly for fuel cell and method for manufacturing electrode of membrane-electrode assembly for fuel cell using the same
KR100668354B1 (en) Method for preparing metal catalyst and electrode including the same
KR102455396B1 (en) Catalyst ink for forming electrode catalyst layer of fuel cell and manufacturing method thereof
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
JP4910305B2 (en) A catalyst layer for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell comprising the same.
JP2016110888A (en) Method of manufacturing electrode catalyst layer for fuel cell
Ban et al. Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO 2 Loading for Water Electrolysis
CN111095637B (en) Method of preparing catalyst layer, and membrane electrode assembly and fuel cell including the same
JP2016035869A (en) Method for manufacturing cathode catalyst layer for fuel battery
KR102187990B1 (en) Manufacturing method of catalyst ink for forming fuel cell electrode catalyst layer
JP2015198026A (en) Method for procuring ink for fuel cell electrode
JP2020177734A (en) Method for manufacturing electrode catalyst layer for fuel cell
JP7052576B2 (en) Manufacturing method of electrode catalyst layer for fuel cell
JP6727265B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same