JP2015194636A - 照明装置、表示装置及びテレビ受信装置 - Google Patents

照明装置、表示装置及びテレビ受信装置 Download PDF

Info

Publication number
JP2015194636A
JP2015194636A JP2014073084A JP2014073084A JP2015194636A JP 2015194636 A JP2015194636 A JP 2015194636A JP 2014073084 A JP2014073084 A JP 2014073084A JP 2014073084 A JP2014073084 A JP 2014073084A JP 2015194636 A JP2015194636 A JP 2015194636A
Authority
JP
Japan
Prior art keywords
light
peak
led
phosphor
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014073084A
Other languages
English (en)
Inventor
匡史 横田
Tadashi Yokota
匡史 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2014073084A priority Critical patent/JP2015194636A/ja
Priority to PCT/JP2015/059643 priority patent/WO2015152055A1/ja
Publication of JP2015194636A publication Critical patent/JP2015194636A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/646Silicates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】光の利用効率を損なうことなく、色再現性を向上させる。
【解決手段】液晶表示装置10は、青色LED素子40と、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトルの緑色蛍光体と、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルの赤色蛍光体と、を有するLED17を備えるバックライト装置12と、複数の着色部29R,29G,29Bからなるカラーフィルタ29を有し、バックライト装置12からの光を利用して表示を行う液晶パネル11と、を備える。
【選択図】図15

