JP2015196903A - POWDER FOR Ag/SnO2 ELECTRIC CONTACT, Ag/SnO2 ELECTRIC CONTACT MATERIAL AND MANUFACTURING METHOD THEREFOR - Google Patents

POWDER FOR Ag/SnO2 ELECTRIC CONTACT, Ag/SnO2 ELECTRIC CONTACT MATERIAL AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2015196903A
JP2015196903A JP2014144876A JP2014144876A JP2015196903A JP 2015196903 A JP2015196903 A JP 2015196903A JP 2014144876 A JP2014144876 A JP 2014144876A JP 2014144876 A JP2014144876 A JP 2014144876A JP 2015196903 A JP2015196903 A JP 2015196903A
Authority
JP
Japan
Prior art keywords
powder
sno
oxide
ball
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014144876A
Other languages
Japanese (ja)
Other versions
JP2015196903A5 (en
JP6333099B2 (en
Inventor
清二 池田
Seiji Ikeda
清二 池田
俊勃 王
Junbo Wang
俊勃 王
虹華 邱
Honghua Qiu
虹華 邱
敏鴿 楊
Minge Yang
敏鴿 楊
▲チョング▼ 付
Chong Fu
▲チョング▼ 付
松濤 劉
Songtao Liu
松濤 劉
辛亥 賀
Xinjie He
辛亥 賀
鳳陽 姜
Fengyang Jiang
鳳陽 姜
増超 楊
Zengchao Yang
増超 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2015196903A publication Critical patent/JP2015196903A/en
Publication of JP2015196903A5 publication Critical patent/JP2015196903A5/en
Application granted granted Critical
Publication of JP6333099B2 publication Critical patent/JP6333099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To manufacture an Ag/SnOelectric contact material having fine oxide particle, uniform distribution, environment friendly, relatively low in cost and good in conductivity and abrasion resistance.SOLUTION: There is provided a manufacturing method of an Ag/SnOelectric contact material including a process 1 for conducting ball milling at a rolling speed of 800 to 1500 times/minute to a mixture powder by mixing tin oxide, lanthanum oxide, copper oxide and cadmium oxide with mass ratio of 1:0.08 to 0.5:0.05 to 0.7:0.08 to 0.5 to obtain a nanocomposite powder, a process 2 of conducting ball milling at the rolling speed of 130 to 250 times/minute to powder by blending 11 to 22 mass% of the nanocomposite powder obtained in the process 1 and 78 to 89 mass% of silver powder and mixing uniformly to put the silver powder in the nanocomposite powder, a process 3 of granulating the powder obtained in the process 3, a process 4 of conducting molding and sintering to the powder granulated in the process 3 and a process 5 of conducting annealing to the material obtained in the process 4.

Description

本発明は、銀ベース合金複合材料の新型・改善型の製造法に関し、具体的にはAg/SnO電気接点用粉末、ナノドープAg/SnO電気接点材料及びそれらの製造法に関する。 The present invention relates to a new and improved manufacturing method for silver-based alloy composite materials, and more particularly to a powder for Ag / SnO 2 electrical contacts, a nano-doped Ag / SnO 2 electrical contact material, and a method for producing them.

現在、公知のAg/SnO電気接点材料の技術としては、非特許文献1〜4及び特許文献1〜4が挙げられる。
以上の公開された技術では、銀ベース接点材料を作製するとき、異なる添加物及び製造法が採用され、高純度金属の微粒化、酸化技術を採用して酸化物粉末を製造する場合があり、各種金属の溶融などの方法を採用する場合もあり、上記方法には、銀の含有量が高く、コストが大きく、プロセス要求が厳しい等の欠点が存在し、且つ高温で酸化物粒子の凝集を引き起こしやすく、接点材料の使用寿命に影響を及ぼすので、工業化応用は困難であった。また、業務用接点材料の多くは、人体及び環境に有害なカドミウム元素を含有していたため、カドミウム元素含有量の少ない、性能のより優れた代替材料の開発が急務となっている。そして、以上の技術は、酸化物を細かに一様分布させるという鍵となる問題を解決することができず、且つ銀粉に同時に酸化スズ、酸化カドミウム、酸化ランタン、酸化銅等の酸化物を添加した電気接点材料の製造に関するものではない。
Currently, the known Ag / SnO 2 electrical contact materials include Non-Patent Documents 1 to 4 and Patent Documents 1 to 4.
In the above disclosed technology, when making a silver-based contact material, different additives and manufacturing methods are adopted, and high-purity metal atomization, oxidation technology may be used to manufacture oxide powder, There are cases where methods such as melting of various metals are adopted, and the above methods have disadvantages such as high silver content, high cost, and severe process requirements, and agglomeration of oxide particles at high temperatures. Since it is easy to cause and affects the service life of the contact material, industrial application has been difficult. In addition, since many commercial contact materials contain cadmium elements that are harmful to the human body and the environment, there is an urgent need to develop alternative materials with low cadmium element content and superior performance. The above techniques cannot solve the key problem of finely and uniformly distributing oxides, and simultaneously add oxides such as tin oxide, cadmium oxide, lanthanum oxide, and copper oxide to silver powder. It is not related to the manufacture of electrical contact materials.

中国特許出願公開第1425790号明細書Chinese Patent Application No. 1425790 Specification 中国特許出願公開第1058289号明細書Chinese Patent Application No. 1058289 中国特許出願公開第101136287号明細書Chinese Patent Application No. 101136287 特開昭51−2619号公報Japanese Patent Laid-Open No. 51-2619

「新型銀酸化スズ電気接点材料」、希少金属材料と工学、(中国)、2005年、第3巻、p.483〜485“New silver tin oxide electrical contact material”, Rare metal materials and engineering, (China), 2005, Vol. 3, p. 483 to 485 「Ag/SnO2接点材料及びその添加物の研究と発展」、材料導報、(中国)、2005年、第19巻、第5号、p.34〜37“Research and Development of Ag / SnO 2 Contact Materials and Additives”, Materials Guidance, (China), 2005, Vol. 19, No. 5, p. 34-37 「Ag/SnO2電気接点材料の製造法研究の現状」、鋳造技術、(中国)、2009年、第30巻、第9号、p.1173〜1176“Current Status of Manufacturing Method Research of Ag / SnO2 Electrical Contact Materials”, Casting Technology, (China), 2009, Vol. 30, No. 9, p. 1173 to 1176 「銀−希土酸化物接点材料の性能」、希少金属材料と工学、(中国)、2001年、第3巻、p.205〜207“Performance of silver-rare earth oxide contact materials”, Rare metal materials and engineering, (China), 2001, Vol. 3, p. 205-207

本発明は、添加物を含む酸化物を細かに一様分布させたAg/SnO電気接点用粉末、Ag/SnO電気接点材料及びその製造法を提供することを目的とし、酸化ランタンが添加されたナノ酸化スズ、及び酸化カドミウム、酸化銅を高エネルギーボールミルで添加し、カドミウム元素の含有量を減らすことにより、電気接点材料を製造し、酸化物が銀母材に細かに一様分布するようにし、上記の背景技術において接点材料の酸化物が凝集しやすく、電気接点の温度上昇が高く、耐アーク摩耗性が比較的悪く、電気接点の寿命が低い等の欠点を解決する。 An object of the present invention is to provide an Ag / SnO 2 electrical contact powder in which an oxide containing an additive is finely and uniformly distributed, an Ag / SnO 2 electrical contact material, and a method for producing the same, and lanthanum oxide is added. Nano-tin oxide, cadmium oxide, and copper oxide added with a high energy ball mill to reduce the cadmium element content, thereby producing an electrical contact material and finely and uniformly distributing the oxide in the silver base material Thus, in the above background art, the oxides of the contact material are likely to aggregate, the temperature rise of the electrical contact is high, the arc wear resistance is relatively poor, and the shortage of the electrical contact life is solved.

