JP2015193885A - Steel sheet for can lid and manufacturing method therefor - Google Patents

Steel sheet for can lid and manufacturing method therefor Download PDF

Info

Publication number
JP2015193885A
JP2015193885A JP2014072335A JP2014072335A JP2015193885A JP 2015193885 A JP2015193885 A JP 2015193885A JP 2014072335 A JP2014072335 A JP 2014072335A JP 2014072335 A JP2014072335 A JP 2014072335A JP 2015193885 A JP2015193885 A JP 2015193885A
Authority
JP
Japan
Prior art keywords
less
plate thickness
cold rolling
rolling
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072335A
Other languages
Japanese (ja)
Inventor
多田 雅毅
Masaki Tada
雅毅 多田
克己 小島
Katsumi Kojima
克己 小島
裕樹 中丸
Hiroki Nakamaru
裕樹 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014072335A priority Critical patent/JP2015193885A/en
Publication of JP2015193885A publication Critical patent/JP2015193885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for can lid with high strength and high processability applicable to a can lid and especially suitable as a material for EOE.SOLUTION: A steel sheet for can lid having tensile strength of 500 MPa or more and breaking elongation of 10% or more is prepared by using a steel containing, by mass%, C: 0.070% or more and less than 0.080%, Si: 0.003% or more and 0.100% or less, Mn: 0.51% or more and 0.80% or less, P: 0.001% or more and 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: over 0.010% and 0.020% or less, and the balance Fe with inevitable impurities and adjusting an average crystal particle diameter in a rolling direction cross section to 5.0 μm or more, an elongation rate of a crystal particle to 2.0 or less and a difference between a Vickers hardness of a surface side and the Vickers hardness of an inner side in a specific range.

Description

本発明は、高強度高加工性の缶蓋用鋼板及びその製造方法に関するものである。   The present invention relates to a steel plate for can lids having high strength and high workability, and a method for producing the same.

飲料缶や食缶の蓋や底、3ピース缶の胴及び絞り缶等を製造する際に、DR(Double Reduce)材と呼ばれる鋼板が用いられる場合がある。焼鈍の後に再度冷間圧延してなるDR材は、焼鈍の後に軽圧下の調質圧延のみを施してなるSR(Single Reduce)材に比べて板厚を薄くすることが容易である。   A steel plate called a DR (Double Reduce) material may be used when manufacturing a lid or bottom of a beverage can or a food can, a three-piece can body, a drawn can, and the like. The DR material that is cold-rolled again after annealing is easier to reduce the plate thickness than an SR (Single Reduce) material that is subjected to only temper rolling under light pressure after annealing.

ところで、製缶コストを低下させるためには、まず、使用部材の重量を減らすことが考えられる。例えば、蓋においては材料の薄肉化などで軽量化を図ることができる。つまり、DR材を用いる等して、製造に使用する鋼板を薄くすると、製缶コストを低減することが可能となる。   By the way, in order to reduce the can manufacturing cost, first, it is conceivable to reduce the weight of the member used. For example, the lid can be reduced in weight by reducing the thickness of the material. That is, if the steel plate used for manufacturing is made thin by using a DR material or the like, the can manufacturing cost can be reduced.

薄くすることで製缶コストを低減させることができるが、蓋の強度を低下させないために、より高強度の鋼板を使用する必要がある。例えば、薄いDR材を使用する場合には、缶強度を確保するために、約500MPa以上の引張強度が必要となる。しかし、従来用いていた鋼板より薄肉高強度材を用いると、鋼板が加工に耐えられない場合がある。具体的には、従来から、ブランキング、シェル加工、カール加工(カーリング)をプレス成形で順次行って蓋が製造され、その後、蓋を缶胴に取り付けるため、あらかじめ蓋の外径部にカール加工をさらに施し、缶胴のフランジ部と蓋のカール加工部を巻き締めて、缶を密封する方法で缶が製造される。しかし、蓋の周辺部で行っているカール加工でシワが発生し加工性が低下する問題がある。   Although the can manufacturing cost can be reduced by reducing the thickness, it is necessary to use a higher-strength steel plate in order not to reduce the strength of the lid. For example, when using a thin DR material, a tensile strength of about 500 MPa or more is required to ensure the strength of the can. However, when a thin high-strength material is used rather than the steel plate used conventionally, a steel plate may be unable to endure processing. Specifically, conventionally, a lid is manufactured by sequentially performing blanking, shell processing, and curling (curling) by press molding, and then the outer diameter portion of the lid is curled in advance to attach the lid to the can body. The can is manufactured by a method in which the can is sealed by winding the flange portion of the can body and the curled portion of the lid. However, there is a problem that wrinkles are generated in the curling process performed on the periphery of the lid and the workability is lowered.

薄肉高強度材を用いて蓋を製造しようとすると、カール加工でブランク材より径が小さくなる縮径加工を実施するときに、周方向での座屈が発生する課題がある。この座屈が発生しにくいように、内型と外型を用いてカール加工を施す方法なども一部実施されている。しかし、新規のカール加工設備を導入するには多大な設備投資が必要である。   When trying to manufacture a lid using a thin high-strength material, there is a problem that buckling occurs in the circumferential direction when a diameter reduction process is performed in which the diameter is smaller than that of the blank material by curling. In order to prevent this buckling from occurring, a method of performing a curling process using an inner mold and an outer mold has been partially implemented. However, a large amount of capital investment is required to introduce a new curl processing facility.

また、DR材は焼鈍後に冷聞圧延を施すことで加工硬化が生じるため、薄くて硬い鋼板であるが、DR材は延性に乏しいため、SR材に比べて加工性に劣る。したがって、DR材を用いるためには、加工性の改善を求められる場合が特に多い。   The DR material is a thin and hard steel plate because work hardening occurs when cold rolling is performed after annealing, but the DR material is poor in workability compared to the SR material because the DR material is poor in ductility. Therefore, in order to use the DR material, there are many cases where improvement of workability is particularly required.

さらに、近年、サニタリーエンド以外に、缶切不要のEOE(Easy Open End)缶が普及してきている。EOEを製造する際には、タブを取り付けるためのリベットを張り出し加工および絞り加工によって成形する必要がある。この加工に要求される材料の延性は、引張試験における約10%の伸びに相当する。   Furthermore, in recent years, in addition to the sanitary end, EOE (Easy Open End) cans that do not require can openers have become widespread. When manufacturing an EOE, it is necessary to form a rivet for attaching a tab by overhanging and drawing. The ductility of the material required for this processing corresponds to about 10% elongation in the tensile test.

従来用いられてきたDR材では、上記のような延性と強度を両立することは困難である。しかし、現在、製缶コスト低減の観点から、EOEや飲料缶を製造するときにも、DR材を適用する要求が高まっている。   Conventionally used DR materials are difficult to achieve both the above ductility and strength. However, from the viewpoint of reducing can manufacturing costs, there is an increasing demand for applying DR materials when manufacturing EOE and beverage cans.

特許文献1によれば、低炭素鋼を用い、一次冷間圧延率85%以下に設定してDR材を製造することにより、r値が高く、フランジ加工性に優れた鋼板が得られる。   According to Patent Document 1, a steel sheet having a high r value and excellent flange workability can be obtained by using a low carbon steel and producing a DR material with a primary cold rolling rate of 85% or less.

特許文献2には、低炭素鋼の焼鈍工程において窒化処理を施すことにより、硬度と加工性を両立するDR材の製造方法が開示されている。   Patent Document 2 discloses a method for producing a DR material that achieves both hardness and workability by performing nitriding in an annealing process of low carbon steel.

特許文献3には、C:0.01〜0.08%、Mn:0.05〜0.50%、Al:0.01〜0.15%を含有する鋼スラブに対して、Ar変態点以下の熱間仕上げ圧延を行い、次いで冷間圧延を行った後、連続焼鈍により再結晶焼鈍を施し、その後5〜10%の圧延率でスキンパスして得た板厚0.21mm未満の薄鋼板を用いて、スコア残厚/鋼板厚の比が0.4以下となるスコア加工を行うイージーオープン缶蓋の製造方法が開示されている。 In Patent Document 3, an Ar 3 transformation is applied to a steel slab containing C: 0.01 to 0.08%, Mn: 0.05 to 0.50%, and Al: 0.01 to 0.15%. After performing hot finish rolling below the point, and then cold rolling, recrystallization annealing is performed by continuous annealing, and then the sheet thickness obtained by skin-passing at a rolling rate of 5 to 10% is less than 0.21 mm. An easy open can lid manufacturing method is disclosed in which score processing is performed using a steel plate so that the ratio of remaining score / steel plate thickness is 0.4 or less.

特許文献4には、C:0.04〜0.08%、Si:0.03%以下、Mn:0.05〜0.50%、P:0.02%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.008〜0.015%を含有し、鋼板中の(Ntotal−N as AlN)量が0.007%以上で、X≧10%及びY≧−0.05X+1.4の関係を満たす場合に(圧延方向の破断伸び値をX、平均値をY)、バッチ焼鈍DR鋼板同等以上の優れたフランジ加工性を有する溶接缶用連続焼鈍DR鋼板および製造方法が開示されている。   In Patent Document 4, C: 0.04 to 0.08%, Si: 0.03% or less, Mn: 0.05 to 0.50%, P: 0.02% or less, S: 0.02% Hereinafter, Al: 0.02 to 0.10%, N: 0.008 to 0.015%, the amount of (Ntotal-N as AlN) in the steel sheet is 0.007% or more, and X ≧ 10% And when Y ≧ −0.05X + 1.4 is satisfied (the breaking elongation value in the rolling direction is X and the average value is Y), the continuous annealing for welding cans has excellent flange workability equal to or higher than that of the batch-annealed DR steel sheet. A DR steel sheet and a manufacturing method are disclosed.