Description

本発明は、表示装置及びテレビ受信装置に関する。
液晶表示装置の主要部品である液晶パネルは、大まかには一対のガラス基板間に液晶を封止した構成とされ、両ガラス基板のうち、一方側がアクティブ素子であるTFTなどが設けられたアレイ基板とされるのに対し、他方側がカラーフィルタなどが設けられたCF基板とされる。CF基板におけるアレイ基板と対向する内面には、赤色、緑色、青色の各色に対応した着色部を、アレイ基板の各画素に対応して多数個並列してなるカラーフィルタが形成されている。バックライトから照射され、液晶を透過した光は、カラーフィルタをなす赤色、緑色、青色の各着色部に対応した所定の波長のみが選択的に透過されることで、液晶パネルに画像が表示されるようになっている。このような液晶表示装置の一例として下記特許文献1に記載されたものが知られている。
この特許文献1には、青色発光LEDと黄色発光の蛍光体で構成された二波長白色LEDバックライトを光源に用いた液晶表示装置において、透光基材の一面に580nmから600nmの間の波長領域に吸収極大値を有する可視光吸収色素を含有したバインダー樹脂層または粘着層を積層した色補正フィルムにより、効率的に緑色と赤色を分離し色再現性を改善するようにしたものが記載されている。
特開2012−27298号公報
上記した特許文献1に記載された色補正フィルムは、吸収極大値となる波長以外の波長の光(例えば青色光など)についても吸収し、可視光領域の全体にわたって光を吸収してしまう。このため、光の利用効率が悪化し、輝度の低下または消費電力の増加を招くおそれがあった。そうかといって、例えばカラーフィルタの膜厚を増加させることで色再現性を向上させようとすると、カラーフィルタの光透過率が減少するため、やはり光の利用効率が悪化する結果を招いていた。
本発明は上記のような事情に基づいて完成されたものであって、光の利用効率を損なうことなく、色再現性を向上させることを目的とする。
本発明の表示装置は、青色光を発光する青色発光素子と、前記青色発光素子からの青色光に励起されて緑色光を発光する緑色蛍光体であって、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトルの緑色蛍光体と、前記青色発光素子からの青色光に励起されて赤色光を発光する赤色蛍光体であって、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルの赤色蛍光体と、を有する光源を備える照明装置と、少なくとも青色、緑色、赤色を呈する複数の着色部からなるカラーフィルタを有し、前記照明装置からの光を利用して表示を行う表示パネルと、を備える。
このようにすれば、照明装置に備えられる光源から発せられた光が表示パネルに供給されると、その光が表示パネルに有されて少なくとも青色、緑色、赤色を呈する複数の着色部からなるカラーフィルタを透過して表示パネルから出射されることで、表示パネルに画像が表示される。ここで、照明装置に備えられる光源は、青色発光素子から発せられる青色光と、青色光に励起された緑色蛍光体から発せられる緑色光と、青色光に励起された赤色蛍光体から発せられる赤色光と、により全体として概ね白色となる光を発光するものとされる。
そして、光源に有される緑色蛍光体は、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトルを有しているから、緑色蛍光体から発せられる緑色光の色純度が十分に高いものとされる。その上で、光源に有される赤色蛍光体は、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルを有しているから、赤色蛍光体から発せられる赤色光の色純度が十分に高いものとされる。特に、赤色蛍光体の発光スペクトルのメインピークにおける半値幅が10nm未満とされることで、それを超える大きさにした場合に比べると、高い色純度が得られている。しかも、赤色蛍光体の発光スペクトルのメインピークにおけるピーク波長が上記した数値範囲の下限値(629nm)以上とされることで、それよりも短波長側にした場合に比べると、色相が黄色寄りにずれることが避けられる。さらには、赤色蛍光体の発光スペクトルのメインピークにおけるピーク波長が上記した数値範囲の上限値(635nm)以下とされることで、それよりも長波長側にした場合に比べると、視感度のピークである555nmにより近くなるので、赤色光の明るさが十分に得られる。また、緑色蛍光体の発光スペクトルのピークにおける半値幅が60nm未満とされることで、それを超える大きさにした場合に比べると、高い色純度が得られている。また、緑色蛍光体の発光スペクトルのピーク波長が上記した数値範囲の下限値(520nm)以上とされることで、それよりも短波長側にした場合に比べると、色相が青色寄りにずれることが避けられるとともに、視感度のピークである555nmにより近くなることで、緑色光の明るさが十分に得られる。また、緑色蛍光体の発光スペクトルのピーク波長が上記した数値範囲の上限値(540nm)以下とされることで、それよりも長波長側にした場合に比べると、色相が黄色寄りにずれることが避けられる。これにより、光源からの光を、カラーフィルタを構成する各色の着色部に透過させて得られる表示パネルの出射光に係る色度領域に関して、緑色及び赤色の各色域がそれぞれ拡張されるので、表示パネルに表示される画像に係る色再現性が向上する。従って、従来のように色補正フィルムを用いたり、カラーフィルタの膜厚を増したりすることで、色再現性の向上を図るようにしたものに比べると、光の利用効率を損なうことなく色再現性の向上を図ることができる。以上により、表示パネルの出射光における色度領域を、少なくともCIE1976色度図においてDCI(Digital Cinema Initiative)規格に係るDCI色度領域と同等またはそれ以上(面積比で100%または100%以上)の広さとすることが可能となり、もって高い色再現性を得ることができる。
本発明の実施態様として、次の構成が好ましい。
(1)前記緑色蛍光体には、酸窒化物蛍光体が含有されている。このようにすれば、例えば硫化物や酸化物からなる蛍光体を用いた場合に比べて、発光効率に優れるとともに耐久性に優れたものとなる。
(2)前記酸窒化物蛍光体は、サイアロン系蛍光体からなる。このようにすれば、発光スペクトルに含まれるピークの半値幅が十分に狭くなることで色純度の高い緑色光を発光することができる。
(3)前記サイアロン系蛍光体は、付活剤としてユーロピウムを用いたβ−SiAlONとされる。このようにすれば、発光効率及び耐久性がより優れたものとなる。しかも、発光スペクトルに含まれるピークの半値幅がより狭くなることで色純度の高い緑色光を発光することができる。
(4)前記赤色蛍光体には、複フッ化物蛍光体が含有されている。このようにすれば、発光スペクトルに含まれるメインピークの半値幅が十分に狭くなることで色純度の高い赤色光を発光することができる。また、緑色蛍光体から発せられる緑色光を吸収し難いものとされているので、緑色光の利用効率が高く保たれる。
(5)前記複フッ化物蛍光体は、付活剤としてマンガンを用いたケイフッ化カリウムとされる。このようにすれば、材料として高価な希土類元素を用いていないので、赤色蛍光体並びに光源に係る製造コストが安価なものとなる。
(6)前記カラーフィルタのうち緑色を呈する前記着色部は、ピーク波長が510nm〜550nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトルを有している。このようにすれば、緑色を呈する着色部に係る透過スペクトルに、緑色蛍光体の発光スペクトルのピークが全域にわたって含まれているから、光源から発せられた高い色純度の緑色光が、緑色を呈する着色部を効率的に透過する。これにより、光源からの緑色光に係る利用効率をより高く保つことができるとともに、表示パネルの出射光に係る色度領域における緑色の色域が広くなって色再現性により優れる。
(7)前記カラーフィルタのうち赤色を呈する前記着色部は、ピークの立ち上がり位置が560nm以上となる透過スペクトルを有している。このようにすれば、赤色を呈する着色部に係る透過スペクトルに、赤色蛍光体の発光スペクトルのメインピーク、第1サブピーク、及び第2サブピークがそれぞれ全域にわたって含まれているから、光源から発せられた高い色純度の赤色光が、赤色を呈する着色部を効率的に透過する。これにより、光源からの赤色光に係る利用効率をより高く保つことができるとともに、表示パネルの出射光に係る色度領域における赤色の色域が広くなって色再現性により優れる。
(8)前記青色発光素子は、ピーク波長が430nm〜460nmの範囲となるピークを含む発光スペクトルを有している。このようにすれば、青色発光素子から発せられる青色光により緑色蛍光体及び赤色蛍光体を効率的に励起して緑色光及び赤色光を発光させることができる。
(9)前記カラーフィルタのうち青色を呈する前記着色部は、ピーク波長が440nm〜480nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトルを有している。このようにすれば、青色を呈する着色部に係る透過スペクトルに、青色発光素子の発光スペクトルのピークが全域にわたって含まれているから、光源から発せられた高い色純度の青色光が、青色を呈する着色部を効率的に透過する。これにより、光源からの青色光に係る利用効率をより高く保つことができるとともに、表示パネルの出射光に係る色度領域における青色の色域が広くなって色再現性により優れる。
(10)前記カラーフィルタを構成する前記着色部には、黄色を呈するものが含まれている。このようにすれば、光源からの光をカラーフィルタを構成する各色の着色部に透過して得られる表示パネルの出射光に係る色度領域に関して、緑色及び黄色の各色域がそれぞれさらに拡張されるので、表示パネルに表示される画像に係る色再現性がさらに向上する。そして、表示パネルの出射光における色度領域を、CIE1976色度図に加えて、CIE1931色度図においてもDCI規格に係るDCI色度領域と同等またはそれ以上(面積比で100%または100%以上)の広さとすることが可能となるので、より高い色再現性を得ることができる。
(11)前記カラーフィルタのうち黄色を呈する前記着色部は、ピークの立ち上がり位置が460nm〜560nmの範囲となる透過スペクトルを有している。このようにすれば、黄色を呈する着色部に係る透過スペクトルに、緑色蛍光体の発光スペクトルのピークが全域にわたって含まれるとともに赤色蛍光体の発光スペクトルのメインピーク、第1サブピーク、及び第2サブピークがそれぞれ全域にわたって含まれているから、光源から発せられた高い色純度の緑色光と赤色光とが、黄色を呈する着色部を効率的に透過する。これにより、光源からの緑色光及び赤色光に係る利用効率をより高く保つことができるとともに、表示パネルの出射光に係る色度領域における黄色の色域が広くなって色再現性により優れる。
(12)前記光源は、光を発する発光面を有するとともにその発光面が前記表示パネルの板面に対して対向する形となるよう配されている。このようにすれば、光源の発光面から発せられた光は、発光面に対して対向する形となるよう配される表示パネルの板面に向けて照射される。このような直下型の照明装置によれば、光源からの光がエッジライト型で用いられる導光板などの部材を介することなく、表示パネルに供給されるから、光の利用効率に一層優れる。
(13)前記照明装置は、前記光源と対向する形で配されて前記光源からの光が入射される光入射面が端面に有されるとともに、前記表示パネルの板面と対向する形で配されて前記表示パネルに向けて光を出射する光出射面が板面に有される導光板を備えている。このようにすれば、光源から発せられた光は、導光板の端面に有される光入射面に入射してから導光板内を伝播して拡散された後、導光板の板面に有される光出射面から面状の光として出射されて表示パネルへと照射される。このようなエッジライト型の照明装置によれば、直下型に比べると、複数の光源を使用する場合には光源の設置数を削減しつつ出射光に係る輝度均一性を十分に高くすることができる。
次に、上記課題を解決するために、本発明のテレビ受信装置は、上記記載の表示装置と、テレビ信号を受信可能な受信部とを備えるテレビ受信装置。このようなテレビ受信装置によれば、高輝度で且つ色再現性に優れたテレビ画像を表示することができる。
本発明によれば、光の利用効率を損なうことなく、色再現性を向上させることができる。
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図 テレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図 液晶パネルの長辺方向に沿った断面構成を示す断面図 アレイ基板の平面構成を示す拡大平面図 CF基板の平面構成を示す拡大平面図 液晶表示装置に備わるバックライト装置におけるシャーシと導光板とLED基板との配置構成を示す平面図 図6のvii-vii線断面図 LED及びLED基板の断面図 比較実験1の実施例1に係るLEDにおける発光スペクトルと、実施例1に係るカラーフィルタの各着色部の透過スペクトルと、を示すグラフ 比較実験1の実施例1に係る液晶パネルの出射光の各色の透過スペクトルと、実施例1に係るLEDにおける発光スペクトルと、を示すグラフ 比較実験1の比較例1に係るLEDにおける発光スペクトルと、比較例1に係るカラーフィルタの各着色部の透過スペクトルと、を示すグラフ 比較実験1の比較例1に係る液晶パネルの出射光の各色の透過スペクトルと、比較例1に係るLEDにおける発光スペクトルと、を示すグラフ 比較実験1の比較例2に係るLEDにおける発光スペクトルと、比較例2に係るカラーフィルタの各着色部の透過スペクトルと、を示すグラフ 比較実験1の比較例2に係る液晶パネルの出射光の各色の透過スペクトルと、比較例2に係るLEDにおける発光スペクトルと、を示すグラフ 比較実験1の実施例1及び比較例1,2におけるLED及びカラーフィルタの特性と、実験結果の一覧と、を示す表 比較実験1の実施例1及び比較例1,2における色度領域及び各規格の色度領域(図15の表における各色度座標)を示したCIE1931色度図 比較実験1の実施例1及び比較例1,2における色度領域及び各規格の色度領域(図15の表における各色度座標)を示したCIE1976色度図 本発明の実施形態2に係るテレビ受信装置の概略構成を示す分解斜視図 液晶パネルの長辺方向に沿った断面構成を示す断面図 アレイ基板の平面構成を示す拡大平面図 CF基板の平面構成を示す拡大平面図 比較実験2の実施例2に係るLEDにおける発光スペクトルと、実施例2に係るカラーフィルタの各着色部の透過スペクトルと、を示すグラフ 比較実験2の実施例2に係る液晶パネルの出射光の各色の透過スペクトルと、実施例2に係るLEDにおける発光スペクトルと、を示すグラフ 比較実験2の比較例3に係るLEDにおける発光スペクトルと、比較例3に係るカラーフィルタの各着色部の透過スペクトルと、を示すグラフ 比較実験2の比較例3に係る液晶パネルの出射光の各色の透過スペクトルと、比較例3に係るLEDにおける発光スペクトルと、を示すグラフ 比較実験2の比較例4に係るLEDにおける発光スペクトルと、比較例4に係るカラーフィルタの各着色部の透過スペクトルと、を示すグラフ 比較実験2の比較例4に係る液晶パネルの出射光の各色の透過スペクトルと、比較例4に係るLEDにおける発光スペクトルと、を示すグラフ 比較実験2の実施例2及び比較例3,4におけるLED及びカラーフィルタの特性と、実験結果の一覧と、を示す表 比較実験2の実施例2及び比較例3,4における色度領域及び各規格の色度領域(図28の表における各色度座標)を示したCIE1931色度図 比較実験2の実施例2及び比較例3,4における色度領域及び各規格の色度領域(図28の表における各色度座標)を示したCIE1976色度図 本発明の実施形態3に係る液晶表示装置の概略構成を示す分解斜視図 バックライト装置の平面図 液晶表示装置を長辺方向に沿って切断した断面構成を示す断面図 液晶表示装置を短辺方向に沿って切断した断面構成を示す断面図 本発明の実施形態4に係る液晶表示装置の概略構成を示す分解斜視図 バックライト装置の平面図 液晶表示装置を長辺方向に沿って切断した断面構成を示す断面図 液晶表示装置を短辺方向に沿って切断した断面構成を示す断面図
<実施形態1>
本発明の実施形態1を図1から図17によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図3及び図7に示す上側を表側とし、同図下側を裏側とする。
本実施形態に係るテレビ受信装置10TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネット10Ca,10Cbと、電源10Pと、テレビ信号を受信するチューナー(受信部)10Tと、スタンド10Sとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長(長手)の方形状(矩形状)をなし、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。
先に、液晶パネル11について説明する。液晶パネル11は、図3に示すように、一対の透明な(透光性を有する)ガラス製の基板20,21間に、電界印加に伴って光学特性が変化する物質である液晶材料を含む液晶層22を封入してなる。液晶パネル11を構成する両基板20,21のうち裏側(バックライト装置12側)に配されるものが、アレイ基板(TFT基板、アクティブマトリクス基板)20とされ、表側(光出射側)に配されるものが、CF基板(対向基板)21とされている。アレイ基板20及びCF基板21は、平面に視て横長の方形状をなしており、その長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致している。なお、両基板20,21の外面側には、表裏一対の偏光板23がそれぞれ貼り付けられている。
アレイ基板20における内面側(液晶層22側、CF基板21との対向面側)には、図4に示すように、3つの電極24a〜24cを有するスイッチング素子であるTFT(Thin Film Transistor)24及び画素電極25がアレイ基板20の板面に沿って行列状(マトリクス状)に多数個ずつ並んで設けられるとともに、これらTFT24及び画素電極25の周りには、格子状をなすゲート配線26及びソース配線27が取り囲むようにして配設されている。画素電極25は、ITO(Indium Tin Oxide)などの透明導電膜からなる。ゲート配線26及びソース配線27は、共に金属膜からなる。ゲート配線26とソース配線27とがそれぞれTFT24のゲート電極24aとソース電極24bとに接続され、画素電極25がドレイン配線(図示せず)を介してTFT24のドレイン電極24cに接続されている。アレイ基板20には、ゲート配線26に並行するとともに画素電極25に対して平面に視て重畳する容量配線(補助容量配線、蓄積容量配線、Cs配線)33が設けられている。容量配線33は、Y軸方向についてゲート配線26と交互に配されている。ゲート配線26がY軸方向に隣り合う画素電極25の間に配されているのに対し、容量配線33は、各画素電極25におけるY軸方向のほぼ中央部を横切る位置に配されている。このアレイ基板20の端部には、ゲート配線26及び容量配線33から引き回された端子部及びソース配線27から引き回された端子部が設けられており、これらの各端子部には、図示しないコントロール基板から各信号または基準電位が入力されるようになっており、それにより行列状に並列配置された各TFT24の駆動が個別に制御される。また、アレイ基板20の内面側には、液晶層22に含まれる液晶分子を配向させるための配向膜28が形成されている(図3)。
一方、CF基板21における内面側(液晶層22側、アレイ基板20との対向面側)には、図3及び図5に示すように、アレイ基板20側の各画素電極25と平面に視て重畳する位置にカラーフィルタ29がCF基板21の板面に沿って行列状に多数個ずつ並んで設けられている。カラーフィルタ29は、赤色、緑色、青色をそれぞれ呈する各着色部29R,29G,29Bが行方向(X軸方向、液晶パネル11の長辺方向)に沿って交互に繰り返し並ぶことで着色部群を構成し、その着色部群が列方向(Y軸方向、液晶パネル11の短辺方向)に沿って多数並ぶ配置とされる。カラーフィルタ29を構成する各着色部29R,29G,29Bは、後に詳しく説明するが、各色(各波長)の光を選択的に透過するものとされる。また、各着色部29R,29G,29Bの外形は、画素電極25の外形に倣って平面に視て縦長の方形状をなしている。カラーフィルタ29を構成する各着色部29R,29G,29B間には、混色を防ぐための格子状をなす遮光部(ブラックマトリクス)30が形成されている。遮光部30は、アレイ基板20側のゲート配線26、ソース配線27及び容量配線33に対して平面視重畳する配置とされる。また、カラーフィルタ29及び遮光部30の表面には、図3に示すように、アレイ基板20側の画素電極25と対向する対向電極31が設けられている。また、CF基板21の内面側には、液晶層22に含まれる液晶分子を配向させるための配向膜32がそれぞれ形成されている。
当該液晶パネル11においては、図3から図5に示すように、赤色、緑色、及び青色の3色の着色部29R,29G,29B及びそれらに対向する3つの画素電極25の組によって表示単位である1つの表示画素34が構成されており、この表示画素34は、両基板20,21の板面、つまり表示面(X軸方向及びY軸方向)に沿って多数ずつマトリクス状に並列配置されている。表示画素34は、赤色着色部29Rとそれに対向する画素電極25との組からなる赤色画素34Rと、緑色着色部29Gとそれに対向する画素電極25との組からなる緑色画素34Gと、青色着色部29Bとそれに対向する画素電極25との組からなる青色画素34Bと、から構成される。表示画素34を構成する赤色画素34R、緑色画素34G、及び青色画素34Bは、行方向(X軸方向、液晶パネル11の長辺方向)に沿って繰り返し並んで配されることで画素群を構成し、その画素群が列方向(Y軸方向、液晶パネル11の短辺方向)に沿って多数並んで配されている。そして、図示しないコントロール基板により各画素34R,34G,34Bが有する各TFT24の駆動が制御されることで、各TFT24に接続された各画素電極25と対向電極31との間に所定値の電圧が印加されると、その間に配された液晶層22の配向状態が電圧に応じて変化し、もって各色の着色部29R,29G,29Bを透過する光の透過光量が個別に制御される。
