JP2015191846A - Operation control method for reversible cell - Google Patents

Operation control method for reversible cell Download PDF

Info

Publication number
JP2015191846A
JP2015191846A JP2014069602A JP2014069602A JP2015191846A JP 2015191846 A JP2015191846 A JP 2015191846A JP 2014069602 A JP2014069602 A JP 2014069602A JP 2014069602 A JP2014069602 A JP 2014069602A JP 2015191846 A JP2015191846 A JP 2015191846A
Authority
JP
Japan
Prior art keywords
cell
drying
value
water
reversible cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014069602A
Other languages
Japanese (ja)
Other versions
JP2015191846A5 (en
JP6317971B2 (en
Inventor
敦史 加藤
Atsushi Kato
敦史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2014069602A priority Critical patent/JP6317971B2/en
Publication of JP2015191846A publication Critical patent/JP2015191846A/en
Publication of JP2015191846A5 publication Critical patent/JP2015191846A5/en
Application granted granted Critical
Publication of JP6317971B2 publication Critical patent/JP6317971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize highly efficient operation by safely and securely carrying out operation mode switching, in a reversible cell in which a water electrolysis device of solid polymer type and a fuel cell are integrated.SOLUTION: In a reversible cell 1 in which a water electrolysis device of solid polymer type and a fuel cell are integrated, when an operation mode is switched from an electrolysis device operation to a fuel cell operation, an electrolysis operation for drying is performed for the reversible cell while the supply of electrolytic water is stopped in the water electrolysis operation, and thus, the inside of the reversible cell is dried. When the water electrolysis operation for drying is carried out, the voltage of each single cell is monitored for power supplied to the reversible cell. Having as a reference an input voltage value in the same perfect humid state as that in normal water electrolysis, a dry state is determined on the basis of the value of a voltage increase arising due to the continuous supply of constant current without supply of electrolytic water. Thereby, the operation mode switching is carried out.

Description

本発明は、固体高分子形の水電解装置(WE)と燃料電池(FC)とを一体化させた可逆セルにおいて、水電解装置運転と燃料電池運転の切り替えを安全かつ確実に行うための、可逆セルの運転制御方法に関するものである。   The present invention is a reversible cell in which a solid polymer water electrolyzer (WE) and a fuel cell (FC) are integrated, in order to safely and reliably switch between water electrolyzer operation and fuel cell operation. The present invention relates to a reversible cell operation control method.

固体高分子形の可逆セルとは、同形の水電解装置と燃料電池の機能を一体化させたものであり、各機能を実行するには水電解運転と燃料電池運転との運転モードの切り替え操作が行われる。この切り替えには、水電解運転→燃料電池運転の場合と、燃料電池運転→水電解運転への場合との2通りがある。このうち水電解運転→燃料電池運転への切り替えでは、セル内部の濡れの問題から、切替時にセル内部の乾燥状況を判断し適切な制御を行わなければならない。   The polymer electrolyte reversible cell is an integrated unit of water electrolysis device and fuel cell functions. To perform each function, the operation mode is switched between water electrolysis operation and fuel cell operation. Is done. There are two types of switching: water electrolysis operation → fuel cell operation and fuel cell operation → water electrolysis operation. Among these, when switching from water electrolysis operation to fuel cell operation, due to the problem of wetting inside the cell, it is necessary to determine the drying condition inside the cell at the time of switching and perform appropriate control.

すなわち、水電解運転→燃料電池運転への切り替えでは、水電解運転でセル内部基材が完全に濡れた状態となっているため、その状態で燃料電池運転を開始しようとして反応ガスを供給しても、電極基材の濡れにより反応場までのガス供給が妨げられ、結果として燃料電池運転が不可能となる。したがって可逆セルの運転切替を自在に行うためには、水電解運転→燃料電池運転への運転切替において、水電解運転後の電極基材の濡れを適切に制御し、反応ガスが反応場までスムーズに供給できる状態を速やかに確保する必要がある。   That is, in switching from water electrolysis operation to fuel cell operation, since the cell internal substrate is completely wet in the water electrolysis operation, the reaction gas is supplied to start the fuel cell operation in that state. However, wetting of the electrode substrate hinders gas supply to the reaction field, and as a result, fuel cell operation becomes impossible. Therefore, in order to freely switch the operation of the reversible cell, in the operation switching from the water electrolysis operation to the fuel cell operation, the wetting of the electrode base material after the water electrolysis operation is appropriately controlled so that the reaction gas can smoothly reach the reaction field. It is necessary to quickly ensure that it can be supplied to the factory.

従来、水電解運転から燃料電池運転への運転切り替えを行う技術としては、特許第4919314号、同第5339473号に示された方法がある。特許第4919314号は、セル内部に不活性ガスを供給(ガスパージ)し、セル内部を乾燥させる方法であり(特許文献1)、特許第5339473号は、水電解運転における電解水の供給を停止した状態で、水電解運転による乾燥(以降、「電解乾燥」という)を行ってセル内部を乾燥させる方法である(特許文献2)。そしてこれらの方法では、いずれもセル内部の乾燥状態の判断基準として、イオン交換膜の抵抗上昇値や、イオン交換膜表面の活量を用いている。それらの判断指標を用いればセル内部の乾燥状態を把握して確実な運転切り替えが可能である。   Conventionally, as a technique for switching operation from a water electrolysis operation to a fuel cell operation, there are methods shown in Japanese Patent Nos. 4919314 and 5339473. Patent No. 4919314 is a method of supplying an inert gas inside the cell (gas purging) and drying the inside of the cell (Patent Document 1), and Patent No. 5339473 stopped supplying electrolytic water in water electrolysis operation. In this state, the inside of the cell is dried by performing drying by water electrolysis operation (hereinafter referred to as “electrolytic drying”) (Patent Document 2). In any of these methods, the resistance increase value of the ion exchange membrane or the activity on the surface of the ion exchange membrane is used as a criterion for determining the dry state inside the cell. If these judgment indexes are used, it is possible to grasp the dry state inside the cell and perform reliable operation switching.

特許第4919314号公報Japanese Patent No. 4919314 特許第5339473号公報Japanese Patent No. 5339473

しかしながら、まず特許文献1に記載のものは、イオン交換膜の抵抗上昇値を計測しているので、抵抗値の計測器が別途必要である。しかもパージガスによる乾燥時に、気化熱によってセル温度が低下するので、その分乾燥しにくくなり、時間がかかり、改善の余地があった。またパージ供給する空気によって、膜が劣化する可能性もある。   However, since the thing of patent document 1 measures the resistance raise value of an ion exchange membrane first, the measuring device of resistance value is separately required. Moreover, since the cell temperature is lowered by the heat of vaporization when drying with the purge gas, it becomes difficult to dry by that much, and it takes time and there is room for improvement. Further, the film may be deteriorated by the purged air.

また特許文献2に記載のものでは、やはり乾燥判断専用の抵抗測定器が必要となる。また電解乾燥では、乾燥し過ぎると電解質膜中の水分まで乾燥させてしまい、過度に乾燥した部分では、ジュール発熱による局部温度上昇等によって膜が損なわれ、水素ガスと酸素ガスの触媒上での混合に伴うセルの破損を招く危険性がある。そのため、電解乾燥でセルを安全かつ確実に乾燥するためには、ガスパージによる乾燥時よりもより厳格な制御や判断が必要となる。   Moreover, in the thing of patent document 2, the resistance measuring instrument only for dry judgment is still needed. In addition, in the electrolytic drying, if it is excessively dried, the moisture in the electrolyte membrane is dried, and in the excessively dried portion, the membrane is damaged due to a local temperature rise due to Joule heat generation, and hydrogen gas and oxygen gas on the catalyst. There is a risk of cell damage due to mixing. Therefore, in order to dry the cell safely and reliably by electrolytic drying, stricter control and judgment are required than when drying by gas purge.

本発明はかかる点に鑑みてなされたものであり、乾燥判断専用の抵抗測定器を別途設けることなく、可逆セルにおいて電解運転→燃料電池運転への切り替えを行うにあたり、従来よりも厳格に乾燥状態を判断して電解によるセルの乾燥を安全かつ確実に行うことを目的としている。   The present invention has been made in view of the above points, and in a reversible cell without a separate resistance measuring instrument dedicated to dry determination, in switching from electrolysis operation to fuel cell operation, the dry state is stricter than before. The purpose of this is to safely and reliably dry the cell by electrolysis.