特許文献5には、C:0.02%以下、Si:0.05%以下、Mn:0.6%以下、S:0.020%以下、B:0.010〜0.020%、Al:0.010%以下、N:0.02%以下、O:0.010〜0.030%を含有する鋼板が開示されている。この鋼板ではリベット成形性を向上させるためにC量を低減させる。また、この鋼板ではBを0.01%以上添加して、B析出物の粒径を0.1〜20μmの範囲に制御することにより、リベット成形性の劣化も小さい。このように、特許文献5には、リベット成形性の劣化が小さく、開蓋性を顕著に向上させる缶用鋼板およびその製造方法、ならびにイージーオープン缶蓋が開示されている。   In Patent Document 5, C: 0.02% or less, Si: 0.05% or less, Mn: 0.6% or less, S: 0.020% or less, B: 0.010 to 0.020%, Al A steel sheet containing 0.010% or less, N: 0.02% or less, and O: 0.010 to 0.030% is disclosed. In this steel plate, the C content is reduced in order to improve the rivet formability. Moreover, in this steel plate, the deterioration of rivet formability is small by adding 0.01% or more of B and controlling the particle size of the B precipitate in the range of 0.1 to 20 μm. As described above, Patent Document 5 discloses a steel plate for cans, a method for manufacturing the same, and an easy open can lid, in which deterioration of rivet formability is small and the openability is remarkably improved.

特許文献6には、曲げ加工性に優れた缶蓋材およびその製造方法、特に内容物充填後、内圧が加わる陽圧缶の缶蓋材として好適に使用される缶蓋材およびその製造方法が開示されている。   Patent Document 6 discloses a can lid material excellent in bending workability and a manufacturing method thereof, particularly a can lid material suitably used as a can lid material of a positive pressure can to which an internal pressure is applied after filling the contents, and a manufacturing method thereof. It is disclosed.

特許文献7には、C:0.005%以下、Mn:0.3%以下およびSol.Al:0.003〜0.10%を含み、さらにNbおよびTiのうち1種又は2種を合計で0.003〜0.03%含有し、ロックウェル硬さ(HR30T)で57以下の鋼板が開示されている。引用文献7の鋼板によれば、ビッカース硬さ(Hv)が100〜220、スコア残厚(τ)が40〜80μm、及び250≦Hv+2.95t≦400の関係を満足するスコア加工部を備える開缶性の良好なイージーオープン蓋を成形できるとされている。   In Patent Document 7, C: 0.005% or less, Mn: 0.3% or less, and Sol. A steel plate containing Al: 0.003 to 0.10%, further containing one or two of Nb and Ti in a total of 0.003 to 0.03%, and Rockwell hardness (HR30T) of 57 or less. Is disclosed. According to the steel sheet of the cited document 7, the open section provided with a score processing portion satisfying the relationship of Vickers hardness (Hv) of 100 to 220, score remaining thickness (τ) of 40 to 80 μm, and 250 ≦ Hv + 2.95t ≦ 400. It is said that an easy open lid with good canability can be formed.

特開昭63−7336号公報JP 63-7336 A 特開2004−323905号公報JP 2004-323905 A 特開昭62−96618号公報Japanese Patent Laid-Open No. 62-96618 特開2007−177315号公報JP 2007-177315 A 特開平10−251799号公報JP-A-10-251799 特開平08−60284号公報Japanese Patent Application Laid-Open No. 08-60284 特開昭63−4040号公報JP 63-4040 A

しかしながら、上記従来技術は、いずれも以下に示す問題点がある。   However, each of the above conventional techniques has the following problems.

特許文献1に記載の製造方法では、一次冷間圧延率を小さくする必要があるため、熱間圧延の仕上げ厚の制約により、極薄の鋼板は製造できない。熱間圧延の仕上げ厚を小さくすると、仕上げ圧延温度が低くなり、所定の温度に保つことが困難である。   In the manufacturing method described in Patent Document 1, since it is necessary to reduce the primary cold rolling rate, an extremely thin steel sheet cannot be manufactured due to the restriction of the finished thickness of hot rolling. When the finish thickness of hot rolling is reduced, the finish rolling temperature is lowered, and it is difficult to maintain the predetermined temperature.

特許文献2に記載の製造方法では、再結晶が終了した後に窒化処理を施す必要があるため、連続焼鈍工程において窒化処理を施す場合でもラインスピードの低下や加熱炉長の増加などのコスト増が避けられない。   In the manufacturing method described in Patent Document 2, since it is necessary to perform nitriding after recrystallization is completed, even when nitriding is performed in the continuous annealing process, cost increases such as a decrease in line speed and an increase in the length of the heating furnace are caused. Unavoidable.

特許文献3および特許文献4に記載の製造方法ではMn量が0.05〜0.50%と低く抑えられており、薄肉化による耐圧強度確保のための高強度化に対応することができない。   In the manufacturing methods described in Patent Document 3 and Patent Document 4, the amount of Mn is suppressed to a low level of 0.05 to 0.50%, and it is not possible to cope with an increase in strength for securing a pressure resistance strength by thinning.

特許文献5に記載の製造方法ではBを0.010〜0.020%と多量に添加することが必要である。B酸化物が圧延時に異物として残ると表面欠陥が発生する場合がある。また、B窒化物となったときは、高強度化に有効な固溶N量が減少し、目標とする材料強度に到達することができない。   In the production method described in Patent Document 5, it is necessary to add B in a large amount of 0.010 to 0.020%. If the B oxide remains as a foreign object during rolling, surface defects may occur. Moreover, when it becomes B nitride, the amount of solute N effective for increasing the strength decreases, and the target material strength cannot be reached.

特許文献6に記載の製造方法では、アルミ合金を使用しているため、耐圧強度が300〜400MPaと低くなり、十分な強度を得ることができない。また、耐食性確保のための塗装を実施するために、熱処理をすると耐圧強度は低下し軟質化する。その結果、さらに缶の耐圧強度が低下する。   In the manufacturing method described in Patent Document 6, since an aluminum alloy is used, the pressure resistance is as low as 300 to 400 MPa, and sufficient strength cannot be obtained. In addition, when heat treatment is performed in order to carry out coating for ensuring corrosion resistance, the pressure strength is lowered and softened. As a result, the pressure resistance of the can is further reduced.

特許文献7に記載の製造方法では、ロックウェル硬さ(HR30T)が57以下で、目標としている引張強度550MPa(HR30Tで73)より低く、缶の耐圧強度に問題がある。   In the manufacturing method described in Patent Document 7, the Rockwell hardness (HR30T) is 57 or less, which is lower than the target tensile strength of 550 MPa (73 in HR30T), and there is a problem in the pressure resistance of the can.

本発明は、かかる事情に鑑みてなされたもので、缶の蓋に適用可能であり、特にEOE用の材料として好適である高強度高加工性の缶蓋用鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is applicable to a can lid, and particularly to provide a high-strength, high-workability steel plate for a can lid that is suitable as a material for EOE and a method for producing the same. With the goal.

発明者らは、上記課題を解決するために鋭意研究を行い下記の知見を得た。   The inventors have intensively studied to solve the above problems and have obtained the following knowledge.

高強度材で延性を確保するには、板厚の3/8深さから板厚4/8深さまでの間の断面のビッカース硬度と、表面から板厚の1/8深さまでの間の断面のビッカース硬度との差を所定の範囲にする必要があることを見出し、本発明を完成するに至った。   In order to ensure ductility with a high-strength material, the Vickers hardness of the cross section from 3/8 depth to 4/8 depth and the cross section from the surface to 1/8 depth of the thickness. The present inventors have found that it is necessary to make the difference from the Vickers hardness within a predetermined range, and have completed the present invention.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.070%以上0.080%未満、Si:0.003%以上0.10%以下、Mn:0.51%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.010%超0.020%以下を含有し、残部はFe及び不可避的不純物からなり、圧延方向断面において、平均結晶粒径が5.0μm以上、結晶粒の展伸度が2.0以下であり、上面側及び下面側が、下記不等式(I)及び/又は(II)を満たし、引張強度が500MPa以上であり、破断伸びが10%以上であることを特徴とする缶蓋用鋼板。
[不等式(I)]
(板厚の3/8深さから板厚4/8深さまでの間の断面の平均ビッカース硬度)−(表面から板厚の1/8深さまでの間の断面の平均ビッカース硬度)≧10 (I)
[不等式(II)]
(板厚の3/8深さから板厚4/8深さまでの間の断面の最大ビッカース硬度)−(表面から板厚の1/8深さまでの間の断面の最大ビッカース硬度)≧20 (II)
(2)質量%で、C:0.070%以上0.080%未満、Si:0.003%以上0.10%以下、Mn:0.51%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.010%超0.020%以下を含有し、残部はFe及び不可避的不純物からなる鋼をスラブとし、前記スラブに熱間圧延を施した後、620℃未満の温度で巻取り、前記巻取り後、合計の一次冷間圧延率が85%超かつ、一次冷間圧延の最終スタンド圧延率を30%以上として一次冷間圧延を行い、前記冷間圧延後、アンモニアガスの濃度が0.020vol%未満の還元雰囲気で焼鈍を行い、前記焼鈍後、20%以下の圧延率で二次冷間圧延を行うことを特徴とする缶蓋用鋼板の製造方法。
(1) By mass%, C: 0.070% to less than 0.080%, Si: 0.003% to 0.10%, Mn: 0.51% to 0.80%, P: 0.00. 001% to 0.100%, S: 0.001% to 0.020%, Al: 0.005% to 0.100%, N: more than 0.010% and 0.020% or less The balance is made of Fe and inevitable impurities. In the cross section in the rolling direction, the average crystal grain size is 5.0 μm or more, the degree of elongation of the crystal grains is 2.0 or less, and the upper surface side and the lower surface side are represented by the following inequality (I ) And / or (II), a tensile strength of 500 MPa or more, and a breaking elongation of 10% or more.
[Inequality (I)]
(Average Vickers hardness of cross section between 3/8 depth of plate thickness and 4/8 depth)-(Average Vickers hardness of cross section between 1/8 depth of plate thickness) ≧ 10 ( I)
[Inequality (II)]
(Maximum Vickers hardness of the cross section between 3 / 8th of the plate thickness and 4 / 8th of the plate thickness) − (Maximum Vickers hardness of the cross section between the surface and 1 / 8th of the plate thickness) ≧ 20 ( II)
(2) By mass%, C: 0.070% to less than 0.080%, Si: 0.003% to 0.10%, Mn: 0.51% to 0.80%, P: 0.00. 001% to 0.100%, S: 0.001% to 0.020%, Al: 0.005% to 0.100%, N: more than 0.010% and 0.020% or less The balance is made of steel consisting of Fe and inevitable impurities as a slab, and after hot rolling the slab, it is wound at a temperature of less than 620 ° C., and after the winding, the total primary cold rolling rate is 85%. The primary cold rolling is performed at a final stand rolling ratio of 30% or more in the primary cold rolling, and after the cold rolling, annealing is performed in a reducing atmosphere having a concentration of ammonia gas of less than 0.020 vol%, and the annealing is performed. After that, secondary cold rolling is performed at a rolling rate of 20% or less. Method of manufacturing a steel sheet for can lid to be.