続いて、バックライト装置12について詳しく説明する。バックライト装置12は、図2に示すように、表側、つまり光出射側(液晶パネル11側)に開口する光出射部14cを有した略箱型をなすシャーシ14と、シャーシ14の光出射部14cを覆う形で配される光学部材15と、次述する導光板19を表側から押さえるフレーム16とを備えている。さらにはシャーシ14内には、光源であるLED(Light Emitting Diode:発光ダイオード)17が実装されたLED基板(光源基板)18と、LED17からの光を導光して光学部材15(液晶パネル11、光出射側)へと導く導光板19とが収容されている。そして、このバックライト装置12は、その長辺側の両端部に、LED17を有するLED基板18が対をなす形で配されており、これら対をなすLED基板18によって導光板19をその短辺方向(Y軸方向、列方向)の両側方から挟み込んでいる。各LED基板18に実装されたLED17は、液晶パネル11における長辺側の各端部寄りに偏在するとともに、その端部に沿う方向、つまり長辺方向(X軸方向、行方向)に沿って複数ずつが間隔を空けて(間欠的に)並んで配されている。このように、本実施形態に係るバックライト装置12は、いわゆるエッジライト型(サイドライト型)とされている。以下では、バックライト装置12の各構成部品について詳しく説明する。
シャーシ14は、例えばアルミニウム板や電気亜鉛めっき綱板(SECC)などの金属板からなり、図2,図6及び図7に示すように、液晶パネル11と同様に横長の方形状をなす底板14aと、底板14aにおける各辺(一対の長辺及び一対の短辺)の外端からそれぞれ表側に向けて立ち上がる側板14bとからなる。シャーシ14(底板14a)は、その長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致している。底板14aの裏側には、図示しないコントロール基板やLED駆動回路基板などの基板類が取り付けられている。また、側板14bには、フレーム16及びベゼル13がねじ止め可能とされる。
光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしている。光学部材15は、導光板19の表側(光出射側)に載せられていて液晶パネル11と導光板19との間に介在して配されることで、導光板19からの出射光を透過するとともにその透過光に所定の光学作用を付与しつつ液晶パネル11に向けて出射させる。光学部材15は、互いに積層される複数枚(本実施形態では3枚)のシート状の部材からなるものとされる。具体的な光学部材(光学シート)15の種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。なお、図7では、都合上3枚の光学部材15を1枚に簡略化して図示している。
フレーム16は、図2に示すように、導光板19の外周端部に沿って延在する枠状(額縁状)に形成されており、導光板19の外周端部をほぼ全周にわたって表側から押さえることが可能とされる。このフレーム16は、合成樹脂製とされるとともに、表面が例えば黒色を呈する形態とされることで、遮光性を有するものとされる。フレーム16のうち両長辺部分における裏側の面、つまり導光板19及びLED基板18(LED17)との対向面には、図7に示すように、光を反射させるフレーム側反射シート16Rがそれぞれ取り付けられている。フレーム側反射シート16Rは、フレーム16の長辺部分におけるほぼ全長にわたって延在する大きさを有しており、導光板19におけるLED17と対向状をなす端部に直接当接されるとともに導光板19の上記端部とLED基板18とを一括して表側から覆うものとされる。また、フレーム16は、液晶パネル11における外周端部を裏側から受けることができる。
LED17は、図2及び図7に示すように、LED基板18上に表面実装されるとともにその発光面17aがLED基板18側とは反対側を向いた、いわゆる頂面発光型とされている。詳しくは、LED17は、図8に示すように、発光源である青色LED素子(青色発光素子、青色LEDチップ)40と、青色LED素子40を封止する封止材(透光性樹脂材料)41と、青色LED素子40が収容されるとともに封止材41が充填されるケース(収容体、筐体)42とを備える。以下、図8を参照しつつLED17の構成部品について順次に詳しく説明する。
青色LED素子40は、例えばInGaNなどの半導体材料からなる半導体であり、順方向に電圧が印加されることで青色の波長領域(約420nm〜約500nm)に含まれる波長の青色光を発光するものとされる。この青色LED素子40は、図示しないリードフレームによってケース42外に配されたLED基板18における配線パターンに接続される。封止材41は、LED17の製造工程では青色LED素子40が収容されたケース42の内部空間に充填されることで、青色LED素子40及びリードフレームを封止するとともにこれらの保護を図るものとされる。封止材41は、ほぼ透明な熱硬化性樹脂材料(例えば、エポキシ樹脂材料、シリコーン樹脂材料など)に、共に図示を省略する緑色蛍光体及び赤色蛍光体をそれぞれ所定の割合でもって分散配合した構成とされている。緑色蛍光体は、青色LED素子40から発せられた青色光により励起されることで緑色の波長領域(約500nm〜約570nm)に含まれる波長の緑色光を発光するものとされる。赤色蛍光体は、青色LED素子40から発せられた青色光により励起されることで赤色の波長領域(約600nm〜約780nm)に含まれる波長の赤色光を発光するものとされる。従って、LED17の発光光は、青色LED素子40から発せられる青色光(青色成分の光)と、緑色蛍光体から発せられる緑色光(緑色成分の光)と、赤色蛍光体から発せられる赤色光(赤色成分の光)と、から構成されていて、全体として概ね白色を呈するものとされる。つまり、このLED17は、白色発光するものとされる。なお、緑色蛍光体から発せられる緑色光と、赤色蛍光体から発せられる赤色光との合成により黄色光が得られることから、このLED17は、LEDチップからの青色成分の光と、黄色成分の光とを併せ持っている、とも言える。また、LED17の色度は、例えば緑色蛍光体及び赤色蛍光体における含有量の絶対値や相対値に応じて変化するものとされるため、これら緑色蛍光体及び赤色蛍光体の含有量を適宜調整することでLED17の色度を調整することが可能とされている。なお、青色LED素子40、緑色蛍光体、及び赤色蛍光体の各発光スペクトルの詳細などについては、後に詳しく説明する。
ケース42は、表面が光の反射性に優れた白色を呈する合成樹脂材料(例えばポリアミド系樹脂材料)またはセラミック材料からなる。ケース42は、全体として光出射側(発光面17a側、LED基板18側とは反対側)に開口部42cを有する略箱型をなしており、大まかにはLED基板18の実装面に沿って延在する底壁部42aと、底壁部42aの外縁から立ち上がる側壁部42bとを有している。このうち底壁部42aは、正面(光出射側)から視て方形状をなしているのに対し、側壁部42bは、底壁部42aの外周縁に沿う略角筒状をなしていて正面から視ると方形の枠状をなしている。ケース42を構成する底壁部42aの内面(底面)には、青色LED素子40が配置されている。これに対して側壁部42bには、リードフレームが貫通されている。リードフレームのうち、ケース42内に配される端部が青色LED素子40に接続されるのに対し、ケース42外に導出される端部がLED基板18の配線パターンに接続される。
上記したLED17が複数実装されるLED基板18は、図2,図6及び図7に示すように、シャーシ14の長辺方向(液晶パネル11及び導光板19におけるLED17側の端部、X軸方向)に沿って延在する、長手の板状をなしており、その板面をX軸方向及びZ軸方向に並行させた姿勢、すなわち液晶パネル11及び導光板19(光学部材15)の板面と直交させた姿勢でシャーシ14内に収容されている。つまり、このLED基板18は、板面における長辺方向がX軸方向と、短辺方向がZ軸方向とそれぞれ一致し、さらには板面と直交する板厚方向がY軸方向と一致した姿勢とされる。LED基板18は、Y軸方向について導光板19を挟んだ位置に対をなす形で配されており、詳しくは導光板19とシャーシ14における長辺側の各側板14bとの間に介在するようそれぞれ配され、シャーシ14に対してはZ軸方向に沿って表側から収容されるようになっている。各LED基板18は、LED17が実装される実装面18aとは反対側の板面がシャーシ14における長辺側の各側板14bの内面に接する形でそれぞれ取り付けられている。従って、各LED基板18にそれぞれ実装された各LED17の発光面17aが対向状をなすとともに、各LED17における光軸がY軸方向(液晶パネル11の板面に並行する方向)とほぼ一致する。
LED基板18の板面のうち、内側を向いた板面は、図2,図6及び図7に示すように、導光板19の長辺側の端面(後述する光入射面19b)と対向状をなしており、当該板面には、複数(図6では20個)のLED17がLED基板18の長辺方向(液晶パネル11及び導光板19の長辺方向、X軸方向)に沿って間隔を空けて並んで配されている。各LED17は、LED基板18における導光板19側を向いた板面(導光板19との対向面)に表面実装されており、ここが実装面18aとされている。LED基板18の実装面18aには、X軸方向に沿って延在するとともにLED17群を横切って隣り合うLED17同士を直列接続する、金属膜(銅箔など)からなる配線パターン(図示せず)が形成されており、この配線パターンの端部に形成された端子部に対して図示しないLED駆動回路基板が同じく図示しない配線部材などを介して電気的に接続されることで、各LED17に駆動電力を供給することが可能とされる。このLED基板18は、板面の片面のみが実装面18aとされる片面実装タイプとされている。また、X軸方向について隣り合うLED17間の間隔、つまりLED17の配列間隔(配列ピッチ)は、ほぼ等しいものとされる。このLED基板18の基材は、例えばアルミニウムなどの金属製とされ、その表面に絶縁層を介して既述した配線パターン(図示せず)が形成されている。なお、LED基板18の基材に用いる材料としては、合成樹脂やセラミックなどの絶縁材料を用いることも可能である。
導光板19は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばPMMAなどのアクリル樹脂など)からなる。導光板19は、図2及び図6に示すように、液晶パネル11及びシャーシ14の底板14aと同様に平面に視て横長の方形状をなす平板状とされることで、X軸方向及びY軸方向に沿う端面を4つ有するとともに、板面が液晶パネル11及び光学部材15の各板面と対向状をなしつつ並行している。導光板19は、その板面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ板面と直交する板厚方向(板面の法線方向)がZ軸方向と一致している。導光板19は、図7に示すように、シャーシ14内において液晶パネル11及び光学部材15の直下位置に配されており、その外周端面のうちの長辺側の一対の端面がシャーシ14における長辺側の両端部に配された対をなすLED基板18及びそこに実装された各LED17とそれぞれ対向状をなしている。従って、LED17(LED基板18)と導光板19との並び方向がY軸方向と一致するのに対して、光学部材15(液晶パネル11)と導光板19との並び方向がZ軸方向と一致しており、両並び方向が互いに直交するものとされる。そして、導光板19は、LED17からY軸方向に沿って発せられた光を長辺側の端面から導入するとともに、その光を内部で伝播させつつ光学部材15側(表側、光出射側)へ向くよう立ち上げて板面から出射させる機能を有する。
平板状をなす導光板19の板面のうち、表側を向いた板面(液晶パネル11や光学部材15との対向面)は、図6及び図7に示すように、内部の光を表側、つまり光学部材15及び液晶パネル11側に向けて出射させる光出射面19aとなっている。導光板19における板面に対して隣り合う外周端面のうち、X軸方向(複数のLED17の並び方向、LED基板18の長辺方向)に沿って長手状をなす一対の長辺側の端面は、それぞれLED17(LED基板18)と所定の空間を空けて対向状をなしており、これらLED17から発せられた光が入射される一対の光入射面19bとなっている。このLED17と光入射面19bとの間に保有される空間の表側には、既述したフレーム側反射シート16Rが配されているのに対し、同空間の裏側には、フレーム側反射シート16Rとの間で同空間を挟み込む形で第1シャーシ側反射シート14R1が配されている。両反射シート14R1,16Rは、上記空間に加えて導光板19におけるLED17側の端部及びLED17をも挟み込む形で配されている。これにより、LED17からの光を両反射シート14R1,16R間で繰り返し反射することで、光入射面19bに対して効率的に入射させることができる。また、光入射面19bは、X軸方向及びZ軸方向に沿って並行する面とされ、光出射面19aに対して略直交する面とされる。また、LED17と光入射面19bとの並び方向は、Y軸方向と一致しており、光出射面19aに並行している。
導光板19の板面のうち、光出射面19aとは反対側の板面19cには、図7に示すように、導光板19内の光を反射して表側へ立ち上げることが可能な第2シャーシ側反射シート14R2がその全域を覆う形で設けられている。言い換えると、第2シャーシ側反射シート14R2は、シャーシ14の底板14aと導光板19との間に挟まれた形で配されている。なお、導光板19における光出射面19aと反対側の板面19cと、第2シャーシ側反射シート14R2の表面との少なくともいずれか一方には、導光板19内の光を散乱反射させる光反射部(図示せず)などが所定の面内分布を持つようパターニングされており、それにより光出射面19aからの出射光が面内において均一な分布となるよう制御されている。
ところで、従来では、液晶パネルに表示される画像に係る色再現性の向上を図るため、色補正フィルムによって光源からの黄色光を緑色と赤色とに分離するようにしていた。しかしながら、色補正フィルムは、光源からの光を可視光領域の全体にわたって吸収する性質を有しているため、光の利用効率が悪化し、輝度の低下または消費電力の増加を招くおそれがあった。そうかといって、例えばカラーフィルタの膜厚を増加させることで色再現性を向上させようとすると、カラーフィルタの光透過率が減少するため、やはり光の利用効率が悪化する結果を招いていた。
そこで、本実施形態では、LED17に備えられる緑色蛍光体及び赤色蛍光体における各発光スペクトルを下記のようにしている。すなわち、緑色蛍光体は、図9に示すように、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅(半値全幅)が60nm未満とされる発光スペクトルを有しているのに対し、赤色蛍光体は、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルを有している。具体的には、LED17に備えられる緑色蛍光体は、発光スペクトルに含まれるピークのピーク波長が上記波長範囲の中の533nmとされ且つピークの半値幅(510nmから563nmまでの幅)が53nm程度とされるのが特に好ましい。LED17に備えられる赤色蛍光体は、発光スペクトルに含まれるメインピークのピーク波長が上記波長範囲の中の630nmとされ且つメインピークの半値幅(628nmから636nmまでの幅)が8nm程度とされ、第1サブピークのピーク波長が上記波長範囲の中の613nmとされ、第2サブピークのピーク波長が上記波長範囲の中の647nmとされるのが特に好ましい。また、赤色蛍光体の発光スペクトルに含まれるメインピークの半値幅は、緑色蛍光体の発光スペクトルに含まれるピークの半値幅に比べて相対的に狭くなっている。このような構成により、緑色蛍光体から発せられる緑色光の色純度が十分に高いものとされるとともに、赤色蛍光体から発せられる赤色光の色純度が十分に高いものとされる。これにより、LED17からの光を、液晶パネル11のカラーフィルタ29を構成する各色の着色部29R,29G,29Bに透過させて得られる液晶パネル11の出射光に係る色度領域に関して、緑色及び赤色の各色域がそれぞれ拡張されるので、液晶パネル11に表示される画像に係る色再現性が向上する。従って、本実施形態によれば、従来のように色補正フィルムを用いたり、カラーフィルタの膜厚を増したりすることで、色再現性の向上を図るようにしたものに比べると、光の利用効率を損なうことなく色再現性の向上を図ることができるのである。
なお、ここで言う発光スペクトルの「ピーク」とは、発光スペクトルの中の山状部分のことを指し、「ピーク波長」とは、上記山状部分の中の頂点における波長のことを指す。図9は、LED17の発光スペクトルと、カラーフィルタ29の分光透過率と、を表している。このうち、カラーフィルタ29の分光透過率は、所定の基準光源からの白色光(例えば、D65光源(0.3157,0.3290)、A光源(0.4476,0.4074)、B光源(0.3484,0.3516)、C光源(0.3101,0.3161)など)をカラーフィルタ29に透過させることで得ている。図9における横軸は、波長(単位:nm)を示している。一方、図9における縦軸の単位は、2種類あり、同図左側にカラーフィルタ29を構成する各着色部29R,29G,29Bの透過スペクトルに対応する単位として「分光透過率(単位:%)」を示し、同図右側に後述するLED17の発光スペクトルに対応する単位として「発光強度(無単位)」を示している。
続いて、緑色蛍光体及び赤色蛍光体に関して順次に詳しく説明する。緑色蛍光体には、少なくとも酸窒化物蛍光体の一種であるサイアロン系蛍光体が含有されている。サイアロン系蛍光体は、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質、つまり酸窒化物である。酸窒化物であるサイアロン系蛍光体は、例えば硫化物や酸化物などからなる他の蛍光体に比べると、発光効率に優れるとともに耐久性に優れている。ここで言う「耐久性に優れる」とは、具体的には、LEDチップからの高いエネルギーの励起光に曝されても経時的に輝度低下が生じ難いことなどを意味する。しかも、発光スペクトルに含まれるピークの半値幅が十分に狭くなることで色純度の高い緑色光を発光することができる。サイアロン系蛍光体には、付活剤として希土類元素(例えばTb,Yg,Agなど)が用いられる。そして、本実施形態に係る緑色蛍光体を構成するサイアロン系蛍光体は、β−SiAlONとされる。β−SiAlONは、サイアロン系蛍光体の一種であり、β型窒化ケイ素結晶にアルミニウムと酸素とが固溶した一般式Si6-zAlzz8-z(zは固溶量を示す)または(Si,Al)6(O,N)8により表される物質である。本実施形態に係るβ−SiAlONには、付活剤として例えば希土類元素の一種であるEu(ユーロピウム)が用いられている。これにより、発光スペクトルに含まれるピークの半値幅がより狭くなるので、色純度の高い緑色光を発光することができる。
赤色蛍光体には、少なくとも複フッ化物蛍光体が含有されている。この複フッ化物蛍光体は、一般式A2MF6(MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種以上、AはLi、Na、K、Rb及びCsから選ばれる1種以上)により表される。この複フッ化物蛍光体は、発光スペクトルに含まれるメインピークの半値幅が十分に狭くなっているので、色純度の高い赤色光を発光することができる。また、緑色蛍光体から発せられる緑色光を吸収し難いものとされているので、緑色光の利用効率が高く保たれる。複フッ化物蛍光体は、付活剤としてマンガンを用いたケイフッ化カリウム(K2SiF6:Mn)とされる。このようなケイフッ化カリウムでは、材料として高価な希土類元素を用いていないので、赤色蛍光体並びにLED17に係る製造コストが安価なものとなっている。この複フッ化物蛍光体であるケイフッ化カリウムは、その発光スペクトルが特徴的なものとなっており、図9に示すように、1つのメインピークと、その長波長側と短波長側とに1つずつのサブピーク(第1サブピーク及び第2サブピーク)と、を有するものとされる。
さらには、本実施形態に係るLED17は、上記した緑色蛍光体及び赤色蛍光体の他に備える青色LED素子40が次のような発光スペクトルを有するものとされている。すなわち、青色LED素子40は、ピーク波長が青色の波長領域である430nm〜460nmの範囲となるピークを含む発光スペクトルを有している。具体的には、青色LED素子40は、ピーク波長が444nmとなるピークを含み且つその半値幅(435nmから455nmまでの幅)が20nm程度となる発光スペクトルを有するよう構成されるのが好ましい。この青色LED素子40から発せられる青色光は、発光スペクトルのピークにおける半値幅が十分に狭くて色純度が高く且つ輝度が十分に高いものとされるから、緑色蛍光体及び赤色蛍光体を効率的に励起して緑色光及び赤色光を発光させることができるとともに、LED17からの青色光に係る色純度が高いものとなる。
そして、上記のような構成のLED17からの光によって画像を表示する液晶パネル11に備えられるカラーフィルタ29を構成する各色の着色部29R,29G,29Bは、次のような透過スペクトルを有している。すなわち、緑色を呈する緑色着色部29Gは、図9に示すように、緑色の波長領域(約500nm〜約570nm)の光、つまり緑色光を選択的に透過するものとされており、その透過スペクトルに含まれるピークのピーク波長が510nm〜550nmの範囲となるとともに、当該ピークの半値幅が110nm未満となるよう構成されている。具体的には、緑色着色部29Gは、ピーク波長が530nmとなるピークを含み且つその半値幅(488nmから580nmまでの幅)が92nm程度となる透過スペクトルを有するよう構成されるのが好ましい。つまり、緑色着色部29Gに係る透過スペクトルには、緑色蛍光体の発光スペクトルのピークが全域にわたって含まれているので、LED17から発せられた光の中の高い色純度の緑色光が、緑色着色部29Gを効率的に透過することになる。これにより、LED17からの緑色光に係る利用効率をより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における緑色の色域が広くなって色再現性により優れる。なお、ここで言う透過スペクトルの「ピーク」とは、透過スペクトルの中の山状部分のことを指し、「ピーク波長」とは、上記山状部分の中の頂点における波長のことを指す。
赤色を呈する赤色着色部29Rは、図9に示すように、赤色の波長領域(約600nm〜約780nm)の光、つまり赤色光を選択的に透過するものとされており、その透過スペクトルに含まれるピークの立ち上がり位置が560nm以上となり、ピークの半値(分光透過率の最大値の半値)となる波長が580nm以上となるよう構成されている。具体的には、赤色着色部29Rは、ピークの立ち上がり位置が566nm程度となり、ピークの半値となる波長が588nm程度となる透過スペクトルを有するよう構成されるのが好ましい。つまり、赤色着色部29Rに係る透過スペクトルには、赤色蛍光体の発光スペクトルのメインピーク、第1サブピーク、及び第2サブピークがそれぞれ全域にわたって含まれているので、LED17から発せられた光の中の高い色純度の赤色光が、赤色着色部29Rを効率的に透過することになる。これにより、LED17からの赤色光に係る利用効率をより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における赤色の色域が広くなって色再現性により優れる。