本発明は、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:(0.08〜0.5):(0.05〜0.7):(0.08〜0.5)の割合で混合して混合粉体を調製し、混合粉体に対し800〜1500回/分の回転速度のボールミリングを行うことによりナノ複合粉体を得る工程1と、工程1で得られたナノ複合粉体、及び銀粉を、ナノ複合粉体11〜22質量%及び銀粉78〜89質量%の割合で配合し、130〜250回/分の回転速度のボールミリングを行うことにより均一に混合し、ナノ複合粉体を銀粉の粒子にはめ込む工程2とを有することを特徴とするAg/SnO電気接点用粉末を製造する方法である。
本発明は、上記工程2で得られた粉末を造粒する工程3を更に有してもよい。
また、本発明は、上記工程3で造粒した粉末に対し、成形、焼結を行なう工程4と、工程4で得られた材料に対し焼きなましを行なう工程5とを有することを特徴とするAg/SnO電気接点材料を製造する方法である。
また、本発明は、上記の方法によって製造されたことを特徴とするAg/SnO電気接点用粉末及びAg/SnO電気接点材料である。
In the present invention, tin oxide, lanthanum oxide, copper oxide and cadmium oxide have a mass ratio of 1: (0.08 to 0.5) :( 0.05 to 0.7) :( 0.08 to 0.5). A mixed powder is prepared by mixing at a ratio, and the mixed powder is subjected to ball milling at a rotational speed of 800-1500 times / minute to obtain a nanocomposite powder, and the nano powder obtained in the step 1 is obtained. The composite powder and the silver powder are mixed at a ratio of 11-22 mass% of the nano composite powder and 78-89 mass% of the silver powder, and mixed uniformly by ball milling at a rotational speed of 130-250 times / minute. And a step 2 of fitting the nanocomposite powder into silver powder particles, and a method for producing a powder for an Ag / SnO 2 electrical contact.
The present invention may further include a step 3 for granulating the powder obtained in the above step 2.
Further, the present invention is characterized in that it has a step 4 for forming and sintering the powder granulated in the step 3 and a step 5 for annealing the material obtained in the step 4. / SnO 2 electrical contact material manufacturing method.
Further, the present invention is an Ag / SnO 2 electrical contact powder and an Ag / SnO 2 electrical contact material produced by the above method.

本発明によるAg/SnO電気接点材料は、酸化物粒子が細かく、分布が均一で、環境に優しく、コストが比較的安く、導電性及び耐摩耗性が良好であるというメリットがあり、応用の先行きがより広い。 The Ag / SnO 2 electrical contact material according to the present invention has the advantages that the oxide particles are fine, the distribution is uniform, the environment is friendly, the cost is relatively low, and the conductivity and wear resistance are good. The future is wider.

本発明において、アルコールを助磨剤として利用し、1〜3時間の高エネルギーボールミリングを行うことによりナノSnO複合粉体を調製し、得られたナノ複合粉体と銀粉とを所定の割合で混合し、130〜250回/分の回転速度のボールミリングを4〜10時間行って得られた銀−酸化物複合粉体の顕微鏡形態であり、ナノ酸化物複合粉体が銀粉の粒子にはめ込まれ、酸化物が母材に分散分布している。In the present invention, nano-SnO 2 composite powder is prepared by performing high energy ball milling for 1 to 3 hours using alcohol as a polishing agent, and the obtained nano-composite powder and silver powder are mixed in a predetermined ratio. And a microscopic form of a silver-oxide composite powder obtained by ball milling at a rotational speed of 130 to 250 times / minute for 4 to 10 hours, and the nano-oxide composite powder is converted into silver powder particles. The oxide is dispersed and distributed in the base material. 図1に示したボールミリング・混合された銀−酸化物複合粉体を500〜650℃の温度の炉内に入れ、1〜3時保温して、焼きなましを行った後、100〜190MPaの圧力で等静圧成形し、成形した試料を300〜550℃の温度の炉内に入れて0.5〜1.5時間保温後、700〜860℃の温度の炉内に入れて5〜7時間保温後に取り出し、100〜180MPaの圧力で熱間プレス加工して得られた成形品の顕微鏡組織形態である。The ball-milled and mixed silver-oxide composite powder shown in FIG. 1 is placed in a furnace at a temperature of 500 to 650 ° C., kept at 1 to 3 hours, annealed, and then subjected to a pressure of 100 to 190 MPa. The molded sample was placed in a furnace at a temperature of 300 to 550 ° C. and kept for 0.5 to 1.5 hours, and then placed in a furnace at a temperature of 700 to 860 ° C. for 5 to 7 hours. This is a microstructure of a molded product obtained after being kept warm and taken out by hot pressing at a pressure of 100 to 180 MPa. 高エネルギーボールミリングを行うことによりナノSnO複合粉体を調製し、得られたナノ複合粉体と銀粉とを所定の割合で混合し、ボールミリングを2時間行って得られた銀−酸化物複合粉体の顕微鏡形態であり、ボールミリング時間が短すぎるため、ナノ酸化物複合粉体は銀粉の粒子にはめ込まれていない。Silver-oxide obtained by preparing nano-SnO 2 composite powder by performing high energy ball milling, mixing the obtained nano-composite powder and silver powder at a predetermined ratio, and performing ball milling for 2 hours Since it is a microscopic form of the composite powder and the ball milling time is too short, the nano-oxide composite powder is not embedded in the silver powder particles.

実施の形態1.
以下、本発明の実施形態を図面を参照しながら詳しく説明する。ただし、本発明は以下の実施の形態に限定されない。
[製造法概要]
<Ag/SnO電気接点用粉末>
以下、本発明のAg/SnO電気接点用粉末を製造する方法について説明する。
まず、工程1において、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:(0.08〜0.5):(0.05〜0.7):(0.08〜0.5)の割合で混合し、高エネルギーボールミリング(即ち、回転速度800〜1500回/分)を行うことによりナノ複合粉体を調製する。好ましくは、高エネルギーボールミリングを行なう際、ボール及び粉末の質量比を(10〜30):1にし、アルコールを媒体とし、合計1〜3時間ボールミリングを行い(ただし、30分につき10分間停止し、停止時間はボールミリング合計時間に含まれない)、試料を篩にかけ、室温で乾燥させる。好ましくは、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムの平均粒径がいずれも40〜270μmである。好ましくは、ボールとしてステンレス鋼球を採用する。例えば、ステンレス鋼球を採用し、且つボール及び粉末の質量比を(10〜30):1にしてボールミリングを行うことにより、添加物を含むナノ酸化スズ粉体が得られる。比表面積テスター及び比重瓶を用いて、得られたナノ酸化スズ粉体の比表面積及び密度をそれぞれ得て、その平均粒径が100〜500nmであることを算出する。その他、ステンレス鋼球の密度は7.8g/cmであり、ステンレス鋼球の体積はボールミル缶容積の0.040%〜0.355%であり、ステンレス鋼球と粉体との合計体積はボールミル缶容積の30〜40%を占めることが好ましい。
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment.
[Production method overview]
<Powder for Ag / SnO 2 electrical contact>
Hereinafter, a method for producing the powder for an Ag / SnO 2 electric contact of the present invention will be described.
First, in Step 1, tin oxide, lanthanum oxide, copper oxide and cadmium oxide were used in a mass ratio of 1: (0.08 to 0.5): (0.05 to 0.7): (0.08 to 0.5). ), And high energy ball milling (ie, rotation speed of 800-1500 times / min) is performed to prepare a nanocomposite powder. Preferably, when performing high energy ball milling, the ball to powder mass ratio is (10-30): 1, alcohol is used as a medium, and ball milling is performed for a total of 1 to 3 hours (however, it is stopped for 10 minutes every 30 minutes The stop time is not included in the total ball milling time) and the sample is sieved and dried at room temperature. Preferably, the average particle diameters of tin oxide, lanthanum oxide, copper oxide and cadmium oxide are all 40 to 270 μm. Preferably, a stainless steel ball is employed as the ball. For example, a nano-tin oxide powder containing an additive can be obtained by adopting a stainless steel ball and performing ball milling with a ball to powder mass ratio of (10 to 30): 1. Using a specific surface area tester and a specific gravity bottle, the specific surface area and density of the obtained nanotin oxide powder are obtained, and the average particle size is calculated to be 100 to 500 nm. In addition, the density of the stainless steel ball is 7.8 g / cm 3 , the volume of the stainless steel ball is 0.040% to 0.355% of the ball mill can volume, and the total volume of the stainless steel ball and the powder is It is preferable to occupy 30 to 40% of the volume of the ball mill can.