本発明によれば、引張強度が500MPa以上でかつ破断伸びが10%以上の高強度高加工性の缶蓋用鋼板を得ることができる。その結果、EOEのリベット加工時に割れを生じにくい。また、本発明の缶蓋用鋼板はカール加工性が向上しているので、カール加工時にシワが発生しにくい。したがって、板厚の薄いDR材としても容易に缶蓋を製造可能となるから、缶蓋用鋼板の大幅な薄肉化が達成される。   According to the present invention, it is possible to obtain a steel plate for can lids having a high strength and a high workability having a tensile strength of 500 MPa or more and a breaking elongation of 10% or more. As a result, cracks are less likely to occur during EOE rivet processing. Moreover, since the steel plate for can lids of this invention has improved curl workability, it is hard to produce a wrinkle at the time of curl process. Therefore, since the can lid can be easily manufactured even as a DR material having a thin plate thickness, the steel plate for the can lid can be significantly thinned.

本発明によれば、B酸化物が原因となる表面欠陥や、B窒化物の生成による固溶N量の減少が原因となる材料強度の低下が生じにくい。   According to the present invention, the surface strength caused by the B oxide and the decrease in the material strength caused by the decrease in the amount of solid solution N due to the formation of the B nitride are unlikely to occur.

本発明では、再結晶が終了した後に窒化処理を施す必要がないため、これによるラインスピードの低下や加熱炉長の増加などのコスト増を避けることができる。   In the present invention, since it is not necessary to perform nitriding after recrystallization is completed, an increase in cost such as a decrease in line speed and an increase in the length of the heating furnace can be avoided.

本発明では、アルミ合金を使用する必要がないため、アルミ合金による耐圧強度の低下を抑えられる。   In this invention, since it is not necessary to use an aluminum alloy, the fall of the pressure strength by an aluminum alloy can be suppressed.

以下、本発明の実施形態を詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

本発明の缶蓋用鋼板は、引張強度が500MPa以上でかつ破断伸びが10%以上の缶蓋用鋼板である。   The steel plate for can lids of the present invention is a steel plate for can lids having a tensile strength of 500 MPa or more and an elongation at break of 10% or more.

本発明の缶蓋用銅板の成分組成について説明する。以下、成分の含有量を表す「%」は「質量%」を意味する。   The component composition of the copper plate for can lids of this invention is demonstrated. Hereinafter, “%” representing the content of a component means “% by mass”.

C:0.070%以上0.080%未満
本発明の缶蓋用鋼板においては、二次冷間圧延率を抑えて伸びを確保する一方、C量を多くすることで高強度を発揮する。C量が0.070%未満であると、必要な引張強度500MPaが得られないため、缶蓋用鋼板の薄肉化による顕著な経済効果を得ることが難しい。したがって、C量は0.070%以上とする。一方、C量が0.080%以上では缶蓋用鋼板が過剰に硬質となり、二次冷間圧延後の加工性の確保が困難になる。したがって、C量の上限は0.080%未満とする。
C: 0.070% or more and less than 0.080% In the steel plate for can lids of the present invention, the secondary cold rolling rate is suppressed to ensure elongation, while increasing the amount of C exhibits high strength. If the amount of C is less than 0.070%, the required tensile strength of 500 MPa cannot be obtained, so that it is difficult to obtain a remarkable economic effect by thinning the steel plate for can lids. Therefore, the C content is 0.070% or more. On the other hand, if the C content is 0.080% or more, the steel plate for can lids becomes excessively hard, and it becomes difficult to ensure workability after secondary cold rolling. Therefore, the upper limit of the C amount is less than 0.080%.

Si:0.003%以上0.100%以下
Si量が0.100%を超えると、表面処理性の低下、耐食性の劣化等の問題を引き起こすので、Si量の上限は0.100%とする。一方、Si量を0.003%未満とするには精錬コストが過大となるため、Si量の下限は0.003%とする。
Si: 0.003% or more and 0.100% or less When the Si amount exceeds 0.100%, problems such as deterioration of surface treatment property and deterioration of corrosion resistance are caused. Therefore, the upper limit of Si amount is 0.100%. . On the other hand, since the refining cost becomes excessive to make the Si amount less than 0.003%, the lower limit of the Si amount is set to 0.003%.

Mn:0.51%以上0.80%以下
Mnは、Sによる熱延中の赤熱脆性を防止し、結晶粒を微細化する作用を有するので、所望の材質を確保する上で必要な元素である。さらに、薄肉化した缶蓋用鋼板で強度を満足するには材料の高強度化が必要である。この高強度化に対応するためにはMn量を0.51%以上にすることが必要である。一方、Mnを多量に添加し過ぎると、耐食性が劣化し、また鋼板が過剰に硬質化するので、Mn量の上限は0.80%とする。
Mn: 0.51% or more and 0.80% or less Mn is an element necessary for securing a desired material because it prevents red heat embrittlement during hot rolling and refines crystal grains. is there. Furthermore, in order to satisfy the strength of the thinned steel plate for can lids, it is necessary to increase the strength of the material. In order to cope with this increase in strength, the amount of Mn needs to be 0.51% or more. On the other hand, if too much Mn is added, the corrosion resistance deteriorates and the steel sheet becomes excessively hardened, so the upper limit of the Mn content is 0.80%.

P:0.001%以上0.100%以下
Pは、鋼を硬質化させ、缶蓋用鋼板の加工性を悪化させると同時に、耐食性をも悪化させる有害な元素である。そのため、P量の上限は0.100%とする。一方、Pを0.001%未満とするには脱Pコストが過大となる。よって、P量の下限は0.001%とする。
P: 0.001% or more and 0.100% or less P is a harmful element that hardens steel and deteriorates the workability of the steel plate for can lids, and at the same time deteriorates the corrosion resistance. Therefore, the upper limit of the P amount is 0.100%. On the other hand, in order to make P less than 0.001%, the P removal cost becomes excessive. Therefore, the lower limit of the P content is 0.001%.

S:0.001%以上0.020%以下
Sは、鋼中で介在物として存在し、延性の低下、耐食性の劣化をもたらす有害な元素である。そのため、S量の上限は0.020%とする。一方、S量を0.001%未満とするには脱硫コストが過大となる。よって、S量の下限は0.001%とする。
S: 0.001% or more and 0.020% or less S is a harmful element that exists as an inclusion in steel and causes deterioration in ductility and deterioration in corrosion resistance. Therefore, the upper limit of the S amount is 0.020%. On the other hand, desulfurization cost becomes excessive to make the S amount less than 0.001%. Therefore, the lower limit of the S amount is 0.001%.

Al:0.005%以上0.100%以下
Alは、製鋼時の脱酸材として必要な元素である。Al量が少ないと、脱酸が不十分となり、介在物が増加し、缶蓋用鋼板の加工性が劣化する。Al量が0.005%以上であれば十分に脱酸が行われているとみなすことができる。一方、Al量が0.100%を超えると、アルミナクラスターなどに起因する表面欠陥の発生頻度が増加する。よって、Al量は0.005%以上0.100%以下とする。
Al: 0.005% or more and 0.100% or less Al is an element necessary as a deoxidizer during steelmaking. When the amount of Al is small, deoxidation becomes insufficient, inclusions increase, and the workability of the steel plate for can lid deteriorates. If the Al amount is 0.005% or more, it can be considered that deoxidation is sufficiently performed. On the other hand, when the Al content exceeds 0.100%, the occurrence frequency of surface defects due to alumina clusters and the like increases. Therefore, the Al content is 0.005% or more and 0.100% or less.

N:0.010%超0.020%以下
Nは多量に添加すると、熱間延性が劣化し、連続鋳造においてスラブの割れが発生する。よって、N量の上限は0.020%とする。なお、N量を0.010%以下とすると、必要な引張強度500MPaが得られないので、N量は0.010%超とする。
N: More than 0.010% and 0.020% or less When N is added in a large amount, the hot ductility deteriorates and cracking of the slab occurs in continuous casting. Therefore, the upper limit of the N amount is 0.020%. If the N content is 0.010% or less, the necessary tensile strength of 500 MPa cannot be obtained, so the N content exceeds 0.010%.

なお、残部はFeおよび不可避的不純物とする。   The balance is Fe and inevitable impurities.

続いて、本発明の缶蓋用鋼板の性質や組織等について説明する。本発明の缶蓋用鋼板は、以下の性質や組織等を有することで、強度と優れた加工性を両立できる。   Then, the property, structure | tissue, etc. of the steel plate for can lids of this invention are demonstrated. The steel plate for can lids of this invention can have both strength and excellent workability by having the following properties and structures.