青色を呈する青色着色部29Bは、図9に示すように、青色の波長領域(約420nm〜約500nm)の光、つまり青色光を選択的に透過するものとされており、その透過スペクトルに含まれるピークのピーク波長が440nm〜480nmの範囲となるとともに、当該ピークの半値幅が110nm未満となるよう構成されている。具体的には、青色着色部29Bは、ピーク波長が455nmとなるピークを含み且つその半値幅(404nmから509nmまでの幅)が105nm程度となる透過スペクトルを有するよう構成されるのが好ましい。つまり、青色着色部29Bに係る透過スペクトルには、青色LED素子40の発光スペクトルのピークが全域にわたって含まれているので、LED17から発せられた光の中の高い色純度の青色光が、青色着色部29Bを効率的に透過することになる。これにより、LED17からの青色光に係る利用効率をより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における青色の色域が広くなって色再現性により優れる。
ここで、LED17及びカラーフィルタ29を上記のような構成とすることで、光の利用効率及び色再現性がどのようなものになるか、に関して知見を得るため、下記の比較実験1を行った。この比較実験1では、本段落以前に説明したLED17を有するバックライト装置12と、カラーフィルタ29を有する液晶パネル11と、を備えた液晶表示装置10を実施例1とし、この実施例1と同じ液晶パネルを用いるもののバックライト装置のLEDに備わる各蛍光体を変更した液晶表示装置を比較例1とし、この比較例1とは液晶パネルのカラーフィルタを変更した液晶表示装置を比較例2としている。実施例1に係る液晶表示装置10は、本段落以前に説明したものと同一であり、LED17に備えられる緑色蛍光体は、図9及び図15に示すように、発光スペクトルに含まれるピークのピーク波長が533nmとされ且つその半値幅が53nm程度とされるのに対し、赤色蛍光体は、発光スペクトルに含まれるメインピークのピーク波長が630nmとされ且つその半値幅が8nm程度とされ、第1サブピークのピーク波長が613nmとされ、第2サブピークのピーク波長が647nmとされる。また、実施例1に係るLED17に備えられる青色LED素子40は、ピークのピーク波長が444nmとされ且つその半値幅が20nm程度とされる。比較例1に係る液晶表示装置は、LEDに備わる緑色蛍光体が、図11及び図15に示すように、ピーク波長を540nmとした発光スペクトルを有するβ−SiAlONからなるとともに、赤色蛍光体が、ピーク波長を650nmとした発光スペクトルを有するカズン系蛍光体の一種であるCaAlSiN3:Euからなるものとされる。また、比較例1に係るLEDに備えられる青色LED素子は、ピークのピーク波長が444nmとされ且つその半値幅が20nm程度とされる。このLEDを除いて、比較例1に係る液晶表示装置に備わる他の構成に関しては、実施例1に係る液晶表示装置10と同様である。比較例2に係る液晶表示装置は、図13及び図15に示すように、比較例1と同じLEDを備えるとともに、カラーフィルタを構成する3色の各着色部の膜厚が、実施例1及び比較例1に比べて大きなものとされており、具体的にはその差が27%(実施例1及び比較例1に係る液晶表示装置のカラーフィルタの各着色部の膜厚を100%としたときの相対値)とされる。このカラーフィルタを除いて、比較例2に係る液晶表示装置に備わる他の構成に関しては、比較例1に係る液晶表示装置と同様である。なお、図11は、比較例1のLEDの発光スペクトルと、比較例1のカラーフィルタの分光透過率と、を表しており、図13は、比較例2のLEDの発光スペクトルと、比較例2のカラーフィルタの分光透過率と、を表している。図11及び図13における横軸及び横軸は、図9と同様である。また、図13では、参考として比較例1及び実施例1のカラーフィルタの分光透過率を細い線(細い破線、細い一点鎖線及び細い二点鎖線)によって図示している。
そして、この比較実験1では、上記した構成の実施例1及び比較例1,2に係る各液晶表示装置において、LEDの色度と、液晶パネルからの出射光の輝度比と、同出射光の各色度と、を測定するとともに、同出射光に係る色度領域のNTSC比、BT.709比、DCI比、及びBT.2020比を算出しており、その結果を図10,図12,図14から図17に示す。図10は、実施例1の液晶パネル11の出射光における各色の透過スペクトルを表しており、また参考のために図9と同じLED17の発光スペクトルを示している。図12は、比較例1の液晶パネルの出射光における各色の透過スペクトルを表しており、また参考のために図11と同じLEDの発光スペクトルを示している。図14は、比較例2の液晶パネルの出射光における各色の透過スペクトルを表しており、また参考のために図13と同じLEDの発光スペクトルを示している。また、図10,図12及び図14における横軸は、波長(単位:nm)を示しており、縦軸は、液晶パネルの出射光の分光透過率(無単位)を示している。図16及び図17は、後に詳しく説明する各規格に係る色度領域と、実施例1及び比較例1,2に係る液晶表示装置の液晶パネルからの出射光の色度領域と、を表している。
LEDの色度は、LEDから発せられた光を例えば分光測色計などにより測定得ている。液晶パネルからの出射光の輝度比は、実施例1及び比較例1,2に係る各液晶表示装置において、液晶パネルを最も高輝度となるよう白色表示させた状態での輝度値をそれぞれ測定し、その中の比較例1における輝度値を基準(100%)とした相対値である。液晶パネルからの出射光の色度は、液晶パネルに白色表示させた状態と、液晶パネルに赤色の原色を表示させた状態と、緑色の原色を表示させた状態と、青色の原色を表示させた状態と、でそれぞれカラーフィルタを透過した光を、分光測色計などにより測定して得ている。液晶パネルからの出射光に係る色度領域におけるNTSC比、BT.709比、DCI比、及びBT.2020比は、実施例1及び比較例1,2に係る各液晶表示装置において、液晶パネルの出射光に係る色度領域の各規格に対する面積比である。液晶パネルの出射光に係る色度領域は、液晶パネルに赤色の原色を表示させたときの色度(赤色の色度、赤色の原色点)と、緑色の原色を表示させたときの色度(緑色の色度、緑色の原色点)と、青色の原色を表示させたときの色度(青色の色度、青色の原色点)と、をそれぞれ測定し、それらの各色度を各色度図にプロットしたときに表れる、各色度を頂点とした三角形の領域である。
図16は、CIE(Commission Internationale de l'Eclairage:国際照明委員会)1931色度図であり、横軸がx値、縦軸がy値である。図17は、CIE1976色度図であり、横軸がu′値、縦軸がv′値である。図15及び図16におけるx値及びy値は、図16に示すCIE1931色度図における色度座標の値である。一方、図15及び図17におけるu′値及びv′値は、図17に示すCIE1976色度図における色度座標の値である。また、図15におけるX値,Y値,Z値は、XYZ表色系における3刺激値であり、このうち、特にY値は、明るさ、すなわち輝度の指標として用いられる。本実施形態においても、出射光の輝度比は、「白色表示時における出射光の色度」におけるY値を元に算出している。また、x値及びy値は、上記したX値,Y値,Z値を用いて表すことができ、下記の式(1),式(2)の通りとなる。同様に、u′値及びv′値についても、上記したX値,Y値,Z値を用いて表すことができ、下記の式(3),式(4)の通りとなる。
[数1]
x=X/(X+Y+Z)・・・(1)
[数2]
y=Y/(X+Y+Z)・・・(2)
[数3]
u′=4X/(X+15Y+3Z)・・・(3)
[数4]
v′=9Y/(X+15Y+3Z)・・・(4)
上記したNTSC比とは、NTSC(National Television System Committee:全米テレビジョン放送方式標準化委員会)規格に係るNTSC色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。BT.709比とは、ITU−R(International Telecommunication Union Radiocommunications Sector:国際電気通信連合 無線通信部門)が策定したBT.709規格に係るBT.709色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。DCI比とは、DCI(Digital Cinema Initiative)規格に係るDCI色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。BT.2020比とは、ITU−R(International Telecommunication Union Radiocommunications Sector:国際電気通信連合 無線通信部門)が策定したBT.2020規格に係るBT.2020色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。なお、図16及び図17では、BT.709色度領域を細い二点鎖線により、NTSC色度領域を一点鎖線により、DCI色度領域を破線により、BT.2020色度領域を太い二点鎖線により、それぞれ図示している。また、実施例1に係る各色度を丸形のプロットにより示すとともに実施例1に係る色度領域を細い破線により示している。比較例1に係る各色度を菱形のプロットにより示すとともに比較例1に係る色度領域を実線により示している。比較例2に係る各色度を三角形のプロットにより示すとともに比較例2に係る色度領域を太い破線により示している。
続いて、比較実験1の実験結果について説明する。まず、液晶パネルの出射光の色度領域に係るNTSC比、BT.709比、DCI比、及びBT.2020比に関しては、図15から図17に示すように、比較例1が最も低い値となっているのに対し、比較例2及び実施例1はいずれも比較例1よりも高い値となっていてなお且つ互いに概ね同等の値(詳細にはCIE1931色度図のNTSC比、BT.709比、DCI比、及びBT.2020比に関しては、実施例1の方が高い値)となっている。特に、CIE1976色度図のDCI比に関しては、比較例2及び実施例1は共に「100%」、つまりDCI規格に係るDCI色度領域と同等の色再現範囲を有している、と言える(詳しくは図15の上から2段目の「DCI比:CIE1976色度図」の欄を参照)。これは、比較例2では、カラーフィルタの各着色部の膜厚を比較例1及び実施例1に比べて増加させることで、各色の色純度の低下を招く光が各着色部によってより多く吸収されることで、各着色部を透過する光の色純度が向上したため、と考えられる。これに対し、実施例1では、カラーフィルタ29の各着色部29R,29G,29Bの膜厚については比較例1と同等であるものの、LED17に備えられる緑色蛍光体及び赤色蛍光体が異なっており、これら各蛍光体から発せられる光の色純度がより高いものとなっている。詳しくは、実施例1に係るLED17の緑色蛍光体の発光スペクトルは、図9に示すように、そのほぼ全域が緑色着色部29Gの透過スペクトルに含有されるものの、赤色着色部29Rの透過スペクトルとの重なり範囲が比較例1,2(図11及び図13を参照)に比べると小さくなっている。上記重なり範囲についてより詳しく説明すると、実施例1に係るLED17の緑色蛍光体の発光スペクトルと、赤色着色部29Rの透過スペクトルとの交点が、比較例1,2に係る同交点に比べて、縦軸方向についてより低い位置(0に近い位置)となっている。これにより、緑色蛍光体から発せられた色純度の高い緑色光は、緑色着色部29Gを効率的に透過されるものの、赤色着色部29Rを殆ど透過することがなくて赤色着色部29Rにより効率的に吸収されるので、液晶パネル11の出射光における緑色の色度が極めて色純度の高くなり、緑色の色域が拡張されている。さらには、実施例1に係るLED17の赤色蛍光体の発光スペクトルは、そのほぼ全域が赤色着色部29Rの透過スペクトルに含有されるものの、緑色着色部29Gの透過スペクトルとの重なり範囲が比較例1,2(図11及び図13を参照)に比べると小さくなっている。上記重なり範囲についてより詳しく説明すると、実施例1に係るLED17の赤色蛍光体の発光スペクトルと、緑色着色部29Gの透過スペクトルとの交点が、比較例1,2に係る同交点に比べて、縦軸方向についてより低い位置(0に近い位置)となっている。これにより、赤色蛍光体から発せられた色純度の高い赤色光は、赤色着色部29Rを効率的に透過されるものの、緑色着色部29Gを殆ど透過することがなくて緑色着色部29Gにより効率的に吸収されるので、液晶パネル11の出射光における赤色の色度が極めて色純度の高くなり、赤色の色域が拡張されている。以上のように、実施例1に係る液晶パネル11の出射光は、図16及び図17に示すように、緑色及び赤色の色域が拡張されることで、色再現性が高いものとされており、その色度領域が比較例2と同等で且つCIE1976色度図のDCI比において100%を達成することができるのである。
一方、液晶パネルの出射光の輝度に関しては、図15に示すように、基準となる比較例1の「100%」に比べて、比較例2では「92%」と低下するのに対して、実施例1では「103%」と向上している(詳しくは図15の最上段の「出射光の輝度比」の欄を参照)。これは、比較例2では、カラーフィルタの各着色部の膜厚を比較例1及び実施例1に比べて27%増加させたため、各着色部を光が透過する際に相対的に多くの光が吸収されて光の利用効率が低下し、結果として液晶パネルの出射光の輝度が低下している、と考えられる。これに対し、実施例1では、カラーフィルタ29の各着色部29R,29G,29Bの膜厚が比較例1と同一であるから、各着色部29R,29G,29Bによる光の吸収量が比較例1と同等になっているものの、実施例1のLED17の緑色蛍光体及び赤色蛍光体の各発光スペクトルのほぼ全域が、それぞれ緑色着色部29G及び赤色着色部29Rの各透過スペクトルに含有されているので、LED17からの緑色光及び赤色光が高効率でもって緑色着色部29G及び赤色着色部29Rを透過し、もって液晶パネル11の出射光の輝度が向上している、と考えられる。以上のように、実施例1に係る液晶表示装置10によれば、出射光の輝度を損なうことがなく、むしろ輝度を向上させることができるのに加えて、色再現性の向上を図ることができる。
以上説明したように本実施形態の液晶表示装置(表示装置)10は、青色光を発光する青色LED素子(青色発光素子)40と、青色LED素子40からの青色光に励起されて緑色光を発光する緑色蛍光体であって、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトルの緑色蛍光体と、青色LED素子40からの青色光に励起されて赤色光を発光する赤色蛍光体であって、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルの赤色蛍光体と、を有するLED(光源)17を備えるバックライト装置(照明装置)12と、少なくとも青色、緑色、赤色を呈する複数の着色部29R,29G,29Bからなるカラーフィルタ29を有し、バックライト装置12からの光を利用して表示を行う液晶パネル(表示パネル)11と、を備える。
このようにすれば、バックライト装置12に備えられるLED17から発せられた光が液晶パネル11に供給されると、その光が液晶パネル11に有されて少なくとも青色、緑色、赤色を呈する複数の着色部29R,29G,29Bからなるカラーフィルタ29を透過して液晶パネル11から出射されることで、液晶パネル11に画像が表示される。ここで、バックライト装置12に備えられるLED17は、青色LED素子40から発せられる青色光と、青色光に励起された緑色蛍光体から発せられる緑色光と、青色光に励起された赤色蛍光体から発せられる赤色光と、により全体として概ね白色となる光を発光するものとされる。
そして、LED17に有される緑色蛍光体は、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトルを有しているから、緑色蛍光体から発せられる緑色光の色純度が十分に高いものとされる。その上で、LED17に有される赤色蛍光体は、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルを有しているから、赤色蛍光体から発せられる赤色光の色純度が十分に高いものとされる。特に、赤色蛍光体の発光スペクトルのメインピークにおける半値幅が10nm未満とされることで、それを超える大きさにした場合に比べると、高い色純度が得られている。しかも、赤色蛍光体の発光スペクトルのメインピークにおけるピーク波長が上記した数値範囲の下限値(629nm)以上とされることで、それよりも短波長側にした場合に比べると、色相が黄色寄りにずれることが避けられる。さらには、赤色蛍光体の発光スペクトルのメインピークにおけるピーク波長が上記した数値範囲の上限値(635nm)以下とされることで、それよりも長波長側にした場合に比べると、視感度のピークである555nmにより近くなるので、赤色光の明るさが十分に得られる。また、緑色蛍光体の発光スペクトルのピークにおける半値幅が60nm未満とされることで、それを超える大きさにした場合に比べると、高い色純度が得られている。また、緑色蛍光体の発光スペクトルのピーク波長が上記した数値範囲の下限値(520nm)以上とされることで、それよりも短波長側にした場合に比べると、色相が青色寄りにずれることが避けられるとともに、視感度のピークである555nmにより近くなることで、緑色光の明るさが十分に得られる。また、緑色蛍光体の発光スペクトルのピーク波長が上記した数値範囲の上限値(540nm)以下とされることで、それよりも長波長側にした場合に比べると、色相が黄色寄りにずれることが避けられる。これにより、LED17からの光を、カラーフィルタ29を構成する各色の着色部29R,29G,29Bに透過させて得られる液晶パネル11の出射光に係る色度領域に関して、緑色及び赤色の各色域がそれぞれ拡張されるので、液晶パネル11に表示される画像に係る色再現性が向上する。従って、従来のように色補正フィルムを用いたり、カラーフィルタ29の膜厚を増したりすることで、色再現性の向上を図るようにしたものに比べると、光の利用効率を損なうことなく色再現性の向上を図ることができる。以上により、液晶パネル11の出射光における色度領域を、少なくともCIE1976色度図においてDCI(Digital Cinema Initiative)規格に係るDCI色度領域と同等またはそれ以上(面積比で100%または100%以上)の広さとすることが可能となり、もって高い色再現性を得ることができる。
また、緑色蛍光体には、酸窒化物蛍光体が含有されている。このようにすれば、例えば硫化物や酸化物からなる蛍光体を用いた場合に比べて、発光効率に優れるとともに耐久性に優れたものとなる。
また、酸窒化物蛍光体は、サイアロン系蛍光体からなる。このようにすれば、発光スペクトルに含まれるピークの半値幅が十分に狭くなることで色純度の高い緑色光を発光することができる。
また、サイアロン系蛍光体は、付活剤としてユーロピウムを用いたβ−SiAlONとされる。このようにすれば、発光効率及び耐久性がより優れたものとなる。しかも、発光スペクトルに含まれるピークの半値幅がより狭くなることで色純度の高い緑色光を発光することができる。
また、赤色蛍光体には、複フッ化物蛍光体が含有されている。このようにすれば、発光スペクトルに含まれるメインピークの半値幅が十分に狭くなることで色純度の高い赤色光を発光することができる。また、緑色蛍光体から発せられる緑色光を吸収し難いものとされているので、緑色光の利用効率が高く保たれる。
また、複フッ化物蛍光体は、付活剤としてマンガンを用いたケイフッ化カリウムとされる。このようにすれば、材料として高価な希土類元素を用いていないので、赤色蛍光体並びにLED17に係る製造コストが安価なものとなる。
また、カラーフィルタ29のうち緑色を呈する緑色着色部29Gは、ピーク波長が510nm〜550nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトルを有している。このようにすれば、緑色を呈する緑色着色部29Gに係る透過スペクトルに、緑色蛍光体の発光スペクトルのピークが全域にわたって含まれているから、LED17から発せられた高い色純度の緑色光が、緑色を呈する緑色着色部29Gを効率的に透過する。これにより、LED17からの緑色光に係る利用効率をより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における緑色の色域が広くなって色再現性により優れる。
また、カラーフィルタ29のうち赤色を呈する赤色着色部29Rは、ピークの立ち上がり位置が560nm以上となる透過スペクトルを有している。このようにすれば、赤色を呈する赤色着色部29Rに係る透過スペクトルに、赤色蛍光体の発光スペクトルのメインピーク、第1サブピーク、及び第2サブピークがそれぞれ全域にわたって含まれているから、LED17から発せられた高い色純度の赤色光が、赤色を呈する赤色着色部29Rを効率的に透過する。これにより、LED17からの赤色光に係る利用効率をより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における赤色の色域が広くなって色再現性により優れる。
また、青色LED素子40は、ピーク波長が430nm〜460nmの範囲となるピークを含む発光スペクトルを有している。このようにすれば、青色LED素子40から発せられる青色光により緑色蛍光体及び赤色蛍光体を効率的に励起して緑色光及び赤色光を発光させることができる。
また、カラーフィルタ29のうち青色を呈する青色着色部29Bは、ピーク波長が440nm〜480nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトルを有している。このようにすれば、青色を呈する青色着色部29Bに係る透過スペクトルに、青色LED素子40の発光スペクトルのピークが全域にわたって含まれているから、LED17から発せられた高い色純度の青色光が、青色を呈する青色着色部29Bを効率的に透過する。これにより、LED17からの青色光に係る利用効率をより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における青色の色域が広くなって色再現性により優れる。