その後、工程2において、上記得られたナノ複合粉体と銀粉を、ナノ複合粉体11〜22質量%及び銀粉78〜89質量%の割合で量り、130〜250回/分の回転速度のボールミリングを行うことにより均一に混合し、ナノ複合粉体を銀粉の粒子へはめ込む(図1を参照)。好ましくは、上記銀粉として、60〜80μmの平均粒径の銀粉及び40〜53μmの平均粒径の銀粉を質量比(1〜10):(0〜2)の割合で混合したものを用いる。その他、好ましくは、ボールミリングを行う際、ボール及び粉末の質量比を(6〜20):1にし、4〜10時間ボールミリングを行うことにより、ボールミリングによる合金化が実現し、ナノ複合粉体が銀粉の粒子にはめ込まれる。その他、好ましくは、ボールとしてステンレス鋼球を採用する。   Thereafter, in step 2, the obtained nanocomposite powder and silver powder are weighed at a ratio of nanocomposite powder of 11 to 22% by mass and silver powder of 78 to 89% by mass, and a ball having a rotational speed of 130 to 250 times / min. By uniformly milling, the nanocomposite powder is fitted into the silver powder particles (see FIG. 1). Preferably, silver powder having an average particle diameter of 60 to 80 μm and silver powder having an average particle diameter of 40 to 53 μm mixed in a mass ratio (1 to 10) :( 0 to 2) is used as the silver powder. In addition, preferably, when ball milling is performed, the mass ratio of the ball and powder is set to (6 to 20): 1, and ball milling is performed for 4 to 10 hours, thereby realizing alloying by ball milling, and nanocomposite powder. The body is fitted into silver dust particles. In addition, preferably, a stainless steel ball is adopted as the ball.

上記製造法によれば、以下の有益な効果を得ることができる。
1.酸化カドミウムの一部を酸化スズに替えることにより、環境及び人体に対するカドミウム元素の汚染を削減した。
2.酸化銅の添加により、電気アーク作用下での銀の湿潤性が改善され、材料の抵抗率が低減し、材料の導電率を60%IACS以上に上げることができた。
3.酸化ランタンを分散剤として添加することにより、ナノ酸化スズ粒子の高温での凝集を防止し、ナノ酸化物粒子と銀の湿潤性を高め、電気アークでの熔融銀の粘度を増加し、電気アーク摩耗耐性を上げた。また、ナノ酸化スズ粒子の分散性が改善され、酸化物が母材に分散分布し、且つ母材との金属結合が比較的強く、「分散強化」効果が著しいため、当該粉末で製造されたAg/SnO電気接点材料の硬度は比較的高い。加工条件を適宜選択することにより、Ag/SnO電気接点材料の硬度(HV0.2)は120〜150に達することができた。
4.銀粉と各種金属酸化物粉末を高エネルギーボールミリングにより混合したため、その粉末を成形し、焼結してプレス加工した接点材料において、銀の使用量が低減され、コストも削減された。
5.粒度の異なる銀粉を混合し、混合物の空隙率が効果的に低減され、かつ高エネルギーボールミリングを利用して粉末を混合することにより結晶粒を微細化した。また、ボールミリング過程においてナノ複合粉体が銀粉の粒子にはめ込まれ、酸化物が母材に分散分布することにより、試料の成形性と電気的特性は改善された。
According to the manufacturing method, the following beneficial effects can be obtained.
1. By replacing a part of cadmium oxide with tin oxide, pollution of the cadmium element to the environment and the human body was reduced.
2. The addition of copper oxide improved the wettability of silver under the action of an electric arc, reduced the resistivity of the material, and increased the conductivity of the material to 60% IACS or higher.
3. By adding lanthanum oxide as a dispersant, the nano-tin oxide particles are prevented from agglomerating at high temperature, the wettability of the nano-oxide particles and silver is increased, the viscosity of the molten silver in the electric arc is increased, and the electric arc Increased wear resistance. In addition, the dispersibility of the nano-tin oxide particles was improved, the oxide was dispersed and distributed in the base material, the metal bond with the base material was relatively strong, and the “dispersion strengthening” effect was significant. The hardness of the Ag / SnO 2 electrical contact material is relatively high. By appropriately selecting the processing conditions, the hardness (HV0.2) of the Ag / SnO 2 electrical contact material could reach 120 to 150.
4). Since silver powder and various metal oxide powders were mixed by high-energy ball milling, the amount of silver used was reduced and the cost was reduced in contact materials that were molded, sintered, and pressed.
5. The silver particles having different particle sizes were mixed, the porosity of the mixture was effectively reduced, and the crystal grains were refined by mixing the powder using high energy ball milling. In addition, the nanocomposite powder was fitted into the silver powder particles during the ball milling process, and the oxide was dispersed and distributed in the base material, thereby improving the moldability and electrical characteristics of the sample.

その他、工程2の後、工程3において、工程2で得られた粉末を造粒してもよい。好ましくは、工程2で得られた粉末を500〜650℃の温度の炉内に入れ、0.5〜2.0時間保温後、別の室温炉内に入れて冷却し、冷却したものを粉砕し、40〜60メッシュの篩にかけ、篩下を回収する。   In addition, after step 2, in step 3, the powder obtained in step 2 may be granulated. Preferably, the powder obtained in step 2 is placed in a furnace at a temperature of 500 to 650 ° C., kept warm for 0.5 to 2.0 hours, then cooled in another room temperature furnace, and the cooled product is pulverized. And pass through a 40-60 mesh sieve to recover the sieved bottom.

<Ag/SnO電気接点材料>
以下、上記Ag/SnO電気接点用粉末を基にしてAg/SnO電気接点材料を製造する方法について説明する。
まず、工程4において、上記工程3で造粒された粉末を成形、焼結する。好ましくは、成形する際、工程3で造粒した粉末を100〜190MPaの圧力で柱体となるように等静圧成形し、0.3〜1分間保圧する。好ましくは、焼結する際、成形した柱体を300〜550℃の温度の炉内に入れて0.5〜1.5時間保温後、700〜860℃の炉内に入れて5〜7時間保温後に取り出し、押出し比を(10〜20):1にして熱間プレス加工を行う。なお、本明細書において、押出し比(extrusion ratio)とは、金型の材料を押し付ける側の断面積を最終的に材料が出て行く側の穴の断面積で割った値である。これにより得られた試料の形態は、図2に示されるように、試料中の酸化物はすべて粒子状をし、Ag母材上に一様分布している。それは、焼結過程において、ナノ酸化物がAg母材中に分散分布し、母材に隔てられ被覆され、相互分離し、生長に必須の成分条件を欠くことが原因であり、それ故、酸化物が著しく凝集せず、大きくならず、最終的に、ナノ酸化物粒子がAg結晶粒内に分散分布している従来と異なる組織が得られる。また、熱間プレス加工を採用することにより、材料の密度を9.50g/cm以上に高めることができる。
<Ag / SnO 2 electrical contact material>
Hereinafter, a method for producing an Ag / SnO 2 electrical contact material based on the above Ag / SnO 2 electrical contact powder will be described.
First, in step 4, the powder granulated in step 3 is formed and sintered. Preferably, at the time of molding, the powder granulated in the step 3 is isostatically molded so as to form a column at a pressure of 100 to 190 MPa, and held for 0.3 to 1 minute. Preferably, when sintering, the molded column is placed in a furnace at a temperature of 300 to 550 ° C. and kept for 0.5 to 1.5 hours, and then placed in a furnace at 700 to 860 ° C. for 5 to 7 hours. It takes out after heat insulation and performs hot press processing by making extrusion ratio (10-20): 1. In the present specification, the extrusion ratio is a value obtained by dividing the cross-sectional area on the side where the material of the mold is pressed by the cross-sectional area of the hole on the side where the material finally comes out. As shown in FIG. 2, the form of the sample obtained in this way is that all oxides in the sample are in the form of particles and are uniformly distributed on the Ag base material. This is because the nano-oxide is dispersed and distributed in the Ag base material during the sintering process, and is separated and covered by the base material, separating from each other, and lacking the essential component conditions for growth. The material does not agglomerate significantly and does not become large, and finally a different structure is obtained in which the nano-oxide particles are dispersed and distributed in the Ag crystal grains. Moreover, the density of the material can be increased to 9.50 g / cm 3 or more by employing hot pressing.

その後、工程5において、工程4で得られた材料に対し焼きなましを行なう。好ましくは、工程4で得られたものを、実際の工業生産上の必要に応じて圧延し、圧延して得られた材料を500〜700℃の温度で2〜3時間焼きなまし、製品の硬度を調整し、最終的な接点材料が得られる。   Thereafter, in step 5, the material obtained in step 4 is annealed. Preferably, the product obtained in step 4 is rolled as necessary for actual industrial production, and the material obtained by rolling is annealed at a temperature of 500 to 700 ° C. for 2 to 3 hours, and the hardness of the product is increased. Adjust to get the final contact material.

