JP2015182620A - Hybrid vehicle and control method therefor - Google Patents

Hybrid vehicle and control method therefor Download PDF

Info

Publication number
JP2015182620A
JP2015182620A JP2014061182A JP2014061182A JP2015182620A JP 2015182620 A JP2015182620 A JP 2015182620A JP 2014061182 A JP2014061182 A JP 2014061182A JP 2014061182 A JP2014061182 A JP 2014061182A JP 2015182620 A JP2015182620 A JP 2015182620A
Authority
JP
Japan
Prior art keywords
deceleration
vehicle
motor
hybrid vehicle
stepped transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014061182A
Other languages
Japanese (ja)
Other versions
JP6354241B2 (en
Inventor
治雄 鈴木
Haruo Suzuki
治雄 鈴木
洋紀 瀬戸
Hiroki Seto
洋紀 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014061182A priority Critical patent/JP6354241B2/en
Publication of JP2015182620A publication Critical patent/JP2015182620A/en
Application granted granted Critical
Publication of JP6354241B2 publication Critical patent/JP6354241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid vehicle and a control method therefor, the vehicle and method enabling a high-efficiency recovery of regenerative energy when a hybrid vehicle is driven with a motor regeneration during deceleration, thus improving a fuel economy, improvement in re-acceleration during uphill travel and deceleration in an even road travel, and prevention of acceleration of the vehicle at a shift operation during deceleration in a downhill travel.SOLUTION: When driving a hybrid vehicle by a motor regeneration in which regenerative energy is recycled by causing a motor generator to generate braking force while an internal combustion engine is disconnected from a stepped transmission during deceleration of the vehicle, and if a magnitude of detected deceleration αm detected in the vehicle is equal to or less than a pre-set determining threshold α1, the vehicle is subjected to a shift-permissible motor regenerative travel in which switching of gear stages of the stepped transmission is permitted on an as required basis, whereas if the magnitude of detected deceleration αm is larger than the determining threshold α1, the vehicle is subjected to a shift-prohibited motor regenerative travel in which switching of the gear stages of the stepped transmission is prohibited.

Description

本発明は、ハイブリッド車両が下り坂を減速しながら電動発電機による回生走行をしているときに、その回生電力量を増加させ、燃費を向上させることができるハイブリッド車両及びその制御方法に関する。   The present invention relates to a hybrid vehicle that can increase the amount of regenerative electric power and improve fuel efficiency when the hybrid vehicle is performing regenerative travel by a motor generator while decelerating a downhill.

内燃機関と電動発電機と有段変速機を備えたハイブリッドシステムを搭載して、有段変速機を介して内燃機関の動力と電動発電機の動力を車輪に伝達するハイブリッド車両においては、内燃機関の動力のみで車両を走行させるエンジン単独走行と、電動発電機の動力のみで車両を走行させるモータ単独走行と、内燃機関の動力と電動発電機の動力の両方で車両を走行させるモータアシスト走行と、走行中の車両の制動力の回生エネルギーを利用して電動発電機で発電するモータ回生走行等がある。   In a hybrid vehicle equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission, and transmitting the power of the internal combustion engine and the power of the motor generator to the wheels via the stepped transmission, the internal combustion engine Engine alone running for running the vehicle with only the power of the motor, motor alone running for running the vehicle with only the power of the motor generator, motor assist running for running the vehicle with both the power of the internal combustion engine and the power of the motor generator, In addition, there is a motor regenerative running that uses a regenerative energy of a braking force of a running vehicle to generate power with a motor generator.

一方、従来技術のハイブリッド車両では、車両が減速しながらモータ回生走行しているときには、有段変速機のギア段の変更(シフトダウン)を禁止して固定したり、あるいは、必要に応じて有段変速機のギア段の変更をするようにしたりしている。   On the other hand, in the hybrid vehicle of the prior art, when the vehicle is traveling with motor regeneration while decelerating, the gear change of the stepped transmission (shift down) is prohibited and fixed, or if necessary. The gear stage of the step transmission is changed.

この車両減速時にギア段を固定する場合には、上り坂走行や平地走行で、電動発電機の回転数が低下し、効率の良い回転数で回生エネルギーを回収できず、また、ギア段を変更する場合に比べて、回収できる回生エネルギー量が減少するという問題がある。一方、車両減速時に必要に応じてギア段を変更する場合には、下り坂走行時には、このシフト中は、電動発電機が有段変速機、車軸及び車輪から切り離され、電動発電機の制動力が車輪に伝達されないので、このシフト中に、車両は重力により加速されて、減速の度合いが低下し、運転者に違和感を与えるとともに、減速が不十分になるという問題がある。   If the gear stage is fixed when the vehicle is decelerated, the motor generator speed decreases during uphill or flat travel, and regenerative energy cannot be recovered at an efficient speed, and the gear stage is changed. There is a problem in that the amount of regenerative energy that can be recovered is reduced as compared with the case of doing. On the other hand, if the gear stage is changed as necessary when the vehicle is decelerating, the motor generator is disconnected from the stepped transmission, axle, and wheels during downshifting, and the braking force of the motor generator is reduced. Since the vehicle is not transmitted to the wheels, the vehicle is accelerated by gravity during this shift, and the degree of deceleration is reduced, giving the driver a sense of incongruity and decelerating.

この問題に関連して、下り勾配や車速が大きいほどモータから出力するトルクの値0点であるニュートラルポジションNPが加速要求側となるように(モータから回生トルクを出力する領域が多くなるように)駆動マップを設定し、この設定した駆動マップを用いてモータを駆動制御する車両が提案されている(例えば、特許文献1参照)。   In relation to this problem, the neutral position NP, which is the zero value of the torque output from the motor, becomes closer to the acceleration request side as the descending slope and the vehicle speed are larger (so that the region where the regenerative torque is output from the motor increases). A vehicle has been proposed in which a drive map is set and the motor is driven and controlled using the set drive map (see, for example, Patent Document 1).