前記目的を達成するため、本発明は、電解乾燥時の判断指標として電解乾燥中のセルの電圧上昇値を採用することにした。すなわち本発明は、水電解運転と燃料電池運転との運転モードの切り替えが可能な、複数の単セルによって構成された固体高分子形の可逆セルにおいて、水電解運転から燃料電池運転への運転モードの切り替えにあたって、水電解運転における電解水の供給を停止した状態で、可逆セルに対して乾燥用の水電解運転を実施して可逆セル内部を乾燥させるようにし、前記乾燥用の水電解運転の際に可逆セルに供給する電力の、各単セルごとの電圧を監視し、通常の水電解時と同じ完全湿潤状態での入力電圧値を基準として、電解水を供給せずに一定の電流を供給し続けることにより生じる電圧上昇値に基づいて乾燥状態を判断して前記運転モードの切り替えを行うことを特徴としている。たとえば、電圧上昇値が所定の値に達したら、可逆セルが燃料電池運転が可能になる程度に乾燥したものと判断して、運転モードの切り替えを行う。   In order to achieve the above object, the present invention adopts the voltage increase value of the cell during electrolytic drying as a judgment index during electrolytic drying. That is, the present invention relates to an operation mode from a water electrolysis operation to a fuel cell operation in a polymer electrolyte reversible cell composed of a plurality of single cells capable of switching between the water electrolysis operation and the fuel cell operation. In the switching of the electrolysis water in the water electrolysis operation, the water electrolysis operation for drying is performed on the reversible cell to dry the inside of the reversible cell, and the water electrolysis operation for drying is performed. When monitoring the voltage of each single cell, the electric power supplied to the reversible cell, and using the input voltage value in the same fully wet state as during normal water electrolysis as a reference, a constant current is supplied without supplying electrolyzed water. It is characterized in that the operation mode is switched by judging the dry state based on the voltage increase value generated by continuing to supply. For example, when the voltage increase value reaches a predetermined value, it is determined that the reversible cell has been dried to the extent that fuel cell operation is possible, and the operation mode is switched.

この場合、前記乾燥用の水電解運転の際に可逆セルに供給する電力の上限電流値を、乾燥用の水電解運転時の電圧経時データの第1、第2、第3の変極点の有無に基づいて規定するようにしてもよい。   In this case, the upper limit current value of the power supplied to the reversible cell during the water electrolysis operation for drying is determined by the presence or absence of the first, second, and third inflection points in the voltage aging data during the water electrolysis operation for drying. You may make it prescribe | regulate based on.

さらに前記上限電流値は、可逆セルの膜表面の活量が1から0.9まで低下した時の抵抗上昇値と乾燥電流値とを乗じて算出した電圧上昇値以下としてもよい。   Further, the upper limit current value may be equal to or less than the voltage increase value calculated by multiplying the resistance increase value when the activity of the film surface of the reversible cell is reduced from 1 to 0.9 and the dry current value.

あるいは、前記上限電流値は、電圧上昇値の経時変化データで、第2変曲点後の平坦部分に達したときにおける膜表面の活量が0.9以上であるようにしてもよい。この場合、さらに膜表面の活量を0.98以下であることを加重要件としてもよい。   Alternatively, the upper limit current value may be time-dependent data of the voltage rise value, and the activity of the film surface when reaching the flat portion after the second inflection point may be 0.9 or more. In this case, the weight requirement may be that the activity of the film surface is 0.98 or less.

乾燥状態と判断されるまでの分解水分量が、可逆セルの酸素極側の給・集電体の保有可能水分量以下であることを運転切り替えの際の要件として付加してもよい。すなわち、酸素極側の給・集電体のみについて乾燥状態と判断されるまでの分解水分量と保有可能水分量を問題とすればよい。   It may be added as a requirement at the time of operation switching that the amount of decomposed water until it is determined to be in a dry state is less than or equal to the amount of water that can be held by the supply / current collector on the oxygen electrode side of the reversible cell. That is, it is sufficient to consider only the amount of decomposition moisture and the amount of water that can be retained until it is determined that only the supply / current collector on the oxygen electrode side is in a dry state.

本発明によれば、固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて、水電解運転から燃料電池への運転モードの切り替えを安全、かつ確実に行い、効率の良い運転を実現することができる。   According to the present invention, in a reversible cell in which a solid polymer water electrolyzer and a fuel cell are integrated, the operation mode switching from the water electrolysis operation to the fuel cell is performed safely and reliably, and the efficiency is high. Driving can be realized.

実施の形態で用いた可逆セルの内部構造を模式的に示した説明図である。It is explanatory drawing which showed typically the internal structure of the reversible cell used in embodiment. 実施の形態で用いた可逆セルの部分拡大水平断面図である。It is a partial expanded horizontal sectional view of the reversible cell used in the embodiment. 水電解装置運転時の可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around the reversible cell at the time of water electrolysis apparatus driving | operation. 燃料電池運転時の可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around the reversible cell at the time of fuel cell operation. 不活性ガスを供給して乾燥運転しているときの可逆セル周りのガス流通状況を示す説明図である。It is explanatory drawing which shows the gas distribution condition around a reversible cell when supplying inert gas and performing dry operation. 乾燥電流密度に対する膜抵抗上昇値と分解水量との関係を示すグラフである。It is a graph which shows the relationship between the membrane resistance raise value with respect to a dry current density, and the amount of decomposition water. 第1、第2、第3の変曲点が現れたときの入力電圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of input voltage when the 1st, 2nd, 3rd inflection point appears. 変曲点が2つしか現れないときの入力電圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of input voltage when only two inflection points appear. 乾燥電流の上限に余裕がある場合の入力電圧の経時変化を示すグラフである。It is a graph which shows the time-dependent change of input voltage when there is a margin in the upper limit of the drying current. 乾燥電流が上限のときの入力電圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of input voltage when a drying current is an upper limit. 乾燥電流が上限を超えている場合の入力電圧の経時変化を示すグラフである。It is a graph which shows the time-dependent change of input voltage when a drying current exceeds the upper limit. 乾燥時間と電解電圧の関係を示すグラフである。It is a graph which shows the relationship between drying time and an electrolysis voltage.

以下、本発明の好ましい実施の形態について説明する。図1は、可逆セル1の内部を模式的に示しており、図2は、この可逆セル1の水平断面を示している。この可逆セル1は、図2に示したように、最も外側に、各々給・集電板2、3が配置され、給・集電板2、3間の中心には、電極触媒層によって構成される電極部4a、4b間に、固体電解質材料によって構成されるイオン交換膜4cが配置されて、複合化した発電ユニットであるMEA4が配置されている。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 schematically shows the inside of the reversible cell 1, and FIG. 2 shows a horizontal cross section of the reversible cell 1. As shown in FIG. 2, the reversible cell 1 has power supply / collection plates 2, 3 arranged on the outermost sides, and is constituted by an electrode catalyst layer in the center between the supply / collection plates 2, 3. Between the electrode portions 4a and 4b, an ion exchange membrane 4c made of a solid electrolyte material is disposed, and an MEA 4 that is a combined power generation unit is disposed.

各電極部4a、4bの外側には、各々給・集電体5、6が配置されている。給・集電体5、6は例えば多孔質の材料からなる。なお作図と説明の都合上、図1は単セルを図示しているが、実用に供する可逆セルは、給・集電板2、3間に、数十〜数百の可逆運転が可能な固体分子型の単セルが配置されており、これらが給・集電板2、3の外側に各々位置するエンドプレート(図示せず)によって、挟持され、締め付けられている。   On the outside of each electrode portion 4a, 4b, a power supply / current collector 5, 6 is arranged. The supply / current collectors 5 and 6 are made of, for example, a porous material. For convenience of drawing and explanation, FIG. 1 shows a single cell. However, a reversible cell for practical use is a solid that can be reversibly operated by several tens to several hundreds between power supply and current collector plates 2 and 3. Molecular type single cells are arranged, and these are clamped and clamped by end plates (not shown) positioned outside the power supply and current collecting plates 2 and 3, respectively.

そして給・集電体5と給・集電板2との間には、図2に示したように、空間S1が形成され、給・集電体6と給・集電板3との間には空間S2が形成されている。各空間S1、S2内には、断面が波型のセパレータ7、8が各々配置されている。この可逆セル1は水冷方式による冷却方法を採用しており、空間S1に配置されたセパレータ7によって、空間S1には冷却水流路11と流路12が交互に形成されている。一方、空間S2に配置されたセパレータ8によって、空間S2にも、冷却水流路13と流路14が交互に形成されている。冷却水は、冷却水流路11とヒートポンプ介装の恒温水槽(図示せず)や冷却塔(図示せず)を循環し、可逆セル1の入り口で例えば60℃を維持するように運転される。   As shown in FIG. 2, a space S <b> 1 is formed between the power supply / current collector 5 and the power supply / current collector plate 2, and the space between the power supply / current collector 6 and the power supply / current collector plate 3 is formed. Is formed with a space S2. In each of the spaces S1 and S2, separators 7 and 8 each having a corrugated cross section are disposed. The reversible cell 1 employs a water-cooling method, and cooling water channels 11 and channels 12 are alternately formed in the space S1 by the separators 7 arranged in the space S1. On the other hand, the cooling water flow path 13 and the flow path 14 are alternately formed also in the space S2 by the separator 8 arranged in the space S2. The cooling water is circulated through the cooling water passage 11 and a constant temperature water tank (not shown) and a cooling tower (not shown) provided with a heat pump, and is operated to maintain, for example, 60 ° C. at the entrance of the reversible cell 1.

再び図1に戻ってさらに説明すると、流路12の両端部(図1の上下方向の各端部)には、流通口12a、12bが形成され、流路14の両端部(図1の上下方向の各端部)には、流通口14a、14bが形成されている。   Returning to FIG. 1 again, further explanation will be given. Flow ports 12a and 12b are formed at both ends of the flow path 12 (vertical ends in FIG. 1), and both ends of the flow path 14 (up and down of FIG. 1). At each end in the direction), circulation ports 14a and 14b are formed.

そしてイオン交換膜4cと給・集電体5との境界面に位置する電極部4aは、カソード(水電解運転時)の電極部となり、イオン交換膜4cと給・集電体6との境界面に位置する電極部4bは、アノード(水電解運転時)の電極部となる。   The electrode portion 4a located at the boundary surface between the ion exchange membrane 4c and the supply / current collector 5 serves as an electrode portion of the cathode (during water electrolysis operation), and the boundary between the ion exchange membrane 4c and the supply / current collector 6 The electrode part 4b located on the surface is an electrode part of the anode (during water electrolysis operation).

可逆セル1における燃料ガス等の流路構成は、図3に示したようになっている。すなわち、これらの流路は例えばステンレス鋼の配管によって構成され、流通口12aには、流路F1が接続され、流通口14aには、流路F2が接続され、流通口12bには、流路F3が接続され、流通口14bには、流路F4が接続されている。またこれら各流路F1〜F4には、各々さらに分岐した流路F5〜F8が接続されている。そして各流路F1〜F8には、各々対応する流路を開閉するバルブV1〜V8が設けられている。   The flow path configuration of fuel gas or the like in the reversible cell 1 is as shown in FIG. That is, these flow paths are constituted by, for example, stainless steel piping, the flow path F1 is connected to the flow port 12a, the flow path F2 is connected to the flow port 14a, and the flow path 12b is connected to the flow path 12b. F3 is connected, and the flow path F4 is connected to the circulation port 14b. Further, branched channels F5 to F8 are connected to the channels F1 to F4, respectively. Each of the flow paths F1 to F8 is provided with valves V1 to V8 that open and close the corresponding flow paths.

そしてかかる構成の可逆セル1を水電解運転するときは、図3に示したように、バルブV1〜V4を開放し(他のバルブは閉鎖)、流路F3、F4から電解水を供給し、給・集電板2、に対して外部の直流電源21から電力を供給することにより、電解水は電気分解され、純水素と純酸素とが発生する。そして純水素は流通口12aから流路F1を流れて可逆セル1から排出され、純酸素は流通口14aから流路F2を流れて可逆セル1から排出される。図3中、(G)はガス状、(L)は液体状であることを示している。なお流路F1から排出される水素ガス、流路F2から排出される酸素ガスは、電気分解の際に使用されるHOが微量なため(数パーセントが分解されるのみである)、これらのガスは水の中の気泡として存在しているため、便宜上(G、L)として記載している。 And when performing the water electrolysis operation of the reversible cell 1 having such a configuration, as shown in FIG. 3, the valves V1 to V4 are opened (the other valves are closed), and electrolyzed water is supplied from the flow paths F3 and F4. By supplying power from the external DC power source 21 to the power supply / collector plate 2, the electrolyzed water is electrolyzed and pure hydrogen and pure oxygen are generated. Then, pure hydrogen flows from the flow port 12a through the flow path F1 and is discharged from the reversible cell 1, and pure oxygen flows from the flow port 14a through the flow path F2 and is discharged from the reversible cell 1. In FIG. 3, (G) indicates a gaseous state, and (L) indicates a liquid state. Note that the hydrogen gas discharged from the flow path F1 and the oxygen gas discharged from the flow path F2 have a very small amount of H 2 O used in electrolysis (only a few percent are decomposed). This gas is indicated as (G, L) for convenience because it exists as bubbles in water.

また流路F3には必ずしも電解水を供給する必要はなく、流路F4にのみこれを供給しておけば運転は可能である。   Further, it is not always necessary to supply electrolytic water to the flow path F3, and operation is possible if this is supplied only to the flow path F4.

一方この可逆セル1を燃料電池運転する際には、図4に示したように、バルブV1、V2、V7、V8を開放し(他のバルブは閉鎖)する。そして可逆セル1に対して、流通口12aには、加湿した燃料ガス(水素ガス)を供給し、流通口14aには、加湿した酸化剤ガス(酸素)を供給することで、可逆セル1で電力が発生し、給・集電板2、3からこれを取り出して、負荷に供給することができる。なお反応の結果発生した水については、カソード側は流通口14bから流路F8を流れて可逆セル1から排出され、アノード側は流通口12bから流路F7を流れて可逆セル1から排出される。なお合流管または分岐管としての流路F3、F4、F5、F6は加湿用タンク(図示せず)に連通している。   On the other hand, when the reversible cell 1 is operated as a fuel cell, the valves V1, V2, V7, and V8 are opened (the other valves are closed) as shown in FIG. The reversible cell 1 is supplied with a humidified fuel gas (hydrogen gas) at the flow port 12a and supplied with a humidified oxidant gas (oxygen) at the flow port 14a. Electric power is generated and can be taken out from the power supply / collection plates 2 and 3 and supplied to the load. Regarding the water generated as a result of the reaction, the cathode side flows from the flow port 14b through the flow path F8 and is discharged from the reversible cell 1, and the anode side flows from the flow port 12b through the flow path F7 and is discharged from the reversible cell 1. . Note that the flow paths F3, F4, F5, and F6 serving as junction pipes or branch pipes communicate with a humidifying tank (not shown).

さらに可逆セル1内の流路12、14には、不活性ガス供給ルートが付加されている。すなわち図1に示したように、流路F5、F6には、不活性ガス供給源31からの不活性ガス、例えば窒素ガスが、バルブ32、マスフローコントローラ33を介して、供給路34を介して供給可能である。なおこのバルブ32は、図3〜図5においては、バルブV5、V6に相当する。   Further, an inert gas supply route is added to the flow paths 12 and 14 in the reversible cell 1. That is, as shown in FIG. 1, an inert gas such as nitrogen gas from the inert gas supply source 31 passes through the supply path 34 via the valve 32 and the mass flow controller 33 in the flow paths F5 and F6. It can be supplied. The valve 32 corresponds to the valves V5 and V6 in FIGS.

可逆セル1、及びその周辺の流路、主たる機器構成は以上のようになっており、水電解運転から燃料電池運転に切り替える際には、可逆セル1の内部は完全に濡れ状態になっているので、そのままでは燃料電池運転ができないので、可逆セル1の内部を乾燥させる必要がある。   The reversible cell 1, the flow path around it, and the main equipment configuration are as described above. When switching from the water electrolysis operation to the fuel cell operation, the inside of the reversible cell 1 is completely wet. Therefore, since the fuel cell operation cannot be performed as it is, it is necessary to dry the inside of the reversible cell 1.

したがってまず、水電解運転終了後、図5に示したように、バルブV1〜V4を閉鎖し、他のバルブV5〜8を開放させ、図1に示したように、不活性ガス供給源31から不活性ガスを流路12、14内に供給する。これによって、流路12、14内の水は排水され、可逆セル1内部がある程度乾燥される。なおこの排水は、上述の不活性ガスの供給による排出に限らず、公知の方法を用いればよい。   Therefore, first, after completion of the water electrolysis operation, as shown in FIG. 5, the valves V1 to V4 are closed and the other valves V5 to 8 are opened. As shown in FIG. An inert gas is supplied into the flow paths 12 and 14. Thereby, the water in the flow paths 12 and 14 is drained, and the inside of the reversible cell 1 is dried to some extent. The drainage is not limited to the above-described discharge by supplying the inert gas, and a known method may be used.

可逆セル1にガスを供給したときに生じる流路上下流の圧力差で流路12、14内の水を系外に押し出した後、次に、不活性ガスの供給を停止してV5〜6を閉鎖したのち、酸素極側の電極触媒部である電極部4a、4bと給・集電体5、6の残留水を、セルに電解水を供給せずに直流電源21から一定電流(以下、「乾燥電流」という)を流して、電気分解を行う「電解乾燥」により、水素と酸素に分解し、これらのガスを水素極側に移動させることで取り除く。   After the water in the flow channels 12 and 14 is pushed out of the system by the pressure difference between the upstream and downstream of the flow channel that is generated when the gas is supplied to the reversible cell 1, the supply of the inert gas is stopped and V5-6 are After closing, the residual water of the electrode parts 4a and 4b, which are electrode catalyst parts on the oxygen electrode side, and the supply / collectors 5 and 6 is supplied from the direct current power source 21 without supplying electrolytic water to the cell (hereinafter referred to as It is decomposed into hydrogen and oxygen by “electrolytic drying” in which electrolysis is performed by passing a “drying current”), and these gases are removed by moving them to the hydrogen electrode side.

このとき、この種のセルに対して運転状態監視用に一般的に取り付けられている各単セルの電圧センサ22を用いて入力電圧を常時測定する。これによって、セル内部が通常の水電解時と同じ完全湿潤状態での入力電圧値を基準として、電解水を供給せずに一定の電流を供給し続けることにより生じる電圧上昇値から、セル内部の乾燥状況を判断する。そして電圧上昇値が所定の値に達したら、乾燥が終了したものと判断して、燃料電池運転に切り替えればよい。つまり一定の電流を流している状態で電圧上昇すれば、オームの法則に従って膜抵抗も上昇しているので、従来のような専用の抵抗測定器を別途設けることなく、乾燥の判断が行える。   At this time, the input voltage is constantly measured using the voltage sensor 22 of each single cell generally attached to this type of cell for monitoring the operation state. As a result, based on the input voltage value in the completely wet state that is the same as in normal water electrolysis in the cell, the voltage rise value generated by continuing to supply a constant current without supplying electrolyzed water can be used. Judge the drying status. Then, when the voltage increase value reaches a predetermined value, it is determined that the drying is finished, and the fuel cell operation may be switched. In other words, if the voltage rises with a constant current flowing, the membrane resistance also rises according to Ohm's law. Therefore, it is possible to determine drying without separately providing a dedicated resistance measuring instrument as in the prior art.

ところで、乾燥電流が大き過ぎると、電極触媒部である電極部4b、4aのみが急激に乾燥し、電圧は上昇しているにもかかわらず給・集電体5、6の残留水までは取り除けていないため、燃料電池運転に切り替えても反応ガスが電極面に到達できず燃料電池運転ができなかったり、電極面の局所で急激な電解反応が起きてそのジュール熱により膜が破損したりといった可能性がある。そのため、電圧上昇の支配原因が導体抵抗の上昇となるように、セルの構成部材に応じて適切な条件で電解乾燥する必要がある。   By the way, if the drying current is too large, only the electrode parts 4b and 4a, which are electrode catalyst parts, are drastically dried, and the residual water in the power supply / current collectors 5 and 6 can be removed even though the voltage rises. Therefore, even when switching to fuel cell operation, the reaction gas cannot reach the electrode surface and the fuel cell operation cannot be performed, or a rapid electrolytic reaction occurs locally on the electrode surface, and the membrane is damaged by the Joule heat, etc. there is a possibility. Therefore, it is necessary to perform electrolytic drying under appropriate conditions according to the constituent members of the cell so that the dominant cause of the voltage increase is an increase in the conductor resistance.

より詳述すると、既述した特許文献1、2で運転モードの切り替えの際の基準とすべく測定している抵抗値は、コイル、コンデンサ成分を除いた導体抵抗成分のみの値である。膜の乾燥によって抵抗値は上昇するが、電解乾燥によって上昇する抵抗要因としては、下記の3つのものがある。
(1)導体抵抗(抵抗過電圧):膜や導体の接触に起因する。
(2)反応抵抗(活性化過電圧):水の分解反応に起因する。
(3)拡散抵抗(拡散過電圧):物質拡散に起因する。
More specifically, the resistance values measured to be the reference for switching the operation mode in Patent Documents 1 and 2 described above are values of only the conductor resistance component excluding the coil and capacitor components. Although the resistance value increases due to the drying of the film, there are the following three resistance factors that increase due to the electrolytic drying.
(1) Conductor resistance (resistance overvoltage): caused by contact of a film or conductor.
(2) Reaction resistance (activation overvoltage): caused by water decomposition reaction.
(3) Diffusion resistance (diffusion overvoltage): caused by material diffusion.

導体抵抗成分のみから成る電気回路であれば、抵抗の上昇値と電圧の上昇値は、オームの法則に基づき比例関係にある。特許文献1に開示されたガスパージによる乾燥の時は、膜の乾燥に伴い、上記3つの抵抗要因のうち膜の乾燥に起因する、(1)の導体抵抗のみが上昇するため、抵抗上昇値で膜の乾燥状況を判断できるので、安全かつ確実な切り替えが可能であった。   In the case of an electric circuit composed only of a conductor resistance component, the resistance increase value and the voltage increase value are in a proportional relationship based on Ohm's law. At the time of drying by gas purging disclosed in Patent Document 1, as the film is dried, only the conductor resistance of (1) due to the drying of the film among the above three resistance factors rises. Since the drying state of the membrane can be judged, safe and reliable switching was possible.

しかしながら、電解乾燥時の抵抗上昇要因(=過電圧要因)は、上記した(1)導体抵抗以外に、(2)反応抵抗、(3)拡散抵抗がある。すなわち、電解乾燥時は、例え同じ電圧上昇値であっても、電解乾燥の条件によって上昇する抵抗要因が異なるため、図6に示したように、抵抗上昇値も分解水分量も条件(電解電流値)により異なる。図6は、電解乾燥による電圧上昇値を任意の一定値(例えばΔE=0.2V)とした際に、電解条件(=乾燥電流密度)によって抵抗上昇値や電解による分解水分量がどのように変化するかを示しており、図中の黒塗りのプロットは各乾燥電流密度における膜抵抗上昇値を、白塗りのプロットは各乾燥電流密度における分解水分量を示している。セルを乾燥するには、後述のように、電極部と給・集電体の残留水を取り除く必要があるが、取除くべき残留水量はセルの構造によって決まるものであり、電解条件で変化するものではない。それにも拘らず、乾燥電流密度が高いほど抵抗上昇値は小さく、分解水分量は少なくなる傾向にある。すなわち、電圧は規定値まで上がっている(このデータではΔE=0.2Vまで上昇)にもかかわらず、乾燥が進んでいない結果となっている。したがって、電圧上昇値だけ(ひいては「電圧上昇値÷電流値」から求まる「抵抗上昇値」)でセルの乾燥状態を正確に判断することはできず、電解条件や電圧挙動をも考慮して乾燥を行うことがより好ましい。   However, the resistance increase factor (= overvoltage factor) during electrolytic drying includes (2) reaction resistance and (3) diffusion resistance in addition to the above (1) conductor resistance. That is, at the time of electrolytic drying, even if the voltage increase value is the same, the resistance factor that rises depends on the electrolytic drying conditions. Therefore, as shown in FIG. Value). FIG. 6 shows how the resistance increase value and the amount of water decomposed by electrolysis depend on the electrolysis conditions (= dry current density) when the voltage increase value due to electrolytic drying is set to an arbitrary constant value (for example, ΔE = 0.2 V). In the figure, the black plot indicates the increase in film resistance at each dry current density, and the white plot indicates the amount of decomposed water at each dry current density. In order to dry the cell, it is necessary to remove residual water from the electrode section and the current collector as described later, but the amount of residual water to be removed depends on the structure of the cell and varies depending on the electrolysis conditions. It is not a thing. Nevertheless, the higher the drying current density, the smaller the resistance increase value and the lower the amount of decomposed water. That is, although the voltage has risen to the specified value (in this data, it has risen to ΔE = 0.2 V), the result is that drying has not progressed. Therefore, the dry state of the cell cannot be accurately determined by only the voltage rise value (and hence the “resistance rise value” obtained from “voltage rise value ÷ current value”). It is more preferable to carry out.

そのため、電解乾燥時においては、計測した電圧上昇値が、抵抗上昇値(規定の導体抵抗上昇値)と電解電流値からオームの法則に基づいて算出した規定の電圧上昇値(=換算電圧上昇値、電解乾燥運転を終了する電圧上昇値)に到達しても、電解乾燥条件によっては、上昇の主要因は上記した(2)の活性化過電圧や(3)の拡散過電圧の上昇の場合があり、これらは膜の乾燥状態に起因しないものであるため、乾燥状態に起因する(1)の抵抗過電圧はあまり上昇していない可能性がある。そうすると、抵抗上昇値と電解電流値からオームの法則に基づいて算出した規定の電圧上昇値(換算電圧上昇値)に達したとしても、実際には膜の乾燥状態はまだ不十分である可能性がある。また、上述のように膜が局所的に過度に乾燥し、まだ換算電圧上昇値に到達していないにもかかわらず、膜を破損させてしまう可能性もある。   Therefore, at the time of electrolytic drying, the measured voltage increase value is a specified voltage increase value calculated based on Ohm's law from the resistance increase value (specified conductor resistance increase value) and the electrolytic current value (= converted voltage increase value). Even if it reaches the voltage increase value at which the electrolytic drying operation is terminated, depending on the electrolytic drying conditions, the main cause of the increase may be the activation overvoltage (2) or the diffusion overvoltage (3) described above. Since these are not caused by the dry state of the film, the resistance overvoltage of (1) due to the dry state may not increase so much. Then, even if the specified voltage increase value (converted voltage increase value) calculated based on Ohm's law from the resistance increase value and the electrolysis current value is reached, the dry state of the film may actually still be insufficient. There is. Further, as described above, the film may be excessively dried locally, and the film may be damaged even though the converted voltage increase value has not yet been reached.

以上のことから、電解乾燥時は、従来の抵抗上昇値からの換算電圧上昇値でセル内部の乾燥状態を判断するよりも、電解乾燥時の電解電流を規定して、その時の電圧値を実測して、実測電圧の上昇値を判断指標としてセル内部の乾燥状態を判断した方が、より安全で確実な乾燥を行うことできる。   Based on the above, during electrolytic drying, rather than judging the dry state inside the cell with the converted voltage increase value from the conventional resistance increase value, the electrolytic current during electrolytic drying is specified, and the voltage value at that time is measured. Thus, it is possible to perform safer and more reliable drying by determining the dry state inside the cell using the increase value of the actually measured voltage as a determination index.

具体的には、電解乾燥をすると、まず酸素極側の電極触媒部である電極部4bの残留水が取り除かれ、その次に給・集電体6から電極部4bに移動してきた残留水が取り除かれ、給・集電体6の残留水が、ガスが通過できる程度まで取り除かれたら切り替えが可能となる。そのため、水を取り除く速度である乾燥電流値は、給・集電体6の残留水が電極部4bに移動する速度を、著しくは上回らない値にする必要がある。このときの残留水の移動状況は、電解乾燥中の入力電圧値の経時変化やその上昇値により判断できる。   Specifically, when electrolytic drying is performed, first, residual water in the electrode part 4b, which is the electrode catalyst part on the oxygen electrode side, is removed, and then residual water that has moved from the supply / current collector 6 to the electrode part 4b is removed. When the water is removed and the residual water in the power supply / collector 6 is removed to such an extent that the gas can pass through, the switching can be performed. Therefore, the drying current value, which is the speed at which water is removed, needs to be a value that does not significantly exceed the speed at which the residual water of the power supply / current collector 6 moves to the electrode portion 4b. The movement state of the residual water at this time can be determined from the change over time in the input voltage value during electrolytic drying and the increased value thereof.

電解運転を行うと、残留水が給・集電体6を通って電極触媒である電極部4b上に移動して消費(乾燥)される。その移動速度(量)は乾燥電流値と相関がある。そしてこの乾燥する速度が、給・集電体6の水・酸素流路側表面から反応面に毛管現象(給・集電体6が多孔体であることによる現象)によって移動する速度(量)を著しく上回ると、イオン交換膜4cが局所的に乾燥して破損する恐れがある。これは乾燥電流の電流値が高すぎることを意味する。   When the electrolysis operation is performed, the residual water passes through the supply / collector 6 and moves onto the electrode portion 4b, which is an electrode catalyst, and is consumed (dried). The moving speed (amount) has a correlation with the drying current value. The drying speed is the speed (amount) of movement from the water / oxygen channel side surface of the supply / current collector 6 to the reaction surface by capillary action (a phenomenon caused by the supply / current collector 6 being a porous body). If it exceeds significantly, the ion exchange membrane 4c may be locally dried and damaged. This means that the current value of the drying current is too high.

ここで、乾燥電流値が残留水の移動速度を著しくは上回っていない場合には、通常の水電解終了後の電極部4bに、残留水が十分ある状態から電解乾燥を開始した時の初期入力電圧(以降、乾燥初期電圧という)は、電解水を供給する通常の水電解時と同等の値となる。これは、電極触媒部である電極部4b及び給・集電体6側に十分な水があるためである。しかしながら、電極部4b近傍の水は微量のため、ただちに水は無くなってしまい、図7に示したように、電圧は下に凸のカーブで上昇し始める(第1変曲点a)。しかしその上昇速度は直ぐに減速し、上に凸のカーブが現れる(第2変曲点b)。これは、給・集電体6の流路14側の水が電極触媒部である電極部4bに供給されるためであり、この辺りになれば、一応運転切り替えは可能となる。なぜなら、第2変曲点bを超えていれば、少なくとも反応場である電極触媒部である電極部4bの残留水は取除かれており、給・集電体6も十分ではないまでも取除かれ始めているからである。   Here, if the drying current value does not significantly exceed the moving speed of the residual water, the initial input when the electrolytic drying is started from the state where there is sufficient residual water in the electrode portion 4b after the normal water electrolysis is completed. The voltage (hereinafter referred to as the initial drying voltage) has a value equivalent to that during normal water electrolysis for supplying electrolyzed water. This is because there is sufficient water on the electrode part 4b which is the electrode catalyst part and the supply / collector 6 side. However, since the amount of water in the vicinity of the electrode portion 4b is very small, the water immediately disappears, and as shown in FIG. 7, the voltage starts to rise in a downwardly convex curve (first inflection point a). However, the rising speed is immediately decelerated, and a convex curve appears (second inflection point b). This is because the water on the flow path 14 side of the supply / current collector 6 is supplied to the electrode part 4b which is an electrode catalyst part, and if it is around this, the operation can be switched temporarily. This is because if the second inflection point b is exceeded, at least the residual water in the electrode part 4b, which is the electrode catalyst part that is the reaction field, is removed, and the supply / current collector 6 is removed even if it is not sufficient. Because it is beginning to be removed.

その後さらに電流を流し続けると、ある所から急激に電圧が上昇(下に凸)し始める(第3変曲点c)が、このような状態になると給・集電体6の水は十分に取り除かれており、運転切り替えが可能となる。そしてそのまま電流を流し続けると、イオン交換膜4c内の水を過度に分解することになって危険なため、入力電圧が乾燥初期電圧に対してある値(規定の電圧上昇値)まで上昇したら電流を遮断し、電解乾燥を終了する。   If the current continues to flow after that, the voltage starts to suddenly rise (convex downward) from a certain point (third inflection point c). It has been removed and the operation can be switched. If the current continues to flow, the water in the ion exchange membrane 4c is excessively decomposed, which is dangerous. If the input voltage rises to a certain value (specified voltage increase value) with respect to the initial drying voltage, the current And the electrolytic drying is finished.

もし、乾燥電流値が残留水の移動速度を著しく上回っている場合には、図8に示したように、乾燥初期電圧は通常の水電解時の同一電流運転時の値よりも高めの値となると同時に、最初から上に凸のカーブとなる(図8中のg、第1変曲点と第2変曲点の区別が困難又は不明確となっている)。そしてその時の電圧上昇速度も前記した図7の場合よりも速くなる。その後、ある所からより急激に電圧が上昇(下に凸)する(第3変曲点h)。この場合、イオン交換膜4cの乾燥に伴う抵抗過電圧のみならず、活性化過電圧や濃度過電圧も大きくなるため、直ぐに規定の電圧上昇値に達するが、上述の乾燥不足やセル破損の危険性がある。   If the drying current value is significantly higher than the moving speed of the residual water, the initial drying voltage is higher than the value during the same current operation during normal water electrolysis, as shown in FIG. At the same time, the curve becomes convex upward from the beginning (g in FIG. 8, it is difficult or unclear to distinguish between the first and second inflection points). The voltage rise rate at that time is also faster than in the case of FIG. Thereafter, the voltage rises (convex downward) more rapidly from a certain place (third inflection point h). In this case, not only the resistance overvoltage associated with the drying of the ion exchange membrane 4c but also the activation overvoltage and the concentration overvoltage increase, and thus the specified voltage rise value is reached immediately. However, there is a risk of the above-mentioned insufficient drying and cell damage. .

したがって、以上のことから、電圧上昇値の経時変化データで、第1、第2、第3変曲点が現れるように、乾燥電流の電流上限値を規制するのがよい。具体的には、たとえばあらかじめ実測により、電圧上昇値の経時変化で第1、第2、第3変曲点が現れる電流値を求めておく。計算に基づいて、設定してもよい。同じセル仕様であれば同様の値を示すので、例えば試作品で乾燥電流値を試験的に求めておき、同じ仕様の量産品で同じ乾燥電流値を設定すればよい。   Therefore, it is preferable to regulate the current upper limit value of the drying current so that the first, second, and third inflection points appear in the temporal change data of the voltage increase value. Specifically, for example, current values at which the first, second, and third inflection points appear as time-dependent changes in the voltage increase value are obtained in advance by actual measurement. You may set based on calculation. Since the same value is shown if the cell specifications are the same, for example, a dry current value may be obtained on a trial basis using a prototype, and the same dry current value may be set for a mass-produced product having the same specification.

なお第1、第2、第3変曲点とは、電解乾燥を開始すると電圧値が上昇した後に横ばいとなるが、このときの値を基準値(「乾燥初期電圧」)として“上昇”値の計測を開始しているため、この部分は変曲点(上に凸)とはしない。   Note that the first, second, and third inflection points are leveled after the voltage value rises when electrolytic drying is started. The value at this time is set as a reference value (“dry initial voltage”), and the “rise” value. This part is not an inflection point (convex upward).

なお、抵抗上昇値で計測する場合でも、このような経時変化に基づく判断を行うことも可能ではあるが、電圧上昇値と比べて、セルの乾燥状態が数値上に明確に表れにくく、また経時変化データにおいて乾燥電流値による変曲点の違いも表れにくい。   Even when measuring the resistance increase value, it is possible to make a judgment based on such a change with time, but compared with the voltage increase value, the dry state of the cell is not clearly shown in the numerical value, and moreover, In the change data, the difference of the inflection point due to the drying current value is also difficult to appear.

ところで、発明者は電圧上昇値の経時変化データにおいて、前記したような第1、第2、第3変曲点が現れるような電流値であっても、電流値が高すぎる場合があることを知見した。かかる乾燥電流値で乾燥を続けると、セルを破損するおそれがある。   By the way, the inventor has found that the current value may be too high even if the current value at which the first, second and third inflection points appear in the time-varying data of the voltage rise value. I found out. If drying is continued at such a drying current value, the cell may be damaged.

これを図9〜図11に基づいて説明すると、図9〜図11に示した入力電圧の経時変化においては、いずれも夫々a1、b1、c1、a2、b2、c2、a3、b3、c3の第1、第2、第3の変曲点が認められる。しかしながら、その時の電解乾燥に供している乾燥電流の電流値について考察すると、第1の変曲点aまでの平坦部分と、第2の変曲点b後の平坦部分に達したときの電圧差ΔEは、図9〜図11の場合で異なっている。図9のケースは、第1変曲点a1までの平坦部分と第2変曲点b1後の平坦部分の電圧差ΔEと、抵抗上昇値R、乾燥電流値Iとの関係がΔE<RIの場合であり、図10のケースは、同様に、第1変曲点a2までの平坦部分と第2変曲点b2後の平坦部分の電圧差ΔEと、抵抗上昇値R、乾燥電流値Iとの関係がΔE=RIの場合であり、図11のケースは、同様に、第1変曲点a3までの平坦部分と第2変曲点b3後の平坦部分の電圧差ΔEと、抵抗上昇値R、乾燥電流値Iとの関係がΔE>RIの場合である。 This will be described with reference to FIGS. 9 to 11. In the change of the input voltage shown in FIGS. 9 to 11 with the passage of time, all of a1, b1, c1, a2, b2, c2, a3, b3, c3 respectively. First, second and third inflection points are recognized. However, considering the current value of the drying current used for the electrolytic drying at that time, the voltage difference when the flat portion up to the first inflection point a and the flat portion after the second inflection point b are reached. ΔE is different in the cases of FIGS. In the case of FIG. 9, the relationship between the voltage difference ΔE between the flat portion up to the first inflection point a1 and the flat portion after the second inflection point b1, the resistance increase value R, and the drying current value I is ΔE 1 <RI the case of 1, the case of FIG. 10, similarly, the voltage difference ΔE of the flat portion and the flat portion after the second inflection point b2 to the first inflection point a2, the resistance increase value R, drying current value 11 is the case where ΔE 2 = RI 2, and the case of FIG. 11 similarly shows the voltage difference ΔE between the flat portion up to the first inflection point a3 and the flat portion after the second inflection point b3. The relationship between the resistance rise value R and the drying current value I is when ΔE 3 > RI 3 .

そして図11のケースでは、抵抗過電圧以外の過電圧上昇により、乾燥状態に達していないのに、規定の電圧上昇値に達してしまっているから乾燥状態と判断する可能性が大きい。これは、電解乾燥に供している電流値が高すぎることを意味している。したがって、電圧上昇値の経時変化データにおいて、第1、第2、第3変曲点が現れていても、より適正な電流値を設定する必要がある。   In the case of FIG. 11, due to an overvoltage increase other than the resistance overvoltage, the dry state has not been reached but the specified voltage increase value has been reached, so there is a high possibility of determining a dry state. This means that the current value used for electrolytic drying is too high. Therefore, it is necessary to set a more appropriate current value even if the first, second, and third inflection points appear in the time-varying data of the voltage increase value.

このようにケースに対しては、次のような方法が提案できる。すなわち、上記した図9の場合には、電解電流はまだ上限値に達しておらず、電流値を増大させてもよいケースであり、また図10の場合には、電解電流は上限値と等しいケースである。以上のことから、図11のケースを排し、図9、図10のケースとなるように電解電流値の上限を設定すればよいことになる。具体的には、電圧上昇値の経時変化データにおいて、第1変曲点までの平坦部分と第2変曲点後の平坦部分の電圧差(ΔE)が、「膜表面の活量が1から0.9まで低下した時の抵抗上昇値(R)」と乾燥電流値(I)を乗じて算出した電圧上昇値以下であることを満たす電解電流値とするとよい。即ち下記式を満たすように、乾燥電流値を規制するのがよい。
ΔE≦RI
Thus, the following method can be proposed for the case. That is, in the case of FIG. 9 described above, the electrolysis current has not yet reached the upper limit value, and the current value may be increased. In the case of FIG. 10, the electrolysis current is equal to the upper limit value. It is a case. From the above, the upper limit of the electrolysis current value may be set so that the case of FIG. 11 is eliminated and the cases of FIGS. 9 and 10 are obtained. Specifically, in the time-dependent data of the voltage rise value, the voltage difference (ΔE) between the flat portion up to the first inflection point and the flat portion after the second inflection point is expressed as “the activity of the film surface is 1 It is good to set it as the electrolysis electric current value satisfy | filling that it is below the voltage increase value calculated by multiplying the resistance increase value (R) when reduced to 0.9 "and the dry current value (I). That is, the drying current value is preferably regulated so as to satisfy the following formula.
ΔE ≦ RI

これは、実際に実験して得られた値を基にしている。すなわち、まず実際に電解乾燥の実験を種々実施し、その結果,第1変曲点までの平坦部と第2変曲点後の平坦部の電圧差ΔE(複数)を得る。ついで得られたデータで確実に切替できるか否か調査し,確実に切替できるときΔEが電解乾燥の判断基準とする。但し,そのときにΔEは,電解質膜の厚みや仕様によって異なるものである。したがって、膜の厚みや仕様の影響を受けない因子で判断基準を表さないと、各膜厚、各仕様で個別のΔEを指定しなければいけなくなる。そこで膜の厚みや仕様の影響を受けない汎用的な因子として「活量」を挙げるのが便宜である。この活量を判断基準として,その活量と膜の各種仕様から膜抵抗上昇値を算出し、その時の乾燥電流値を乗じれば、各膜仕様時の適正なΔEが求まる。前記した、「膜表面の活量が1から0.9まで低下したとき」は、このような実験によって得られた値である。   This is based on values obtained by actual experiments. That is, first, various electrolytic drying experiments are actually performed, and as a result, a voltage difference ΔE (plurality) between the flat portion up to the first inflection point and the flat portion after the second inflection point is obtained. Then, it is investigated whether the data can be switched with certainty by using the obtained data. If the switching can be performed reliably, ΔE is used as a criterion for electrolytic drying. However, ΔE at that time varies depending on the thickness and specifications of the electrolyte membrane. Therefore, if the judgment standard is not expressed by a factor that is not affected by the thickness of the film or the specification, it is necessary to specify an individual ΔE for each film thickness and each specification. Therefore, it is convenient to list “activity” as a general-purpose factor that is not affected by the thickness and specifications of the film. Using this activity as a criterion, a film resistance increase value is calculated from the activity and various specifications of the film and multiplied by the dry current value at that time, an appropriate ΔE for each film specification can be obtained. The above-mentioned “when the activity on the film surface decreases from 1 to 0.9” is a value obtained by such an experiment.

ここで、ΔEは、既述したように、実測による第1変曲点までの平坦部分と、第2変曲点後の平坦部分の電圧差であり、Rは、イオン交換膜表面の活量が1から0.9まで低下したときの抵抗上昇値(=「活量が0.9のときの抵抗値」−「活量が1のときの抵抗値」)である。抵抗値は膜の活量と相関があることは既に知られているものである。   Here, ΔE is a voltage difference between the flat portion up to the first inflection point and the flat portion after the second inflection point as described above, and R is the activity of the ion exchange membrane surface. Is a resistance increase value (= “resistance value when the activity is 0.9” − “resistance value when the activity is 1”). It is already known that the resistance value has a correlation with the activity of the film.

また電圧上昇値の経時変化データで、第2変曲点後の平坦部分に達したときにおける膜表面の活量が0.9以上である、という要件としてもよい。
さらにまた、後記するような乾燥時間短縮を目的とすれば、「膜表面の活量が0.98以下である」という要件を加えるとよい。これらの値も、いずれも発明者の実験によって得たものである。
Further, the time-dependent change data of the voltage rise value may be a requirement that the activity on the film surface when reaching the flat portion after the second inflection point is 0.9 or more.
Furthermore, for the purpose of shortening the drying time as described later, it is preferable to add a requirement that the activity of the film surface is 0.98 or less. These values are all obtained by the inventors' experiments.

このような条件で判定を実施する場合の具体的手法については、下記に例示できる。
(判定手順例1)
(1)乾燥電流の電流値を変化させて、実際に電解運転を行い、図9〜図11に示したケースを再現する。
(2)次いで、実測によって各ケースのΔEを求める。
(3)そして活量を0.9としたときの抵抗値と、活量を1としたときの抵抗値を算出し、Rを算出する
(4)乾燥電流値Iを乗じてRIを求める。
(5)その結果、ΔE≦RIの場合には、OKとし、ΔE>RIの場合には、NG(=電流値が大きすぎる)と判定する。
Specific methods for performing the determination under such conditions can be exemplified below.
(Judgment procedure example 1)
(1) The electrolysis operation is actually performed by changing the current value of the drying current, and the cases shown in FIGS. 9 to 11 are reproduced.
(2) Next, ΔE of each case is obtained by actual measurement.
(3) The resistance value when the activity is 0.9 and the resistance value when the activity is 1 are calculated, and R is calculated. (4) The dry current value I is multiplied to obtain RI.
(5) As a result, when ΔE ≦ RI, it is determined as OK, and when ΔE> RI, it is determined as NG (= current value is too large).

(判定手順例2)
(1)乾燥電流の電流値を変化させて、実際に電解運転を行い、図9〜図11に示したケースを再現する。
(2)次いで、実測によって各ケースのΔEを求める。
(3)ΔEと乾燥電流値Iから、抵抗上昇値Rを求める
(4)上記で求めたRに基づいて、活量Zを算出する。
(5)そしてZ≧0.9の場合には、OKとし、Z<0.9の場合には、NG(=電流値が大きすぎる)と判定する。なおこの場合、さらに乾燥時間短縮を目的として、膜表面の活量が0.98以下であるという要件を加えた場合には、
Z≧0.9のときにOKという判定を、0.98≧Z≧0.9を満たす場合にOKと判定すればよい。
(Judgment procedure example 2)
(1) The electrolysis operation is actually performed by changing the current value of the drying current, and the cases shown in FIGS. 9 to 11 are reproduced.
(2) Next, ΔE of each case is obtained by actual measurement.
(3) The resistance increase value R is obtained from ΔE and the drying current value I. (4) The activity Z is calculated based on the R obtained above.
(5) When Z ≧ 0.9, it is determined as OK, and when Z <0.9, it is determined that NG (= the current value is too large). In this case, for the purpose of further reducing the drying time, when the requirement that the activity of the film surface is 0.98 or less is added,
The determination of OK when Z ≧ 0.9 may be determined as OK when 0.98 ≧ Z ≧ 0.9 is satisfied.

ところで、既述した条件、すなわち、
A:電圧上昇値の経時変化データにおいて、第1、第2、第3変曲点が現れるような電流値。
B:膜表面の活量が0.9以上である。
という条件を満たす場合、電流値が低すぎて、乾燥時間が長くなる場合がある。
例えば図12に示したのは、電解乾燥時の電流値が、いずれも上記A、Bの条件を満たしている場合であるが、破線の場合(電流密度=0.2A/cm)では、乾燥時間が長くなってしまっている。これは分解水分量が保有可能水分量を超える場合、乾燥に時間を要したために乾燥運転開始後に集電体外から給・集電体6内に移動した水も分解されたことが考えられるので、この場合は電流値が過小であるといえる。
By the way, the conditions already described, that is,
A: A current value at which the first, second, and third inflection points appear in the time-varying data of the voltage rise value.
B: The activity on the film surface is 0.9 or more.
If this condition is satisfied, the current value may be too low and the drying time may be long.
For example, FIG. 12 shows a case where the current value during electrolytic drying satisfies the above conditions A and B, but in the case of a broken line (current density = 0.2 A / cm 2 ), The drying time has become longer. This is because when the amount of water to be decomposed exceeds the amount of water that can be held, it took time to dry, so it is considered that the water moved from outside the current collector to the supply / current collector 6 after the start of the drying operation was also decomposed. In this case, it can be said that the current value is too small.

かかる場合には、さらに乾燥状態と判断されるまでの分解水分量が給・集電体6の保有可能水分量以下であることを加重要件として設定してもよい。
また、給・集電体6は、水電解運転から燃料電池運転への切替に十分な程度に乾燥していればよく、保有可能水分量の半分以下程度の水分量を分解できればよいので、乾燥運転時間を可能な限り短くするという観点から、給・集電体6の保有可能水分量の半分以下(かつ好ましくは4分の1以上)、とするのが望ましい。
これは、分解水量があまりにも少ない場合(例えば最大量の1/4未満)は、膜の乾燥状態に起因する抵抗過電圧以外の電圧上昇により乾燥状態と判断された(電圧上昇値が規定値に達した)可能性が高いからである。
In such a case, it may be set as a weighting requirement that the amount of decomposed water until it is further determined to be in a dry state is less than or equal to the amount of water that can be held by the supply / current collector 6.
Further, the supply / current collector 6 only needs to be dried to an extent sufficient for switching from water electrolysis operation to fuel cell operation. From the viewpoint of shortening the operation time as much as possible, it is desirable to set it to less than half (and preferably more than one quarter) of the amount of water that can be held by the current collector 6.
This is because when the amount of decomposed water is too small (for example, less than 1/4 of the maximum amount), it is determined to be in a dry state due to a voltage increase other than the resistance overvoltage caused by the dry state of the membrane (the voltage increase value becomes the specified value). Because it is highly possible.

分解水量は電解電流値×電解時間と相関があるので、これに基づいて求めることができ、給・集電体6の保有可能水分量については、給・集電体6の容積と空隙率から給・集電体6の空隙容積を求め、これがすなわち水を保有可能な容積であり保有可能水分量に相当する。なお水電解運転後は、通常は給・集電体6には保有可能水分量の上限値にまで水分が保有された状態になっている。   The amount of water to be decomposed has a correlation with the value of electrolysis current × electrolysis time, and can be determined based on this. The amount of water that can be held by the supply / current collector 6 is determined from the volume and porosity of the supply / current collector 6. The void volume of the power supply / current collector 6 is determined, that is, the volume that can hold water, and corresponds to the water content that can be held. In addition, after the water electrolysis operation, the water supply / current collector 6 is normally in a state where the water is held up to the upper limit of the amount of water that can be held.

なお、実用性を考慮して下限値を設けるのであれば、例えば電解乾燥で分解した残留水の積算量が、酸素極側の電極触媒部と集電体部の保有可能最大量の4倍以上になっても乾燥が不十分である電流値とすればよい。このようなことから、具体的な電流値で簡易的に規定すると、たとえば、0.1〜0.8A/cmの範囲、特に0.1〜0.4A/cmの範囲とすれば、大抵のセル仕様にとっての最適な電流密度(=電流値を電極面積で割った値)となり、膜厚が薄いほど低い側の電流密度を、厚いほど高い側の電流密度を採用すればよい。このように入力電圧の挙動に基づいて電流値を規定することで、いずれの膜厚のセルに対しても最適な電流値を規定できる。また、膜抵抗上昇値を計測しながら電解乾燥をして、乾燥初期電圧からの上昇値が、計測した抵抗の上昇値とその時の乾燥電流を乗じた値に対して、2.5倍以内となる電流値を上限としてもよい。 If a lower limit is set in consideration of practicality, for example, the cumulative amount of residual water decomposed by electrolytic drying is at least four times the maximum amount that can be held in the electrode catalyst part and the current collector part on the oxygen electrode side. Even if it becomes, it should just be set as the electric current value whose drying is inadequate. For this reason, when simplified manner specified by the specific current value, for example, the range of 0.1~0.8A / cm 2, if particularly from 0.1~0.4A / cm 2, The optimum current density for most cell specifications (= the value obtained by dividing the current value by the electrode area) may be adopted. The lower the current density, the higher the current density. In this way, by defining the current value based on the behavior of the input voltage, it is possible to define an optimal current value for a cell having any film thickness. Also, electrolytic drying is performed while measuring the membrane resistance increase value, and the increase value from the initial drying voltage is within 2.5 times the value obtained by multiplying the measured resistance increase value and the drying current at that time. The current value may be the upper limit.

なお分解した残留水の積算量が、保有可能最大量を超えても乾燥が不十分な状態となる要因については、電極が乾燥しきる前に時間経過によって流路に残留している水が電極に移動して供給され、それを分解しているのではないかと考えられる。   As for the factor that causes the dry state to be insufficient even if the accumulated amount of residual water exceeds the maximum amount that can be retained, the water remaining in the flow channel over time before the electrode is completely dried It is thought that it was moved and supplied and disassembled.

本発明においては、通常この種の可逆セルの単セルごとに電圧監視のために設けられている電圧センサによって、各単セルごとに電圧を監視して、乾燥判断を行う。すなわち、たとえば50セルを積層した可逆セルの場合は,50全てのセルに電圧センサを設置し,各電圧センサを監視して乾燥判断をする。そうすると、単セルを複数枚積層した、いわゆる実用的なスタック構成の可逆セルの乾燥時は、セル間の電圧上昇値にバラツキが発生することがある。したがってかかる場合には、そのようにセルを複数積層した際の切り替え基準として,過度の乾燥を避けるために、予め乾燥上限電圧上昇値、たとえば規定の電圧上昇値の1.5〜2倍の値を設定しておき,以下の手法によって運転モードを切り替えるようにしてもよい。
(1)全てのセルが乾燥上限電圧上昇値以下で、かつ全てのセルが規定の電圧上昇値に到達した時点で運転を切り替える。
(2)いずれかのセルが乾燥上限電圧上昇値に到達し、かつその時点で全てのセルで第2変曲点まで現れている場合に運転を切り替える。
In the present invention, the voltage is usually monitored for each single cell by a voltage sensor provided for voltage monitoring for each single cell of this type of reversible cell to make a dry judgment. That is, for example, in the case of a reversible cell in which 50 cells are stacked, voltage sensors are installed in all 50 cells, and each voltage sensor is monitored to determine whether to dry. Then, when a reversible cell having a so-called practical stack structure in which a plurality of single cells are stacked, the voltage rise value between the cells may vary. Therefore, in such a case, in order to avoid excessive drying as a switching reference when a plurality of cells are stacked in this way, a drying upper limit voltage increase value, for example, a value that is 1.5 to 2 times the specified voltage increase value in advance. May be set, and the operation mode may be switched by the following method.
(1) The operation is switched when all the cells are equal to or lower than the drying upper limit voltage increase value and all the cells reach the specified voltage increase value.
(2) The operation is switched when any one of the cells reaches the drying upper limit voltage increase value and has appeared up to the second inflection point in all the cells at that time.

また、1つのセルでも規定の電圧上昇値に到達した時点で乾燥を終了(電流を遮断)することで、運転切り替えを行ってもよいが、仮にその時点で全く乾燥しておらず、燃料電池運転に切り替えた時に燃料電池運転ができないセルが1つでもあった場合には、電解乾燥中の電流を制御することでセル間の乾燥バラツキを抑制しつつ乾燥していないセルの乾燥を行えばよい。   In addition, the operation may be switched by ending drying (cutting off the current) when one cell reaches a specified voltage increase value. However, the fuel cell is not completely dried at that time. When there is even one cell that cannot operate the fuel cell when switching to operation, by controlling the current during electrolytic drying, drying of cells that are not dried while suppressing drying variation between cells can be performed. Good.

具体的には、1つのセルでも規定の電圧上昇値に到達したら、乾燥電流を下げることで残留水の分解速度を落とし、すでに乾燥しているセルの乾燥を抑制しつつ乾燥していないセルの乾燥を続ければよい。また、乾燥していないセルの有無によっては、この電流低下を何度か繰り返してもよい。その他の方法としては、電解乾燥電流を、初めから定格の値よりも25〜50%程度下げて電解乾燥するのもよい。   Specifically, when even a single cell reaches a specified voltage increase value, the drying current is decreased to reduce the decomposition rate of the residual water, while suppressing the drying of the already dried cells, What is necessary is just to continue drying. Further, this current reduction may be repeated several times depending on the presence or absence of cells that are not dried. As another method, electrolytic drying may be performed by lowering the electrolytic drying current from the beginning by about 25 to 50% from the rated value.

本発明は、固体高分子形の水電解装置と燃料電池とを一体化させた可逆セルにおいて、水電解装置運転から燃料電池運転へと運転モードを切り替える際に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful when switching an operation mode from a water electrolysis device operation to a fuel cell operation in a reversible cell in which a solid polymer water electrolysis device and a fuel cell are integrated.

1 可逆セル
2、3 給・集電板
4 MEA
4a 電極触媒層
4b イオン交換膜
5、6 給・集電体
11、13 冷却水流路
12、14 流路
12a、12b、14a、14b 流通口
21 直流電源
22 電圧センサ
31 不活性ガス供給源
33 マスフローコントローラ
F1〜F8 流路
V1〜V8 バルブ
1 Reversible cell 2, 3 Supply / collection plate 4 MEA
4a Electrode catalyst layer 4b Ion exchange membrane 5, 6 Supply / current collector 11, 13 Cooling water flow path 12, 14 Flow path 12a, 12b, 14a, 14b Flow port 21 DC power supply 22 Voltage sensor 31 Inert gas supply source 33 Mass flow Controller F1-F8 flow path V1-V8 valve

Claims (6)

水電解運転と燃料電池運転との運転モードの切り替えが可能な、複数の単セルによって構成された固体高分子形の可逆セルにおいて、
水電解運転から燃料電池運転への運転モードの切り替えにあたって、
水電解運転における電解水の供給を停止した状態で、可逆セルに対して乾燥用の水電解運転を実施して可逆セル内部を乾燥させるようにし、
前記乾燥用の水電解運転の際に可逆セルに供給する電力の、各単セルごとの電圧を監視し、
通常の水電解時と同じ完全湿潤状態での入力電圧値を基準として、電解水を供給せずに一定の電流を供給し続けることにより生じる電圧上昇値に基づいて乾燥状態を判断して前記運転モードの切り替えを行うことを特徴とする、可逆セルの運転制御方法。
In a polymer electrolyte reversible cell composed of a plurality of single cells capable of switching between the water electrolysis operation and the fuel cell operation mode.
When switching the operation mode from water electrolysis operation to fuel cell operation,
With the supply of electrolyzed water in the water electrolysis operation stopped, the inside of the reversible cell is dried by performing a water electrolysis operation for drying on the reversible cell,
Monitor the voltage of each single cell of the power supplied to the reversible cell during the water electrolysis operation for drying,
Based on the input voltage value in the same completely wet state as in normal water electrolysis, the operation is performed by judging the dry state based on the voltage rise value generated by continuing to supply a constant current without supplying electrolyzed water. An operation control method for a reversible cell, characterized in that mode switching is performed.
前記乾燥用の水電解運転の際に可逆セルに供給する電力の上限電流値を、乾燥用の水電解運転時の電圧経時データの第1、第2、第3の変極点の有無に基づいて規定することを特徴とする、請求項1に記載の可逆セルの運転制御方法。 The upper limit current value of the electric power supplied to the reversible cell during the drying water electrolysis operation is based on the presence or absence of the first, second, and third inflection points in the voltage aging data during the drying water electrolysis operation. The reversible cell operation control method according to claim 1, wherein the reversible cell operation control method is defined. 前記上限電流値は、可逆セルの膜表面の活量が1から0.9まで低下した時の抵抗上昇値と乾燥電流値とを乗じて算出した電圧上昇値以下とすることを特徴とする、請求項2に記載の可逆セルの運転制御方法。 The upper limit current value is not more than a voltage increase value calculated by multiplying a resistance increase value and a drying current value when the activity of the film surface of the reversible cell is reduced from 1 to 0.9, The operation control method of the reversible cell according to claim 2. 前記上限電流値は、電圧上昇値の経時変化データで、第2変曲点後の平坦部分に達したときにおける膜表面の活量が0.9以上であることを特徴とする、請求項2に記載の可逆セルの運転制御方法。 The upper limit current value is time-dependent data of a voltage rise value, and the activity of the film surface when reaching a flat portion after the second inflection point is 0.9 or more. The operation control method of the reversible cell described in 1. 膜表面の活量は0.98以下であることを特徴とする、請求項4に記載の可逆セルの運転制御方法。 5. The operation control method for a reversible cell according to claim 4, wherein the activity of the film surface is 0.98 or less. 乾燥状態と判断されるまでの分解水分量が、可逆セルの酸素極側の給・集電体の保有可能水分量以下であることを特徴とする、請求項2〜5のいずれか一項に記載の可逆セルの運転制御方法。 The decomposition water amount until it is determined to be in a dry state is equal to or less than the water amount that can be held by the supply / collector on the oxygen electrode side of the reversible cell, according to any one of claims 2 to 5, The operation control method of the reversible cell as described.
JP2014069602A 2014-03-28 2014-03-28 Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation Active JP6317971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069602A JP6317971B2 (en) 2014-03-28 2014-03-28 Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069602A JP6317971B2 (en) 2014-03-28 2014-03-28 Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation

Publications (3)

Publication Number Publication Date
JP2015191846A true JP2015191846A (en) 2015-11-02
JP2015191846A5 JP2015191846A5 (en) 2017-04-27
JP6317971B2 JP6317971B2 (en) 2018-04-25

Family

ID=54426171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069602A Active JP6317971B2 (en) 2014-03-28 2014-03-28 Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation

Country Status (1)

Country Link
JP (1) JP6317971B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046585A (en) * 2019-09-19 2021-03-25 国立大学法人北見工業大学 Electrode for water electrolysis and manufacturing method thereof, and water electrolysis apparatus
US11764374B2 (en) 2021-03-29 2023-09-19 Honda Motor Co., Ltd. Water electrolysis and electricity generating system
US11811109B2 (en) 2021-03-29 2023-11-07 Honda Motor Co., Ltd. Method of operating water electrolysis and electricity generating system
US11870111B2 (en) 2021-03-29 2024-01-09 Honda Motor Co., Ltd. Water electrolysis and electricity generating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093426A (en) * 2003-08-11 2005-04-07 Nissan Technical Center North America Inc Fuel cell system and method for removal of water from fuel cell
JP2006040868A (en) * 2004-06-21 2006-02-09 Hitachi Cable Ltd Characteristic return method and characteristic return device of fuel cell
JP2007250358A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Power supply unit
JP2009135021A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Fuel cell system, and control method of fuel cell system
JP5339473B2 (en) * 2011-03-07 2013-11-13 独立行政法人産業技術総合研究所 Reversible cell operation control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093426A (en) * 2003-08-11 2005-04-07 Nissan Technical Center North America Inc Fuel cell system and method for removal of water from fuel cell
JP2006040868A (en) * 2004-06-21 2006-02-09 Hitachi Cable Ltd Characteristic return method and characteristic return device of fuel cell
JP2007250358A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Power supply unit
JP2009135021A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Fuel cell system, and control method of fuel cell system
JP5339473B2 (en) * 2011-03-07 2013-11-13 独立行政法人産業技術総合研究所 Reversible cell operation control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046585A (en) * 2019-09-19 2021-03-25 国立大学法人北見工業大学 Electrode for water electrolysis and manufacturing method thereof, and water electrolysis apparatus
US11764374B2 (en) 2021-03-29 2023-09-19 Honda Motor Co., Ltd. Water electrolysis and electricity generating system
US11811109B2 (en) 2021-03-29 2023-11-07 Honda Motor Co., Ltd. Method of operating water electrolysis and electricity generating system
US11870111B2 (en) 2021-03-29 2024-01-09 Honda Motor Co., Ltd. Water electrolysis and electricity generating system

Also Published As

Publication number Publication date
JP6317971B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6317971B2 (en) Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation
JP4273781B2 (en) Fuel cell operating state determination apparatus and method
JP5339473B2 (en) Reversible cell operation control method
CA2655605A1 (en) Fuel cell system and method of monitoring hydrogen concentration in the anode and purging the anode with hydrogen-rich gas
WO2016072026A1 (en) State determination device and method for fuel cell
JP6325013B2 (en) Low temperature startup method for fuel cell system
JP6144180B2 (en) Fuel cell humidification control method
JP5419255B2 (en) Reversible cell operation switching method
JP2019040870A (en) Method for detecting leakage of reducing fluid throughout electrolyte membrane of electrochemical cell
JP6133365B2 (en) Operation method of fuel cell system
JPH08138709A (en) Fuel cell power generating system
KR20140029639A (en) A stack for simulating cell voltage reversal behavior in fuel cells
JP2009170229A (en) Manufacturing method of fuel cell, fuel cell system, and the fuel cell
JP2017157273A (en) Power generation stop method for fuel battery system
JP2007280892A (en) Fuel cell system
JP2009123534A (en) Performance recovery method of solid polymer fuel cell
JP5152948B2 (en) Switching operation of reversible cell stack
JP4919314B2 (en) Reversible cell operation control method and fuel cell operation method
JP2011258396A (en) Fuel cell system
JP5046497B2 (en) Degradation diagnosis method for polymer electrolyte fuel cells
JPH09199151A (en) Fuel cell and its catalytic processing method
CN102195065A (en) Variable anode flow rate for fuel cell vehicle start-up
JP2010257751A (en) Method of controlling fuel cell system
JP6315714B2 (en) Operation control method of fuel cell system
JP5463800B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6317971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150