JP2015186251A - crystal oscillator - Google Patents

crystal oscillator Download PDF

Info

Publication number
JP2015186251A
JP2015186251A JP2014064163A JP2014064163A JP2015186251A JP 2015186251 A JP2015186251 A JP 2015186251A JP 2014064163 A JP2014064163 A JP 2014064163A JP 2014064163 A JP2014064163 A JP 2014064163A JP 2015186251 A JP2015186251 A JP 2015186251A
Authority
JP
Japan
Prior art keywords
crystal oscillator
lead
lead pins
crystal
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014064163A
Other languages
Japanese (ja)
Inventor
博之 見留
Hiroyuki Mitome
博之 見留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2014064163A priority Critical patent/JP2015186251A/en
Publication of JP2015186251A publication Critical patent/JP2015186251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress heat leakage to outside from an internal substrate of a crystal oscillator, stabilize the crystal oscillator, reduce power consumption of the crystal oscillator, and enhance impact resistance by absorbing an impact.SOLUTION: The crystal oscillator has a configuration in which a circuit board 5 is held horizontally to a principal plane of a metal base 7 with a plurality of lead pins 8 erected at the principal plane, and is mounted to a set board with the lead pins 8 having outer leads 8b protruded from a bottom face of the metal base 7. Inner leads 8a of the lead pins 8 are formed in a shape of a coil spring 8c.

Description

本発明は、水晶発振器に係り、とくに、水晶発振器の内部基板から外部への熱の逃げを抑止して、その高安定化及び低消費電力化を図るとともに、発振器への衝撃を吸収して耐衝撃性を高めた水晶発振器に関する。   The present invention relates to a crystal oscillator, and in particular, suppresses the escape of heat from the internal substrate of the crystal oscillator to the outside, thereby achieving high stabilization and low power consumption, and absorbing shock to the oscillator to withstand the damage. The present invention relates to a crystal oscillator with improved impact.

水晶発振器、例えば、恒温槽付水晶発振器(OCXO)は、水晶振動子を恒温槽(オーブン)内に配置し、ヒーターで加熱して、水晶振動子の周囲を一定温度に保つ構造の、最も高精度な発振周波数が担保される水晶発振器である。   A crystal oscillator, for example, a crystal oscillator with a thermostatic chamber (OCXO), has the highest structure in which a crystal resonator is placed in a thermostatic chamber (oven) and heated by a heater to keep the periphery of the crystal resonator at a constant temperature. It is a crystal oscillator that guarantees an accurate oscillation frequency.

この種の従来のOCXOは、金属容器からなる恒温槽内に、水晶片を密閉封入した水晶振動子を有する。
また、この種のOCXOでは、回路基板が、金属ベースに直立して設けられ、かつ、封止ガラスによって気密化された複数のリードピンによって金属ベースの主面に水平に保持され、金属ベースのフランジに金属カバーが溶接・接合されている。
さらに、回路基板の主面には、水晶振動子の外周を取り囲んで加熱抵抗、パワートランジスタ、温度感応素子、電圧可変容量素子等の回路素子が配設されている(特許文献1参照)。
This type of conventional OCXO has a crystal resonator in which a crystal piece is hermetically sealed in a thermostatic chamber made of a metal container.
Also, in this type of OCXO, the circuit board is provided upright on the metal base and is held horizontally on the main surface of the metal base by a plurality of lead pins hermetically sealed by the sealing glass, and the metal base flange A metal cover is welded and joined to the
Further, circuit elements such as a heating resistor, a power transistor, a temperature sensitive element, and a voltage variable capacitance element are disposed on the main surface of the circuit board so as to surround the outer periphery of the crystal resonator (see Patent Document 1).