しかしながら、この車両においては、下り坂路を走行しているときや車速が大きいときにモータにより回生される電力を多くし、車両のエネルギ効率を向上させることができるとしているが、有段変速機のシフトダウンに関しては言及がなされていない。   However, in this vehicle, it is said that the electric power regenerated by the motor can be increased when traveling downhill or when the vehicle speed is high, and the energy efficiency of the vehicle can be improved. There is no mention of downshifting.

特開2007−176419号公報JP 2007-176419 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、ハイブリッド車両の減速時のモータ回生走行を行う際に、回生エネルギーを効率よく回収して、燃費を向上することができるとともに、上り坂走行と平地走行の減速時では、再加速性を増すことができ、下り坂走行の減速時では、シフト操作中の車両の加速を回避することができるハイブリッド車両及びその制御方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to efficiently recover regenerative energy and improve fuel efficiency when performing motor regenerative travel during deceleration of a hybrid vehicle. In addition, a hybrid vehicle that can increase re-acceleration performance when decelerating uphill traveling and flatland traveling, and a method of controlling the hybrid vehicle that can avoid acceleration of the vehicle during shift operation during decelerating downhill traveling. It is to provide.

上記の目的を達成するための本発明のハイブリッド車両は、内燃機関と電動発電機と有段変速機を備えたハイブリッドシステムを搭載して、前記有段変速機を介して前記内燃機関の動力と前記電動発電機の動力を車輪に伝達するハイブリッド車両において、前記ハイブリッド車両の減速度を検出する減速度検出手段を備えるとともに、前記ハイブリッドシステムを制御する制御装置が、前記ハイブリッド車両の減速時に、前記内燃機関を前記有段変速機から切り離して、前記電動発電機で制動力を発生させて回生エネルギーを回生するモータ回生走行を行う際に、前記減速度検出手段で検出した検出減速度の大きさが、予め設定した判定用閾値以下の場合は、必要に応じて前記有段変速機のギア段の変更を行うシフト許可モータ回生走行制御を行い、前記検出減速度の大きさが前記判定用閾値よりも大きい場合には、前記有段変速機のギア段の変更を禁止するシフト禁止モータ回生走行制御を行うように構成される。   In order to achieve the above object, a hybrid vehicle according to the present invention is equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission, and the power of the internal combustion engine is transmitted via the stepped transmission. In the hybrid vehicle that transmits the power of the motor generator to the wheels, the hybrid vehicle includes deceleration detection means for detecting deceleration of the hybrid vehicle, and a control device that controls the hybrid system includes The magnitude of the detected deceleration detected by the deceleration detecting means when the internal combustion engine is separated from the stepped transmission and the motor generator travels by generating braking force by the motor generator and regenerating regenerative energy. However, if it is equal to or less than a predetermined threshold for determination, shift permission motor regenerative travel control is performed to change the gear position of the stepped transmission as necessary. Performed, when the size of the detected deceleration is greater than the determination threshold is configured to perform shift inhibiting motor regenerative running control to prohibit the gear position change of the stepped transmission.

この構成によれば、ハイブリッド車両の減速時に、内燃機関を有段変速機から切り離して、電動発電機で制動力を発生させて回生エネルギーを回生するモータ回生走行を行う際に、検出減速度の大きさと予め設定した判定用閾値との比較により、減速が下り坂走行であるか否かを判定することができる。   According to this configuration, when the hybrid vehicle is decelerated, the internal combustion engine is disconnected from the stepped transmission, the braking force is generated by the motor generator, and the regenerative energy is regenerated to perform the motor regenerative travel, the detected deceleration is detected. It is possible to determine whether or not the deceleration is downhill traveling by comparing the magnitude with a predetermined threshold for determination.

そして、上り坂走行と平地走行の減速時では、必要に応じて有段変速機のギア段の変更を行うシフト許可モータ回生走行で、減速時における有段変速機のシフトダウンにより、発電効率の良い回転数で電動発電機により回生エネルギーを効率よく回収でき、また、ギア段が下の段になることで、回生可能なエネルギー量が増え、回生エネルギーの回収量が増加するので、燃費を良くすることができる。   When decelerating uphill and flat roads, the shift permission motor regenerative travel changes the gear stage of the stepped transmission as necessary.By shifting down the stepped transmission during deceleration, the power generation efficiency is reduced. Regenerative energy can be efficiently recovered with a motor generator at a good speed, and the amount of energy that can be regenerated increases because the gear stage is at the lower stage, and the amount of recovered regenerative energy increases. can do.

また、上り坂走行と平地走行の減速時では、シフト固定のまま減速走行していった後に加速して走行するときにシフトダウンが必要になるシフト固定の場合に比べて、シフト許可モータ回生走行で、予めシフトダウンをしておくことができるので、再加速時にシフトダウンが不要になり、再加速性を増すことができる。   Also, when decelerating uphill and flat roads, the shift permission motor regenerative travel is compared to the case of shift fixed, which requires downshifting when accelerating and traveling after decelerating with the shift fixed. Therefore, since the downshift can be performed in advance, the downshift is not required at the time of reacceleration, and the reacceleration performance can be increased.

さらに、下り坂走行の減速時では、シフト禁止モータ回生走行を行うので、シフトダウンの操作がなくなり、電動発電機が切り離され制動力が車輪に伝達されなくなるシフト操作中の車両の加速を回避することができる。また、連続して電動発電機で制動力の発生を継続できて、回生エネルギーの回収を継続して回生エネルギーの回収量を増加できるので、燃費を良くすることができる。   In addition, during downhill traveling, the shift-inhibited motor regenerative travel is performed, so that the shift-down operation is eliminated, the motor generator is disconnected, and the braking force is not transmitted to the wheels. be able to. In addition, the generation of braking force can be continuously performed by the motor generator, and the recovery amount of the regenerative energy can be increased by continuously recovering the regenerative energy, so that the fuel consumption can be improved.

上記のハイブリッド車両において、前記制御装置が、前記判定用閾値を、モータ回生エネルギー制御時の車重と車速と平地走行時の車両の走行抵抗と、モータ回生エネルギー制御時の電動発電機の制動力とから算出するように構成される。   In the above hybrid vehicle, the control device determines the threshold value for determination, the vehicle weight and vehicle speed during motor regenerative energy control, the vehicle running resistance during flat land travel, and the braking force of the motor generator during motor regenerative energy control. It is comprised so that it may calculate from.