また、バックライト装置12は、LED17と対向する形で配されてLED17からの光が入射される光入射面19bが端面に有されるとともに、液晶パネル11の板面と対向する形で配されて液晶パネル11に向けて光を出射する光出射面19aが板面に有される導光板19を備えている。このようにすれば、LED17から発せられた光は、導光板19の端面に有される光入射面19bに入射してから導光板19内を伝播して拡散された後、導光板19の板面に有される光出射面19aから面状の光として出射されて液晶パネル11へと照射される。このようなエッジライト型のバックライト装置12によれば、直下型に比べると、複数のLED17を使用する場合にはLED17の設置数を削減しつつ出射光に係る輝度均一性を十分に高くすることができる。
また、本実施形態に係るテレビ受信装置10TVは、上記した液晶表示装置10と、テレビ信号を受信可能なチューナー(受信部)10Tとを備える。このようなテレビ受信装置10TVによれば、高輝度で且つ色再現性に優れたテレビ画像を表示することができる。
<実施形態2>
本発明の実施形態2を図18から図30によって説明する。この実施形態2では、液晶パネル111のカラーフィルタ129に黄色着色部129Yを追加して4色としたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係るテレビ受信装置110TV及び液晶表示装置110には、図18に示すように、チューナー110Tから出力されたテレビ映像信号を当該液晶表示装置110用の映像信号に変換する映像変換回路基板110VCが備えられている。詳しくは、映像変換回路基板110VCは、チューナー110Tから出力されたテレビ映像信号を青色、緑色、赤色、黄色の各色の映像信号に変換し、生成された各色の映像信号を液晶パネル111に接続されたコントロール基板に出力することができる。また、テレビ受信装置110TVは、実施形態1と同様の構成とされる一対のキャビネット110Ca,110Cbと、電源110Pと、スタンド110Sと、を備えている。
液晶パネル111を構成するCF基板121の内面、つまり液晶層122側(アレイ基板120との対向面側)の面には、図19及び図21に示すように、アレイ基板120側の各画素電極125(図20を参照)に対応して多数個の着色部129R,129G,129B,129Yを行列状(マトリクス状)に配列してなるカラーフィルタ129が設けられている。そして、本実施形態に係るカラーフィルタ129は、光の三原色である赤色着色部129R,緑色着色部129G,青色着色部129Bに加えて、黄色を呈する黄色着色部129Yを有するものとされる。この黄色着色部129Yに関しては、後に詳しく説明する。各着色部129R,129G,129B,129Yは、画素電極125と同様に長辺方向をY軸方向に、短辺方向をX軸方向にそれぞれ一致させた縦長(長手)の方形状(矩形状)をなしている。各着色部129R,129G,129B,129Y間には、混色を防ぐため、格子状の遮光部130が設けられている。
カラーフィルタ129を構成する各着色部129R,129G,129B,129Yの配置及び大きさについて詳しく説明する。各着色部129R,129G,129B,129Yは、図21に示すように、X軸方向を行方向とし、Y軸方向を列方向として行列状に配列されており、各着色部129R,129G,129B,129Yにおける列方向(Y軸方向)の寸法は全て同一とされるものの、行方向(X軸方向)の寸法については各着色部129R,129G,129B,129Yによって異なるものとされる。詳しくは、各着色部129R,129G,129B,129Yは、図21に示す左側から赤色着色部129R、緑色着色部129G、青色着色部129B、黄色着色部129Yの順で行方向に沿って並べられており、このうち赤色着色部129R及び青色着色部129Bの行方向の寸法が、黄色着色部129Y及び緑色着色部129Gの行方向の寸法よりも相対的に大きなものとされる。つまり、行方向の寸法が相対的に大きな着色部129R,129Bと、行方向の寸法が相対的に小さな着色部129G,129Yとが行方向について交互に繰り返し配されていることになる。これにより、赤色着色部129R及び青色着色部129Bの面積は、緑色着色部129G及び黄色着色部129Yの面積よりも大きなものとされている。青色着色部129Bと赤色着色部129Rとの面積は、互いに等しいものとされる。同様に緑色着色部129Gと黄色着色部129Yとの面積は、互いに等しいものとされる。なお、図19及び図21では、赤色着色部129R及び青色着色部129Bの面積が、黄色着色部129Y及び緑色着色部129Gの面積の約1.6倍程度とされる場合を図示している。
カラーフィルタ129が上記のような構成とされるのに伴い、アレイ基板120においては、図20に示すように、画素電極125における行方向(X軸方向)の寸法が列によって異なるものとされる。すなわち、各画素電極125のうち、赤色着色部129R及び青色着色部129Bと重畳するものの行方向の寸法及び面積は、黄色着色部129Y及び緑色着色部129Gと重畳するものの行方向の寸法及び面積よりも相対的に大きなものとされる。液晶パネル111において、黄色着色部129Yと対向する画素電極125との組によって黄色画素134Yが構成されている。つまり、液晶パネル111の表示画素134は、赤色画素134Rと、緑色画素134Gと、青色画素134Bと、黄色画素134Yとから構成されている。また、ゲート配線126については、全て等ピッチで配列されているのに対し、ソース配線127については、画素電極125の行方向の寸法に応じて2通りのピッチで配列されている。なお、本実施形態では、補助容量配線について図示を省略している。
このような構成の液晶パネル111は、図示しないコントロール基板からの信号が入力されることで駆動されるのであるが、そのコントロール基板には、図18に示す映像変換回路基板110VCにおいてチューナー110Tから出力されたテレビ映像信号が、青色、緑色、赤色、黄色の各色の映像信号に変換されて生成された各色の映像信号が入力されるようになっており、それにより液晶パネル111では、各色の着色部129R,129G,129B,129Yを透過する透過光量を適宜制御されるようになっている。そして、液晶パネル111のカラーフィルタ129が光の三原色である各着色部129R,129G,129Bに加えて黄色着色部129Yを有しているので、その透過光により表示される表示画像の色域が拡張されており、もって色再現性により優れた表示を実現できるものとされる。しかも、黄色着色部129Yを透過した光は、視感度のピークに近い波長を有することから、人間の目には少ないエネルギーでも明るく知覚される傾向とされる。これにより、図示しないバックライト装置が有するLEDの出力を抑制しても十分な輝度を得ることができることとなり、LEDの消費電力を低減でき、もって環境性能にも優れる、といった効果が得られる。
上記のような構成の液晶パネル111に備えられるカラーフィルタ129を構成する各着色部129R,129G,129B,129Yのうち、黄色着色部129Yは、次のような透過スペクトルを有している。すなわち、黄色を呈する黄色着色部129Yは、図22に示すように、黄色の波長領域(580nm〜600nm)の光、つまり黄色光を選択的に透過するものとされており、その透過スペクトルに含まれるピークの立ち上がり位置が460nm〜560nmの範囲に存するとともに、ピークの半値となる波長が480nm〜580nmの範囲に存するよう構成されている。具体的には、黄色着色部129Yは、ピークの立ち上がり位置が470nm程度となり、ピークの半値となる波長が506nm程度となる透過スペクトルを有するよう構成されるのが好ましい。つまり、黄色着色部129Yに係る透過スペクトルには、緑色蛍光体の発光スペクトルのピークが全域にわたって含まれるとともに、赤色蛍光体の発光スペクトルのメインピーク、第1サブピーク、及び第2サブピークがそれぞれ全域にわたって含まれているので、図示しないLEDから発せられた光の中の高い色純度の緑色光及び赤色光が、黄色着色部129Yを効率的に透過することになる。これにより、LEDからの緑色光及び赤色光に係る利用効率をそれぞれより高く保つことができるとともに、液晶パネル11の出射光に係る色度領域における黄色の色域が広くなって色再現性により優れる。なお、図22における横軸及び横軸は、上記した実施形態1の図9と同様である。
ここで、カラーフィルタ129を上記のような構成とすることで、光の利用効率及び色再現性がどのようなものになるか、に関して知見を得るため、下記の比較実験2を行った。この比較実験2では、本段落以前に説明した黄色着色部129Yを含むカラーフィルタ129を有する液晶パネル111と、上記した実施形態1の比較実験1の実施例1と同じLEDを有するバックライト装置と、を備えた液晶表示装置110を実施例2とし、この実施例2と同じ液晶パネルを用いるもののバックライト装置のLEDに備わる各蛍光体を変更した液晶表示装置を比較例3とし、この比較例3とは液晶パネルのカラーフィルタを変更した液晶表示装置を比較例4としている。実施例2に係る液晶表示装置110は、本段落以前に説明したものと同一であり、カラーフィルタ129を構成する黄色着色部129Yは、図22及び図28に示すように、ピークの立ち上がり位置が470nm程度となり、ピークの半値となる波長が506nm程度となる透過スペクトルを有するのに対し、LEDに備えられる緑色蛍光体は、発光スペクトルに含まれるピークのピーク波長が533nmとされ且つその半値幅が53nm程度とされるのに対し、赤色蛍光体は、発光スペクトルに含まれるメインピークのピーク波長が630nmとされ且つその半値幅が8nm程度とされ、第1サブピークのピーク波長が613nmとされ、第2サブピークのピーク波長が647nmとされる。また、実施例2に係るLEDに備えられる青色LED素子は、ピークのピーク波長が444nmとされ且つその半値幅が20nm程度とされる。比較例3に係る液晶表示装置は、LEDに備わる緑色蛍光体が、図24及び図28に示すように、ピーク波長を540nmとした発光スペクトルを有するβ−SiAlONからなる第1緑色蛍光体と、ピーク波長を522nmとした発光スペクトルを有するβ−SiAlONからなる第2緑色蛍光体と、の2つから構成されるとともに、赤色蛍光体が、ピーク波長を650nmとした発光スペクトルを有するカズン系蛍光体の一種であるCaAlSiN3:Euからなるものとされる。また、比較例3に係るLEDに備えられる青色LED素子は、ピークのピーク波長が444nmとされ且つその半値幅が20nm程度とされる。このLEDを除いて、比較例3に係る液晶表示装置に備わる他の構成に関しては、実施例2に係る液晶表示装置110と同様である。比較例4に係る液晶表示装置は、図26及び図28に示すように、比較例3と同じLEDを備えるとともに、カラーフィルタを構成する4色の各着色部の膜厚が、実施例2及び比較例3に比べて大きなものとされており、具体的にはその差が41%(実施例2及び比較例3に係る液晶表示装置のカラーフィルタの各着色部の膜厚を100%としたときの相対値)とされる。このカラーフィルタを除いて、比較例4に係る液晶表示装置に備わる他の構成に関しては、比較例3に係る液晶表示装置と同様である。なお、図24は、比較例3のLEDの発光スペクトルと、比較例3のカラーフィルタの分光透過率と、を表しており、図26は、比較例4のLEDの発光スペクトルと、比較例4のカラーフィルタの分光透過率と、を表している。図24及び図26における横軸及び横軸は、図22と同様である。また、図26では、参考として比較例3及び実施例2のカラーフィルタの分光透過率を細い線(細く且つ線分が短い破線、細く且つ線分が長い破線、細い一点鎖線及び細い二点鎖線)によって図示している。
そして、この比較実験2では、上記した構成の実施例2及び比較例3,4に係る各液晶表示装置において、LEDの色度と、液晶パネルからの出射光の輝度比と、同出射光の各色度と、を測定するとともに、同出射光に係る色度領域のNTSC比、BT.709比、DCI比、及びBT.2020比を算出しており、その結果を図23,図25,図27から図30に示す。図23は、実施例2の液晶パネル111の出射光における各色の透過スペクトルを表しており、また参考のために図22と同じLEDの発光スペクトルを示している。図25は、比較例3の液晶パネルの出射光における各色の透過スペクトルを表しており、また参考のために図24と同じLEDの発光スペクトルを示している。図27は、比較例4の液晶パネルの出射光における各色の透過スペクトルを表しており、また参考のために図26と同じLEDの発光スペクトルを示している。なお、図23,図25及び図27における横軸及び横軸は、上記した実施形態1の図10と同様である。図29及び図30は、実施形態1の図17及び図18と同様に、各規格に係る色度領域と、実施例2及び比較例3,4に係る液晶表示装置の液晶パネルからの出射光の色度領域と、を表している。本実施形態において、液晶パネルからの出射光の輝度比に関しては、比較例3を基準(100%)とした相対値となっている。液晶パネルからの出射光の色度は、液晶パネルに白色表示させた状態と、液晶パネルに赤色の原色を表示させた状態と、黄色の原色を表示させた状態と、緑色の原色を表示させた状態と、青色の原色を表示させた状態と、でそれぞれカラーフィルタを透過した光を、分光測色計などにより測定して得ている。液晶パネルの出射光に係る色度領域は、液晶パネルに赤色の原色を表示させたときの色度と、液晶パネルに黄色の原色を表示させたときの色度(黄色の色度、黄色の原色点)と、緑色の原色を表示させたときの色度と、青色の原色を表示させたときの色度と、をそれぞれ測定し、それらの各色度を各色度図にプロットしたときに表れる、各色度を頂点とした四角形の領域である。図29は、図16と同様にCIE1931色度図であり、図30は、図17と同様にCIE1976色度図である。また、図29及び図30では、実施例2に係る各色度を丸形のプロットにより示すとともに実施例2に係る色度領域を細い破線により示している。比較例3に係る各色度を菱形のプロットにより示すとともに比較例3に係る色度領域を実線により示している。比較例4に係る各色度を三角形のプロットにより示すとともに比較例4に係る色度領域を太い破線により示している。なお、上記以外の事項に関して、LEDの色度の色度、液晶パネルからの出射光の輝度比、及び同出射光の各色度の測定方法は、上記した実施形態1に記載した通りであり、同様に液晶パネルからの出射光に係る色度領域のNTSC比、BT.709比、DCI比、及びBT.2020比の算出方法についても、上記した実施形態1に記載した通りである。
続いて、比較実験2の実験結果について説明する。まず、液晶パネルの出射光の色度領域に係るNTSC比、BT.709比、DCI比、及びBT.2020比に関しては、図28から図30に示すように、比較例3が最も低い値となっているのに対し、比較例4及び実施例2はいずれも比較例3よりも高い値となっていてなお且つ互いに概ね同等の値(詳細にはCIE1931色度図のNTSC比、BT.709比、及びDCI比に関しては、実施例2の方が高い値)となっている。特に、CIE1931色度図のDCI比に関しては、比較例4は「100%」とされてDCI規格に係るDCI色度領域と同等の色再現範囲であるのに対し、実施例2は「101%」とされてDCI規格に係るDCI色度領域を上回る色再現範囲を有している、と言える(詳しくは図28の上から2段目の「DCI比:CIE1931色度図」の欄を参照)。これは、比較例4では、カラーフィルタの各着色部の膜厚を比較例2及び実施例4に比べて増加させることで、各色の色純度の低下を招く光が各着色部によってより多く吸収されることで、各着色部を透過する光の色純度が向上したため、と考えられる。
これに対し、実施例2では、カラーフィルタ129の各着色部129R,129G,129B,129Yの膜厚については比較例3と同等であるものの、LEDに備えられる緑色蛍光体及び赤色蛍光体が異なっており、これら各蛍光体から発せられる光の色純度がより高いものとなっている。詳しくは、実施例2に係るLEDの緑色蛍光体の発光スペクトルは、図22に示すように、そのほぼ全域が緑色着色部129Gの透過スペクトルに含有されるものの、赤色着色部129Rの透過スペクトルとの重なり範囲が比較例3,4(図24及び図26を参照)に比べると小さくなっている。上記重なり範囲についてより詳しく説明すると、実施例2に係るLEDの緑色蛍光体の発光スペクトルと、赤色着色部129Rの透過スペクトルとの交点が、比較例3,4に係る同交点に比べて、縦軸方向についてより低い位置(0に近い位置)となっている。これにより、緑色蛍光体から発せられた色純度の高い緑色光は、緑色着色部129Gを効率的に透過されるものの、赤色着色部129Rを殆ど透過することがなくて赤色着色部129Rにより効率的に吸収されるので、液晶パネル111の出射光における緑色の色度が極めて色純度の高くなり、緑色の色域が拡張されている。さらには、実施例2に係るLEDの赤色蛍光体の発光スペクトルは、そのほぼ全域が赤色着色部129Rの透過スペクトルに含有されるものの、緑色着色部129Gの透過スペクトルとの重なり範囲が比較例3,4(図24及び図26を参照)に比べると小さくなっている。上記重なり範囲についてより詳しく説明すると、実施例2に係るLEDの赤色蛍光体の発光スペクトルと、緑色着色部129Gの透過スペクトルとの交点が、比較例3,4に係る同交点に比べて、縦軸方向についてより低い位置(0に近い位置)となっている。これにより、赤色蛍光体から発せられた色純度の高い赤色光は、赤色着色部129Rを効率的に透過されるものの、緑色着色部129Gを殆ど透過することがなくて緑色着色部129Gにより効率的に吸収されるので、液晶パネル111の出射光における赤色の色度が極めて色純度の高くなり、赤色の色域が拡張されている。さらには、LEDの緑色蛍光体及び赤色蛍光体の各発光スペクトルは、それぞれのほぼ全域が黄色着色部129Yの透過スペクトルに含有されるので、緑色蛍光体及び赤色蛍光体から発せられた色純度の高い緑色光及び赤色光は、黄色着色部129Yを効率的に透過され、もって液晶パネル111の出射光における黄色の色度が極めて色純度の高くなり、黄色の色域が拡張されている。以上のように、実施例2に係る液晶パネル111の出射光は、図29及び図30に示すように、緑色、赤色及び黄色の色域がそれぞれ拡張されることで、色再現性が高いものとされており、その色度領域が比較例4以上で且つCIE1931色度図のDCI比において100%以上を達成することができるのである。このCIE1931色度図は、緑色の色域が赤色や青色の色域に比べて広い面積でもって表記されていることから、実施例2のように黄色着色部129Yの透過スペクトルに、緑色蛍光体及び赤色蛍光体の各発光スペクトルのほぼ全域を含ませる構成とすることで、緑色の色域及び赤色の色域に跨る黄色の色域を拡張し、もって実施形態1の比較実験1に係る実施例1では達成できなかったCIE1931色度図のDCI比において100%以上を達成することができるのである。
一方、液晶パネルの出射光の輝度に関しては、図28に示すように、基準となる比較例3の「100%」に比べて、比較例4では「91%」と低下するのに対して、実施例2では「102%」と向上している(詳しくは図28の最上段の「出射光の輝度比」の欄を参照)。これは、比較例4では、カラーフィルタの各着色部の膜厚を比較例3及び実施例2に比べて41%増加させ、実施形態1の比較実験1に記載した比較例2よりもさらに厚くなっているため、各着色部を光が透過する際により多くの光が吸収されて光の利用効率が低下し、結果として液晶パネルの出射光の輝度が低下している、と考えられる。これに対し、実施例2では、カラーフィルタ129の各着色部129R,129G,129B,129Yの膜厚が比較例3と同一であるから、各着色部129R,129G,129B,129Yによる光の吸収量が比較例3と同等になっているものの、実施例2のLEDの緑色蛍光体及び赤色蛍光体の各発光スペクトルのほぼ全域が、それぞれ緑色着色部129G、赤色着色部129R、及び黄色着色部129Yの各透過スペクトルにそれぞれ含有されているので、LEDからの緑色光及び赤色光が高効率でもって緑色着色部129G、赤色着色部129R、及び黄色着色部129Yを透過し、もって液晶パネル111の出射光の輝度が向上している、と考えられる。以上のように、実施例2に係る液晶表示装置110によれば、出射光の輝度を損なうことがなく、むしろ輝度を向上させることができるのに加えて、色再現性のさらなる向上を図ることができる。
以上説明したように本実施形態によれば、カラーフィルタ129を構成する着色部129R,129G,129B,129Yには、黄色を呈するものが含まれている。このようにすれば、LEDからの光をカラーフィルタ129を構成する各色の着色部129R,129G,129B,129Yに透過して得られる液晶パネル111の出射光に係る色度領域に関して、緑色及び黄色の各色域がそれぞれさらに拡張されるので、液晶パネル111に表示される画像に係る色再現性がさらに向上する。そして、液晶パネル111の出射光における色度領域を、CIE1976色度図に加えて、CIE1931色度図においてもDCI規格に係るDCI色度領域と同等またはそれ以上(面積比で100%または100%以上)の広さとすることが可能となるので、より高い色再現性を得ることができる。
また、カラーフィルタ129のうち黄色を呈する黄色着色部129Yは、ピークの立ち上がり位置が460nm〜560nmの範囲となる透過スペクトルを有している。このようにすれば、黄色を呈する黄色着色部129Yに係る透過スペクトルに、緑色蛍光体の発光スペクトルのピークが全域にわたって含まれるとともに赤色蛍光体の発光スペクトルのメインピーク、第1サブピーク、及び第2サブピークがそれぞれ全域にわたって含まれているから、LEDから発せられた高い色純度の緑色光と赤色光とが、黄色を呈する黄色着色部129Yを効率的に透過する。これにより、LEDからの緑色光及び赤色光に係る利用効率をより高く保つことができるとともに、液晶パネル111の出射光に係る色度領域における黄色の色域が広くなって色再現性により優れる。
<実施形態3>
本発明の実施形態3を図31から図34によって説明する。この実施形態3では、上記した実施形態1からバックライト装置212を直下型に変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係る液晶表示装置210は、図31に示すように、液晶パネル211と、直下型のバックライト装置212とをベゼル213などにより一体化した構成とされる。なお、液晶パネル211の構成は、上記した実施形態1と同様であるから、重複する説明は省略する。以下、直下型のバックライト装置212の構成について説明する。
バックライト装置212は、図32に示すように、光出射側(液晶パネル211側)に開口部を有した略箱型をなすシャーシ214と、シャーシ214の開口部を覆うようにして配される光学部材215と、シャーシ214の外縁部に沿って配され光学部材215の外縁部をシャーシ214との間で挟んで保持するフレーム216と、を備える。さらに、シャーシ214内には、光学部材215(液晶パネル211)の直下となる位置に対向状に配されるLED217と、LED217が実装されたLED基板218と、が備えられる。その上、シャーシ214内には、シャーシ214内の光を光学部材215側に反射させる反射シート50が備えられる。このように本実施形態に係るバックライト装置212は、直下型であるから、実施形態1にて示したエッジライト型のバックライト装置12で用いていた導光板19が備えられていない。また、フレーム216の構成については、実施形態1とはフレーム側反射シート16Rを有していない点以外は同様であるため、説明を省略する。続いて、バックライト装置212の各構成部品について詳しく説明する。
シャーシ214は、金属製とされ、図32から図34に示すように、液晶パネル211と同様に横長な方形状をなす底板214aと、底板214aの各辺の外端からそれぞれ表側(光出射側)に向けて立ち上がる側板214bと、各側板214bの立ち上がり端から外向きに張り出す受け板51と、からなり、全体としては表側に向けて開口した浅い略箱型をなしている。シャーシ214は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。シャーシ214における各受け板51には、表側からフレーム216及び次述する光学部材215が載置可能とされる。各受け板51には、フレーム216がねじ止めされている。
次に、LED217が実装されるLED基板218について説明する。LED基板218は、図32から図34に示すように、平面に視て横長の方形状(短冊状)をなす基材を有しており、長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致する状態でシャーシ214内において底板214aに沿って延在しつつ収容されている。LED基板218は、シャーシ214内においてX軸方向(行方向)に2枚ずつ、Y軸方向(列方向)に9枚ずつ、合計18枚がマトリクス状(行列状)に並列して配置されている。このLED基板218の基材の板面のうち、表側を向いた面(光学部材215側を向いた面)には、LED217が表面実装されており、ここが実装面218aとされる。また、LED基板218は、図示しない基板保持部材によってシャーシ214の底板214aに対して保持されている。
LED217は、図32に示すように、LED基板218の実装面218a上において長辺方向(X軸方向)に沿って複数が一列に間欠的に並んで配されている。LED217は、上記したようにシャーシ214の底板214aに沿ってマトリクス状に複数枚ずつ並んで配されるLED基板218のそれぞれに複数ずつ設けられているので、全体としてシャーシ214内においてX軸方向及びY軸方向に沿って複数ずつマトリクス状に平面配置されている。各LED基板218に実装されたLED217は、その発光面217aが光学部材215及び液晶パネル211と対向状をなすとともに、その光軸がZ軸方向、つまり液晶パネル211の表示面と直交する方向と一致している。
反射シート50は、図32から図34に示すように、シャーシ214の内面をほぼ全域にわたって覆う大きさ、つまり底板214aに沿って平面配置された全LED基板218を一括して覆う大きさを有している。この反射シート50によりシャーシ214内の光を光学部材215側に向けて反射させることができるようになっている。反射シート50は、シャーシ214の底板214aに沿って延在するとともに底板214aの大部分を覆う大きさの底部50aと、底部50aの各外端から表側に立ち上がるとともに底部50aに対して傾斜状をなす4つの立ち上がり部50bと、各立ち上がり部50bの外端から外向きに延出するとともにシャーシ214の受け板51に載せられる延出部50cとから構成されている。この反射シート50の底部50aが各LED基板218における表側の面、つまりLED217の実装面218aに対して表側に重なるよう配される。
以上説明したように本実施形態によれば、LED217は、光を発する発光面217aを有するとともにその発光面217aが液晶パネル211の板面に対して対向する形となるよう配されている。このようにすれば、LED217の発光面217aから発せられた光は、発光面217aに対して対向する形となるよう配される液晶パネル211の板面に向けて照射される。このような直下型のバックライト装置212によれば、LED217からの光がエッジライト型で用いられる導光板などの部材を介することなく、液晶パネル211に供給されるから、光の利用効率に一層優れる。
<実施形態4>
本発明の実施形態4を図35から図38によって説明する。この実施形態4では、上記した実施形態3において、LED基板318に拡散レンズ52を取り付けるなどしたものを示す。なお、上記した実施形態3と同様の構造、作用及び効果について重複する説明は省略する。
本実施形態に係る液晶表示装置310に備えられるバックライト装置312は、図35に示すように、LED基板318においてLED317に対応した位置に取り付けられる拡散レンズ52と、LED基板318をシャーシ314に対して取付状態に保持するための基板保持部材53と、を備えている。
拡散レンズ52は、ほぼ透明で(高い透光性を有し)且つ屈折率が空気よりも高い合成樹脂材料(例えばポリカーボネートやアクリルなど)からなる。拡散レンズ52は、図36から図38に示すように、所定の厚みを有するとともに、平面に視て略円形状に形成されており、LED基板318に対して各LED317を表側(光出射側)から個別に覆うよう、つまり平面に視て各LED317と重畳するようそれぞれ取り付けられている。そして、この拡散レンズ52は、LED317から発せられた指向性の強い光を拡散させつつ出射させることができる。つまり、LED317から発せられた光は、拡散レンズ52を介することにより指向性が緩和されるので、隣り合うLED317間の間隔を広くとってもその間の領域が暗部として視認され難くなる。これにより、輝度ムラの発生を抑制しつつもLED317の設置個数を少なくすることが可能となっている。この拡散レンズ52は、平面に視てLED317とほぼ同心となる位置に配されている。
基板保持部材53は、ポリカーボネートなどの合成樹脂製とされており、表面が光の反射性に優れた白色を呈する。基板保持部材53は、図37及び図38に示すように、LED基板318の板面に沿う本体部と、本体部から裏側、つまりシャーシ314の底板314a側に向けて突出して底板314aに固定される固定部とを備える。基板保持部材53は、各LED基板318に対して複数ずつ取り付けられており、その配置がLED317に対してX軸方向について隣り合うものとされる。なお、複数の基板保持部材53には、本体部から表側に突出するとともに光学部材315を裏側から支持する支持部53aを有するものが含まれている。なお、反射シート350には、各拡散レンズ52を通す孔と、各基板保持部材53を通す孔とが対応する位置に開口して形成されている。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記した各実施形態では、LEDに備えられる緑色蛍光体として、ピーク波長が533nmとなるピークを含み且つその半値幅が53nm程度とされる発光スペクトルを有するものを例示したが、これ以外に、ピークにおけるピーク波長の具体的な数値、ピークの半値幅の具体的な数値などが多少異なる発光スペクトルを有する緑色蛍光体を用いることも可能である。つまり、上記したピークにおけるピーク波長やピークの半値幅の具体的な数値は、緑色蛍光体の発光スペクトルの要件(ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトル)を満たす範囲で適宜に変更可能である。
(2)上記した各実施形態では、LEDに備えられる赤色蛍光体として、ピーク波長が630nmとなるメインピークを含み且つその半値幅が8nm程度とされるとともに、ピーク波長が613nmとなる第1サブピークと、ピーク波長が647nmとなる第2サブピークと、を含む発光スペクトルを有するものを例示したが、これ以外に、メインピークにおけるピーク波長の具体的な数値、メインピークの半値幅の具体的な数値、第1サブピークにおけるピーク波長の具体的な数値、第2サブピークにおけるピーク波長の具体的な数値などが多少異なる発光スペクトルを有する赤色蛍光体を用いることも可能である。つまり、上記したメインピークにおけるピーク波長、メインピークの半値幅、第1サブピークにおけるピーク波長、及び第2サブピークにおけるピーク波長の具体的な数値は、赤色蛍光体の発光スペクトルの要件(ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトル)を満たす範囲で適宜に変更可能である。
(3)上記した各実施形態では、LEDに備えられる緑色蛍光体として、酸窒化物蛍光体であり且つサイアロン系蛍光体の一種であるユーロピウム付活のβ−SiAlONを用いた場合を示したが、ユーロピウム以外の付活剤(例えばTb,Y,Ceなどの希土類元素やAgなど)を用いたβ−SiAlONを用いることも可能である。さらには、緑色蛍光体の発光スペクトルの要件(ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトル)を満たすのであれば、β−SiAlON以外のサイアロン系蛍光体を用いることも可能である。また、緑色蛍光体の発光スペクトルの要件を満たすのであれば、サイアロン系蛍光体以外の酸窒化物蛍光体を用いることも可能である。また、緑色蛍光体の発光スペクトルの要件を満たすのであれば、酸窒化物蛍光体以外の蛍光体(例えば、酸化物蛍光体の一種であるBOSE系蛍光体やYAG系蛍光体など)を用いることも可能である。
(4)上記した各実施形態では、LEDに備えられる赤色蛍光体として、複フッ化物蛍光体の一種であるマンガン付活のケイフッ化カリウム(K2TiF6)を用いた場合を示したが、マンガン以外の付活剤を用いたケイフッ化カリウムを用いることも可能である。さらには、赤色蛍光体の発光スペクトルの要件(ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトル)を満たすのであれば、ケイフッ化カリウム以外の複フッ化物蛍光体を用いることも可能である。また、赤色蛍光体の発光スペクトルの要件を満たすのであれば、複フッ化物蛍光体以外の蛍光体を用いることも可能である。
(5)上記(4)に記載した「ケイフッ化カリウム以外の複フッ化物蛍光体」の具体例としては、例えばケイフッ化カリウムの珪素(Si)に代えて、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ゲルマニウム(Ge)及び錫(Sn)の中のいずれかを用いた構成の複フッ化物蛍光体を挙げることができる。その他にも、ケイフッ化カリウムのカリウム(K)に代えて、リチウム(Li)、ナトリウム(Na)、ルビジウム(Rb)及びセシウム(Cs)の中のいずれかを用いた複フッ化物蛍光体を挙げることができる。さらには、ケイフッ化カリウムの珪素に代えて、珪素、チタン、ジルコニウム、ハフニウム、ゲルマニウム及び錫の中から複数を選択して用いた複フッ化物蛍光体を挙げることができる。
(6)上記した各実施形態では、LEDに備えられる赤色蛍光体として、メインピークに対して短波長側の第1サブピークが相対的に高くなるのに対し、メインピークに対して長波長側の第2サブピークが相対的に低くなる発光スペクトルを有するものを用いた場合を示したが、第1サブピークと第2サブピークとの高さ関係が逆転した発光スペクトルを有する赤色蛍光体を用いることも可能である。
(7)上記した各実施形態では、LEDに備えられる緑色蛍光体を1種類のみ用いた場合を示したが、複数種類の緑色蛍光体を併用することも可能である。その場合、複数種類の緑色蛍光体は、ピーク波長が互いに異なるピークを含む発光スペクトルや、半値幅が異なるピークを含む発光スペクトルを有する構成とされるのが好ましい。
(8)上記した各実施形態では、LEDに備えられる赤色蛍光体を1種類のみ用いた場合を示したが、複数種類の赤色蛍光体を併用することも可能である。その場合、複数種類の赤色蛍光体は、互いにピーク波長が異なるメインピークを含む発光スペクトルや、ピーク波長が異なる第1サブピークを含む発光スペクトルや、ピーク波長が異なる第2サブピークを含む発光スペクトルや、半値幅が異なるメインピークを含む発光スペクトルを有する構成とされるのが好ましい。
(9)上記した各実施形態では、LEDが緑色蛍光体及び赤色蛍光体を備える構成のものを示したが、緑色蛍光体及び赤色蛍光体に加えて黄色光を発光する黄色蛍光体を備えたLEDについても本発明は適用可能である。黄色蛍光体の一例としては、例えば、サイアロン系蛍光体の一種であるα−SiAlONを用いることが可能である。
(10)上記した各実施形態では、LEDに備えられる青色LED素子として、ピーク波長が444nmとなるピークを含み且つその半値幅が20nm程度とされる発光スペクトルを有するものを例示したが、これ以外に、ピークにおけるピーク波長の具体的な数値、ピークの半値幅の具体的な数値などが多少異なる発光スペクトルを有する青色LED素子を用いることも可能である。つまり、上記したピークにおけるピーク波長やピークの半値幅の具体的な数値は、青色LED素子の発光スペクトルの要件(ピーク波長が430nm〜460nmの範囲となるピークを含む発光スペクトル)を満たす範囲で適宜に変更可能である。
(11)上記した各実施形態では、LEDを構成するLED素子の材料としてInGaNを用いた場合を示したが、他のLED素子の材料として、例えばGaN、AlGaN、GaP、ZnSe、ZnO、AlGaInPなどを用いることも可能である。
(12)上記した各実施形態では、頂面発光型のLEDを用いた場合を例示したが、LED基板の実装面に対して隣接する側面が発光面となる側面発光型のLEDを用いることも可能である。
(13)上記した各実施形態以外にも、LEDにおける機械的な構造(ケースの形状やリードフレームの形状など)は適宜に変更可能である。
(14)上記した各実施形態では、カラーフィルタに備えられる緑色着色部として、ピーク波長が530nmとなるピークを含み且つその半値幅が92nm程度となる透過スペクトルを有するものを例示したが、これ以外に、ピークにおけるピーク波長の具体的な数値、ピークの半値幅の具体的な数値などが多少異なる透過スペクトルを有する緑色着色部を用いることも可能である。つまり、上記したピークにおけるピーク波長やピークの半値幅の具体的な数値は、緑色着色部の透過スペクトルの要件(ピーク波長が510nm〜550nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトル)を満たす範囲で適宜に変更可能である。
(15)上記した各実施形態では、カラーフィルタに備えられる赤色着色部として、ピークの立ち上がり位置が566nm程度となり、ピークの半値となる波長が588nm程度となる透過スペクトルを有するものを例示したが、これ以外に、ピークにおける立ち上がり位置及びピークの半値となる波長の具体的な数値が多少異なる発光スペクトルを有する赤色着色部を用いることも可能である。つまり、上記したピークにおける立ち上がり位置及びピークの半値となる波長の具体的な数値は、赤色着色部の透過スペクトルの要件(ピークの立ち上がり位置が560nm以上、またはピークの半値となる波長が580nm以上とされる透過スペクトル)を満たす範囲で適宜に変更可能である。
(16)上記した各実施形態では、カラーフィルタに備えられる青色着色部として、ピーク波長が455nmとなるピークを含み且つその半値幅が105nm程度となる透過スペクトルを有するものを例示したが、これ以外に、ピークにおけるピーク波長の具体的な数値、ピークの半値幅の具体的な数値などが多少異なる透過スペクトルを有する青色着色部を用いることも可能である。つまり、上記したピークにおけるピーク波長やピークの半値幅の具体的な数値は、青色着色部の透過スペクトルの要件(ピーク波長が440nm〜480nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトル)を満たす範囲で適宜に変更可能である。
(17)上記した実施形態2では、カラーフィルタに備えられる黄色着色部として、ピークの立ち上がり位置が470nm程度となり、ピークの半値となる波長が506nm程度となる透過スペクトルを有するものを例示したが、これ以外に、ピークにおける立ち上がり位置及びピークの半値となる波長の具体的な数値が多少異なる発光スペクトルを有する黄色着色部を用いることも可能である。つまり、上記したピークにおける立ち上がり位置及びピークの半値となる波長の具体的な数値は、黄色着色部の透過スペクトルの要件(ピークの立ち上がり位置が460nm〜560nmの範囲、またはピークの半値となる波長が480nm〜580nmの範囲とされる透過スペクトル)を満たす範囲で適宜に変更可能である。
(18)上記した実施形態2では、黄色着色部及び緑色着色部に対する青色着色部及び赤色着色部の面積比率を1.6とした場合を例示したが、青色着色部及び赤色着色部の各面積を、黄色着色部及び緑色着色部の各面積よりも大きく保った上で、上記面積比率の具体的な数値を適宜に変更することが可能である。
(19)上記した実施形態2では、カラーフィルタを構成する青色着色部及び赤色着色部と、緑色着色部及び黄色着色部とで面積比率が異なるものを示したが、青色着色部及び赤色着色部と、緑色着色部及び黄色着色部との面積比率を等しくすることも可能である。また、青色着色部と赤色着色部との面積比率が互いに異なる設定とすることも可能である。同様に、緑色着色部と黄色着色部との面積比率が互いに異なる設定とすることも可能である。また、各実施形態において、カラーフィルタを構成する各着色部の並び順や面積比率などについて適宜に変更可能である。
(20)上記した実施形態2では、赤色着色部、緑色着色部及び青色着色部に黄色着色部を加えた構成のカラーフィルタを例示したが、黄色着色部に代えて、例えばシアン色の光を選択的に透過するシアン色着色部を用いることも可能である。また、シアン色以外の色を呈する着色部を黄色着色部に代えて追加することも可能である。さらには、黄色着色部に代えて、波長選択性を有さない無着色部を追加することも可能である。
(21)上記した各実施形態では、液晶パネルが有するカラーフィルタの着色部を3色または4色としたものを例示したが、着色部を5色以上とすることも可能である。
(22)上記した各実施形態において、カラーフィルタを構成する各着色部に所定の顔料または染料を含有させることで、各色を呈するよう製造することが可能である。
(23)上記した実施形態1では、エッジライト型のバックライト装置において、LED基板(LED)がシャーシ(導光板)における両長辺側の端部に一対配されるものを示したが、例えばLED基板(LED)がシャーシ(導光板)における両短辺側の端部に一対配されるものも本発明に含まれる。
(24)上記した(23)以外にも、LED基板(LED)をシャーシ(導光板)における両長辺及び両短辺の各端部に対して一対ずつ配したものや、逆にLED基板(LED)をシャーシ(導光板)における一方の長辺または一方の短辺の端部に対してのみ1つ配したものも本発明に含まれる。
(25)上記した実施形態3,4に記載した構成を、実施形態2に記載した構成に組み合わせることも勿論可能である。
(26)上記した実施形態3に記載した直下型のバックライト装置において、LED基板におけるLEDの設置数や配列ピッチ、シャーシにおけるLED基板の設置数、LED基板の大きさなどは適宜に変更可能である。
(27)上記した実施形態4では、直下型のバックライト装置において、全てのLEDに対して個別に拡散レンズを取り付けるようにしたものを例示したが、一部のLEDにのみ拡散レンズを取り付けるようにしても構わない。また、LED基板におけるLEDの設置数や配列ピッチ、シャーシにおけるLED基板の設置数、LED基板の大きさなどは適宜に変更可能である。
(28)上記した各実施形態では、光源としてLEDを用いたものを示したが、有機ELなどの他の光源を用いることも可能である。
(29)上記した各実施形態では、液晶パネル及びシャーシがその短辺方向を鉛直方向と一致させた縦置き状態とされるものを例示したが、液晶パネル及びシャーシがその長辺方向を鉛直方向と一致させた縦置き状態とされるものも本発明に含まれる。
(30)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
(31)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。
(32)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。具体的には、電子看板(デジタルサイネージ)や電子黒板として使用される液晶表示装置にも本発明は適用することができる。
10,110,210,310…液晶表示装置(表示装置)、10T,110T…チューナー(受信部)、10TV,110TV…テレビ受信装置、11,111,211…液晶パネル(表示パネル)、12,212,312…バックライト装置(照明装置)、17,217,317…LED(光源)、17a,217a…発光面、19…導光板、19a…光出射面、19b…光入射面、29,129…カラーフィルタ、29B,129B…青色着色部(青色を呈する着色部)、29G,129G…緑色着色部(緑色を呈する着色部)、29R,129R…赤色着色部(赤色を呈する着色部)、40…青色LED素子(青色発光素子)、129Y…黄色着色部(黄色を呈する着色部)
本発明は、照明装置、表示装置及びテレビ受信装置に関する。
LEDの色度は、LEDから発せられた光を例えば分光測色計などにより測定得ている。液晶パネルからの出射光の輝度比は、実施例1及び比較例1,2に係る各液晶表示装置において、液晶パネルを最も高輝度となるよう白色表示させた状態での輝度値をそれぞれ測定し、その中の比較例1における輝度値を基準(100%)とした相対値である。液晶パネルからの出射光の色度は、液晶パネルに白色表示させた状態と、液晶パネルに赤色の原色を表示させた状態と、緑色の原色を表示させた状態と、青色の原色を表示させた状態と、でそれぞれカラーフィルタを透過した光を、分光測色計などにより測定して得ている。液晶パネルからの出射光に係る色度領域におけるNTSC比、BT.709比、DCI比、及びBT.2020比は、実施例1及び比較例1,2に係る各液晶表示装置において、液晶パネルの出射光に係る色度領域の各規格に対する面積比である。液晶パネルの出射光に係る色度領域は、液晶パネルに赤色の原色を表示させたときの色度(赤色の色度、赤色の原色点)と、緑色の原色を表示させたときの色度(緑色の色度、緑色の原色点)と、青色の原色を表示させたときの色度(青色の色度、青色の原色点)と、をそれぞれ測定し、それらの各色度を各色度図にプロットしたときに表れる、各色度を頂点とした三角形の領域である。