特開2010−93536号公報JP 2010-93536 A 特開2002−9549号公報Japanese Patent Laid-Open No. 2002-9549 特開2007−49426号公報JP 2007-49426 A 特開平7−297665号公報Japanese Patent Laid-Open No. 7-297665

しかしながら、この種の従来の恒温槽付水晶発振器(OCXO)では、前述したように、回路基板の主面に、水晶振動子の外周を取り囲んで配設された発熱体(加熱抵抗)から発生する熱を効率良く水晶振動子等に伝えることで、OCXOの発振周波数を安定化することができるが、伝導、対流または輻射により、OCXOの外部への熱の逃げが生じる。とくに、これら熱伝達の3原則の内、伝導により回路基板からリードピンを介して外部に逃げる熱が一番多い。   However, in this type of conventional crystal oscillator with a thermostatic chamber (OCXO), as described above, it is generated from a heating element (heating resistor) disposed on the main surface of the circuit board so as to surround the outer periphery of the crystal resonator. The oscillation frequency of the OCXO can be stabilized by efficiently transferring heat to the crystal resonator or the like, but heat escapes to the outside of the OCXO due to conduction, convection, or radiation. In particular, of these three heat transfer principles, the heat that escapes from the circuit board to the outside through the lead pins by conduction is the most.

そのため、このように、外部への熱の逃げが大きいと、OCXOでは、加熱抵抗等により発熱させて、その内部温度をできるだけ一定に保つように温度制御しているため、OCXOの消費電力が大きく、かつ、ランニングコストが大きくなり、経済的ではない。   Therefore, if the heat escape to the outside is large in this way, the OCXO generates heat by a heating resistor or the like, and the temperature is controlled so as to keep the internal temperature as constant as possible. Therefore, the power consumption of the OCXO is large. And running cost becomes large and it is not economical.

また、OCXOは、リードピンが、その軸方向に直角な方向からの衝撃に弱いため、衝撃を受けると、リードピンに破損を生じるほか、水晶振動子に内在している内部応力が変化し、水晶振動子の発振周波数等がズレてしまうことがあった。   In OCXO, the lead pin is vulnerable to an impact from a direction perpendicular to the axial direction thereof. When the impact is received, the lead pin is damaged, and the internal stress in the crystal unit is changed to change the crystal vibration. The oscillation frequency of the child sometimes deviated.

そのため、従来、発振素子を搭載し電気回路を構成した回路基板を容器本体に防振材により支持固定するとともに、容器本体の内壁に硬質材及び多孔質材のからなる2重層からなる防音層を設け、マイクロフォニック効果を低減させたもの(特許文献2参照)、水晶発振器のケースに外部から衝撃が加わると水晶振動子を保持する緩衝材によって衝撃を吸収し、圧電発振器の周波数変動等の発生を抑えるとともに、耐衝撃性の向上を図ったもの(特許文献3参照)及び回路基板の下側主面に複数の弾性体を介して圧電振動子を電気的・機械的に接合して耐衝撃性を向上させたもの(特許文献4参照)、等があった。   Therefore, conventionally, a circuit board having an oscillation element mounted thereon and constituting an electric circuit is supported and fixed to the container body by a vibration isolating material, and a soundproof layer composed of a double layer made of a hard material and a porous material is provided on the inner wall of the container body. Provided with a reduced microphonic effect (see Patent Document 2), when an external impact is applied to the crystal oscillator case, the shock is absorbed by the buffer material that holds the crystal resonator, and the frequency fluctuation of the piezoelectric oscillator occurs. In addition, the piezoelectric vibrator is electrically and mechanically bonded to the lower main surface of the circuit board through a plurality of elastic bodies, and the impact resistance is improved. There was a thing (refer patent document 4) etc. which improved the property.

しかしながら、このような従来例では、水晶振動子等の発振素子を単に防振材、緩衝材等で保持し衝撃を吸収して、発振器の周波数変動等の発生を抑止するとともに、耐衝撃性の向上を図ったに過ぎず、恒温槽付水晶発振器(OCXO)の内部回路基板からリードピンを介して外部への熱の逃げを抑止する構成が具備されていなかった。   However, in such a conventional example, an oscillation element such as a crystal resonator is simply held by a vibration isolating material, a buffer material or the like to absorb the impact, thereby suppressing the occurrence of a frequency variation of the oscillator and the impact resistance. Only the improvement was achieved, and a configuration for suppressing heat escape from the internal circuit board of the oven controlled crystal oscillator (OCXO) to the outside through the lead pin was not provided.