この場合には、車重と車両の走行抵抗は予め分かっているので、電動発電機の制動力から、平地走行における減速度合いを算出でき、この平地走行での減速度合いを基に判定用閾値を設定する。この判定用閾値は、検出された減速度の大きさがこの値以下の場合は、減速度合いが大きくて電動発電機による制動力以外に何らかの減速要因があるとして、上り坂走行での減速であると判断し、同じ場合であれば平地走行での減速であると判断し、検出された減速度の大きさがこの値よりも大きい場合は、減速度合いが小さく、電動発電機による制動力以外に何らかの加速要因があるとして、下り坂走行での減速であると判断することができる値に設定される。   In this case, since the vehicle weight and the running resistance of the vehicle are known in advance, it is possible to calculate the degree of deceleration in flat land travel from the braking force of the motor generator, and to determine the threshold for determination based on the degree of deceleration in this ground land travel. Set. This threshold value for determination is a deceleration in an uphill traveling on the assumption that the degree of deceleration is large and there is some deceleration factor other than the braking force by the motor generator when the detected deceleration magnitude is less than or equal to this value. If it is the same, it is determined that the vehicle is decelerating on flat ground.If the detected deceleration magnitude is greater than this value, the degree of deceleration is small and the braking force is not limited to the motor generator. Assuming that there is some acceleration factor, it is set to a value at which it can be determined that the vehicle is decelerating downhill.

従って、この判定用閾値を用いることで、容易に、モータ回生走行が、上り坂走行であるか、平地走行であるか、下り坂走行であるか判定できるようになる。   Therefore, by using this determination threshold value, it is possible to easily determine whether the motor regenerative traveling is an uphill traveling, a flat ground traveling, or a downhill traveling.

そして、上記の目的を達成するための本発明のハイブリッド車両の制御方法は、内燃機関と電動発電機と有段変速機を備えたハイブリッドシステムを搭載して、前記有段変速機を介して前記内燃機関の動力と前記電動発電機の動力を車輪に伝達するハイブリッド車両の制御方法において、前記ハイブリッド車両の減速時に、前記内燃機関を前記有段変速機から切り離して、前記電動発電機で制動力を発生させて回生エネルギーを回生するモータ回生走行を行う際に、前記ハイブリッド車両の検出した検出減速度の大きさが、予め設定した判定用閾値以下の場合は、必要に応じて前記有段変速機のギア段の変更を行うシフト許可モータ回生走行を行い、前記検出減速度の大きさが前記判定用閾値よりも大きい場合には、前記有段変速機のギア段の変更を禁止するシフト禁止モータ回生走行を行うことを特徴とする方法である。この方法によれば、上記のハイブリッド車両と同様な効果を奏することができる。   And the hybrid vehicle control method of the present invention for achieving the above object is equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission, and the above described step via the stepped transmission. In the hybrid vehicle control method for transmitting the power of the internal combustion engine and the power of the motor generator to the wheels, when the hybrid vehicle is decelerated, the internal combustion engine is disconnected from the stepped transmission, and the motor generator generates a braking force. If the detected deceleration detected by the hybrid vehicle is less than or equal to a predetermined threshold for determination when performing motor regenerative travel that regenerates regenerative energy, the stepped shift is performed as necessary. When the shift permission motor regenerative travel is performed to change the gear stage of the machine and the magnitude of the detected deceleration is larger than the threshold for determination, the gear stage of the stepped transmission is A method which is characterized in that the shift inhibiting motor regenerative traveling to prohibit changes. According to this method, the same effect as the above hybrid vehicle can be obtained.

本発明のハイブリッド車両及びその制御方法によれば、ハイブリッド車両の減速時のモータ回生走行を行う際に、検出減速度の大きさと予め設定した判定用閾値との比較により、減速が下り坂走行であるか否かを判定することができ、上り坂走行と平地走行の減速時では、シフト許可モータ回生走行で有段変速機のシフトダウンにより、発電効率の良い回転数で電動発電機により回生エネルギーを効率よく回収でき、また、シフトダウンにより回生可能なエネルギー量が増えるので、燃費を良くすることができる。また、上り坂走行と平地走行の減速時では、シフト許可モータ回生走行で、予めシフトダウンをしておくことができるので、再加速時にシフトダウンが不要になり、再加速性を増すことができる。   According to the hybrid vehicle and the control method thereof of the present invention, when performing the motor regenerative travel when the hybrid vehicle decelerates, the deceleration is reduced downhill by comparing the magnitude of the detected deceleration with a preset threshold for determination. It is possible to determine whether or not there is a decelerating speed when traveling uphill and on flat ground. Can be efficiently recovered, and the amount of energy that can be regenerated by shifting down increases, so that fuel efficiency can be improved. In addition, at the time of deceleration of uphill traveling and flat ground traveling, it is possible to shift down in advance by shift permission motor regenerative traveling, so that it is not necessary to shift down at the time of reacceleration and the reacceleration performance can be increased. .

さらに、下り坂走行の減速時では、シフト禁止モータ回生走行を行うので、シフトダウンの操作がなくなり、シフト操作中の車両の加速を回避することができ、また、連続して電動発電機で制動力の発生を継続でき、回生エネルギーの回収量を増加できるので、燃費を良くすることができる。   In addition, during downhill traveling deceleration, regenerative traveling with a shift prohibition motor is performed, so there is no downshifting operation, and acceleration of the vehicle during the shifting operation can be avoided, and the motor generator is continuously controlled. Since the generation of power can be continued and the amount of recovered regenerative energy can be increased, fuel efficiency can be improved.