先ず、本発明の缶蓋用鋼板の機械的性質について説明する。本発明の缶蓋用鋼板の引張強度は、500MPa以上である。引張強度が500MPa未満であると、缶蓋としての強度を確保しながら、顕著な経済効果が得られるほど鋼板を薄くすることができない。よって、引張強度は500MPa以上とする。   First, the mechanical property of the steel plate for can lids of this invention is demonstrated. The tensile strength of the steel plate for can lids of this invention is 500 Mpa or more. When the tensile strength is less than 500 MPa, the steel sheet cannot be made thin enough to obtain a remarkable economic effect while securing the strength as a can lid. Therefore, the tensile strength is 500 MPa or more.

本発明の缶蓋用鋼板の破断伸びは10%以上である。破断伸びが10%未満であると、EOEに適用した場合のリベット加工の際に割れを生じる。   The breaking elongation of the steel plate for can lids of the present invention is 10% or more. If the elongation at break is less than 10%, cracking occurs during rivet processing when applied to EOE.

なお、上記引張強度および上記破断伸びは「JIS Z 2241」に示される金属材料引張試験方法により測定することができる。   The tensile strength and the elongation at break can be measured by a metal material tensile test method shown in “JIS Z 2241”.

次に、本発明の缶蓋用鋼板の結晶粒について説明する。圧延方向断面における平均結晶粒径は5.0μm以上とする。本発明の缶蓋用鋼板の最終的な機械的性質には結晶粒の状態が大きく影響する。圧延方向断面における平均結晶粒径が5.0μm未満であると、鋼板の伸びが不足し、加工性を損なうことになる。また、結晶粒の粗大化は引張強度を低下させる場合があるため、13μm以下が好ましい。   Next, the crystal grain of the steel plate for can lids of this invention is demonstrated. The average crystal grain size in the cross section in the rolling direction is 5.0 μm or more. The final mechanical properties of the steel plate for can lid of the present invention are greatly influenced by the state of crystal grains. If the average grain size in the cross section in the rolling direction is less than 5.0 μm, the elongation of the steel sheet is insufficient, and the workability is impaired. Moreover, since coarsening of crystal grains may reduce the tensile strength, it is preferably 13 μm or less.

また、本発明では、圧延方向断面における結晶粒の展伸度を2.0以下とする。展伸度とは、「JIS G 0202」に示されるように、加工によってフェライト結晶粒が展伸された度合いを表す値であり、e:展伸度、n1:結晶粒の展伸された方向に直角な一定長さの線分によって切断された結晶粒の数、n2:結晶粒の展伸された方向に平行な n1を求めた線分と同一長さの線分によって切断された結晶粒の数としたとき、e=n1/n2によって計算する。圧延方向断面における結晶粒の展伸度が2.0を超えると、フランジ加工性やネック加工性に重要な圧延直角方向の伸びが不足する。二次冷間圧延の圧延率とともに展伸度は増加するが、20%程度までの二次冷間圧延率で上記の展伸度に抑えるためには、鋼が0.070%以上のCを含んでいる必要がある。すなわち、Cが0.070%未満であると熱間圧延後に析出するセメンタイト粒の数が少なくなり、結果的に固溶Cが多く残存する。固溶Cは焼鈍時の粒成長を抑えるため、一次冷間圧延によって扁平した結晶粒の形状が残存し、展伸度は大きくなる。展伸度の下限値は特に限定されないが、圧延方向と圧延直角方向の材質の違いが顕著になるという理由で0.5以上が好ましい。   Moreover, in this invention, the expansion degree of the crystal grain in a rolling direction cross section shall be 2.0 or less. As shown in “JIS G 0202”, the degree of extension is a value representing the degree of expansion of ferrite crystal grains by processing, e: degree of extension, n1: direction in which the crystal grains are extended. The number of crystal grains cut by a line segment of a certain length perpendicular to n, n2: crystal grains cut by a line segment of the same length as the line segment for which n1 parallel to the direction in which the crystal grains are expanded Where e = n1 / n2. When the elongation of the crystal grains in the cross section in the rolling direction exceeds 2.0, the elongation in the direction perpendicular to the rolling, which is important for flange workability and neck workability, is insufficient. Although the elongation increases with the rolling ratio of the secondary cold rolling, in order to suppress the above-described elongation at the secondary cold rolling ratio of up to about 20%, the steel should have a C content of 0.070% or more. Need to contain. That is, when C is less than 0.070%, the number of cementite grains precipitated after hot rolling decreases, and as a result, a large amount of solid solution C remains. Since solute C suppresses the grain growth during annealing, the shape of the crystal grains flattened by the primary cold rolling remains, and the degree of elongation increases. The lower limit value of the degree of extension is not particularly limited, but is preferably 0.5 or more because the difference in material between the rolling direction and the direction perpendicular to the rolling becomes significant.

なお、上記圧延方向断面における平均結晶粒径および上記圧延方向断面における結晶粒の数は「JIS G 0551」に示される結晶粒度の顕微鏡試験方法により測定することができる。   In addition, the average crystal grain size in the rolling direction section and the number of crystal grains in the rolling direction section can be measured by the microscopic test method for the crystal grain size shown in “JIS G 0551”.

本発明の缶蓋用鋼板は、上面側及び下面側が、以下の不等式(I)及び不等式(II)を満たす状態にある。
[不等式(I)]
(板厚の3/8深さから板厚4/8深さまでの間の断面の平均ビッカース硬度)−(表面から板厚の1/8深さまでの間の断面の平均ビッカース硬度)≧10 (I)
[不等式(II)]
(板厚の3/8深さから板厚4/8深さまでの間の断面の最大ビッカース硬度)−(表面から板厚の1/8深さまでの間の断面の最大ビッカース硬度)≧20 (II)
また、ビッカース硬度は「JIS Z 2244」に示される硬度試験方法により測定することができる。
In the steel plate for can lid of the present invention, the upper surface side and the lower surface side satisfy the following inequality (I) and inequality (II).
[Inequality (I)]
(Average Vickers hardness of cross section between 3/8 depth of plate thickness and 4/8 depth)-(Average Vickers hardness of cross section between 1/8 depth of plate thickness) ≧ 10 ( I)
[Inequality (II)]
(Maximum Vickers hardness of the cross section between 3 / 8th of the plate thickness and 4 / 8th of the plate thickness) − (Maximum Vickers hardness of the cross section between the surface and 1 / 8th of the plate thickness) ≧ 20 ( II)
Further, the Vickers hardness can be measured by a hardness test method shown in “JIS Z 2244”.

不等式(I)、(II)において、それぞれ硬度の上限値は特に限定されないが、それぞれ、表層が軟質化すると蓋を取り付ける巻締時に鋼板表面に傷が発生するという理由で200以下が好ましい。   In the inequalities (I) and (II), the upper limit value of the hardness is not particularly limited. However, when the surface layer is softened, the upper limit value is preferably 200 or less because the surface of the steel sheet is scratched when the lid is attached.

本発明の缶蓋用鋼板は、上面側及び下面側の表面が軟質であり、内部がそれより硬質であることが特徴の1つである。不等式(I)、(II)はこのことを表す。なお、上面側の表面及び下面側の表面は、同様の性質を有する。したがって、いずれも軟質である。   One feature of the steel plate for can lids of the present invention is that the upper and lower surfaces are soft and the inside is harder. Inequalities (I) and (II) represent this. The upper surface and the lower surface have similar properties. Therefore, both are soft.

缶用鋼板の中でも缶蓋用鋼板は、大きく曲げられる等の特に大きな加工が施される。例えば、曲げの際には鋼板の表面側に強い引張力や圧縮力が加わるため、表面側が硬いと、鋼板が缶蓋への加工が困難になる。   Among the steel plates for cans, the steel plates for can lids are subjected to particularly large processing such as being greatly bent. For example, when bending, a strong tensile force or compressive force is applied to the surface side of the steel plate, and if the surface side is hard, it becomes difficult to process the steel plate into a can lid.

なお、鋼板表面の硬度と鋼板内部の硬度は、測定方法を統一するために、いずれも、鋼板を樹脂に埋め込み、鏡面に研磨した鋼板断面で行った。すなわち、鋼板表面の硬度は、表面から板厚の1/8の深さまでの間での平均情報となるように、板厚の1/16の深さを中心としたビッカース硬度測定を10点で行い、不等式(I)では平均値を用い、不等式(II)では、最大値を用いた。また、鋼板内部の硬度は、板厚の3/8の深さから板厚の4/8の深さまでの間での平均情報となるように、板厚の7/16の深さを中心としたビッカース硬度測定を10点で行い、不等式(I)では平均値を用い、不等式(II)では、最大値を用いた。鋼板の表裏(上面側、下面側)とも同様に測定を行った。   In addition, in order to unify the measuring method, both the hardness of the steel plate surface and the hardness inside the steel plate were performed on a steel plate cross section in which the steel plate was embedded in a resin and polished to a mirror surface. That is, the hardness of the steel sheet surface is 10 points of Vickers hardness measurement centered on 1 / 16th of the plate thickness so as to be average information from the surface to 1 / 8th of the plate thickness. The average value was used in inequality (I) and the maximum value was used in inequality (II). Further, the hardness inside the steel sheet is centered on a depth of 7/16 of the plate thickness so that average information is obtained from a depth of 3/8 of the plate thickness to a depth of 4/8 of the plate thickness. The Vickers hardness measurement was performed at 10 points, the average value was used in inequality (I), and the maximum value was used in inequality (II). Measurements were similarly performed on the front and back surfaces (upper surface side and lower surface side) of the steel sheet.