以下、いくつか具体例を挙げて説明を行なう。ただし、本発明者らの実験によれば、上記[製造法概要]に記載した条件を満たしさえすれば、ナノ複合粉体を銀粉の粒子へはめ込むことができ、さらにナノ酸化物粒子がAg結晶粒内に分散分布された組織を得ることができ、下記の実施例でしか上記効果を実現できないと理解すべきではない。   Hereinafter, some specific examples will be described. However, according to the experiments by the present inventors, the nanocomposite powder can be fitted into the silver powder particles as long as the conditions described in the above [Outline of the production method] are satisfied, and the nanooxide particles are Ag crystals. It should not be understood that a structure in which grains are dispersed and distributed can be obtained, and that the above-described effects can be realized only in the following examples.

<実施例1>
工程1において、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:0.5:0.7:0.5の割合で混合し、ボール及び粉末の質量比を10:1にしてボールミル缶内に入れ、ステンレス鋼球を採用し、アルコールを媒体とし、ボールミルの回転速度を800回/分にして1時間ボールミリングを行い(ただし、30分につき10分間停止)、試料を篩にかけ、室温で乾燥させた。粉体の比表面積及び密度を測定することで、粉体の平均粒径が430nmであることを算出した。これにより、ナノ複合粉体が得られた。
工程2において、平均粒径が65μmである銀粉と平均粒径が50μmである銀粉とを質量比10:1の割合で混合した。この銀粉78質量%及び上記得られたナノ複合粉体22質量%の配合割合にした粉末試料を、ボール及び粉末の質量比を7:1にしてボールミルに入れ、ボールミルの回転速度を130回/分にして4時間ボールミリングを行った後、取り出した。得られた粉体は均一に混合されていた。
工程3において、ボールミリングした試料を500℃の温度の炉内に入れて2時間保温した後、取り出し、別の室温炉内に入れて冷却し、冷却した試料を粉砕し、55メッシュの篩にかけ、篩下を回収した。
工程4において、冷却した粉末を等静圧成形金型内に入れ、110MPaの圧力をかけ、0.7分間保圧し、成形した。成形した試料を400℃の温度の炉内に入れて1時間保温後、710℃の温度の炉内に入れて5時間保温後、取り出した。その後、試料をプレス加工機に入れ、金型の温度を400℃にし、170MPaの圧力をかけ、開口の寸法を40×4mmにし、押出し比を10:1にし、成形品を得た。
工程5において、熱間プレス加工により得られた成形品を実際の工業生産上の必要に応じて圧延し、圧延して得られた材料を550℃の温度で2時間焼きなまして製品の硬度を調節し、最終的に接点材料を得た。得られた接点材料の密度は9.60g/cm、硬度HV0.2は135、導電率(%IACS)は68であった。
<Example 1>
In step 1, tin oxide, lanthanum oxide, copper oxide and cadmium oxide were mixed at a mass ratio of 1: 0.5: 0.7: 0.5, and the ball to powder mass ratio was set to 10: 1. Place in a can, adopt a stainless steel ball, use alcohol as a medium, perform ball milling for 1 hour with a ball mill rotation speed of 800 rotations / minute (however, stop for 10 minutes for 30 minutes), sieve the sample, Dry at room temperature. By measuring the specific surface area and density of the powder, it was calculated that the average particle diameter of the powder was 430 nm. Thereby, nanocomposite powder was obtained.
In step 2, silver powder having an average particle diameter of 65 μm and silver powder having an average particle diameter of 50 μm were mixed at a mass ratio of 10: 1. A powder sample having a blending ratio of 78% by mass of the silver powder and 22% by mass of the obtained nanocomposite powder was placed in a ball mill with a mass ratio of the ball and the powder of 7: 1, and the rotation speed of the ball mill was 130 times / The ball was milled for 4 hours and then removed. The obtained powder was uniformly mixed.
In step 3, the ball-milled sample is placed in a furnace at a temperature of 500 ° C. and kept warm for 2 hours, then taken out, placed in another room temperature furnace and cooled, and the cooled sample is crushed and passed through a 55 mesh sieve. The under sieve was collected.
In step 4, the cooled powder was placed in an isostatic pressing mold, a pressure of 110 MPa was applied, the pressure was maintained for 0.7 minutes, and molding was performed. The molded sample was placed in a furnace at a temperature of 400 ° C. and kept warm for 1 hour, then placed in a furnace at a temperature of 710 ° C. and kept warm for 5 hours, and then taken out. Thereafter, the sample was put into a press machine, the temperature of the mold was set to 400 ° C., a pressure of 170 MPa was applied, the size of the opening was set to 40 × 4 mm, the extrusion ratio was set to 10: 1, and a molded product was obtained.
In step 5, the molded product obtained by hot pressing is rolled as necessary for actual industrial production, and the material obtained by rolling is annealed at a temperature of 550 ° C. for 2 hours to adjust the hardness of the product. Finally, contact materials were obtained. The density of the obtained contact material was 9.60 g / cm 3 , the hardness HV0.2 was 135, and the conductivity (% IACS) was 68.

<実施例2>
工程1において、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:0.09:0.1:0.5の割合で混合し、ボール及び粉末の質量比を10:1にしてボールミル缶内に入れ、ステンレス鋼球を採用し、アルコールを媒体とし、ボールミルの回転速度を900回/分にして1時間ボールミリングを行い(ただし、30分につき10分間停止)、室温で乾燥させた。粉体の比表面積及び密度を測定することで、粉体の平均粒径が380nmであることを算出した。これにより、ナノ複合粉体が得られた。
工程2において、平均粒径が71μmである銀粉と平均粒径が45μmである銀粉とを質量比8:1の割合で混合した。混合した銀粉80質量%及び上記得られたナノ複合粉体20質量%の配合割合にした粉末試料を、ボール及び粉末の質量比を8:1にしてボールミルに入れ、回転速度を150回/分にして5時間ボールミリングを行った後、取り出した。得られた粉体は均一に混合されていた。
工程3において、ボールミリングした試料を550℃の温度の炉内に入れて1時間保温した後、取り出し、別の室温炉内に入れて冷却し、冷却した試料を粉砕し、40メッシュの篩にかけ、篩下を回収した。
工程4において、冷却した粉末を等静圧成形金型内に入れ、100MPaの圧力をかけ、0.6分間保圧し、成形した。成形した試料を450℃の温度の炉内に入れて1時間保温後、730℃の温度の炉内に入れて5時間保温後、取り出した。その後、試料をプレス加工機に入れ、金型の温度を400℃にし、160MPaの圧力をかけ、開口の寸法を56×6mmにし、押出し比を18:1にし、成形品を得た。
工程5において、熱間プレス加工により得られた成形品を実際の工業生産上の必要に応じて圧延し、圧延して得られた材料を500℃の温度で2時間焼きなまして製品の硬度を調節し、最終的に接点材料を得た。得られた接点材料の密度は9.55g/cm、硬度HV0.2は132、導電率(%IACS)は65であった。
<Example 2>
In step 1, tin oxide, lanthanum oxide, copper oxide and cadmium oxide were mixed at a mass ratio of 1: 0.09: 0.1: 0.5, and the ball to powder mass ratio was set to 10: 1. It was put in a can, and stainless steel balls were used, alcohol was used as a medium, ball milling was performed for 1 hour at a ball mill rotational speed of 900 times / minute (however, it was stopped for 10 minutes every 30 minutes), and dried at room temperature. . By measuring the specific surface area and density of the powder, it was calculated that the average particle diameter of the powder was 380 nm. Thereby, nanocomposite powder was obtained.
In step 2, silver powder having an average particle diameter of 71 μm and silver powder having an average particle diameter of 45 μm were mixed at a mass ratio of 8: 1. A powder sample having a blending ratio of 80% by mass of the mixed silver powder and 20% by mass of the nanocomposite powder obtained above was placed in a ball mill with a mass ratio of the ball and powder of 8: 1, and the rotation speed was 150 times / minute. Then, after ball milling for 5 hours, it was taken out. The obtained powder was uniformly mixed.
In step 3, the ball milled sample was placed in a furnace at a temperature of 550 ° C. and kept for 1 hour, then taken out, placed in another room temperature furnace and cooled, and the cooled sample was crushed and passed through a 40 mesh sieve. The under sieve was collected.
In step 4, the cooled powder was placed in an isostatic pressing mold, a pressure of 100 MPa was applied, the pressure was held for 0.6 minutes, and molding was performed. The molded sample was placed in a furnace at a temperature of 450 ° C. and kept warm for 1 hour, then placed in a furnace at a temperature of 730 ° C. and kept warm for 5 hours, and then taken out. Thereafter, the sample was put into a press machine, the temperature of the mold was set to 400 ° C., a pressure of 160 MPa was applied, the size of the opening was set to 56 × 6 mm, the extrusion ratio was set to 18: 1, and a molded product was obtained.
In step 5, the molded product obtained by hot pressing is rolled as required for actual industrial production, and the material obtained by rolling is annealed at a temperature of 500 ° C. for 2 hours to adjust the hardness of the product. Finally, contact materials were obtained. The density of the obtained contact material was 9.55 g / cm 3 , the hardness HV0.2 was 132, and the conductivity (% IACS) was 65.