従って、ハイブリッド車両の減速時のモータ回生走行を行う際に、回生エネルギーを効率よく回収して、燃費を向上することができるとともに、上り坂走行と平地走行の減速時では、再加速性を増すことができ、下り坂走行の減速時では、シフト操作中の車両の加速を回避することができる。   Therefore, when performing motor regenerative travel during deceleration of the hybrid vehicle, regenerative energy can be efficiently recovered to improve fuel efficiency, and re-acceleration is increased during deceleration of uphill travel and flat land travel. It is possible to avoid acceleration of the vehicle during the shift operation at the time of downhill traveling deceleration.

本発明に係る実施の形態のハイブリッド車両の構成を模式的に示す図である。It is a figure which shows typically the structure of the hybrid vehicle of embodiment which concerns on this invention. 本発明に係る実施の形態のハイブリッド車両の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the hybrid vehicle of embodiment which concerns on this invention.

以下、本発明に係る実施の形態のハイブリッド車両及びその制御方法について、図面を参照しながら説明する。図1に示すように、このハイブリッド車両1は、エンジン(内燃機関)10と電動発電機(走行用電動機兼発電機)20と有段変速機30を備えたハイブリッドシステム2を搭載して、有段変速機30を介してエンジン10の動力と電動発電機20の動力を車輪34に伝達して構成される。   Hereinafter, a hybrid vehicle and a control method thereof according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this hybrid vehicle 1 is equipped with a hybrid system 2 including an engine (internal combustion engine) 10, a motor generator (running motor / generator) 20, and a stepped transmission 30. The power of the engine 10 and the power of the motor generator 20 are transmitted to the wheels 34 via the step transmission 30.

図1に示すように、このエンジン10の動力は、トルクコンバータ13と、接続状態にしたエンジン用クラッチ14と、有段変速機30と、プロペラシャフト31と、デファレンシャルギア32と、ドライブシャフト33を介して車輪34に伝達される。これにより、エンジン10の動力が車輪34に伝達され、車両1が走行する。   As shown in FIG. 1, the power of the engine 10 includes a torque converter 13, a connected engine clutch 14, a stepped transmission 30, a propeller shaft 31, a differential gear 32, and a drive shaft 33. Via the wheel 34. Thereby, the power of the engine 10 is transmitted to the wheels 34, and the vehicle 1 travels.

一方、電動発電機20の動力に関しては、バッテリ22に充電(蓄電)された電力がインバータ21を介して供給された電力により電動発電機20が駆動され動力を発生する。この電動発電機20の動力は、接続状態にした電動発電機用クラッチ23と、有段変速機30と、プロペラシャフト31と、デファレンシャルギア32と、ドライブシャフト33を介して車輪34に伝達される。これにより、電動発電機20の動力が車輪34に伝達され、車両1が走行する。   On the other hand, with respect to the power of the motor generator 20, the motor generator 20 is driven by the power supplied (charged) to the battery 22 through the inverter 21 to generate power. The power of the motor generator 20 is transmitted to the wheels 34 through the motor generator clutch 23, the stepped transmission 30, the propeller shaft 31, the differential gear 32, and the drive shaft 33 in the connected state. . Thereby, the motive power of the motor generator 20 is transmitted to the wheels 34 and the vehicle 1 travels.

この構成により、エンジン用クラッチ14を接続状態にして、電動発電機用クラッチ23を断絶状態にするとエンジン単独走行となり、エンジン用クラッチ14を断絶状態にして、電動発電機用クラッチ23を接続状態にするとモータ単独走行又は制動時モータ回生走行となり、エンジン用クラッチ14と電動発電機用クラッチ23を共に接続状態にするとモータアシスト走行となる。   With this configuration, when the engine clutch 14 is engaged and the motor generator clutch 23 is disengaged, the engine runs alone, and the engine clutch 14 is disengaged and the motor generator clutch 23 is engaged. Then, it becomes motor independent traveling or motor regeneration traveling during braking, and when both the engine clutch 14 and the motor generator clutch 23 are connected, motor assist traveling is performed.

図1に示す構成では、エンジン用クラッチ14を断絶状態にして、エンジン10と有段変速機30を切り離すとともに、電動発電機用クラッチ23を接続状態にして、電動発電機20と有段変速機30を接続している状態を示しているので、この状態では、電動発電機20の動力のみが車輪34に伝達され、電動発電機20の動力のみでハイブリッド車両1が走行することになる。   In the configuration shown in FIG. 1, the engine clutch 14 is disengaged to disconnect the engine 10 and the stepped transmission 30, and the motor generator clutch 23 is connected to the motor generator 20 to the stepped transmission. In this state, only the power of the motor generator 20 is transmitted to the wheels 34, and the hybrid vehicle 1 travels only with the power of the motor generator 20.

なお、この図1の構成では、エンジン用クラッチ14の接続及び断絶の切り替えにより、エンジン10の動力の車輪34への伝達と遮断を行い、また、電動発電機用クラッチ23の接続及び断絶の切り替えにより、電動発電機20の動力の車輪34への伝達と遮断を行うが、エンジン10の動力又は電動発電機20の動力の伝達と遮断を適宜切り替えることができればよく、必ずしも、エンジン用クラッチ14又は電動発電機用クラッチ23を設けなくてもよい。   In the configuration of FIG. 1, transmission and disconnection of the power of the engine 10 to the wheels 34 are performed by switching connection and disconnection of the engine clutch 14, and connection and disconnection switching of the motor generator clutch 23 are performed. Thus, the transmission of the power of the motor generator 20 to the wheels 34 is cut off, but the transmission of the power of the engine 10 or the transmission of the power of the motor generator 20 can be switched appropriately, and the engine clutch 14 or The motor generator clutch 23 may not be provided.

そして、このハイブリッドシステム2、及び、ハイブリッド車両1の制御を行うための制御装置40が設けられる。この制御装置40により、ハイブリッド車両1の全般の制御を行うが、この制御は、エンジン10の全般の制御、インバータ21による電動発電機20の全般の制御、有段変速機30のギア段Fgn(n=0、1、2・・・N、n=0はリバースギア)の選択の制御、エンジン用クラッチ14の断接制御と電動発電機用クラッチ23の断接制御を含むハイブリッドシステム2の全般の制御を含んでいる。   And the control apparatus 40 for controlling this hybrid system 2 and the hybrid vehicle 1 is provided. The overall control of the hybrid vehicle 1 is performed by the control device 40. This control includes general control of the engine 10, general control of the motor generator 20 by the inverter 21, and gear stage Fgn (of the stepped transmission 30). n = 0, 1, 2,... N, where n = 0 is a reverse gear), hybrid system 2 in general, including control of connection / disconnection of engine clutch 14 and control of connection / disconnection of clutch 23 for motor generator Includes control of.