また、不等式(I)及び(II)の両方を満たす場合、上面側及び下面側のいずれについても、表面側の平均結晶粒径、内部側の平均結晶粒径が以下の不等式(III)を満たす関係にあると好ましい。以下の不等式(III)を満たせば、缶蓋用鋼板は強度と優れた加工性を特に両立しやすいものとなる。
[不等式(III)]
(表面から板厚の1/8の深さまでの間の平均結晶粒径)−(板厚の3/8の深さから板厚の4/8の深さまでの間の平均結晶粒径)≧1.0μm (III)
なお、平均結晶粒径は、JIS G 0551に示される、結晶粒度の顕微鏡試験方法により測定することができる。
When both inequality formulas (I) and (II) are satisfied, the average crystal grain size on the surface side and the average crystal grain size on the inner side satisfy the following inequality (III) for both the upper surface side and the lower surface side. It is preferable to have a relationship. If the following inequality (III) is satisfied, the steel plate for can lids is particularly easy to achieve both strength and excellent workability.
[Inequality (III)]
(Average crystal grain size from the surface to 1 / 8th of the plate thickness) − (Average crystal grain size between 3 / 8th of the plate thickness and 4 / 8th of the plate thickness) ≧ 1.0 μm (III)
The average crystal grain size can be measured by a crystal grain size microscopic test method shown in JIS G 0551.

不等式(III)において平均結晶粒径の差の上限は特に限定されないが、表層粒が粗大化すると表面に目視で確認できる凹凸が生じる梨地肌(オレンジピール)が発生するという理由で13μm以下が好ましい。   In the inequality (III), the upper limit of the difference in the average crystal grain size is not particularly limited, but is preferably 13 μm or less because the surface grain (orange peel) in which irregularities that can be visually confirmed are generated when the surface layer grains are coarsened. .

ここで、平均結晶粒径は、圧延方向鋼板断面における平均結晶粒径とし、「JIS G 0551」に記載の直線試験線による切断法により測定した。   Here, the average crystal grain size was defined as the average crystal grain size in the rolling direction steel plate cross section, and was measured by a cutting method using a linear test line described in “JIS G 0551”.

また、不等式(I)及び(II)の両方を満たす場合、上面側及び下面側のいずれについても、表面側の平均N量(窒素原子の含有量)、内部側の平均N量が以下の不等式(IV)を満たす関係にあることが好ましい。以下の不等式(IV)を満たすことが、缶蓋用鋼板の強度と優れた加工性の両立に大きく寄与する。特に、不等式(IV)を満たすことは加工性の改善に寄与する。
[不等式(IV)]
(板厚の3/8の深さから板厚の4/8の深さまでの間の平均N量)−(表面から板厚の1/8の深さまでの間の平均N量)≧10ppm (IV)
なお、平均N量の測定は以下の方法で行った。先ず、表面から板厚の1/8の深さまでを電解研磨し、研磨液に含まれる平均N量を原子吸光法で分析した。次いで、板厚の1/8の深さから板厚の3/8の深さまで電解研磨を行い、研磨液を洗い流すために洗浄を行った。続けて、板厚の3/8の深さから板厚の4/8の深さまでの間の電解研磨を行い、研磨液中に含まれる平均N量を原子吸光法で分析した。
When both inequality formulas (I) and (II) are satisfied, the average N amount on the surface side (content of nitrogen atoms) and the average N amount on the inner side are the following inequalities for both the upper surface side and the lower surface side. It is preferable that the relationship satisfies (IV). Satisfaction of the following inequality (IV) greatly contributes to both the strength of the steel plate for can lids and excellent workability. In particular, satisfying inequality (IV) contributes to the improvement of workability.
[Inequality (IV)]
(Average N amount between 3 / 8th of the plate thickness and 4 / 8th of the plate thickness) − (Average N amount between the surface and 1 / 8th of the plate thickness) ≧ 10 ppm ( IV)
The average N amount was measured by the following method. First, electrolytic polishing was performed from the surface to a depth of 1/8 of the plate thickness, and the average N amount contained in the polishing liquid was analyzed by an atomic absorption method. Next, electrolytic polishing was performed from a depth of 1/8 of the plate thickness to a depth of 3/8 of the plate thickness, and cleaning was performed to wash away the polishing liquid. Subsequently, electrolytic polishing was performed from a depth of 3/8 of the plate thickness to a depth of 4/8 of the plate thickness, and the average amount of N contained in the polishing liquid was analyzed by atomic absorption spectrometry.

不等式(IV)において平均N量の差の上限は特に限定されないが、平均N量の差を大きくするためには、鋼中に組成分布ができるようにNを拡散させることが必要となり、製造コストが増大するという理由で200ppm以下が好ましい。   In the inequality (IV), the upper limit of the difference in the average N amount is not particularly limited, but in order to increase the difference in the average N amount, it is necessary to diffuse N so that the composition distribution is formed in the steel, and the production cost 200 ppm or less is preferable for the reason that increases.

また、不等式(I)及び(II)の両方を満たす場合、上面側及び下面側のいずれについても、表面側の平均窒化物数密度が以下の不等式(V)又は(VI)を満たす関係にあることが好ましい。以下の不等式(V)又は(VI)を満たせば、缶蓋用鋼板において、強度と優れた加工性を両立しやすくなる。特に、不等式(V)や(VI)を満たすことは加工性の改善に寄与する。
[不等式(V)]
(表面から板厚の1/8の深さまでの間の平均窒化物数密度)<(表面から板厚の1/4の深さまでの間の平均窒化物数密度) (V)
[不等式(VI)]
(表面から板厚の1/20の深さまでの間の平均窒化物数密度)/(表面から板厚の1/4の深さまでの間の平均窒化物数密度)<1.5 (VI)
ただし、不等式(V)、(VI)において、平均窒化物数密度は直径0.02μm以上1.0μm以下の窒化物に関する。
Further, when both inequality (I) and (II) are satisfied, the average nitride number density on the surface side satisfies the following inequality (V) or (VI) for both the upper surface side and the lower surface side. It is preferable. If the following inequality (V) or (VI) is satisfied, the steel sheet for can lids can easily achieve both strength and excellent workability. In particular, satisfying the inequalities (V) and (VI) contributes to the improvement of workability.
[Inequalities (V)]
(Average Nitride Number Density from Surface to 1/8 Depth of Plate Thickness) <(Average Nitride Number Density from Surface to 1/4 Depth of Plate Thickness) (V)
[Inequality (VI)]
(Average nitride number density from surface to 1/20 of the plate thickness) / (Average nitride number density from surface to 1/4 of the plate thickness) <1.5 (VI)
However, in the inequalities (V) and (VI), the average nitride number density relates to a nitride having a diameter of 0.02 μm to 1.0 μm.

ここで、平均窒化物数密度の測定は、所定の位置までシュウ酸などで化学研磨した後、SPEED法を用いて10μm電解し、抽出レプリカを作製して、TEMを用いて1μm四方の単位視野あたりの窒化物の個数を測定した。窒化物は、EDXを用いて分析を行い同定した。   Here, the average nitride number density is measured by chemical polishing up to a predetermined position with oxalic acid and the like, electrolysis of 10 μm using the SPEED method, producing an extracted replica, and using a TEM, a unit field of 1 μm square The number of nitrides per unit was measured. The nitride was identified by analysis using EDX.

また、不等式(I)及び(II)の両方を満たす場合、鋼板中に固溶する固溶Cが51ppm以上であることが好ましい。ここで、固溶Cの量は内部摩擦のピークより算出した。固溶Cの量が51ppm以上であれば、強度を高めやすいため好ましい。なお、ppmは質量ppmを意味する。   Moreover, when satisfy | filling both inequality (I) and (II), it is preferable that the solid solution C which dissolves in a steel plate is 51 ppm or more. Here, the amount of solute C was calculated from the peak of internal friction. If the amount of solute C is 51 ppm or more, it is preferable because the strength is easily increased. In addition, ppm means mass ppm.

次に、本発明の缶蓋用鋼板の製造方法の一例について説明する。   Next, an example of the manufacturing method of the steel plate for can lids of this invention is demonstrated.

本発明の缶蓋用鋼板は、連続鋳造によって製造された上記組成からなる鋼スラブを用い、熱間圧延を行った後に620℃未満の温度で巻き取り、次いで、合計の一次冷間圧延率が85%超の冷間圧延を行い、引き続きアンモニアガスの濃度が0.020vol%未満の還元雰囲気で焼鈍を行い、次いで、20%以下の圧延率で二次冷間圧延を行う方法で製造される。   The steel plate for can lid of the present invention uses a steel slab having the above composition produced by continuous casting, and after hot rolling, it is wound at a temperature of less than 620 ° C., and then the total primary cold rolling rate is It is manufactured by a method of performing cold rolling exceeding 85%, subsequently performing annealing in a reducing atmosphere where the concentration of ammonia gas is less than 0.020 vol%, and then performing secondary cold rolling at a rolling rate of 20% or less. .

通常、一回の冷間圧延のみでは顕著な経済効果が得られるような薄い板厚とすることは困難である。すなわち、一回の冷間圧延で薄い板厚を得るには圧延機への負荷が過大であり、設備能力によっては不可能である。例えば、最終板厚を0.15mmとする場合には、熱間圧延後の板厚を2.0mmとすると、92.5%と大きな一次冷間圧延率が必要となる。   Usually, it is difficult to obtain a thin plate thickness that can provide a remarkable economic effect by only one cold rolling. That is, in order to obtain a thin plate thickness by one cold rolling, the load on the rolling mill is excessive, and it is impossible depending on the equipment capacity. For example, when the final plate thickness is 0.15 mm, the primary cold rolling rate as large as 92.5% is required when the plate thickness after hot rolling is 2.0 mm.