Claims (15)

  1. 青色光を発光する青色発光素子と、前記青色発光素子からの青色光に励起されて緑色光を発光する緑色蛍光体であって、ピーク波長が520nm〜540nmの範囲となるピークを含み且つその半値幅が60nm未満とされる発光スペクトルの緑色蛍光体と、前記青色発光素子からの青色光に励起されて赤色光を発光する赤色蛍光体であって、ピーク波長が629nm〜635nmの範囲となるメインピークを含み且つその半値幅が10nm未満とされ、さらにはピーク波長が607nm〜614nmの範囲となる第1サブピークを含むとともにピーク波長が645nm〜648nmの範囲となる第2サブピークを含む発光スペクトルの赤色蛍光体と、を有する光源を備える照明装置と、
    少なくとも青色、緑色、赤色を呈する複数の着色部からなるカラーフィルタを有し、前記照明装置からの光を利用して表示を行う表示パネルと、
    を備える表示装置。
  2. 前記緑色蛍光体には、酸窒化物蛍光体が含有されている請求項1記載の表示装置。
  3. 前記酸窒化物蛍光体は、サイアロン系蛍光体からなる請求項2記載の表示装置。
  4. 前記サイアロン系蛍光体は、付活剤としてユーロピウムを用いたβ−SiAlONとされる請求項3記載の表示装置。
  5. 前記赤色蛍光体には、複フッ化物蛍光体が含有されている請求項1から請求項4のいずれか1項に記載の表示装置。
  6. 前記複フッ化物蛍光体は、付活剤としてマンガンを用いたケイフッ化カリウムとされる請求項5記載の表示装置。
  7. 前記カラーフィルタのうち緑色を呈する前記着色部は、ピーク波長が510nm〜550nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトルを有している請求項1から請求項6のいずれか1項に記載の表示装置。
  8. 前記カラーフィルタのうち赤色を呈する前記着色部は、ピークの立ち上がり位置が560nm以上となる透過スペクトルを有している請求項1から請求項7のいずれか1項に記載の表示装置。
  9. 前記青色発光素子は、ピーク波長が430nm〜460nmの範囲となるピークを含む発光スペクトルを有している請求項1から請求項8のいずれか1項に記載の表示装置。
  10. 前記カラーフィルタのうち青色を呈する前記着色部は、ピーク波長が440nm〜480nmの範囲となるピークを含み且つその半値幅が110nm未満とされる透過スペクトルを有している請求項9記載の表示装置。
  11. 前記カラーフィルタを構成する前記着色部には、黄色を呈するものが含まれている請求項1から請求項10のいずれか1項に記載の表示装置。
  12. 前記カラーフィルタのうち黄色を呈する前記着色部は、ピークの立ち上がり位置が460nm〜560nmの範囲となる透過スペクトルを有している請求項11記載の表示装置。
  13. 前記光源は、光を発する発光面を有するとともにその発光面が前記表示パネルの板面に対して対向する形となるよう配されている請求項1から請求項12のいずれか1項に記載の表示装置。
  14. 前記照明装置は、前記光源と対向する形で配されて前記光源からの光が入射される光入射面が端面に有されるとともに、前記表示パネルの板面と対向する形で配されて前記表示パネルに向けて光を出射する光出射面が板面に有される導光板を備えている請求項1から請求項12のいずれか1項に記載の表示装置。
  15. 請求項1から請求項14のいずれか1項に記載された表示装置と、テレビ信号を受信可能な受信部とを備えるテレビ受信装置。
JP2014073084A 2014-03-31 2014-03-31 照明装置、表示装置及びテレビ受信装置 Pending JP2015194636A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014073084A JP2015194636A (ja) 2014-03-31 2014-03-31 照明装置、表示装置及びテレビ受信装置
PCT/JP2015/059643 WO2015152055A1 (ja) 2014-03-31 2015-03-27 照明装置、表示装置及びテレビ受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073084A JP2015194636A (ja) 2014-03-31 2014-03-31 照明装置、表示装置及びテレビ受信装置

Publications (1)

Publication Number Publication Date
JP2015194636A true JP2015194636A (ja) 2015-11-05

Family

ID=54240380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073084A Pending JP2015194636A (ja) 2014-03-31 2014-03-31 照明装置、表示装置及びテレビ受信装置

Country Status (2)

Country Link
JP (1) JP2015194636A (ja)
WO (1) WO2015152055A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044791A (ja) * 2015-08-25 2017-03-02 凸版印刷株式会社 液晶表示装置
JP2017102289A (ja) * 2015-12-02 2017-06-08 東洋紡株式会社 液晶表示装置
JP2017125899A (ja) * 2016-01-12 2017-07-20 大日本印刷株式会社 高演色液晶表示装置およびカラーフィルタ
WO2018181908A1 (ja) * 2017-03-30 2018-10-04 シャープ株式会社 表示装置及びヘッドマウントディスプレイ
US10361248B2 (en) 2016-02-12 2019-07-23 Samsung Electronics Co., Ltd. Light source module, display panel and display apparatus having blue sub-pixel that emits blue light and green light and methods for manufacturing the same
US20220187660A1 (en) * 2019-03-29 2022-06-16 Sony Group Corporation Light Emitting Device, Display, And Electronic Apparatus
US11709310B2 (en) 2020-09-29 2023-07-25 Nichia Corporation Surface-emitting light source and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
JP2012003073A (ja) * 2010-06-17 2012-01-05 Sharp Corp 液晶表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
JP2012003073A (ja) * 2010-06-17 2012-01-05 Sharp Corp 液晶表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044791A (ja) * 2015-08-25 2017-03-02 凸版印刷株式会社 液晶表示装置
JP2017102289A (ja) * 2015-12-02 2017-06-08 東洋紡株式会社 液晶表示装置
JP2017125899A (ja) * 2016-01-12 2017-07-20 大日本印刷株式会社 高演色液晶表示装置およびカラーフィルタ
US10361248B2 (en) 2016-02-12 2019-07-23 Samsung Electronics Co., Ltd. Light source module, display panel and display apparatus having blue sub-pixel that emits blue light and green light and methods for manufacturing the same
WO2018181908A1 (ja) * 2017-03-30 2018-10-04 シャープ株式会社 表示装置及びヘッドマウントディスプレイ
US20220187660A1 (en) * 2019-03-29 2022-06-16 Sony Group Corporation Light Emitting Device, Display, And Electronic Apparatus
US11841587B2 (en) * 2019-03-29 2023-12-12 Saturn Licensing Llc Light emitting device, display, and electronic apparatus
US11709310B2 (en) 2020-09-29 2023-07-25 Nichia Corporation Surface-emitting light source and method of manufacturing the same

Also Published As

Publication number Publication date
WO2015152055A1 (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5878579B2 (ja) 表示装置及びテレビ受信装置
JP5878580B2 (ja) 表示装置及びテレビ受信装置
WO2015152055A1 (ja) 照明装置、表示装置及びテレビ受信装置
JP6377254B2 (ja) 照明装置、表示装置、及びテレビ受信装置
US20200011508A1 (en) Method and apparatus to enhance spectral purity of a light source
JP6496023B2 (ja) 表示装置及びテレビ受信装置
JP5416270B2 (ja) 表示装置及びテレビ受信装置
WO2014087875A1 (ja) 表示装置及びテレビ受信装置
WO2016143682A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP2016058586A (ja) 表示装置及びテレビ受信装置
WO2013191094A1 (ja) 表示装置及びテレビ受信装置
US20140009695A1 (en) Illumination device, display device, and television reception device
WO2011122122A1 (ja) 表示装置及びテレビ受信装置
WO2014141879A1 (ja) 表示装置及びテレビ受信装置
US20130002963A1 (en) Display device and television receiver
WO2013065536A1 (ja) 表示装置、テレビ受信装置、及び表示装置の製造方法
JP2013143275A (ja) 照明装置、表示装置、及びテレビ受信装置
KR20170051650A (ko) 광변환 시트 및 그를 포함하는 백라이트 유닛
US9476577B2 (en) Lighting device, display device, and television reception device
WO2012124509A1 (ja) 光源、照明装置及び表示装置
WO2012128076A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2013065542A1 (ja) 表示装置、テレビ受信装置、及び表示装置の製造方法
WO2011105145A1 (ja) 表示装置及びテレビ受信装置
KR101717652B1 (ko) 컬러필터층 및 이를 구비한 액정표시소자
JP2021068698A (ja) 照明装置、及び表示装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020