そして、本発明においては、ハイブリッド車両1の減速度を検出する減速度検出手段41を備えて構成される。この減速度検出手段41は、ハイブリッド車両1の車速Vの時間変化から求めることができ、車速Vを微分して加速度(dV/dt)を求める。減速時はこの加速度がマイナスになり減速度α(=−dV/dt)となる。この車速Vは通常ハイブリッド車両1の車速センサで検出できる。この減速度検出手段41は、制御装置40に組み込まれて構成される。   And in this invention, it comprises the deceleration detection means 41 which detects the deceleration of the hybrid vehicle 1, and is comprised. The deceleration detection means 41 can be obtained from the time change of the vehicle speed V of the hybrid vehicle 1 and differentiates the vehicle speed V to obtain the acceleration (dV / dt). At the time of deceleration, this acceleration becomes negative and becomes a deceleration α (= −dV / dt). This vehicle speed V can usually be detected by a vehicle speed sensor of the hybrid vehicle 1. The deceleration detection means 41 is configured by being incorporated in the control device 40.

それとともに、ハイブリッドシステム2を制御する制御装置40は、ハイブリッド車両の減速時に、エンジン10を有段変速機30から切り離して、電動発電機20で制動力を発生させて回生エネルギーを回生するモータ回生走行を行う際に、次の制御を行うように構成される。   At the same time, the controller 40 that controls the hybrid system 2 disconnects the engine 10 from the stepped transmission 30 when the hybrid vehicle decelerates, and generates a braking force by the motor generator 20 to regenerate regenerative energy. It is configured to perform the following control when traveling.

つまり、減速度検出手段41で検出した検出減速度αmの大きさが、予め設定した判定用閾値α1以下の場合は、上り坂走行又は平地走行であるとして、必要に応じて有段変速機30のギア段Fgnの変更、即ち、低速側のギア段Fgi(i=1、2・・・N−1、i<n)への変更を行うシフト許可モータ回生走行制御を行い、また、検出減速度αmの大きさが判定用閾値α1よりも大きい場合には、有段変速機30のギア段Fgnの変更を禁止するシフト禁止モータ回生走行制御を行うように構成される。   That is, when the magnitude of the detected deceleration αm detected by the deceleration detecting means 41 is equal to or less than a predetermined determination threshold value α1, it is determined that the vehicle is traveling uphill or on flat ground, and the stepped transmission 30 is necessary. The shift permission motor regenerative running control is performed to change the gear stage Fgn of the gear, that is, to the low speed gear stage Fgi (i = 1, 2,... N-1, i <n). When the speed αm is larger than the determination threshold value α1, the shift prohibiting motor regenerative travel control is performed to prohibit the change of the gear stage Fgn of the stepped transmission 30.

この判定用閾値α1は、モータ回生エネルギー制御時の車重Wと車速Vと平地走行時の車両の走行抵抗Rと、モータ回生エネルギー制御時の電動発電機の制動力Tmとから算出するように構成される。   The determination threshold value α1 is calculated from the vehicle weight W and the vehicle speed V at the time of motor regenerative energy control, the running resistance R of the vehicle at the time of running on flat ground, and the braking force Tm of the motor generator at the time of motor regenerative energy control. Composed.

この場合には、車重Vと車両の走行抵抗Rはこの減速時の制御時には予め分かっているので、電動発電機20の制動力Tmから、平地走行における減速度合いβを算出でき、この平地走行での減速度合いβを基に判定用閾値α1を設定する。この判定用閾値α1は、検出された検出減速度αmの大きさがこの値以下の場合は、減速度合いβが大きくて電動発電機20による制動力Tm以外に何らかの減速要因があるとして、上り坂走行での減速であると判断し、また、同じ場合であれば平地走行での減速であると判断し、さらに、検出された検出減速度αmの大きさがこの値よりも大きい場合は、減速度合いβが小さく、電動発電機20による制動力Tm以外に何らかの加速要因があるとして、下り坂走行での減速であると判断することができる値に設定される。これにより、この判定用閾値α1を用いることで、容易に、モータ回生走行が、上り坂走行であるか、平地走行であるか、下り坂走行であるか判定できるようになる。   In this case, since the vehicle weight V and the running resistance R of the vehicle are known in advance at the time of the deceleration control, the deceleration degree β in the flat running can be calculated from the braking force Tm of the motor generator 20, and this flat running can be calculated. The determination threshold value α1 is set based on the deceleration degree β at. If the magnitude of the detected deceleration αm detected is less than or equal to this value, the threshold value for determination α1 is assumed that there is some deceleration factor other than the braking force Tm by the motor generator 20 because the deceleration degree β is large. If it is the same, it is determined that the vehicle is decelerating on a flat ground. If the detected deceleration αm is larger than this value, the vehicle is decelerated. If the degree β is small and there is some acceleration factor other than the braking force Tm by the motor generator 20, it is set to a value that can be determined to be deceleration in downhill traveling. Thereby, by using this determination threshold value α1, it is possible to easily determine whether the motor regeneration travel is an uphill travel, a flat ground travel, or a downhill travel.

あるいは、この判定用閾値α1は、車両1を種々の下り坂の路面の勾配に基づいて回生走行させて得た実験データ等を基に予め設定して制御装置40に記憶させておいてもよい。   Alternatively, the determination threshold value α1 may be set in advance based on experimental data obtained by regenerating the vehicle 1 based on various downhill road gradients, and stored in the control device 40. .