また、冷間圧延後の板厚を小さくするために熱間圧延の段階で通常よりも薄く圧延することも考えられるが、熱間圧延の圧延率を大きくすると、圧延中の鋼板の温度低下が大きくなり、所定の仕上げ圧延温度を設定しにくくなる。さらに、焼鈍前の板厚を小さくすると、連続焼鈍を施す場合は、焼鈍中に鋼板の破断や変形等のトラブルが生じる可能性が大きくなる。これらの理由により、本発明においては焼鈍後に二回目の冷間圧延を施す方法で好適に極薄の鋼板を得ることができる。以下、好ましい製造条件について、その限定理由を説明する。   In order to reduce the sheet thickness after cold rolling, it is conceivable that rolling is performed thinner than usual in the hot rolling stage, but if the rolling rate of hot rolling is increased, the temperature of the steel sheet during rolling is decreased. It becomes large and it becomes difficult to set a predetermined finish rolling temperature. Furthermore, if the plate thickness before annealing is reduced, when continuous annealing is performed, the possibility of troubles such as breakage and deformation of the steel plate during annealing increases. For these reasons, in the present invention, an ultrathin steel plate can be suitably obtained by a method of performing the second cold rolling after annealing. Hereinafter, the reasons for limitation of preferable manufacturing conditions will be described.

熱間圧延後の巻き取り温度:620℃未満
熱間圧延後の巻き取り温度が620℃以上であると、形成するパーライト組織が粗大となり、これが脆性破壊の起点となるために局部伸びが低下して10%以上の破断伸びが得られない。よって、熱間圧延後の巻き取り温度は620℃未満とする。より好ましくは、560℃〜620℃である。
Winding temperature after hot rolling: less than 620 ° C. If the winding temperature after hot rolling is 620 ° C. or more, the pearlite structure to be formed becomes coarse, and this becomes the starting point of brittle fracture, so the local elongation decreases. Thus, the elongation at break of 10% or more cannot be obtained. Therefore, the coiling temperature after hot rolling is less than 620 ° C. More preferably, it is 560 degreeC-620 degreeC.

一次冷間圧延率(一次冷間圧延の合計):85%超
本発明では一次冷間圧延において、複数のスタンドに通す圧延を行う。一次冷間圧延率の合計が小さい場合、最終的に極薄の缶蓋用鋼板を得るために熱間圧延と二次冷間圧延の圧延率を大きくする必要がある。熱間圧延率を大きくすることは上述の理由から好ましくなく、二次冷間圧延率は後述する理由により制限する必要がある。以上の理由により、一次冷間圧延率の合計を85%以下とすると、本発明の缶蓋用鋼板の製造が困難となる。したがって、一次冷間圧延率の合計は85%超とする。より好ましくは、90〜92%である。
Primary cold rolling rate (total of primary cold rolling): more than 85% In the present invention, rolling is performed through a plurality of stands in the primary cold rolling. When the sum of the primary cold rolling rates is small, it is necessary to increase the rolling rates of hot rolling and secondary cold rolling in order to finally obtain a very thin steel plate for can lids. Increasing the hot rolling rate is not preferable for the above-described reason, and the secondary cold rolling rate needs to be limited for the reason described later. For the above reasons, if the total of the primary cold rolling reductions is set to 85% or less, it becomes difficult to manufacture the steel plate for can lids of the present invention. Therefore, the total of the primary cold rolling ratio is over 85%. More preferably, it is 90 to 92%.

一次冷間圧延の最終スタンド圧延率:30%以上
缶蓋用鋼板の表面側を粗大粒として軟質化するためには最終スタンドの圧延率を大きくし、缶蓋用鋼板の表面側に歪を導入することによって、焼鈍時のフェライト粒成長を促進する。一次冷間圧延の最終スタンド圧延率を30%以上とすれば、内部側と比較して表面側の結晶粒径を1.0μm以上粗大化させることができる。
Final stand rolling ratio of primary cold rolling: 30% or more In order to soften the surface side of the steel plate for can lids as coarse grains, the rolling rate of the final stand is increased and strain is introduced into the surface side of the steel plate for can lids. By doing so, the ferrite grain growth at the time of annealing is promoted. If the final stand rolling rate of primary cold rolling is 30% or more, the crystal grain size on the surface side can be coarsened by 1.0 μm or more compared to the inner side.

焼鈍
焼鈍では、缶蓋用鋼板の表面側の窒化を抑制するために、還元雰囲気中のアンモニアガスの濃度を0.020vol%未満とする。アンモニアガスが多いと鋼板の表層が窒化して硬質化するという問題が生じるからである。アンモニアガス濃度は、好ましくは0.018vol%以下であり、より好ましくは0.016vol%以下である。焼鈍における還元雰囲気には水素ガス、窒素ガスを含むことが好ましい。
Annealing In order to suppress nitriding of the surface side of the steel plate for can lids, the concentration of ammonia gas in the reducing atmosphere is set to less than 0.020 vol%. This is because a large amount of ammonia gas causes a problem that the surface layer of the steel sheet is nitrided and hardened. The ammonia gas concentration is preferably 0.018 vol% or less, more preferably 0.016 vol% or less. The reducing atmosphere in the annealing preferably contains hydrogen gas and nitrogen gas.

意図的にアンモニアガスを加えなくても、還元雰囲気中にアンモニアガスが発生する。このとき、還元雰囲気中のアンモニアガスの量を調整するためには、還元雰囲気中の水素ガスの分圧、窒素ガスの分圧、均熱温度等の条件を調整すればよい。例えば、アンモニアガスの量が所望の範囲よりも多すぎる場合には、水素ガスの分圧をより小さく変化させることで、還元雰囲気中のアンモニアガスの量を低下させることができる。また、窒素ガスの分圧をより小さくすることで、還元雰囲気中のアンモニアガスの量を低下させることができる。また、均熱温度をより高くすることで、還元雰囲気中のアンモニアガスの量を低下させることができる。   Even if ammonia gas is not intentionally added, ammonia gas is generated in the reducing atmosphere. At this time, in order to adjust the amount of ammonia gas in the reducing atmosphere, conditions such as the partial pressure of hydrogen gas, the partial pressure of nitrogen gas, and the soaking temperature in the reducing atmosphere may be adjusted. For example, when the amount of ammonia gas is more than the desired range, the amount of ammonia gas in the reducing atmosphere can be reduced by changing the partial pressure of hydrogen gas to be smaller. Moreover, the amount of ammonia gas in the reducing atmosphere can be reduced by reducing the partial pressure of nitrogen gas. Further, by increasing the soaking temperature, the amount of ammonia gas in the reducing atmosphere can be reduced.

また、焼鈍により再結晶が完了する必要がある。操業効率および薄鋼板の焼鈍中の破断防止の観点から均熱温度は600〜750℃とすることが好ましい。   Moreover, it is necessary to complete recrystallization by annealing. From the viewpoint of operation efficiency and prevention of breakage during annealing of the thin steel plate, the soaking temperature is preferably 600 to 750 ° C.

二次冷間圧延率:20%以下
二次冷間圧延率は20%以下とする。二次冷間圧延率を20%超とすると、二次冷間圧延による加工硬化が過大となり、10%以上の破断伸びが得られなくなる。したがって、二次冷間圧延率は20%以下とする。好ましくは18%以下、より好ましくは15%以下である。また、二次冷間圧延率の下限は特に限定されないが、1.0%以上であることが安定的に製造可能という理由で好ましい。
Secondary cold rolling rate: 20% or less The secondary cold rolling rate is 20% or less. If the secondary cold rolling rate exceeds 20%, work hardening by secondary cold rolling becomes excessive, and a breaking elongation of 10% or more cannot be obtained. Therefore, the secondary cold rolling rate is 20% or less. Preferably it is 18% or less, More preferably, it is 15% or less. The lower limit of the secondary cold rolling rate is not particularly limited, but is preferably 1.0% or more for the reason that it can be stably produced.

缶蓋の製造
二次冷間圧延以降は、めっき等の工程を常法通り行い、その後、缶蓋に成形する。そのときの縮径率Rは、カール成形前の蓋外径D1(mm)とカール成形後の蓋外径D2(mm)よりR=(D1−D2)/D1]×100より算出できる。
Manufacture of can lids After secondary cold rolling, processes such as plating are performed as usual, and then formed into can lids. The diameter reduction ratio R at that time can be calculated from R = (D1−D2) / D1] × 100 from the lid outer diameter D1 (mm) before curl molding and the lid outer diameter D2 (mm) after curl molding.

縮径率は0.3〜10%とすることが好ましい。縮径率が0.3%より小さくなると周方向に均一に加工することが難しくなる場合がある。縮径率が10%より大きくなるとカール部が大きくなりすぎて蓋として巻き締めを行うのが困難となる場合がある。   The reduction ratio is preferably 0.3 to 10%. If the diameter reduction ratio is smaller than 0.3%, it may be difficult to uniformly process in the circumferential direction. When the diameter reduction ratio is larger than 10%, the curled portion becomes too large, and it may be difficult to perform winding as a lid.

板厚:0.1〜0.34mm
板厚は0.1〜0.34mmとすることが好ましい。板厚が0.1mmより小さくなると冷間圧延の負荷が大きくなり圧延することが困難になる場合がある。板厚が0.34mmより大きくなると、板厚が厚くなりすぎて缶軽量化のメリットが損なわれる場合がある。引張強度YP(MPa)と板厚t(mm)が以下の関係を満たすことが好ましい。
5.5≦YP・t≦65
Plate thickness: 0.1-0.34mm
The plate thickness is preferably 0.1 to 0.34 mm. If the plate thickness is smaller than 0.1 mm, the cold rolling load increases and it may be difficult to roll. When the plate thickness is larger than 0.34 mm, the plate thickness becomes too thick, and the merit of reducing the weight of the can may be impaired. It is preferable that the tensile strength YP (MPa) and the plate thickness t (mm) satisfy the following relationship.
5.5 ≦ YP · t 2 ≦ 65

表1に示す成分組成を含有し、残部がFe及び不可避的不純物からなる鋼を実機転炉で溶製し、連続鋳造法により鋼スラブを得た。得られた鋼スラブを1230℃で再加熱した後、表2に示す条件で熱間圧延、一次冷間圧延を施した。熱間圧延の仕上げ圧延温度は890℃とし、圧延後には酸洗を施している。次いで、一次冷間圧延の後、均熱温度670℃、均熱時間20秒の連続焼鈍および表2に示す条件で二次冷間圧延を施した。   Steel containing the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter, and a steel slab was obtained by a continuous casting method. After the obtained steel slab was reheated at 1230 ° C., hot rolling and primary cold rolling were performed under the conditions shown in Table 2. The finish rolling temperature of hot rolling is 890 ° C., and pickling is performed after rolling. Subsequently, after the primary cold rolling, the secondary cold rolling was performed under the conditions shown in Table 2 and continuous annealing at a soaking temperature of 670 ° C. and a soaking time of 20 seconds.

以上により得られた鋼板にSnめっきを両面に連続的に施して、片面Sn付着量2.8g/mのめっき鋼板(ブリキ)を得た。このブリキを用いた試験について以下に示し、その試験結果を表2、表3、表4に示す。 The steel plate obtained as described above was continuously subjected to Sn plating on both surfaces to obtain a plated steel plate (tinplate) having a single-sided Sn deposition amount of 2.8 g / m 2 . The test using this tinplate is shown below, and the test results are shown in Table 2, Table 3, and Table 4.

引張強度及び破断伸びの評価
以上により得られたブリキに対して、210℃、10分の塗装焼付け相当の熱処理を行った後、引張試験を行った。引張試験は、JIS5号サイズの引張試験片を用いて、引張速度10mm/minで引張強度(破断強度)および破断伸びを測定した。結果を表2に示した。
Evaluation of Tensile Strength and Breaking Elongation The tinplate obtained as described above was subjected to a heat treatment equivalent to 210 ° C. for 10 minutes and then subjected to a tensile test. In the tensile test, tensile strength (breaking strength) and elongation at break were measured at a tensile speed of 10 mm / min using a JIS No. 5 size tensile test piece. The results are shown in Table 2.

平均結晶粒径(圧延方向断面)及び展伸度の評価
めっき鋼板のサンプルを採取し、圧延方向断面における、平均結晶粒径および結晶粒の展伸度を測定した。圧延方向断面における平均結晶粒径および結晶粒の展伸度は、めっき鋼板の垂直断面を研磨しナイタルエッチングにより粒界を現出させた上で、「JIS G 0551」に記載の直線試験線による切断法により測定した。結果を表2に示した。
Evaluation of Average Crystal Grain Size (Rolling Direction Cross Section) and Elongation Degree A sample of a plated steel sheet was taken, and the average crystal grain size and the elongation degree of the crystal grains in the rolling direction cross section were measured. The average crystal grain size and the degree of elongation of the crystal grains in the cross section in the rolling direction were determined by polishing the vertical cross section of the plated steel sheet and revealing the grain boundary by night etching, followed by the linear test line described in “JIS G 0551” It was measured by the cutting method by The results are shown in Table 2.

ビッカース硬度の測定
鋼板を樹脂に埋め込み、鏡面に研磨した鋼板断面で、板厚方向の所定の位置にビッカース圧痕が入るようにして、荷重25gfで10点測定した値の平均値と最大値を求めた。
Measurement of Vickers hardness An average value and maximum value of values measured at 10 points with a load of 25 gf in a cross section of a steel plate embedded in a resin and polished on a mirror surface so that a Vickers indentation is placed at a predetermined position in the thickness direction. It was.

表面から板厚の1/8の深さまでの硬度は、板厚の1/16の深さを中心としたビッカース硬度測定を10点で行い、板厚の3/8の深さから板厚の4/8の深さまでの硬度は、板厚の7/16の深さを中心としたビッカース硬度測定を10点で行った。結果は表3に示した。   The hardness from the surface to the depth of 1/8 of the plate thickness is measured by 10 points of Vickers hardness measurement centering on the depth of 1/16 of the plate thickness, and from the depth of 3/8 of the plate thickness to the thickness of the plate For the hardness up to a depth of 4/8, Vickers hardness measurement centered on a depth of 7/16 of the plate thickness was performed at 10 points. The results are shown in Table 3.

平均結晶粒径の評価
板厚の3/8の深さから板厚の4/8の深さまでの間の平均結晶粒径、表面から板厚の1/8の深さまでの間の平均結晶粒径の測定は、鋼板を樹脂に埋め込み研磨しエッチングした後、板厚方向の板厚の3/8深さから板厚4/8深さまでの間、表面から板厚の1/8の深さまでの間の位置で、「JIS G 0551」に記載の直線試験線による切断法により行った。結果は表3に示した。
Evaluation of average grain size Average grain size between 3 / 8th of the plate thickness and 4 / 8th of the plate thickness, average grain size between the surface and 1 / 8th of the plate thickness The diameter is measured after embedding and polishing a steel plate in a resin, and from 3/8 depth to 4/8 depth in the thickness direction, from the surface to 1/8 depth. In the position between, it cut | disconnected by the cutting method by the linear test line as described in "JIS G 0551." The results are shown in Table 3.

平均N量の測定
表面から板厚の1/8の深さまでを電解研磨し、研磨液に含まれる平均N量を原子吸光法で分析して、表面から板厚の1/8の深さまでの間の平均N量とした。次いで、板厚の1/8の深さから板厚の3/8の深さまで電解研磨を行い、研磨液を洗い流すために洗浄を行った。続けて、板厚の3/8の深さから板厚の4/8の深さまでの間の電解研磨を行い、研磨液中に含まれる平均N量を原子吸光法で分析して、板厚の3/8の深さから板厚の4/8の深さまでの間の平均N量とした。結果は表3に示した。
Measurement of the average N amount Electrolytic polishing is performed from the surface to a depth of 1/8 of the plate thickness, and the average N amount contained in the polishing liquid is analyzed by an atomic absorption method to obtain a depth of 1/8 of the plate thickness from the surface. It was set as the average N amount between. Next, electrolytic polishing was performed from a depth of 1/8 of the plate thickness to a depth of 3/8 of the plate thickness, and cleaning was performed to wash away the polishing liquid. Subsequently, electrolytic polishing was performed between a depth of 3/8 of the plate thickness and a depth of 4/8 of the plate thickness, and the average N amount contained in the polishing liquid was analyzed by atomic absorption method to determine the plate thickness. The average N amount between the depth of 3/8 to the depth of 4/8 of the plate thickness. The results are shown in Table 3.

平均窒化物数密度の測定
板厚の1/8の深さ、板厚の1/4の深さ、板厚の1/20の深さの位置までシュウ酸などで化学研磨した後、SPEED法(Selective Potentiostatic Etching by Electrolytic Dissolution method)を用いて10μm電解し、抽出レプリカを作製して、TEMを用いて1μm四方の単位視野あたりの窒化物の個数を測定することにより、表面から板厚の1/8の深さまでの間の平均窒化物数密度、表面から板厚の1/4の深さまでの間の平均窒化物数密度、表面から板厚の1/20の深さまでの間の平均窒化物数密度を測定した。結果は表3に示した。
Measurement of average nitride number density After chemical polishing with oxalic acid to 1 / 8th of the plate thickness, 1 / 4th of the plate thickness, 1 / 20th of the plate thickness, and then SPEED method (Selective Potentistic Etching by Electrical Dissolution Method) was used for 10 μm electrolysis, an extraction replica was prepared, and the number of nitrides per unit field of 1 μm square was measured using a TEM, so that the thickness of the plate 1 Average nitride number density between / 8 depth, average nitride number density between surface and ¼ depth, average nitriding between surface and 1/20 depth The object number density was measured. The results are shown in Table 3.

固溶C量の評価
ねじり振動型内部摩擦測定装置を用い、周波数範囲0.001〜10Hzにおいて自由減衰法を用い、スネークピークを算出することにより、固溶C量を測定した。測定結果を表3に示した。
Evaluation of the amount of solid solution C The amount of solid solution C was measured by calculating a snake peak using a free damping method in a frequency range of 0.001 to 10 Hz using a torsional vibration type internal friction measuring device. The measurement results are shown in Table 3.

耐圧強度の評価
耐圧強度の測定は、板厚0.21mmのサンプル(めっき鋼板)を63mmΦの蓋に成形したのち、63mmΦの溶接缶胴に巻締めて取り付け、缶内部に圧縮空気を導入し、缶蓋が変形したときの圧力を測定した。内部の圧力が0.2MPa超でも缶蓋が変形しなかったときを◎、内部の圧力が0.19〜0.20MPaまで上昇させても缶蓋が変形しなかったときを○、0.2MPa未満で缶蓋が変形したときを×とした。
Evaluation of pressure strength Measurement of pressure strength is performed by forming a sample (plated steel plate) with a plate thickness of 0.21 mm into a 63 mmΦ lid, then winding and mounting it on a 63 mmΦ welded can body, introducing compressed air inside the can, The pressure when the can lid was deformed was measured. The case where the can lid did not deform even when the internal pressure exceeded 0.2 MPa, and the case where the can lid did not deform even when the internal pressure was raised to 0.19 to 0.20 MPa. When the can lid was deformed at less than x, it was marked as x.

成形性の評価
成形性は、板厚0.21mmのサンプルを用いJIS B 7729に規定された試験機を用いて、JIS Z 2247に規定された方法で試験を実施した。エリクセン値(貫通割れ発生時の成形高さ)が6.5mm以上を「◎」、6.5mm未満で6mm以上を「○」、6mm未満を「×」とした。結果を表3に示した。
Evaluation of formability The moldability was tested by a method specified in JIS Z 2247 using a sample having a thickness of 0.21 mm and using a tester specified in JIS B 7729. The Erichsen value (molding height at the time of through crack occurrence) was 6.5 mm or more, “◎”, less than 6.5 mm, 6 mm or more “◯”, and less than 6 mm “x”. The results are shown in Table 3.