そこで、このような課題を解決するため、本発明の水晶発振器では、ベースの主面に立設した複数のリードピンにより回路基板を前記主面に水平に保持し、かつ、前記ベースの底面から突出した前記リードピンによりセット基板に実装する水晶発振器において、前記リードピンのインナ−リードをコイルばね形状に形成する。
また、本発明の水晶発振器では、前記リードピンが、封止ガラスにより前記ベースに溶着されるようにする。
Therefore, in order to solve such a problem, in the crystal oscillator of the present invention, the circuit board is held horizontally on the main surface by a plurality of lead pins erected on the main surface of the base and protrudes from the bottom surface of the base. In the crystal oscillator mounted on the set substrate by the lead pins, the inner leads of the lead pins are formed in a coil spring shape.
In the crystal oscillator according to the present invention, the lead pin is welded to the base by sealing glass.

さらに、本発明の水晶発振器では、前記コイルばね形状が、すべての前記リードピンの前記インナーリードに、または、少なくとも1個のリードピンの前記インナーリードに形成されるようにする。   Furthermore, in the crystal oscillator of the present invention, the coil spring shape is formed on the inner leads of all the lead pins or on the inner leads of at least one lead pin.

またさらに、本発明の水晶発振器では、前記水晶発振器が、恒温槽付水晶発振器である。   Furthermore, in the crystal oscillator according to the present invention, the crystal oscillator is a crystal oscillator with a thermostatic bath.

さらに、本発明の水晶発振器では、前記水晶発振器が、温度補償型水晶発振器である。   Furthermore, in the crystal oscillator of the present invention, the crystal oscillator is a temperature compensated crystal oscillator.

本発明によれば、発振器の内部基板から外部への熱の逃げを抑止して、高安定化及び低消費電力化を図るとともに、衝撃を吸収して耐衝撃性を高められる。   According to the present invention, the escape of heat from the internal substrate of the oscillator to the outside can be suppressed to achieve high stability and low power consumption, and the impact resistance can be enhanced by absorbing the impact.

本発明の実施例の恒温槽付水晶発振器の斜視図を示し、図1(a)は、金属カバーを透視して斜め上方から見た斜視図を、また、図1(b)は、金属カバーを透視して斜め下方から見た斜視図である。The perspective view of the crystal oscillator with a thermostat of the Example of this invention is shown, Fig.1 (a) is a perspective view seen through diagonally through the metal cover, FIG.1 (b) is a metal cover It is the perspective view seen through from below and seeing through. 図1(a)にA矢視で示した部分の部分拡大図であって、図2(a)は、従来例の、また、図2(b)は、本発明の部分拡大図である。FIG. 2A is a partially enlarged view of the portion shown by arrow A in FIG. 1A, FIG. 2A is a conventional example, and FIG. 2B is a partially enlarged view of the present invention.

以下、本発明の水晶発振器、例えば、恒温槽付水晶発振器の実施例を、添付した図面に基いて説明する。   Hereinafter, embodiments of the crystal oscillator of the present invention, for example, a crystal oscillator with a thermostatic bath, will be described with reference to the accompanying drawings.