<実施例3>
工程1において、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:0.2:0.3:0.1の割合で混合し、ボール及び粉末の質量比を10:1にしてボールミル缶内に入れ、ステンレス鋼球を採用し、アルコールを媒体とし、ボールミルの回転速度を1100回/分にして1時間ボールミリングを行い(ただし、30分につき10分間停止)、試料を篩にかけ、室温で乾燥させた。粉体の比表面積及び密度を測定することで、粉体の平均粒径が380nmであることを算出した。これにより、ナノ複合粉体が得られた。
工程2において、平均粒径が75μmである銀粉と平均粒径が45μmである銀粉とを質量比9:1の割合で混合した。混合した銀粉83質量%及び上記得られたナノ複合粉体17質量%の配合割合にした粉末試料を、ボール及び粉末の質量比を8:1にしてボールミルに入れ、ボールミルの回転速度を150回/分にして4時間ボールミリングを行った後、取り出した。得られた粉体は均一に混合されていた。
工程3において、ボールミリングした試料を450℃の温度の炉内に入れて1.5時間保温した後、取り出し、別の室温炉内に入れて冷却し、冷却した試料を粉砕し、58メッシュの篩にかけ、篩下を回収した。
工程4において、冷却した粉末を等静圧成形金型内に入れ、130MPaの圧力をかけ、1分間保圧し、成形した。成形した試料を500℃の温度の炉内に入れて1時間保温後、860℃の温度の炉内に入れて5時間保温後、取り出した。その後、試料をプレス加工機に入れ、金型の温度を430℃にし、165MPaの圧力をかけ、開口の寸法を56×6mmにし、押出し比を18:1にし、成形品を得た。
工程5において、熱間プレス加工により得られた成形品を実際の工業生産上の必要に応じて圧延し、圧延して得られた材料を580℃の温度で2時間焼きなまして製品の硬度を調節し、最終的に接点材料を得た。得られた接点材料の密度は9.53g/cm、硬度HV0.2は128、導電率(%IACS)は64であった。
<Example 3>
In step 1, tin oxide, lanthanum oxide, copper oxide and cadmium oxide were mixed at a mass ratio of 1: 0.2: 0.3: 0.1, and the ball and powder mass ratio was 10: 1. Place in a can, adopt a stainless steel ball, use alcohol as a medium, perform ball milling for 1 hour with a ball mill rotation speed of 1100 rotations / minute (however, stop for 10 minutes every 30 minutes), sieve the sample, Dry at room temperature. By measuring the specific surface area and density of the powder, it was calculated that the average particle diameter of the powder was 380 nm. Thereby, nanocomposite powder was obtained.
In step 2, silver powder having an average particle diameter of 75 μm and silver powder having an average particle diameter of 45 μm were mixed at a mass ratio of 9: 1. A powder sample having a blending ratio of 83% by mass of the mixed silver powder and 17% by mass of the nanocomposite powder obtained above was placed in a ball mill with a mass ratio of the ball and powder of 8: 1, and the rotation speed of the ball mill was 150 times. The ball was milled for 4 hours at a rate of / min and then removed. The obtained powder was uniformly mixed.
In step 3, the ball milled sample was placed in a furnace at a temperature of 450 ° C. and kept warm for 1.5 hours, then taken out, placed in another room temperature furnace and cooled, the cooled sample was pulverized, and 58 mesh Screened and collected under sieve.
In step 4, the cooled powder was placed in an isostatic pressing mold, and a pressure of 130 MPa was applied and the pressure was maintained for 1 minute to form. The molded sample was placed in a furnace at a temperature of 500 ° C. and kept warm for 1 hour, then placed in a furnace at a temperature of 860 ° C. and kept warm for 5 hours, and then taken out. Thereafter, the sample was put into a press machine, the mold temperature was set to 430 ° C., a pressure of 165 MPa was applied, the opening size was set to 56 × 6 mm, the extrusion ratio was set to 18: 1, and a molded product was obtained.
In step 5, the molded product obtained by hot pressing is rolled as needed for actual industrial production, and the material obtained by rolling is annealed at a temperature of 580 ° C. for 2 hours to adjust the hardness of the product. Finally, contact materials were obtained. The density of the obtained contact material was 9.53 g / cm 3 , the hardness HV0.2 was 128, and the conductivity (% IACS) was 64.

<実施例4>
工程1において、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:0.2:0.3:0.1の割合で混合し、ボール及び粉末の質量比10:1にしてボールミル缶内に入れ、ステンレス鋼球を採用し、アルコールを媒体とし、ボールミルの回転速度を1100回/分にして1時間ボールミリングを行い(ただし、30分につき10分間停止)、試料を篩にかけ、室温で乾燥させた。粉体の比表面積及び密度を測定することで、粉体の平均粒径が380nmであることを算出した。これにより、ナノ複合粉体が得られた。
工程2において、平均粒径が75μmである銀粉83質量%及び上記得られたナノ複合粉体17質量%の配合割合にした粉末試料を、ボール及び粉末の質量比を8:1にしてボールミルに入れ、ボールミルの回転速度を150回/分にして4時間ボールミリングを行った後、取り出した。得られた粉体は均一に混合されていた。
工程3において、ボールミリングした試料を450℃の温度の炉内に入れて1.5時間保温した後、取り出し、別の室温炉内に入れて冷却し、冷却した試料を粉砕し、58メッシュの篩にかけ、篩下を回収した。
工程4において、冷却した粉末を等静圧成形金型内に入れ、130MPaの圧力をかけ、1分間保圧し、成形した。成形した試料を500℃の温度の炉内に入れて1時間保温後、860℃の温度の炉内に入れて5時間保温後、取り出した。その後、試料をプレス加工機に入れ、金型の温度を430℃にし、165MPaの圧力をかけ、開口の寸法を56×6mmにし、押出し比を20:1にし、成形品を得た。
工程5において、熱間プレス加工により得られた成形品を実際の工業生産上の必要に応じて圧延し、圧延して得られた材料を580℃の温度で2時間焼きなまして製品の硬度を調節し、最終的に接点材料を得た。得られた接点材料の密度は9.51g/cm、硬度HV0.2は122、導電率(%IACS)は61であった。
<Example 4>
In step 1, tin oxide, lanthanum oxide, copper oxide, and cadmium oxide were mixed at a mass ratio of 1: 0.2: 0.3: 0.1, and the ball and powder mass ratio was 10: 1. Place in the inside, adopt a stainless steel ball, use alcohol as a medium, perform ball milling for 1 hour with a ball mill rotation speed of 1100 rotations / minute (however, stop for 10 minutes every 30 minutes), sieve the sample at room temperature And dried. By measuring the specific surface area and density of the powder, it was calculated that the average particle diameter of the powder was 380 nm. Thereby, nanocomposite powder was obtained.
In Step 2, a powder sample having a blending ratio of 83% by mass of silver powder having an average particle diameter of 75 μm and 17% by mass of the obtained nanocomposite powder was ball milled with a ball to powder mass ratio of 8: 1. Then, ball milling was carried out for 4 hours at a ball mill rotational speed of 150 times / minute, and then removed. The obtained powder was uniformly mixed.
In step 3, the ball milled sample was placed in a furnace at a temperature of 450 ° C. and kept warm for 1.5 hours, then taken out, placed in another room temperature furnace and cooled, the cooled sample was pulverized, and 58 mesh Screened and collected under sieve.
In step 4, the cooled powder was placed in an isostatic pressing mold, and a pressure of 130 MPa was applied and the pressure was maintained for 1 minute to form. The molded sample was placed in a furnace at a temperature of 500 ° C. and kept warm for 1 hour, then placed in a furnace at a temperature of 860 ° C. and kept warm for 5 hours, and then taken out. Thereafter, the sample was put into a press machine, the temperature of the mold was set to 430 ° C., a pressure of 165 MPa was applied, the size of the opening was set to 56 × 6 mm, the extrusion ratio was set to 20: 1, and a molded product was obtained.
In step 5, the molded product obtained by hot pressing is rolled as needed for actual industrial production, and the material obtained by rolling is annealed at a temperature of 580 ° C. for 2 hours to adjust the hardness of the product. Finally, contact materials were obtained. The density of the obtained contact material was 9.51 g / cm 3 , the hardness HV0.2 was 122, and the conductivity (% IACS) was 61.

<参考例>
工程1において、酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:0.1:0.3:0.2の割合で混合し、ボール及び粉末の質量比を10:1にしてボールミル缶内に入れ、ステンレス鋼球を採用し、アルコールを媒体とし、ボールミルの回転速度を1100回/分にして1時間ボールミリングを行い(ただし、30分につき10分間停止)、試料を篩にかけ、室温で乾燥させた。粉体の比表面積及び密度を測定することで、粉体の平均粒径が380nmであることを算出した。これにより、ナノ複合粉体が得られた。
工程2において、平均粒径が75μmである銀粉と平均粒径が45mmである銀粉とを質量比9:1の割合で混合した。混合した銀粉83質量%及び上記得られたナノ複合粉体17質量%の配合割合にした粉末試料を、ボール及び粉末の質量比を8:1にしてボールミルに入れ、ボールミルの回転速度を150回/分にして2時間ボールミリングを行った後、取り出した。混合後の粉体形態は、図3に示されるように、酸化物粉体が銀母材中に明らかに凝集しているのが見られた。
工程3において、ボールミリングした試料を450℃の温度の炉内に入れて1.5時間保温した後、取り出し、別の室温炉内に入れて冷却し、冷却した試料を粉砕し、58メッシュの篩にかけ、篩下を回収した。
工程4において、冷却した粉末を等静圧成形金型内に入れ、130MPaの圧力をかけ、1分間保圧し、成形した。成形した試料を500℃の温度の炉内に入れて1時間保温後、860℃の炉内に入れて5時間保温後、取り出した。その後、試料をプレス加工機に入れ、金型の温度を430℃にし、165MPaの圧力をかけ、開口の寸法を56×6mmにし、押出し比を17:1にし、成形品を得た。しかし、得られた成形品の縁に比較的大きな亀裂が見られるため、後続の圧延及び焼きなまし加工が行えなかった。
参考例の結果から分るように、ボールミリングによってナノ複合粉体と銀粉とを混合する際に、ボールミリング時間が短すぎると、ナノ酸化物の凝集が起こり、プレス加工の過程で大きな亀裂が発生しやすくになって、後続の加工を行うことができない。
<Reference example>
In step 1, tin oxide, lanthanum oxide, copper oxide and cadmium oxide were mixed at a mass ratio of 1: 0.1: 0.3: 0.2, and the ball and powder mass ratio was 10: 1. Place in a can, adopt a stainless steel ball, use alcohol as a medium, perform ball milling for 1 hour with a ball mill rotation speed of 1100 rotations / minute (however, stop for 10 minutes every 30 minutes), sieve the sample, Dry at room temperature. By measuring the specific surface area and density of the powder, it was calculated that the average particle diameter of the powder was 380 nm. Thereby, nanocomposite powder was obtained.
In step 2, silver powder having an average particle diameter of 75 μm and silver powder having an average particle diameter of 45 mm were mixed at a mass ratio of 9: 1. A powder sample having a blending ratio of 83% by mass of the mixed silver powder and 17% by mass of the nanocomposite powder obtained above was placed in a ball mill with a mass ratio of the ball and powder of 8: 1, and the rotation speed of the ball mill was 150 times. Ball milling was performed for 2 hours at a rate of / min and then removed. As for the powder form after mixing, as shown in FIG. 3, the oxide powder was clearly aggregated in the silver base material.
In step 3, the ball milled sample was placed in a furnace at a temperature of 450 ° C. and kept warm for 1.5 hours, then taken out, placed in another room temperature furnace and cooled, the cooled sample was pulverized, and 58 mesh Screened and collected under sieve.
In step 4, the cooled powder was placed in an isostatic pressing mold, and a pressure of 130 MPa was applied and the pressure was maintained for 1 minute to form. The molded sample was placed in a furnace at a temperature of 500 ° C. and kept warm for 1 hour, then placed in a furnace at 860 ° C. and kept warm for 5 hours, and then taken out. Thereafter, the sample was put into a press machine, the temperature of the mold was set to 430 ° C., a pressure of 165 MPa was applied, the size of the opening was set to 56 × 6 mm, the extrusion ratio was set to 17: 1, and a molded product was obtained. However, since a relatively large crack was observed at the edge of the obtained molded product, the subsequent rolling and annealing processes could not be performed.
As can be seen from the results of the reference example, when the nanocomposite powder and the silver powder are mixed by ball milling, if the ball milling time is too short, the nano oxides agglomerate and large cracks occur during the pressing process. It becomes easy to generate | occur | produce and a subsequent process cannot be performed.

原理上、本発明のいくつかの効果について説明する。
1.酸化スズ、酸化ランタン及び酸化銅を添加することにより、酸化カドミウムの添加量が低減され、環境に対するカドミウム元素の汚染が減少し、銀粉の使用量が低減され、コストが節約された。また、高温電気アーク作用下での銀粉粒子の凝集が改善され、接点材料の使用寿命の延長に寄与する。
2.平均粒径が60〜80μmである銀粉と平均粒径が40〜53μmである銀粉とを十分混合することにより、効果的に混合物の空隙を充填し、製品の密度をより高めることができた。
3.粉末の混合→造粒→成形→焼結→熱間プレス加工の順で操作し、工程が簡単で、投入設備が少ないため、最大限に投入コストを削減した。ボールミリング過程中、ボールミリングによる合金化が実現し、後続のボールミリング過程中、酸化物ナノ粉体が銀粉の粒子にはめ込まれ、ナノ銀粉が酸化物の表面に包まれているため、混合物の空隙率が低減されると同時に、各種成分の混合が比較的均一なため、材料の密度及び電気的特性が効果的に高まった。
In principle, some effects of the present invention will be described.
1. By adding tin oxide, lanthanum oxide and copper oxide, the amount of cadmium oxide added was reduced, cadmium element contamination to the environment was reduced, the amount of silver powder used was reduced, and costs were saved. In addition, the aggregation of silver powder particles under the action of a high-temperature electric arc is improved, which contributes to the extension of the service life of the contact material.
2. By sufficiently mixing the silver powder having an average particle diameter of 60 to 80 μm and the silver powder having an average particle diameter of 40 to 53 μm, it was possible to effectively fill the voids of the mixture and further increase the density of the product.
3. Powder mixing → granulation → molding → sintering → hot press working in order, the process is simple, and there are few input facilities, so the input cost was reduced to the maximum. During the ball milling process, alloying by ball milling was realized, and during the subsequent ball milling process, the oxide nanopowder was embedded in the silver powder particles, and the nanosilver powder was wrapped in the surface of the oxide, so that the mixture At the same time as the porosity was reduced, the mixing of the various components was relatively uniform, effectively increasing the density and electrical properties of the material.

本発明に従って製造された添加物を含むナノAg/SnO電気接点材料は、既存の接点材料に比べると、環境に対するカドミウム元素の汚染が減少したとともに、銀の含有量が低減され、コストが節約された。電気アーク高温作用下で、接点材料表面におけるナノ粒子の凝集が低減され、導電性が強まった。また、酸化物含有量の増加により、接点材料の硬度及び耐摩耗性が向上した。その上、添加する酸化物はすべて高温安定性を持っているため、接点材料の使用寿命を大幅に延長することができる。また、各種新たなプロセスの採用により、材料の密度が効果的に向上し、材料の各種性能を効果的に改善することができる。 Nano Ag / SnO 2 electrical contact materials containing additives made in accordance with the present invention have reduced cadmium element contamination to the environment and reduced silver content and cost savings compared to existing contact materials It was done. Under the electric arc high temperature action, the aggregation of nanoparticles on the surface of the contact material was reduced and the conductivity was increased. In addition, the hardness and wear resistance of the contact material were improved by increasing the oxide content. In addition, all of the added oxides have high temperature stability, which can greatly extend the service life of the contact material. Further, by adopting various new processes, the density of the material can be effectively improved, and various performances of the material can be effectively improved.