これにより、ハイブリッド車両1の減速時に、エンジン10を有段変速機30から切り離して、電動発電機20で制動力Tmを発生させて回生エネルギーを回生するモータ回生走行を行う際に、検出減速度αmの大きさと予め設定した判定用閾値α1との比較により、減速が下り坂走行であるか否かを判定する。   As a result, when the hybrid vehicle 1 is decelerated, the engine 10 is disconnected from the stepped transmission 30 and the motor generator 20 generates a braking force Tm to perform regenerative energy regeneration to detect the deceleration. By comparing the magnitude of αm with a predetermined threshold value for determination α1, it is determined whether or not the deceleration is downhill traveling.

そして、上り坂走行と平地走行の減速時では、必要に応じて有段変速機30のギア段Fgnの変更を行うシフト許可モータ回生走行で、減速時における有段変速機30のシフトダウンにより、発電効率の良い回転数で電動発電機20により回生エネルギーを効率よく回収する。また、ギア段Fgnを下のギア段にすることで、回生可能なエネルギー量を増し、回生エネルギーの回収量を増加して、燃費を向上させる。   And, at the time of deceleration of the uphill traveling and the flat ground traveling, by the shift permission motor regenerative traveling that changes the gear stage Fgn of the stepped transmission 30 as necessary, by the downshift of the stepped transmission 30 at the time of deceleration, Regenerative energy is efficiently recovered by the motor generator 20 at a rotational speed with good power generation efficiency. Further, by setting the gear stage Fgn to the lower gear stage, the amount of energy that can be regenerated is increased, the amount of recovered regenerative energy is increased, and the fuel efficiency is improved.

また、上り坂走行と平地走行の減速時では、シフト許可モータ回生走行で、シフトダウンが可能であるので、回生時にシフトダウンがなされるので、再加速時にシフトダウンをすることが不要になる。従って、シフト固定のまま減速走行していった後に加速して走行するときにシフトダウンが必要になるシフト固定の場合に比べて、再加速性が増す。   In addition, since downshifting is possible by regenerative traveling of the shift permission motor when decelerating uphill traveling and flat ground traveling, downshifting is performed during regeneration, so that it is not necessary to downshift during reacceleration. Accordingly, the reacceleration performance is increased as compared with the case of the shift fixing in which the downshift is required when the vehicle travels at a reduced speed after the shift is fixed.

さらに、下り坂走行の減速時では、シフト禁止モータ回生走行を行って、シフトダウンの操作を無くし、電動発電機20が切り離され制動力Tmが車輪34に伝達されなくなるシフト操作中のハイブリッド車両1の加速を回避する。また、電動発電機20で制動力Tmの発生と回生エネルギーの回収を継続して回生エネルギーの回収量を増加して、燃費を向上する。   Further, when the vehicle is decelerating on the downhill, the shift prohibiting motor regenerative traveling is performed, the downshifting operation is eliminated, the motor generator 20 is disconnected, and the braking force Tm is not transmitted to the wheels 34. Avoid acceleration. Further, the motor generator 20 continuously generates the braking force Tm and recovers the regenerative energy, thereby increasing the recovery amount of the regenerative energy and improving the fuel efficiency.

次に、この実施の形態のハイブリッド車両の制御方法について、図2の制御フローを参照しながら説明する。この図2の制御フローは、ハイブリッド車両1の運転が開始されたときに、上級の制御フローから呼ばれてスタートし、図2の制御フローを実施して、上級の制御フローに戻る制御フローとして示している。   Next, the control method of the hybrid vehicle of this embodiment will be described with reference to the control flow of FIG. The control flow of FIG. 2 is called as a high-level control flow when the operation of the hybrid vehicle 1 is started, and the control flow of FIG. 2 is executed to return to the high-level control flow. Show.

ハイブリッド車両1の運転が開始され、図2の制御フローが上級の制御フローに呼ばれてスタートすると、ステップS11で、ハイブリッド車両1が減速時で、エンジン10を有段変速機30から切り離して、電動発電機20で制動力Tmを発生させて回生エネルギーを回生するモータ回生走行を行っているか否かを判定する。   When the operation of the hybrid vehicle 1 is started and the control flow of FIG. 2 is called by the advanced control flow and starts, in step S11, the hybrid vehicle 1 is decelerated and the engine 10 is disconnected from the stepped transmission 30, It is determined whether or not the motor generator 20 is generating the braking force Tm to regenerate the regenerative energy.

このステップS11の判定で、モータ回生走行ではない場合(NO)は、予め設定された制御時間を経過した後、ステップS11に戻る。一方、モータ回生走行である場合(YES)は、ステップS12に進む。   If it is determined in step S11 that the motor regenerative running is not performed (NO), the control returns to step S11 after a preset control time has elapsed. On the other hand, when it is motor regeneration travel (YES), it progresses to Step S12.

ステップS12では、減速度αmを算出し、また、判定用閾値α1をモータ回生エネルギー制御時の車重Wと車速Vと平地走行時の車両の走行抵抗Rと、モータ回生エネルギー制御時の電動発電機の制動力Tmとから算出する。   In step S12, the deceleration rate αm is calculated, and the determination threshold value α1 is set to the vehicle weight W and the vehicle speed V at the time of motor regenerative energy control, the running resistance R of the vehicle at the time of flat ground driving, and the electric power generation at the time of motor regenerative energy control. It is calculated from the braking force Tm of the machine.

次のステップS13では、検出された検出減速度αmが、予め設定した判定用閾値α1以下であるか否かを判定する。この判定で、検出した検出減速度αmの大きさが、判定用閾値α1以下の場合は(αm≦α1:YES)、ステップS14に行き、必要に応じて有段変速機30のギア段Fgnの変更を行うシフト許可モータ回生走行制御を行い、このシフト許可モータ回生走行制御を予め設定した制御時間の間行った後、ステップS11に戻る。   In the next step S13, it is determined whether or not the detected deceleration αm is equal to or less than a predetermined determination threshold value α1. In this determination, when the detected deceleration αm is less than or equal to the determination threshold α1 (αm ≦ α1: YES), the process goes to step S14, and the gear stage Fgn of the stepped transmission 30 is set as necessary. The shift permission motor regenerative travel control to be changed is performed, the shift permission motor regenerative travel control is performed for a preset control time, and then the process returns to step S11.