Figure 2015193885
Figure 2015193885

Figure 2015193885
Figure 2015193885

Figure 2015193885
Figure 2015193885

表1〜3より発明例であるNo.6,7および13〜16は引張強度に優れており、極薄の缶蓋用鋼板として必要な引張強度500MPa以上を達成している。また、加工性にも優れており、蓋加工に必要な10%以上の破断伸びを有している。   From Tables 1-3, No. which is an invention example. Nos. 6, 7 and 13 to 16 are excellent in tensile strength, and achieve a tensile strength of 500 MPa or more necessary as an ultrathin steel plate for can lids. Moreover, it is excellent in workability and has a breaking elongation of 10% or more necessary for lid processing.

一方、比較例のNo.1は、C含有量が少なすぎるため、引張強度が不足している。そして、耐圧強度の評価も悪い。   On the other hand, no. No. 1 has insufficient tensile strength because the C content is too small. And the evaluation of pressure strength is also poor.

比較例のNo.2は、C含有量が多すぎるため、二次冷間圧延により延性が損なわれ、破断伸びが不足している。そして、成形性の評価も悪い。   Comparative Example No. In No. 2, since the C content is too large, ductility is impaired by secondary cold rolling, and elongation at break is insufficient. And evaluation of moldability is also bad.

比較例のNo.3は、Mn含有量が少なすぎるため、引張強度が不足している。そして、耐圧強度の評価も悪い。   Comparative Example No. No. 3 is insufficient in tensile strength because the Mn content is too small. And the evaluation of pressure strength is also poor.

比較例のNo.4は、Mn含有量が多すぎるため、二次冷間圧延により延性が損なわれ、全伸びが不足している。そして、成形性の評価も悪い。   Comparative Example No. Since No. 4 has too much Mn content, ductility is impaired by secondary cold rolling, and total elongation is insufficient. And evaluation of moldability is also bad.

比較例のNo.5は、N含有量が少なすぎるため、降伏強度が不足している。そして、成形性の評価も悪い。   Comparative Example No. No. 5 has insufficient yield strength because the N content is too small. And evaluation of moldability is also bad.

比較例のNo.8は、巻き取り温度が高すぎるため、結晶粒が粗大化し(平均結晶粒径(圧延方向断面)が大きくなり)、引張強度が不足している。そして、耐圧強度の評価も悪い。   Comparative Example No. In No. 8, since the winding temperature is too high, the crystal grains become coarse (the average crystal grain size (cross section in the rolling direction) becomes large) and the tensile strength is insufficient. And the evaluation of pressure strength is also poor.

比較例のNo.9は、最終スタンドの二次冷間圧延率が小さすぎるため、平均結晶粒径が大きく、引張強度が不足している。そして、耐圧強度の評価も悪い。   Comparative Example No. In No. 9, the secondary cold rolling rate of the final stand is too small, so the average crystal grain size is large and the tensile strength is insufficient. And the evaluation of pressure strength is also poor.

比較例のNo.10は、二次冷間圧延率が大きすぎるため、二次冷間圧延により延性が損なわれ、破断伸びが不足している。そして、成形性の評価も悪い。   Comparative Example No. No. 10, since the secondary cold rolling rate is too large, the ductility is impaired by the secondary cold rolling, and the elongation at break is insufficient. And evaluation of moldability is also bad.

比較例のNo.11、12は、還元雰囲気中のアンモニアガスの濃度が高すぎるため、表層が硬質化することにより延性が損なわれ、破断伸びが不足している。そして、成形性の評価も悪い。   Comparative Example No. In Nos. 11 and 12, since the concentration of ammonia gas in the reducing atmosphere is too high, the surface layer is hardened so that the ductility is impaired and the elongation at break is insufficient. And evaluation of moldability is also bad.

Claims (2)

質量%で、C:0.070%以上0.080%未満、Si:0.003%以上0.100%以下、Mn:0.51%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.010%超0.020%以下を含有し、残部はFe及び不可避的不純物からなり、
圧延方向断面において、平均結晶粒径が5.0μm以上、結晶粒の展伸度が2.0以下であり、
上面側及び下面側が、下記不等式(I)及び(II)を満たし、
引張強度が500MPa以上であり、
破断伸びが10%以上であることを特徴とする缶蓋用鋼板。
[不等式(I)]
(板厚の3/8深さから板厚4/8深さまでの間の断面の平均ビッカース硬度)−(表面から板厚の1/8深さまでの間の断面の平均ビッカース硬度)≧10 (I)
[不等式(II)]
(板厚の3/8深さから板厚4/8深さまでの間の断面の最大ビッカース硬度)−(表面から板厚の1/8深さまでの間の断面の最大ビッカース硬度)≧20 (II)
In mass%, C: 0.070% or more and less than 0.080%, Si: 0.003% or more and 0.100% or less, Mn: 0.51% or more and 0.80% or less, P: 0.001% or more 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: more than 0.010% and 0.020% or less, the balance being Fe and inevitable impurities,
In the cross section in the rolling direction, the average crystal grain size is 5.0 μm or more, the degree of elongation of the crystal grains is 2.0 or less,
The upper surface side and the lower surface side satisfy the following inequalities (I) and (II),
The tensile strength is 500 MPa or more,
A steel plate for can lids having a breaking elongation of 10% or more.
[Inequality (I)]
(Average Vickers hardness of cross section between 3/8 depth of plate thickness and 4/8 depth)-(Average Vickers hardness of cross section between 1/8 depth of plate thickness) ≧ 10 ( I)
[Inequality (II)]
(Maximum Vickers hardness of the cross section between 3 / 8th of the plate thickness and 4 / 8th of the plate thickness) − (Maximum Vickers hardness of the cross section between the surface and 1 / 8th of the plate thickness) ≧ 20 ( II)
質量%で、C:0.070%以上0.080%未満、Si:0.003%以上0.100%以下、Mn:0.51%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.010%超0.020%以下を含有し、残部はFe及び不可避的不純物からなる鋼をスラブとし、
前記スラブに熱間圧延を施した後、620℃未満の温度で巻取り、
前記巻取り後、合計の一次冷間圧延率が85%超かつ、一次冷間圧延の最終スタンド圧延率を30%以上として一次冷間圧延を行い、
前記冷間圧延後、アンモニアガスの濃度が0.020vol%未満の還元雰囲気で焼鈍を行い、
前記焼鈍後、20%以下の圧延率で二次冷間圧延を行うことを特徴とする缶蓋用鋼板の製造方法。
In mass%, C: 0.070% or more and less than 0.080%, Si: 0.003% or more and 0.100% or less, Mn: 0.51% or more and 0.80% or less, P: 0.001% or more 0.100% or less, S: 0.001% or more and 0.020% or less, Al: 0.005% or more and 0.100% or less, N: more than 0.010% and 0.020% or less, the balance being Steel consisting of Fe and inevitable impurities is a slab,
After hot rolling the slab, it is wound at a temperature of less than 620 ° C.
After the winding, the total primary cold rolling rate exceeds 85%, and the primary cold rolling is performed as a final stand rolling rate of 30% or more in the primary cold rolling,
After the cold rolling, annealing is performed in a reducing atmosphere in which the concentration of ammonia gas is less than 0.020 vol%,
After the annealing, secondary cold rolling is performed at a rolling rate of 20% or less.
JP2014072335A 2014-03-31 2014-03-31 Steel sheet for can lid and manufacturing method therefor Pending JP2015193885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072335A JP2015193885A (en) 2014-03-31 2014-03-31 Steel sheet for can lid and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072335A JP2015193885A (en) 2014-03-31 2014-03-31 Steel sheet for can lid and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2015193885A true JP2015193885A (en) 2015-11-05

Family

ID=54433176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072335A Pending JP2015193885A (en) 2014-03-31 2014-03-31 Steel sheet for can lid and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2015193885A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017387A (en) * 1998-07-02 2000-01-18 Kawasaki Steel Corp Steel sheet for can, excellent in shape maintainability, and its production
JP2011137223A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Steel sheet for can and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017387A (en) * 1998-07-02 2000-01-18 Kawasaki Steel Corp Steel sheet for can, excellent in shape maintainability, and its production
JP2011137223A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Steel sheet for can and method for producing the same

Similar Documents

Publication Publication Date Title
JP5858208B1 (en) Steel plate for high-strength container and manufacturing method thereof
JP2013019027A (en) Steel sheet for high-strength can excellent in flange processibility, and method for production thereof
KR101390263B1 (en) Highly processable steel sheet for three-piece welded can and method for producing same
JP4957843B2 (en) Steel plate for can and manufacturing method thereof
JP2013028842A (en) Steel plate for high strength high workability can and method for manufacturing the same
JP5672907B2 (en) Steel sheet for high strength and high workability can and method for producing
JP6601571B2 (en) Crown steel plate, method for producing the same, and crown
WO2012073914A1 (en) Steel sheet for can, and process for producing same
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP4630268B2 (en) Steel plate for profile can
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
JP5988012B1 (en) Crown steel plate, method for producing the same, and crown
JP3756779B2 (en) Steel plate for thinned deep drawn ironing can with excellent workability
KR101996353B1 (en) Steel sheet for can lid and method for producing the same
JP2015193885A (en) Steel sheet for can lid and manufacturing method therefor
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP5849666B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
AU2018309964B2 (en) Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JP6176225B2 (en) Crown steel plate, method for producing the same, and crown
WO2019026739A1 (en) Steel sheet for crown cap, crown cap, and method for manufacturing steel sheet for crown cap
JPWO2018181450A1 (en) Steel plate and manufacturing method thereof, crown and DRD can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328