金属カバーを透視して斜め方向から見た透視図である図1(a)及び(b)に示すように、本発明の実施例の恒温槽付水晶発振器は、従来の恒温槽付水晶発振器と同様に、金属容器からなる恒温槽(オーブン)内に水晶片を密閉封入した水晶振動子1を有する。
この水晶振動子1は、例えば、ガラスエポシキ樹脂基板からなる、回路基板5の一側板面(下面)の中央領域に配設され、金属ベース7に対向して配置される。
また、回路基板5は、金属ベース7に直立して設けられ、封止ガラス6によって気密化された、複数、例えば6本、のリードピン8によって金属ベース7の主面に水平に保持され、また、発振器用金属ベース7のフランジ10に金属カバー9が溶接・接合される。
さらに、回路基板5の主面の回路パターンには、水晶振動子1の外周を取り囲むように、加熱抵抗、温度感応素子、パワートランジスタ、電圧可変容量素子等の回路素子4が配設されている。このような回路素子構成により、例えば、本願出願人の製造するOCXOでは、水晶振動子を−20から70℃の動作温度範囲に高精度で制御できるようになる。
また、図1(a)にA矢視で示した部分の部分拡大図である、図2(a)に示すように、従来例では、インナーリード8aとアウターリード8bからなる直線状のリードピン8を立設し、その先端部を回路基板5に半田付8dすることによって金属ベース7の主面に対して回路基板5を水平に保持し、アウタ-リード8bが金属ベース7の主面を貫通する部分をガラス封止していた。
これに対して、上述したような構成からなる本発明の実施例である恒温槽付水晶発振器では、とくに、図2(b)に示すように、前述した従来例では、金属ベース7に立設したリードピン8が直線状であったものを、これに代えて、少なくとも1個のリードピン8のインナーリード8aに相当する部分の中央部をコイルスプリング(コイルばね)状に形成して、直線状のアウターリード8bを、鉄にメッキを施した材料からなる金属ベース7の主面に形成した貫通孔に挿通して、回路基板5を水平に保持する。
そして、従来例と同様に、リードピン8の先端部を回路基板5の上部主面に半田付8dし、また、インナーリード8aの金属ベース7の貫通孔へ挿通した部分をガラスハーメチックシール技法によりガラス封止する。
とくに、本発明の恒温槽付水晶発振器では、図2(b)に示したように、リードピン8のインナーリード8aを容易に形成できるコイルスプリング(コイルばね)状に形成したので、インナーリード8aの伸長した場合の長さが直線状のものよりも長くなる。
その結果、リードピン8を経由した熱伝導によるセット基板への熱の逃げが抑制でき、水晶発振器の高安定化、低消費電力化が達成できるとともに、水晶発振器への衝撃をバランス良く吸収できて耐衝撃性が向上し、水晶振動子に内在する内部応力の変化による周波数のズレ(マイクロフォニック効果)、不要な共振周波数の発生が抑止されるようになるとともに、水晶発振器への衝撃自体も緩和できるようになる。
すなわち、理論的には、恒温槽付水晶発振器(OCXO)の内部から、その外部への熱伝導率が小さい(熱抵抗が大きい)と、OCXO内部の熱がその外部へ逃げにくくなる。
ここで、OCXOのインナーリードのような線状体を伝わる熱流量Wに関して、S:線状体(インナーリード)の断面積、L:線状体(インナーリード)の長さ、T,T:熱が移動する2物質(例えば、ガラスエポキシ樹脂からなる回路基板5と金属ベース7)のそれぞれの温度、とすると、以下の数式(1)が成り立つ。
As shown in FIGS. 1A and 1B, which are perspective views seen through the metal cover from an oblique direction, the crystal oscillator with a thermostat according to the embodiment of the present invention is a conventional crystal oscillator with a thermostat. Similarly, it has a crystal resonator 1 in which a crystal piece is hermetically sealed in a thermostat (oven) made of a metal container.
The crystal unit 1 is disposed in a central region of one side plate surface (lower surface) made of, for example, a glass epoxy resin substrate and is opposed to the metal base 7.
Further, the circuit board 5 is provided upright on the metal base 7 and is held horizontally on the main surface of the metal base 7 by a plurality of, for example, six lead pins 8 hermetically sealed by the sealing glass 6. The metal cover 9 is welded and joined to the flange 10 of the oscillator metal base 7.
Furthermore, circuit elements 4 such as a heating resistor, a temperature sensitive element, a power transistor, and a voltage variable capacitance element are disposed in the circuit pattern on the main surface of the circuit board 5 so as to surround the outer periphery of the crystal resonator 1. . With such a circuit element configuration, for example, in the OCXO manufactured by the applicant of the present application, the crystal resonator can be controlled with high accuracy in the operating temperature range of −20 to 70 ° C.
Further, as shown in FIG. 2 (a), which is a partial enlarged view of the portion indicated by the arrow A in FIG. 1 (a), in the conventional example, a linear lead pin 8 comprising an inner lead 8a and an outer lead 8b. The circuit board 5 is held horizontally with respect to the main surface of the metal base 7 by soldering the tip portion thereof to the circuit board 5 and the outer leads 8b penetrate the main surface of the metal base 7. The portion to be sealed was glass sealed.
On the other hand, in the crystal oscillator with a thermostatic bath which is an embodiment of the present invention having the above-described configuration, in particular, as shown in FIG. In place of this, the lead pin 8 that has been linear is formed by forming a central portion of the portion corresponding to the inner lead 8a of the at least one lead pin 8 in the shape of a coil spring (coil spring). The outer lead 8b is inserted through a through hole formed in the main surface of the metal base 7 made of a material plated with iron, and the circuit board 5 is held horizontally.
As in the conventional example, the tip of the lead pin 8 is soldered 8d to the upper main surface of the circuit board 5, and the portion of the inner lead 8a inserted into the through hole of the metal base 7 is made of glass by a glass hermetic sealing technique. Seal.
In particular, in the crystal oscillator with a thermostatic bath of the present invention, as shown in FIG. 2 (b), the inner lead 8a of the lead pin 8 is formed in a coil spring (coil spring) shape that can be easily formed. When stretched, the length becomes longer than that of the linear shape.
As a result, heat escape to the set substrate due to heat conduction through the lead pins 8 can be suppressed, and the crystal oscillator can be highly stabilized and low power consumption can be achieved, and the shock to the crystal oscillator can be absorbed in a well-balanced manner. Improves impact, suppresses frequency shift (microphonic effect) due to changes in internal stress in the crystal unit and unwanted resonance frequency, and reduces the impact on the crystal oscillator itself. It becomes like this.
That is, theoretically, if the thermal conductivity from the inside of the crystal oscillator with a thermostat (OCXO) to the outside is small (the thermal resistance is large), the heat inside the OCXO is difficult to escape to the outside.
Here, regarding the heat flow W transmitted through the linear body such as the OCXO inner lead, S: cross-sectional area of the linear body (inner lead), L: length of the linear body (inner lead), T 1 , T 2 : When the respective temperatures of two substances (for example, the circuit board 5 made of glass epoxy resin and the metal base 7) to which heat is transferred are expressed, the following formula (1) is established.


熱流量W=S/L×熱伝導率×(T1−T) 数式(1)

この数式(1)から、線状体(インナーリードの長さ)を長くした方がOCXOのインナーリードに伝わって外部に逃げる熱流量を抑えることができるようになる。
したがって、OCXOの金属ベースから伸びて回路基板へ接続されているインナーリードをコイルばね形状にして伸長した場合の長さを長くすれば、回路基板の下面主面から金属ベースの上上面主面間の距離を同じ寸法にして低背化を図ったまま、容易にOCXOの内部からその外部に逃げる熱を抑止し、かつ、コイルばねのばね機能(緩衝性)により耐衝撃性を向上させることができるようになる。
なお、ここで、インナーリードのばね形状としては、コイルばね形状に限らず、伸長した際、インナーリードの長さを直線状のものよりも長くできるものであれば、例えば、アコーデオン(蛇腹)形状等、どんな形状であってもよい。
また、コイルばね形状は、すべてのリードピンのインナーリードに形成してもよく、また、発振周波数の変調等を生じるようなおそれがある場合には、出力端子を除いたリードピンのインナーリードにコイルばねを形成してもよい。
とくに、この種の水晶発振器に用いられるリードピン8は、鉄(Fe),ニッケル(Ni),コバルト(Co)の合金であるコバール金属(Kovar)が用いられている。
そのため、ガラス封止時に封止ガラスであるコバールガラスとコバール金属を加熱して溶着させる際、コバール金属の熱膨張率が金属の中では硬質ガラスに近いため、両方の母材の熱膨張率が適合して互いに馴染み合い、封止部の優れた電気特性、高い気密性と絶縁性、さらには耐腐食性や防湿性が担保されるようになる。
なお、本発明は、高精度の発振周波数の制御が要求される恒温槽付水晶発振器に限らず、発振器のベース底面からリードピンが突出して、顧客のセット基板と実装・接続して使用される発振器、例えば、TCXO(温度補償型水晶発振器)等、にも適用可能である。

Heat flow rate W = S / L × thermal conductivity × (T 1 −T 2 ) Formula (1)

From this formula (1), it is possible to suppress the heat flow that is transmitted to the inner lead of the OCXO and escapes to the outside when the linear body (the length of the inner lead) is increased.
Therefore, if the inner lead extending from the OCXO metal base and connected to the circuit board is formed into a coil spring shape and lengthened, the length between the lower main surface of the circuit board and the upper main surface of the metal base is increased. While keeping the distance of the same size and reducing the height, heat that escapes from the inside of the OCXO to the outside can be easily suppressed, and the shock resistance can be improved by the spring function (buffering) of the coil spring. become able to.
Here, the spring shape of the inner lead is not limited to the coil spring shape. For example, an accordion (bellows) shape can be used as long as the length of the inner lead can be made longer than that of the linear shape when extended. Any shape can be used.
In addition, the coil spring shape may be formed on the inner leads of all the lead pins. If there is a risk of oscillation frequency modulation or the like, the coil springs may be formed on the inner leads of the lead pins excluding the output terminals. May be formed.
In particular, the lead pin 8 used in this type of crystal oscillator is made of Kovar metal (Kovar), which is an alloy of iron (Fe), nickel (Ni), and cobalt (Co).
Therefore, when Kovar glass and Kovar metal that are sealing glasses are heated and welded at the time of glass sealing, the thermal expansion coefficient of Kovar metal is close to that of hard glass in the metal, so the thermal expansion coefficient of both base materials is It fits and fits into each other, ensuring excellent electrical properties, high airtightness and insulation, as well as corrosion resistance and moisture resistance.
Note that the present invention is not limited to a constant-temperature bath crystal oscillator that requires high-accuracy oscillation frequency control, but an oscillator that is used by being mounted and connected to a customer's set board with a lead pin protruding from the bottom surface of the base of the oscillator. For example, the present invention can be applied to a TCXO (temperature compensated crystal oscillator).

1.水晶振動子
2.水晶片
4.回路素子
5.回路基板
6.封止ガラス
7.金属ベース
8.リードピン
8a インナーリード
8b アウターリード
8c コイルばね
8d 半田
9.金属カバー
10.フランジ
1. 1. Crystal resonator Crystal piece4. Circuit element 5. Circuit board 6. 6. Sealing glass Metal base8. 8. Lead pin 8a Inner lead 8b Outer lead 8c Coil spring 8d Solder Metal cover 10. Flange

Claims (5)

ベースの主面に立設した複数のリードピンにより回路基板を前記主面に水平に保持し、かつ、前記ベースの底面から突出した前記リードピンによりセット基板に実装する水晶発振器において、前記リードピンのインナ−リードをコイルばね形状に形成したことを特徴とする水晶発振器。   In a crystal oscillator that holds a circuit board horizontally on the main surface by a plurality of lead pins erected on the main surface of the base and is mounted on a set substrate by the lead pins protruding from the bottom surface of the base, an inner portion of the lead pin A crystal oscillator characterized in that a lead is formed in a coil spring shape. 前記リードピンが、封止ガラスにより前記ベースに溶着される請求項1に記載の水晶発振器。   The crystal oscillator according to claim 1, wherein the lead pin is welded to the base by sealing glass. 前記コイルばね形状が、すべての前記リードピンの前記インナーリードに、または少なくとも1個の前記リードピンの前記インナーリードに形成される請求項1に記載の水晶発振器。   The crystal oscillator according to claim 1, wherein the coil spring shape is formed on the inner leads of all of the lead pins or on the inner leads of at least one of the lead pins. 前記水晶発振器が、恒温槽付水晶発振器である請求項1に記載の水晶発振器。   The crystal oscillator according to claim 1, wherein the crystal oscillator is a thermostatic crystal oscillator. 前記水晶発振器が、温度補償型水晶発振器である請求項1に記載の水晶発振器。

















The crystal oscillator according to claim 1, wherein the crystal oscillator is a temperature compensated crystal oscillator.

















JP2014064163A 2014-03-26 2014-03-26 crystal oscillator Pending JP2015186251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064163A JP2015186251A (en) 2014-03-26 2014-03-26 crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064163A JP2015186251A (en) 2014-03-26 2014-03-26 crystal oscillator

Publications (1)

Publication Number Publication Date
JP2015186251A true JP2015186251A (en) 2015-10-22

Family

ID=54352297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064163A Pending JP2015186251A (en) 2014-03-26 2014-03-26 crystal oscillator

Country Status (1)

Country Link
JP (1) JP2015186251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111020A1 (en) * 2015-12-24 2017-06-29 株式会社村田製作所 Pieozoelectric oscillation device and method for manufacturing same
CN107509331A (en) * 2017-08-11 2017-12-22 中国电子科技集团公司第三十八研究所 A kind of Low phase noise missile-borne antivibration frequency source and cushion blocking

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111020A1 (en) * 2015-12-24 2017-06-29 株式会社村田製作所 Pieozoelectric oscillation device and method for manufacturing same
JPWO2017111020A1 (en) * 2015-12-24 2018-05-24 株式会社村田製作所 Piezoelectric oscillation device and manufacturing method thereof
US10707810B2 (en) 2015-12-24 2020-07-07 Murata Manufacturing Co., Ltd. Piezoelectric oscillation device and manufacturing method therefor
CN107509331A (en) * 2017-08-11 2017-12-22 中国电子科技集团公司第三十八研究所 A kind of Low phase noise missile-borne antivibration frequency source and cushion blocking
CN107509331B (en) * 2017-08-11 2023-07-04 中国电子科技集团公司第三十八研究所 Low-phase-noise missile-borne vibration-resistant frequency source and vibration-damping pad

Similar Documents

Publication Publication Date Title
JP4270158B2 (en) Highly stable piezoelectric oscillator
JP4885207B2 (en) Multi-stage constant temperature crystal oscillator
JP5351082B2 (en) Oscillator device including a thermally controlled piezoelectric resonator
JP2009302701A (en) Constant temperature type crystal device
JP5188484B2 (en) Constant temperature crystal oscillator
TW201635701A (en) Oven-controlled crystal oscillator packaged by built-in heating device
JP6448199B2 (en) Crystal oscillator with temperature chamber
JP6662057B2 (en) Piezoelectric oscillator
JP2015186251A (en) crystal oscillator
JP4499478B2 (en) Constant temperature crystal oscillator using crystal resonator for surface mounting
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP2009284372A (en) Constant temperature structure of crystal unit
TW201633696A (en) Miniaturized constant temperature crystal oscillator
JP5741869B2 (en) Piezoelectric device
TWI764991B (en) Quartz crystal device
JP2010183228A (en) Constant-temperature piezoelectric oscillator
JP6058974B2 (en) Crystal oscillator with temperature chamber
JP5912566B2 (en) Crystal oscillator with temperature chamber
JP2010187060A (en) Constant temperature piezoelectric oscillator
JP2015177413A (en) piezoelectric oscillator
JP2019057871A (en) Crystal device
JP2016103757A (en) Piezoelectric device
JP2009105199A (en) Electronic device
JP2014195235A (en) Resonator with integrated temperature sensor
JP2003224422A (en) Piezoelectric vibrator with function of retaining temperature and piezoelectric oscillator with the same function

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160129