ステップS13の判定で、検出した検出減速度αmの大きさが、判定用閾値α1以下でない、即ち、検出した検出減速度αmの大きさが、判定用閾値α1よりも大きい場合は(αm>α1:NO)、ステップS15に行き、有段変速機30のギア段Fgnの変更を禁止するシフト禁止モータ回生走行制御を行い、このシフト禁止モータ回生走行制御を予め設定した制御時間の間行った後、ステップS11に戻る。   If it is determined in step S13 that the detected deceleration αm is not less than the determination threshold α1, that is, the detected detection αm is larger than the determination threshold α1 (αm> α1). : NO), after going to step S15, performing the shift prohibition motor regenerative travel control for prohibiting the change of the gear stage Fgn of the stepped transmission 30, and performing this shift prohibition motor regenerative travel control for a preset control time Return to step S11.

そして、図2の制御フローの途中で、ハイブリッド車両1の運転が停止されたときには、割り込みにより、リターンに行き、上級の制御フローに戻り、上級の制御フローの終了とともに図2の制御フローも終了する。   Then, when the operation of the hybrid vehicle 1 is stopped in the middle of the control flow of FIG. 2, the interruption returns to return to the advanced control flow, and the control flow of FIG. 2 ends with the completion of the advanced control flow. To do.

上記の構成のハイブリッド車両1、及びその制御方法によれば、ハイブリッド車両1の減速時のモータ回生走行を行う際に、回生エネルギーを効率よく回収して、燃費を向上することができるとともに、上り坂走行と平地走行の減速時では、再加速性を増すことができ、下り坂走行の減速時では、シフト操作中のハイブリッド車両1の加速を回避することができる。   According to the hybrid vehicle 1 having the above-described configuration and the control method thereof, when performing motor regenerative travel when the hybrid vehicle 1 is decelerated, the regenerative energy can be efficiently recovered to improve fuel efficiency, and The re-acceleration performance can be increased during deceleration of hill travel and flat land travel, and acceleration of the hybrid vehicle 1 during shift operation can be avoided during deceleration of downhill travel.

1 ハイブリッド車両
10 エンジン(内燃機関)
13 トルクコンバータ
14 エンジン用クラッチ
20 電動発電機
21 インバータ
22 バッテリ
23 電動発電機用クラッチ
30 有段変速機
31 プロペラシャフト
32 デファレンシャルギア
33 ドライブシャフト
34 車輪
40 制御装置
41 減速度検出手段
Fgn ギア段(n=0、1、2・・・N、n=0はリバースギア)
Fgi 低速ギア側のギア段(i=1、2・・・N−1、i<n)
αm 検出減速度(減速度センサの検出減速度)
α1 判定用閾値
1 Hybrid vehicle 10 Engine (internal combustion engine)
13 Torque converter 14 Engine clutch 20 Motor generator 21 Inverter 22 Battery 23 Motor generator clutch 30 Stepped transmission 31 Propeller shaft 32 Differential gear 33 Drive shaft 34 Wheel 40 Controller 41 Deceleration detecting means Fgn Gear stage (n = 0, 1, 2, ... N, n = 0 is reverse gear)
Fgi Gear stage on the low-speed gear side (i = 1, 2,... N-1, i <n)
αm Detection deceleration (Detection deceleration of deceleration sensor)
α1 threshold for judgment

Claims (3)

内燃機関と電動発電機と有段変速機を備えたハイブリッドシステムを搭載して、前記有段変速機を介して前記内燃機関の動力と前記電動発電機の動力を車輪に伝達するハイブリッド車両において、
前記ハイブリッド車両の減速度を検出する減速度検出手段を備えるとともに、
前記ハイブリッドシステムを制御する制御装置が、
前記ハイブリッド車両の減速時に、前記内燃機関を前記有段変速機から切り離して、前記電動発電機で制動力を発生させて回生エネルギーを回生するモータ回生走行を行う際に、
前記減速度検出手段で検出した検出減速度の大きさが、予め設定した判定用閾値以下の場合は、必要に応じて前記有段変速機のギア段の変更を行うシフト許可モータ回生走行制御を行い、
前記検出減速度の大きさが前記判定用閾値よりも大きい場合には、前記有段変速機のギア段の変更を禁止するシフト禁止モータ回生走行制御を行うように構成されたことを特徴とするハイブリッド車両。
In a hybrid vehicle equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission, and transmitting the power of the internal combustion engine and the power of the motor generator to wheels via the stepped transmission,
A deceleration detecting means for detecting the deceleration of the hybrid vehicle;
A control device for controlling the hybrid system,
At the time of deceleration of the hybrid vehicle, the internal combustion engine is disconnected from the stepped transmission, and when performing motor regenerative running to generate regenerative energy by generating braking force with the motor generator,
When the magnitude of the detected deceleration detected by the deceleration detecting means is equal to or less than a predetermined threshold for determination, shift permission motor regenerative running control is performed to change the gear position of the stepped transmission as necessary. Done
When the magnitude of the detected deceleration is larger than the threshold for determination, the shift prohibiting motor regenerative running control for prohibiting the change of the gear stage of the stepped transmission is performed. Hybrid vehicle.
前記制御装置が、前記判定用閾値を、モータ回生エネルギー制御時の車重と車速と平地走行時の車両の走行抵抗と、モータ回生エネルギー制御時の電動発電機の制動力とから算出するように構成されたことを特徴とする請求項1記載のハイブリッド車両。   The control device calculates the determination threshold value from a vehicle weight and a vehicle speed at the time of motor regenerative energy control, a running resistance of the vehicle at the time of traveling on flat ground, and a braking force of the motor generator at the time of motor regenerative energy control. The hybrid vehicle according to claim 1, wherein the hybrid vehicle is configured. 内燃機関と電動発電機と有段変速機を備えたハイブリッドシステムを搭載して、前記有段変速機を介して前記内燃機関の動力と前記電動発電機の動力を車輪に伝達するハイブリッド車両の制御方法において、
前記ハイブリッド車両の減速時に、前記内燃機関を前記有段変速機から切り離して、前記電動発電機で制動力を発生させて回生エネルギーを回生するモータ回生走行を行う際に、
前記ハイブリッド車両の検出した検出減速度の大きさが、予め設定した判定用閾値以下の場合は、必要に応じて前記有段変速機のギア段の変更を行うシフト許可モータ回生走行を行い、
前記検出減速度の大きさが前記判定用閾値よりも大きい場合には、前記有段変速機のギア段の変更を禁止するシフト禁止モータ回生走行を行うことを特徴とするハイブリッド車両の制御方法。
Control of a hybrid vehicle equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission, and transmitting the power of the internal combustion engine and the power of the motor generator to wheels via the stepped transmission In the method
At the time of deceleration of the hybrid vehicle, the internal combustion engine is disconnected from the stepped transmission, and when performing motor regenerative running to generate regenerative energy by generating braking force with the motor generator,
When the magnitude of the detected deceleration detected by the hybrid vehicle is equal to or less than a predetermined threshold for determination, performing a shift permission motor regenerative running for changing the gear position of the stepped transmission as necessary,
A control method for a hybrid vehicle, characterized in that when the magnitude of the detected deceleration is larger than the determination threshold, shift prohibition motor regenerative running is performed to prohibit change of the gear position of the stepped transmission.
JP2014061182A 2014-03-25 2014-03-25 Hybrid vehicle and control method thereof Expired - Fee Related JP6354241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061182A JP6354241B2 (en) 2014-03-25 2014-03-25 Hybrid vehicle and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061182A JP6354241B2 (en) 2014-03-25 2014-03-25 Hybrid vehicle and control method thereof