Claims (16)

酸化スズ、酸化ランタン、酸化銅及び酸化カドミウムを質量比1:(0.08〜0.5):(0.05〜0.7):(0.08〜0.5)の割合で混合して混合粉体を調製し、混合粉体に対し800〜1500回/分の回転速度のボールミリングを行うことによりナノ複合粉体を得る工程1と、
工程1で得られたナノ複合粉体、及び銀粉を、ナノ複合粉体11〜22質量%及び銀粉78〜89質量%の割合で配合し、130〜250回/分の回転速度のボールミリングを行うことにより均一に混合し、ナノ複合粉体を銀粉の粒子にはめ込む工程2と
を有することを特徴とするAg/SnO電気接点用粉末の製造方法。
Tin oxide, lanthanum oxide, copper oxide and cadmium oxide are mixed in a mass ratio of 1: (0.08 to 0.5): (0.05 to 0.7): (0.08 to 0.5). Step 1 to obtain a nanocomposite powder by preparing a mixed powder and performing ball milling at a rotational speed of 800-1500 times / minute on the mixed powder;
The nanocomposite powder obtained in step 1 and the silver powder are blended at a ratio of 11-22 mass% of the nanocomposite powder and 78-89 mass% of the silver powder, and ball milling at a rotational speed of 130-250 times / minute is performed. A process for producing a powder for an Ag / SnO 2 electrical contact, comprising: step 2 of mixing the nanocomposite powder into silver powder particles.
前記工程2で得られた粉末を造粒する工程3を更に有することを特徴とする請求項1に記載のAg/SnO電気接点用粉末の製造方法。 The method for producing a powder for an Ag / SnO 2 electric contact according to claim 1, further comprising a step 3 of granulating the powder obtained in the step 2. 前記工程3は、前記工程2で得られた粉末を500〜650℃の温度の炉内に入れ、0.5〜2.0時間保温後、別の室温炉内に入れて冷却し、冷却したものを粉砕し、40〜60メッシュの篩にかけ、篩下を回収することを特徴とする請求項2に記載のAg/SnO電気接点用粉末の製造方法。 In the step 3, the powder obtained in the step 2 was put in a furnace having a temperature of 500 to 650 ° C., kept warm for 0.5 to 2.0 hours, and then cooled in another room temperature furnace. The method for producing a powder for an Ag / SnO 2 electrical contact according to claim 2, wherein the product is pulverized, passed through a sieve of 40 to 60 mesh, and the undersieve is collected. 前記工程1において、ボール及び粉末の質量比を(10〜30):1にし、アルコールを媒体とし、30分につき10分間停止するように合計1〜3時間ボールミリングを行い(ただし、停止時間はボールミリング合計時間に含まれない)、篩にかけて室温で乾燥させることを特徴とする請求項1〜3のいずれかに記載のAg/SnO電気接点用粉末の製造方法。 In the step 1, the ball to powder mass ratio is (10 to 30): 1, alcohol is used as a medium, and ball milling is performed for a total of 1 to 3 hours to stop for 30 minutes (however, the stop time is The method for producing a powder for an Ag / SnO 2 electrical contact according to any one of claims 1 to 3, wherein the powder is dried at room temperature through a sieve. 前記工程1において、ステンレス鋼球を採用することを特徴とする請求項4に記載のAg/SnO電気接点用粉末の製造方法。 5. The method for producing a powder for an Ag / SnO 2 electric contact according to claim 4, wherein a stainless steel ball is employed in the step 1. 前記工程1において、前記ステンレス鋼球の密度は7.8g/cmであり、前記ステンレス鋼球の体積はボールミル缶容積の0.040%〜0.355%であり、前記ステンレス鋼球と前記混合粉体との合計体積はボールミル缶容積の30〜40%を占めることを特徴とする請求項5に記載のAg/SnO電気接点用粉末の製造方法。 In the step 1, the density of the stainless steel sphere is 7.8 g / cm 3 , and the volume of the stainless steel sphere is 0.040% to 0.355% of the volume of the ball mill can. The method for producing a powder for an Ag / SnO 2 electrical contact according to claim 5, wherein the total volume with the mixed powder occupies 30 to 40% of the volume of the ball mill can. 前記工程2において、60〜80μmの平均粒径の銀粉及び40〜53μmの平均粒径の銀粉を質量比(1〜10):(0〜2)の割合で混合した銀粉を用いることを特徴とする請求項1〜3のいずれかに記載のAg/SnO電気接点用粉末の製造方法。 In the step 2, a silver powder obtained by mixing silver powder having an average particle diameter of 60 to 80 μm and silver powder having an average particle diameter of 40 to 53 μm in a mass ratio (1 to 10) :( 0 to 2) is used. Ag / SnO 2 electrical production method of contact for powder according to any one of claims 1 to 3. 前記工程1において、前記酸化スズ、前記酸化ランタン、前記酸化銅及び前記酸化カドミウムの平均粒径はいずれも40〜270μmであり、前記ナノ複合粉体の平均粒径が100〜500nmであることを特徴とする請求項1〜3のいずれかに記載のAg/SnO電気接点用粉末の製造方法。 In step 1, the tin oxide, the lanthanum oxide, the copper oxide, and the cadmium oxide all have an average particle size of 40 to 270 μm, and the nano composite powder has an average particle size of 100 to 500 nm. Ag / SnO 2 electrical production method of contact for powder according to claim 1, characterized. 前記工程2において、ボール及び粉末の質量比を(6〜20):1にし、4〜10時間ボールミリングを行うことを特徴とする請求項1〜3のいずれかに記載のAg/SnO電気接点用粉末の製造方法。 The Ag / SnO 2 electricity according to any one of claims 1 to 3, wherein in the step 2, the mass ratio of the ball and the powder is set to (6 to 20): 1 and ball milling is performed for 4 to 10 hours. A method for producing contact powder. 前記工程2において、ステンレス鋼球を採用することを特徴とする請求項9に記載のAg/SnO電気接点用粉末の製造方法。 10. The method for producing a powder for an Ag / SnO 2 electric contact according to claim 9, wherein a stainless steel ball is employed in the step 2. 請求項2に記載の工程3で造粒した粉末に対し、成形、焼結を行なう工程4と、
工程4で得られた材料に対し焼きなましを行なう工程5と
を有することを特徴とするAg/SnO電気接点材料の製造方法。
Step 4 for forming and sintering the powder granulated in Step 3 according to claim 2;
And a step 5 of annealing the material obtained in step 4, and a method for producing an Ag / SnO 2 electrical contact material.
前記工程4は、成形する際、前記工程3で造粒した粉末を100〜190MPaの圧力で柱体となるように等静圧成形し、0.3〜1分間保圧することを特徴とする請求項11に記載のAg/SnO電気接点材料の製造方法。 The step 4 is characterized in that, when forming, the powder granulated in the step 3 is isostatically molded to form a columnar body at a pressure of 100 to 190 MPa and held for 0.3 to 1 minute. Item 12. A method for producing an Ag / SnO 2 electrical contact material according to Item 11. 前記工程4は、焼結する際、成形した材料を300〜550℃の温度の炉内に入れて1時間保温後、700〜860℃の温度の炉内に入れて5〜7時間保温後に取り出し、押出し比(10〜20):1で熱間プレス加工を行うことを特徴とする請求項12に記載のAg/SnO電気接点材料の製造方法。 In step 4, when the material is sintered, the molded material is placed in a furnace at a temperature of 300 to 550 ° C. and kept warm for 1 hour, then placed in a furnace at a temperature of 700 to 860 ° C. and kept warm for 5 to 7 hours. The method for producing an Ag / SnO 2 electric contact material according to claim 12, wherein hot pressing is performed at an extrusion ratio (10 to 20): 1. 前記工程5は、前記工程4の前記熱間プレス加工で得られた材料を圧延し、500〜700℃の温度で2〜3時間焼きなましを行うことを特徴とする請求項13に記載のAg/SnO電気接点材料の製造方法。 14. The Ag / according to claim 13, wherein the step 5 includes rolling the material obtained by the hot pressing in the step 4 and annealing at a temperature of 500 to 700 ° C. for 2 to 3 hours. manufacturing method of SnO 2 electrical contact material. 請求項1〜10のいずれかに記載の方法で製造されたことを特徴とするAg/SnO電気接点用粉末。 An Ag / SnO 2 electric contact powder produced by the method according to any one of claims 1 to 10. 請求項11〜14のいずれかに記載の方法で製造されたことを特徴とするAg/SnO電気接点材料。 An Ag / SnO 2 electrical contact material manufactured by the method according to claim 11.
JP2014144876A 2014-03-31 2014-07-15 Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material Active JP6333099B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410125704.1A CN104942277A (en) 2014-03-31 2014-03-31 Preparing method for novel nanometer doped Ag/SnO2 electrical contact material
CN201410125704.1 2014-03-31

Publications (3)

Publication Number Publication Date
JP2015196903A true JP2015196903A (en) 2015-11-09
JP2015196903A5 JP2015196903A5 (en) 2017-01-26
JP6333099B2 JP6333099B2 (en) 2018-05-30

Family

ID=54157634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014144876A Active JP6333099B2 (en) 2014-03-31 2014-07-15 Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material

Country Status (2)

Country Link
JP (1) JP6333099B2 (en)
CN (1) CN104942277A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970015A (en) * 2016-06-26 2016-09-28 浙江大学 Method for preparing silver carbon nanotube and lanthanum zirconate composite electric contact material
CN106181229A (en) * 2016-06-30 2016-12-07 佛山市诺普材料科技有限公司 A kind of silver nickel electric contact material fabrication process
CN109682865A (en) * 2019-01-07 2019-04-26 北京工业大学 A kind of autoreduction preparation method of the stannic oxide nanometer flower gas sensitive of load gold nano grain
WO2019181649A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Electrical contact powder, electrical contact material, electrical contact, and method for producing electrical contact powder
EP3799977A1 (en) * 2019-10-01 2021-04-07 ABB Schweiz AG Method for manufacturing an ag-based electrical contact material, an electrical contact material and an electrical contact obtained therewith
CN114505492A (en) * 2022-01-07 2022-05-17 浙江福达合金材料科技有限公司 Preparation method of silver metal oxide electrical contact material with self-arc-extinguishing function based on 4D printing
CN115570139A (en) * 2022-10-12 2023-01-06 浙江福达合金材料科技有限公司 Preparation method of silver tin oxide electric contact material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108150B (en) * 2015-09-08 2017-03-22 西安工程大学 Preparation method of silver-copper-oxide electrical contact material
CN105537799A (en) * 2015-12-24 2016-05-04 昆明贵金属研究所 Agcuti active brazing filler metal and preparation method thereof
CN109252064B (en) * 2018-10-15 2020-05-22 浙江工业大学 Doped modified Ag/SnO2Composite electric contact material and preparation method thereof
CN109355523B (en) * 2018-10-23 2020-06-26 浙江大学 Ag/Zn2SnO4Conductive alloy and preparation method thereof
CN113441719B (en) * 2021-06-23 2023-07-14 福建工程学院 Multi-principal element metal oxide reinforced electrical contact material and preparation method thereof
CN115740465B (en) * 2022-12-13 2023-08-18 温州中希电工合金有限公司 Silver tin oxide contact material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111371A (en) * 1995-10-12 1997-04-28 Mitsubishi Materials Corp Ag-tin oxide-molybdenum trioxide electrical contact material excellent in deposition resistance and consumption resistance
CN102864364A (en) * 2012-09-12 2013-01-09 宁波汉博贵金属合金有限公司 Composite silver stannic oxide electric contact material and preparation method thereof
CN103276234A (en) * 2013-06-14 2013-09-04 西安工程大学 Preparation method of silver tin oxide electrical contact material
CN103276235A (en) * 2013-06-25 2013-09-04 西安工程大学 Method for preparing superfine AgSnO2 doped electrical contact material by high energy ball milling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305270A1 (en) * 1983-02-16 1984-08-16 Siemens AG, 1000 Berlin und 8000 München SINTER COMPOSITE FOR ELECTRICAL CONTACTS AND METHOD FOR THE PRODUCTION THEREOF
CN101964260B (en) * 2008-12-15 2012-08-29 中国船舶重工集团公司第七二五研究所 Ag/SnO2 electrical contact material and preparation method thereof
CN101707157B (en) * 2009-09-24 2011-09-14 温州宏丰电工合金股份有限公司 Method for preparing Ag-SnO2-doped electrical contact material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111371A (en) * 1995-10-12 1997-04-28 Mitsubishi Materials Corp Ag-tin oxide-molybdenum trioxide electrical contact material excellent in deposition resistance and consumption resistance
CN102864364A (en) * 2012-09-12 2013-01-09 宁波汉博贵金属合金有限公司 Composite silver stannic oxide electric contact material and preparation method thereof
CN103276234A (en) * 2013-06-14 2013-09-04 西安工程大学 Preparation method of silver tin oxide electrical contact material
CN103276235A (en) * 2013-06-25 2013-09-04 西安工程大学 Method for preparing superfine AgSnO2 doped electrical contact material by high energy ball milling method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970015A (en) * 2016-06-26 2016-09-28 浙江大学 Method for preparing silver carbon nanotube and lanthanum zirconate composite electric contact material
CN105970015B (en) * 2016-06-26 2017-08-25 浙江大学 The preparation method of silver-colored CNT zirconic acid lanthanum composited contact material
CN106181229A (en) * 2016-06-30 2016-12-07 佛山市诺普材料科技有限公司 A kind of silver nickel electric contact material fabrication process
WO2019181649A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Electrical contact powder, electrical contact material, electrical contact, and method for producing electrical contact powder
CN109682865A (en) * 2019-01-07 2019-04-26 北京工业大学 A kind of autoreduction preparation method of the stannic oxide nanometer flower gas sensitive of load gold nano grain
EP3799977A1 (en) * 2019-10-01 2021-04-07 ABB Schweiz AG Method for manufacturing an ag-based electrical contact material, an electrical contact material and an electrical contact obtained therewith
US11923153B2 (en) 2019-10-01 2024-03-05 Abb Schweiz Ag Method for manufacturing an Ag-based electrical contact material, an electrical contact material and an electrical contact obtained therewith
CN114505492A (en) * 2022-01-07 2022-05-17 浙江福达合金材料科技有限公司 Preparation method of silver metal oxide electrical contact material with self-arc-extinguishing function based on 4D printing
CN114505492B (en) * 2022-01-07 2023-07-04 浙江福达合金材料科技有限公司 Preparation method of self-extinguishing function silver metal oxide electric contact material based on 4D printing
CN115570139A (en) * 2022-10-12 2023-01-06 浙江福达合金材料科技有限公司 Preparation method of silver tin oxide electric contact material
CN115570139B (en) * 2022-10-12 2023-08-15 浙江福达合金材料科技有限公司 Preparation method of silver tin oxide electric contact material

Also Published As

Publication number Publication date
JP6333099B2 (en) 2018-05-30
CN104942277A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6333099B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
JP6333098B2 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
CN101649401B (en) Ag-Ni-oxide electrical contact material and preparation method thereof
JP6490253B2 (en) Method for preparing graphene / silver composite material
CN104711443B (en) A kind of graphene/copper composite material and preparation method thereof
CN103276234B (en) Preparation method of silver tin oxide electrical contact material
JP2015196903A5 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
CN103276235B (en) Method for preparing superfine AgSnO2 doped electrical contact material by high energy ball milling method
CN105671401A (en) Nanometer tungsten carbide silver contact material and manufacturing method
Ćosović et al. Comparison of properties of silver-metal oxide electrical contact materials
WO2011003225A1 (en) Preparation method for silver metal oxide made electric contact material
CN112620640B (en) Preparation method of AgNi electrical contact material based on recycling of AgC scrap
CN103695682A (en) Sliver oxide contact material with base body performance-strengthening additives as well as preparation method and product thereof
CN101127253B (en) Silver nickel electricity-conductive ceramic electrical contact material and its production method
JP2015196902A5 (en) Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material
CN105200262B (en) A kind of preparation method of high oxidation Theil indices silver-based sheet electrical contact material
CN103667767B (en) Preparation method of a kind of silver-colored nickel contact material with enhancing substrate performance additive and products thereof
JP6719300B2 (en) Ag-Ni-metal oxide-based electrical contact material, method for producing the same, circuit breaker and electromagnetic contactor
CN110499435B (en) Silver-based electric contact material and preparation method thereof
CN109593981B (en) Preparation method of silver tin oxide contact material for improving sintering property of ingot blank
CN107617748A (en) A kind of preparation method of copper/graphite sliding material
WO2019181649A1 (en) Electrical contact powder, electrical contact material, electrical contact, and method for producing electrical contact powder
CN103745842B (en) A kind of Ag-based electrical contact material and preparation method thereof
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
CN109500392B (en) Preparation method of silver zinc oxide contact material for improving sintering property of ingot blank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6333099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250