Publications (2)

Publication Number Publication Date
JP2015182620A true JP2015182620A (en) 2015-10-22
JP6354241B2 JP6354241B2 (en) 2018-07-11

Family

ID=54349647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061182A Expired - Fee Related JP6354241B2 (en) 2014-03-25 2014-03-25 Hybrid vehicle and control method thereof

Country Status (1)

Country Link
JP (1) JP6354241B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062610A (en) * 2017-09-25 2019-04-18 三菱自動車工業株式会社 Electric-vehicular control apparatus
CN114179622A (en) * 2021-12-28 2022-03-15 三一汽车起重机械有限公司 Brake energy feedback optimization method and device and operation machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112660130A (en) * 2020-12-31 2021-04-16 联合汽车电子有限公司 New energy automobile sliding control system and method based on intelligent networking information and new energy automobile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269793A (en) * 2004-03-19 2005-09-29 Daihatsu Motor Co Ltd Hybrid vehicle
JP2006226354A (en) * 2005-02-16 2006-08-31 Toyota Motor Corp Automobile and control method thereof
WO2009017121A1 (en) * 2007-08-01 2009-02-05 Isuzu Motors Limited Energy regenerating device for vehicle
JP2009171727A (en) * 2008-01-16 2009-07-30 Isuzu Motors Ltd Energy regeneration apparatus for vehicle
JP2012017060A (en) * 2010-07-09 2012-01-26 Aisin Aw Co Ltd Control device
WO2013051093A1 (en) * 2011-10-03 2013-04-11 トヨタ自動車株式会社 Control device for hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269793A (en) * 2004-03-19 2005-09-29 Daihatsu Motor Co Ltd Hybrid vehicle
JP2006226354A (en) * 2005-02-16 2006-08-31 Toyota Motor Corp Automobile and control method thereof
WO2009017121A1 (en) * 2007-08-01 2009-02-05 Isuzu Motors Limited Energy regenerating device for vehicle
JP2009171727A (en) * 2008-01-16 2009-07-30 Isuzu Motors Ltd Energy regeneration apparatus for vehicle
JP2012017060A (en) * 2010-07-09 2012-01-26 Aisin Aw Co Ltd Control device
WO2013051093A1 (en) * 2011-10-03 2013-04-11 トヨタ自動車株式会社 Control device for hybrid vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062610A (en) * 2017-09-25 2019-04-18 三菱自動車工業株式会社 Electric-vehicular control apparatus
JP7029104B2 (en) 2017-09-25 2022-03-03 三菱自動車工業株式会社 Control device for electric vehicles
CN114179622A (en) * 2021-12-28 2022-03-15 三一汽车起重机械有限公司 Brake energy feedback optimization method and device and operation machine
CN114179622B (en) * 2021-12-28 2023-10-20 三一汽车起重机械有限公司 Braking energy feedback optimization method and device and operation machine

Also Published As

Publication number Publication date
JP6354241B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP4743218B2 (en) Clutch control device for hybrid vehicle
JP5098338B2 (en) Hybrid vehicle
JP5399616B2 (en) Charge control device for hybrid vehicle
JP4637770B2 (en) Control device for hybrid electric vehicle
JP6018018B2 (en) Electric vehicle regeneration control device
JP2011088595A (en) Controller for hybrid electric automobile
KR101646409B1 (en) System and method for controlling energy regeneration of mild hybrid vehicle
JP2004187331A (en) Driving force controller for hybrid vehicle
JP6354241B2 (en) Hybrid vehicle and control method thereof
JP6547497B2 (en) Hybrid vehicle and control method thereof
JP2005304182A (en) Controller of hybrid vehicle
JP2010190266A (en) Shift control device and shift control method for vehicle
JP2008149978A (en) Controller of hybrid vehicle
JP5760378B2 (en) Control device for electric vehicle
JP4449825B2 (en) Hybrid vehicle travel mode control device
JP5338958B2 (en) Control device for hybrid vehicle
JP2016175496A (en) Hybrid vehicle and control method therefor
JP2016175491A (en) Hybrid vehicle and control method therefor
JP6236677B2 (en) Control device for electric vehicle
JP2015033885A (en) Flywheel regeneration system and control method thereof
JP5685887B2 (en) Control device for hybrid vehicle
JP2011061946A (en) Wheel slip controller for electric vehicle
JP6400648B2 (en) Electric vehicle regeneration control device
JP5309676B2 (en) Vehicle start control device
JP5454665B2 (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees