JP2015181328A - Composite conductor wire, connection structure, conductor connection member, melting connection device and connection method of composite conductor wire - Google Patents

Composite conductor wire, connection structure, conductor connection member, melting connection device and connection method of composite conductor wire Download PDF

Info

Publication number
JP2015181328A
JP2015181328A JP2015019204A JP2015019204A JP2015181328A JP 2015181328 A JP2015181328 A JP 2015181328A JP 2015019204 A JP2015019204 A JP 2015019204A JP 2015019204 A JP2015019204 A JP 2015019204A JP 2015181328 A JP2015181328 A JP 2015181328A
Authority
JP
Japan
Prior art keywords
conductor
melting point
connection
side end
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015019204A
Other languages
Japanese (ja)
Other versions
JP6117258B2 (en
Inventor
寛之 深井
Hiroyuki Fukai
寛之 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2015019204A priority Critical patent/JP6117258B2/en
Publication of JP2015181328A publication Critical patent/JP2015181328A/en
Application granted granted Critical
Publication of JP6117258B2 publication Critical patent/JP6117258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Windings For Motors And Generators (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite conductor wire capable of reducing an eddy current loss and capable of additionally performing connection with an excellent state where reliable conductivity is secured, and further to provide a connection structure, a conductor connection member, a melting connection device and a connection method of the composite conductor wire.SOLUTION: Connection side end portions 16 are heated at a temperature at which high melting point conductors 20 melt while connection side end portions 16 in composite conductor wires 12A are abutting against each other. In the connection side end portions 16, a volume of each high melting point conductor 20 is set to be less than a volume of each low melting point conductor 30. Consequently, the high melting point conductors 20 are caused to sufficiently melt to be in a melting connection state where reliable conductivity is secured while the low melting point conductors 30 are being caused to melt to be in the melting connection state where the reliable conductivity is secured and joint portions 60 can be formed. On this account, a connection structure wire 102 capable of being used for, for example, winding for a motor can be configured.

Description

この発明は、例えば、電気自動車、ハイブリッド電気自動車等に搭載されるモータのコイル用巻線に用いられるような複合導体線、接続構造体、導体接続部材、溶融接続装置、及び複合導体線の接続方法に関する。   The present invention relates to a composite conductor wire, a connection structure, a conductor connection member, a fusion connection device, and a connection of the composite conductor wire used for, for example, a coil winding of a motor mounted on an electric vehicle, a hybrid electric vehicle, etc. Regarding the method.

上述のコイル用巻線としては、銅線の周囲をアルミニウムで覆った丸線、あるいはアルミニウム線の周囲を銅で覆った丸線からなる巻線が用いられているが、例えば、交流電流、高周波電流(1kHz以上)の電流を丸線からなる巻線に通電した場合、巻線に鎖交する磁束によって渦電流が生じやすく、その渦電流の影響により、巻線内部に電流が流れやすい部分と、流れにくい部分が生じるため、電気抵抗が増加する。   As the coil winding described above, a round wire in which the copper wire is covered with aluminum or a round wire in which the aluminum wire is covered with copper is used. When a current (1 kHz or more) is passed through a round wire, an eddy current is likely to be generated by the magnetic flux interlinked with the winding. Since the portion that is difficult to flow is generated, the electrical resistance increases.

そこで、上述の渦電流による影響を少なくするため、例えば、断面積の異なる複数の導体を複合した特許文献1のコイル用巻線等の複合導体線が提案されている。この複合導体線同士を接続する場合、導電性を確保するために同一種類の導体同士を溶融接続する必要があるが、これら複合導体線を構成する複数の導体が同一種類の金属で構成されていれば、各導体の溶融温度が同じであるため、複合線の端部同士を同一の温度にて溶融接続することが可能である。例えば、同一種類の金属からなる複合導体線同士を接続する接続方法としては、複合導体線同士を一対の電極間に挟持して溶接する特許文献2のスポット溶接方法と、高導電性材同士の溶接と、低導電性材同士の溶接とを2回に分けて行う特許文献3の異種材の電気抵抗溶接方法が提案されている。   Therefore, in order to reduce the influence of the above-described eddy current, for example, a composite conductor wire such as a coil winding of Patent Document 1 in which a plurality of conductors having different cross-sectional areas is combined has been proposed. When connecting these composite conductor wires, it is necessary to melt and connect the same type of conductors to ensure conductivity. However, the plurality of conductors constituting these composite conductor wires are made of the same type of metal. Then, since the melting temperature of each conductor is the same, it is possible to melt-connect the ends of the composite wire at the same temperature. For example, as a connection method for connecting composite conductor wires made of the same type of metal, the spot welding method of Patent Document 2 in which composite conductor wires are sandwiched and welded between a pair of electrodes, and between highly conductive materials are used. The electric resistance welding method of the dissimilar material of patent document 3 which performs welding and welding of low electroconductive materials in 2 steps is proposed.

しかし、複合導体線における複数の導体が融点の異なる異種金属で構成されている場合、例えば、複合導体線120における融点が高い導体からなる高融点導体200の端部201同士と、該高融点導体200よりも融点が低い導体からなる低融点導体300の端部301同士を互いに突き合わせたまま、抵抗溶接装置400における一対の電極401間に挟持して抵抗溶接する必要がある(図17(a)(b)、図18(a)参照)。   However, when the plurality of conductors in the composite conductor wire are made of different metals having different melting points, for example, the ends 201 of the high melting point conductor 200 made of a conductor having a high melting point in the composite conductor wire 120 and the high melting point conductors The end portions 301 of the low-melting-point conductor 300 made of a conductor having a melting point lower than 200 must be sandwiched between the pair of electrodes 401 in the resistance welding apparatus 400 while being in contact with each other (FIG. 17A). (B), see FIG. 18 (a)).

ところが、高融点導体200が溶融する高い温度になるまで加熱するため、高融点導体200の端部201同士が接合部160にて接続されるまえに、融点が低い低融点導体300の方が先に溶融し始めることになる。したがって、低融点導体300よりも融点が高い高融点導体200を十分に溶融するまで加熱し続けると、低融点導体300の端部301が必要以上に溶融して先に流れ落ちてしまうだけでなく、低融点導体300の端部301同士の突き合わせ部分が離れてしまうため、接続不良が発生する(図17(c)、図18(b)参照)。   However, since the high melting point conductor 200 is heated to a high temperature at which the high melting point conductor 200 is melted, the low melting point conductor 300 having the lower melting point is first before the end portions 201 of the high melting point conductor 200 are connected to each other at the joint 160. Will begin to melt. Therefore, if the high melting point conductor 200 having a melting point higher than that of the low melting point conductor 300 is continuously heated until it is sufficiently melted, the end portion 301 of the low melting point conductor 300 melts more than necessary and flows down first, Since the butted portions of the end portions 301 of the low melting point conductor 300 are separated from each other, poor connection occurs (see FIGS. 17C and 18B).

溶融接続する際の加熱時間を短くすれば、低融点導体300の端部301同士を溶融接続することができるが、高融点導体200の端部201同士は十分に溶融せず溶融接続が不完全となるため、接続不良が発生することになる。これは、溶融接続の代わりに、ヒュージング接合(熱カシメ)を実施しても同様に接続不良が発生する。   If the heating time at the time of fusion connection is shortened, the end portions 301 of the low melting point conductor 300 can be fused and connected, but the end portions 201 of the high melting point conductor 200 are not sufficiently melted and the fusion connection is incomplete. As a result, a connection failure occurs. In this case, even if fusing bonding (thermal caulking) is performed instead of fusion connection, a connection failure similarly occurs.

また、導体同士を接続する接続手段としては、半田付けが一般的であるが、例えば、車載用モータに用いる複合導体線同士を半田付け接続した場合、200℃前後の過酷な環境下で使用するため、耐熱性に問題があり、複合導体線同士の接続には適用することができない。   In addition, as a connection means for connecting the conductors, soldering is generally used. For example, when composite conductor wires used for an in-vehicle motor are connected by soldering, they are used in a severe environment of about 200 ° C. Therefore, there is a problem in heat resistance, and it cannot be applied to the connection between the composite conductor wires.

特開2007−288088号公報JP 2007-288088 A 特開平11−342477号公報JP-A-11-342477 特開平6−55278号公報JP-A-6-55278

この発明は、渦電流損失を低減することができるうえ、確実な導電性が確保される良好な状態に接続することができる複合導体線、接続構造体、導体接続部材、溶融接続装置、及び複合導体線の接続方法を提供することを目的とする。   The present invention can reduce eddy current loss and can be connected in a good state in which reliable conductivity is ensured, a composite conductor wire, a connection structure, a conductor connection member, a fusion connection device, and a composite An object of the present invention is to provide a method for connecting conductor wires.

この発明は、融点の異なる少なくとも2種類の導体を、互いに絶縁した状態で積層して一体に構成するとともに、導体線本体部と、該導体線本体部の長手方向端部に備えた接続許容部とで構成し、前記融点の異なる少なくとも2種類の導体を、相対的に融点が高い導体を高融点導体に設定するとともに、該高融点導体よりも融点が低い導体を低融点導体に設定し、前記接続許容部における前記低融点導体の体積を、前記高低融点導体の体積に比べて大きく設定した複合導体線、及び複合導体線の接続方法であることを特徴とする。   The present invention comprises at least two types of conductors having different melting points laminated and integrated in an insulated state, and a conductor wire main body portion and a connection permission portion provided at a longitudinal end portion of the conductor wire main body portion And at least two types of conductors having different melting points, a conductor having a relatively high melting point is set as a high melting point conductor, a conductor having a melting point lower than that of the high melting point conductor is set as a low melting point conductor, A composite conductor wire in which the volume of the low melting point conductor in the connection allowing portion is set larger than the volume of the high and low melting point conductor, and a connection method of the composite conductor wire.

ここで、上記導体は、例えば、断面略正方形の四角線、断面略平角形の平角線等で構成することができる。絶縁は、例えば、絶縁皮膜、融着皮膜、絶縁性を備えた接着剤等で構成することができる。   Here, the conductor can be constituted by, for example, a square wire having a substantially square cross section, a rectangular wire having a substantially rectangular cross section, or the like. The insulation can be constituted by, for example, an insulating film, a fusion film, an adhesive having an insulating property, or the like.

この発明によれば、渦電流損失を低減することができるうえ、確実な導電性が確保される良好な状態に溶融接続することができる。
詳述すると、例えば、融点の異なる少なくとも2種類の導体で構成された複合導体線と、該複合導体線と同一構成の他の複合導体線における接続許容部同士を、同一種類の低融点導体同士と高融点導体同士とが隣り合うように突き合わせる。
According to the present invention, it is possible to reduce eddy current loss and to melt-connect in a good state in which reliable conductivity is ensured.
More specifically, for example, the connection allowable portions of the composite conductor wire composed of at least two types of conductors having different melting points and other composite conductor wires having the same configuration as the composite conductor wire are connected to each other with the same type of low melting point conductors. And refractory conductors face each other.

接続許容部同士を突き合わせたまま、該接続許容部同士を、例えば、TIG溶接装置等の溶接手段により高融点導体が溶融する高い温度で加熱して、接続許容部における低融点導体同士、及び高融点導体同士を溶融する。   While allowing the connection allowable portions to face each other, the connection allowable portions are heated at a high temperature at which the high melting point conductor melts by welding means such as a TIG welding apparatus, and the low melting point conductors in the connection allowable portion and the high Melting the melting point conductors.

つまり、低融点導体の体積と高融点導体の体積が同じであれば、融点の低い低融点導体の方が早く溶融するが、本実施形態の複合導体線は、接続許容部における低融点導体の体積を、高融点導体の体積よりも大きく設定しているので、加熱溶融によって低融点導体同士の突き合わせ部分を確実な導電性が確保される溶融接続状態に溶融しつつ、高融点導体同士の突き合わせ部分を確実な導電性が確保される溶融接続状態にまで十分に溶融することができる。   That is, if the volume of the low melting point conductor and the volume of the high melting point conductor are the same, the low melting point conductor having a low melting point melts faster, but the composite conductor wire of the present embodiment has a low melting point conductor in the connection allowable portion. Since the volume is set to be larger than the volume of the high melting point conductor, the high melting point conductors are butted together while melting the butt part of the low melting point conductors into a melt-connected state that ensures reliable conductivity. The portion can be sufficiently melted to a melt-connected state in which reliable conductivity is ensured.

これにより、接続許容部における低融点導体の端部に、高融点導体同士を確実な導電性が確保される溶融接続状態に溶融するのに十分な溶け代を確保することができる。
高融点導体が十分に溶融するまでに、低融点導体が先に流れ落ちることを防止できるうえ、低融点導体同士、及び高融点導体同士の突き合わせ部分が離れてしまうことも防止できる。
As a result, a melting allowance sufficient to melt the high melting point conductors in a fusion connection state in which reliable conductivity is ensured can be secured at the end of the low melting point conductor in the connection allowing portion.
In addition to preventing the low melting point conductor from flowing down before the high melting point conductor is sufficiently melted, it is possible to prevent the low melting point conductors and the butted portions of the high melting point conductors from being separated.

この結果、低融点導体同士と高融点導体同士を互いに突き合わせたまま確実に溶融接続することができ、確実な導電性が確保される良好な状態に溶融接続することができる。
しかも、融点の異なる同一種類の導体同士の溶融接続が略同時(例えば、1回の溶着作業)に行えるので、作業性を向上できる。
As a result, the low-melting conductors and the high-melting conductors can be reliably melt-connected while abutting each other, and the melt-bonding can be performed in a good state in which reliable conductivity is ensured.
In addition, since the same type of conductors having different melting points can be fused and connected substantially simultaneously (for example, one welding operation), workability can be improved.

さらに、同一種類の低融点導体同士と高融点導体同士を互いに溶融接続するので、例えば、半田付けに比べて溶融接続した部分の耐熱温度および強度が高く、車載用モータのように200℃前後で振動のある過酷な環境下で使用しても、確実な導電性が確保される溶融接続状態を保つことができるうえ、電気的に溶融接続された状態を長期に亘り維持することができる。
ここでは、接続許容部同士を互いに突き合わせて溶融接続する例を説明したが、例えば、接続許容部同士を互いに重ね合わせて溶融接続してもよい。
Furthermore, since the same kind of low melting point conductors and high melting point conductors are melt-connected to each other, for example, the heat-resistant temperature and strength of the fusion-bonded portion are higher than that of soldering, and the temperature is around 200 ° C. like an in-vehicle motor. Even when used in a harsh environment with vibrations, it is possible to maintain a melt-connected state in which reliable conductivity is ensured and to maintain an electrically melt-connected state for a long period of time.
Here, an example in which the connection permission portions are brought into contact with each other and melt-connected has been described, but, for example, the connection permission portions may be overlapped with each other to be melt-connected.

本発明の必要性について、例えば、複合導体線を構成する接続許容部における融点の異なる複数種の導体の体積比は、渦電流損失を低減してコイル用巻線の電気抵抗が最小になるように設定されている(特開2014−112506号公報参照)。   Regarding the necessity of the present invention, for example, the volume ratio of a plurality of types of conductors having different melting points in the connection allowable portion constituting the composite conductor wire reduces the eddy current loss and minimizes the electrical resistance of the coil winding. (Refer to JP 2014-112506 A).

一方で接続許容部における融点の異なる複数種の導体同士を溶融接続するのに最適な体積比は、コイル用巻線の電気抵抗が最小になる体積比と一致するとは限らない。よって本発明のように接続許容部における融点の異なる複数種の導体の体積比を変えることに意味がある。   On the other hand, the optimum volume ratio for fusion-connecting a plurality of types of conductors having different melting points in the connection allowable portion does not necessarily coincide with the volume ratio at which the electrical resistance of the coil winding is minimized. Therefore, it is meaningful to change the volume ratio of a plurality of types of conductors having different melting points in the connection permission portion as in the present invention.

この発明の態様として、前記高融点導体を、前記接続許容部における前記導体を積層した積層方向の最も外側に配置することができる。
この発明によれば、接続許容部における高融点導体の体積を、低融点導体の体積に比べて相対的に小さくするための加工が容易に実施できる。
As an aspect of the present invention, the high melting point conductor can be disposed on the outermost side in the stacking direction in which the conductors in the connection permission portion are stacked.
According to this invention, the processing for making the volume of the high melting point conductor in the connection allowable portion relatively smaller than the volume of the low melting point conductor can be easily performed.

詳述すると、高融点導体を、接続許容部における積層方向の最も外側に配置しているので、接続許容部における高融点導体の体積を、低融点導体の体積に比べて小さくする加工(例えば、切削、切断等)が容易に実施できる。   More specifically, since the high melting point conductor is arranged on the outermost side in the stacking direction in the connection permission portion, the processing for reducing the volume of the high melting point conductor in the connection permission portion compared to the volume of the low melting point conductor (for example, Cutting, cutting, etc.) can be carried out easily.

例えば、低融点導体と高融点導体とからなる複合導体線同士を溶融接続する場合、複合導体線を覆う絶縁被覆を除去する必要がある。その際、絶縁被覆と一緒に高融点導体の一部を切削により除去するか、該高融点導体の一部を切断する等して、相対的に低融点導体が長くなるように加工する。   For example, when the composite conductor wires composed of the low melting point conductor and the high melting point conductor are fused and connected, it is necessary to remove the insulating coating covering the composite conductor wire. At that time, a part of the high melting point conductor is removed together with the insulating coating by cutting or a part of the high melting point conductor is cut so that the low melting point conductor is relatively long.

これにより、接続許容部以外での断面比率が、高融点導体に比べて低融点導体が小さい複合導体線において、接続許容部における低融点導体の体積比率を、高融点導体に比べて大きくすることができる。
この結果、高融点導体が溶融するのに十分な溶け代を、接続許容部における低融点導体に対してより確実に確保することができる。
As a result, in the composite conductor wire in which the cross-sectional ratio other than the allowable connection portion is smaller in the low melting point conductor than the high melting point conductor, the volume ratio of the low melting point conductor in the connection allowable portion is larger than that in the high melting point conductor. Can do.
As a result, a melting allowance sufficient to melt the high melting point conductor can be more reliably ensured for the low melting point conductor in the connection allowing portion.

またこの発明の態様として、前記高融点導体を銅または銅合金で構成し、前記低融点導体をアルミニウムまたはアルミニウム合金で構成することができる。
この発明によれば、渦電流損失をより低減することができるうえ、軽量化を図ることができる。
As an aspect of the present invention, the high melting point conductor can be composed of copper or a copper alloy, and the low melting point conductor can be composed of aluminum or an aluminum alloy.
According to the present invention, eddy current loss can be further reduced, and weight reduction can be achieved.

詳述すると、高融点導体を、高い導電率を有する銅製導体または銅合金導体で構成することによって、直流抵抗を低減することができるとともに、低融点導体を、相対的に低い導電率を有するアルミニウムまたはアルミニウム合金で構成することによって、渦電流損失を低減することができる。   More specifically, the high melting point conductor is made of a copper conductor or a copper alloy conductor having a high conductivity, so that the DC resistance can be reduced and the low melting point conductor is made of aluminum having a relatively low conductivity. Alternatively, eddy current loss can be reduced by using an aluminum alloy.

この結果、高融点導体である銅は導電率が大きく直流抵抗を小さくでき、低融点導体であるアルミニウムは導電率が相対的に小さく渦電流が発生しにくいため、直流に対する損失も小さく、かつ高周波における渦電流損失も小さい複合導体線とすることができる。
しかも、低融点導体をアルミニウムにて構成することにより、複合導体線全体を銅のみで構成するよりも重量が軽くなり、複合導体線を軽量化できる。
As a result, copper, which is a high melting point conductor, has high electrical conductivity and low DC resistance, and aluminum, which is a low melting point conductor, has relatively low electrical conductivity and is unlikely to generate eddy currents. The composite conductor wire having a small eddy current loss can be obtained.
In addition, by configuring the low melting point conductor with aluminum, the weight of the composite conductor wire becomes lighter than when the entire composite conductor wire is made of only copper, and the composite conductor wire can be reduced in weight.

またこの発明の態様として、上記複合導体線における接続許容部同士を、同一種類の導体同士が隣り合うように突き合わせて溶融接続した接続構造体である。
詳述すると、異種の導体同士を溶融接続する必要はなく、同一種類の導体同士さえ溶融接続すれば渦電流損失を低減することができるため、確実な導電性が確保される良好な接続状態の接続構造体を構成することができる。
Moreover, as an aspect of the present invention, there is a connection structure in which connection permission portions in the composite conductor wire are brought into contact with each other so that the same type of conductors are adjacent to each other and fusion-bonded.
In detail, it is not necessary to melt and connect different types of conductors, and even if the same type of conductors are melted and connected, eddy current loss can be reduced. A connection structure can be constructed.

またこの発明は、融点の異なる複数種の導体うち融点が高い高融点導体と、該高融点導体よりも融点が低い低融点導体とを絶縁状態で積層して一体化した複合導体線における長手方向端部の接続側端部同士を溶融接続する際に、該接続側端部同士を突き合わせ方向に突き合わせた状態に挟持するとともに、通電して溶融する一対の導体接続部材であって、前記複合導体線の接続側端部に当接して通電する当接側端部に、前記突き合わせ方向に突出し、前記接続側端部の前記高融点導体を加圧変形する突出部を備えたことを特徴とする。   The present invention also provides a longitudinal direction in a composite conductor wire in which a high melting point conductor having a high melting point and a low melting point conductor having a melting point lower than that of the high melting point conductor are laminated and integrated in an insulating state. A pair of conductor connection members that are sandwiched in a state where the connection side end portions are butted in the butting direction and are melted by energization when the connection side end portions of the end portions are melt-connected. A contact-side end that abuts the connection-side end of the wire and energizes includes a protrusion that protrudes in the abutting direction and pressurizes and deforms the refractory conductor at the connection-side end. .

上記複合導体線における高融点導体と低融点導体は、高融点導体と低融点導体の2種類のみ、あるいは、融点の異なる3種類以上の場合も含む概念である。
なお、3種類以上の導体の場合、高融点導体と低融点導体は、融点が高い高融点導体に対して、その他の融点が低い導体が低融点導体となる。また、その他の低融点導体とした複数の導体のうち、融点が高い導体が高融点導体となり、他の融点が低い導体が低融点導体となる。
The high melting point conductor and the low melting point conductor in the composite conductor wire are a concept including only two types of the high melting point conductor and the low melting point conductor, or three or more types having different melting points.
In the case of three or more types of conductors, the high melting point conductor and the low melting point conductor are high melting point conductors, and other low melting point conductors are low melting point conductors. Of the plurality of other low-melting conductors, a conductor having a high melting point is a high melting conductor, and another conductor having a low melting point is a low melting conductor.

上記突出部は、例えば、断面略矩形、断面略三角形、断面略円弧形等の凸部で構成することができる。また、上記導体接続部材は、例えば、抵抗溶接装置における電極等で構成することができる。また、上記溶融接続装置は、例えば、抵抗溶接装置等で構成することができる。
この発明によれば、複合導体線同士における接続側端部同士を、確実な導電性が確保される良好な状態に接続することができる。
The projecting portion can be formed by a convex portion having a substantially rectangular cross section, a substantially triangular cross section, a substantially arc shaped cross section, or the like. Moreover, the said conductor connection member can be comprised with the electrode etc. in a resistance welding apparatus, for example. Moreover, the said melt | fusion connection apparatus can be comprised with a resistance welding apparatus etc., for example.
According to this invention, the connection side end parts in the composite conductor wires can be connected in a good state in which reliable conductivity is ensured.

詳しくは、一対の導体接続部材を突き合わせ方向に移動させて、複合導体線同士における接続側端部同士を、同一種類の高融点導体同士と低融点導体同士を互いに突き合わせたまま、一対の導体接続部材における当接側端部間に挟持するとともに、該当接側端部を接続側端部における突き合わせる面と反対側の部分に当接する。当接側端部が接続側端部に当接する際に、当接側端部に突出した突出部が、接続側端部における高融点導体を突き合わせ方向に押圧するため、高融点導体を加圧変形させることができる。   Specifically, the pair of conductor connection members are moved in the butting direction, and the connection side ends of the composite conductor wires are connected to each other while the high melting point conductors of the same type and the low melting point conductors are butted together. While being sandwiched between the contact-side end portions of the member, the corresponding contact-side end portion is brought into contact with a portion of the connection-side end portion opposite to the surface to be abutted. When the abutting side end abuts the connection side end, the protruding portion protruding to the abutting side end presses the high melting point conductor at the connection side end in the abutting direction, so that the high melting point conductor is pressurized. Can be deformed.

一対の導体接続部材を、当接側端部が接続側端部における低融点導体の突き合わせる面と反対側の部分に対して当接される位置まで移動させることにより、当接側端部間に挟持された接続側端部同士の高融点導体同士を、当接側端部間に挟持された高融点導体の断面積が、低融点導体の断面積未満となる大きさに加圧変形することができる。   By moving the pair of conductor connecting members to a position where the abutting side end abuts against a portion of the connecting side end opposite to the surface where the low melting point conductor abuts, The high melting point conductors of the connection side ends sandwiched between the two are pressed and deformed so that the cross sectional area of the high melting point conductor sandwiched between the contact end portions is less than the cross sectional area of the low melting point conductor. be able to.

上述のように加圧変形させた後、当接側端部間から押し出された高融点導体の余剰部を除去することにより、接続側端部における高融点導体の体積を、低融点導体の体積未満に減らすことができるとともに、高融点導体を溶融する際に必要な熱容量を減らすことができる。   After the pressure deformation as described above, the excess part of the high melting point conductor pushed out between the contact side ends is removed, so that the volume of the high melting point conductor at the connection side end is reduced to the volume of the low melting point conductor. The heat capacity required for melting the high melting point conductor can be reduced.

また、当接側端部を低融点導体に当接した状態において、当接側端部の突出部は高融点導体に対して通電可能に押し付けられており、該当接側端部は低融点導体に対して通電可能に押し付けられているため、接続側端部同士を挟持する当接側端部間に通電すれば、接続側端部同士における高融点導体同士と低融点導体同士を互いに突き合わせたまま溶融させて接続することができる。   In addition, in the state where the abutting side end is in contact with the low melting point conductor, the protruding portion of the abutting side end is pressed against the high melting point conductor so that current can be applied to the low melting point conductor. Since it is pressed against the contact side end portions, the high melting point conductors and the low melting point conductors at the connection side end portions are brought into contact with each other if current is passed between the contact side end portions sandwiching the connection side end portions. It can be melted and connected as it is.

この結果、高融点導体よりも融点が低い低融点導体が先に流れ落ちることを防止できるとともに、接続側端部同士における高融点導体同士と低融点導体同士を互いに突き合わせたまま確実に接続することができ、確実な導電性が確保される良好な状態に接続することができる。   As a result, the low melting point conductor having a lower melting point than that of the high melting point conductor can be prevented from flowing down first, and the high melting point conductors and the low melting point conductors at the connection side end portions can be reliably connected with each other being in contact with each other. It is possible to connect to a good state in which reliable conductivity is ensured.

この発明の態様として、前記当接側端部を、前記複合導体線における接続側端部の突き合わせる面と反対側の部分の挿嵌を許容するとともに、該接続側端部の厚み未満の深さを有し、前記突き合わせ方向に向けて凹状に窪んだ溝形状に形成し、前記突出部を、前記当接側端部における前記低融点導体の突き合わせる面と反対側に当接される部分よりも前記突き合わせ方向に突出する構成とすることができる。   As an aspect of the present invention, the contact-side end portion is allowed to be inserted into a portion of the composite conductor wire on the opposite side to the surface of the connection-side end portion, and the depth is less than the thickness of the connection-side end portion. And is formed in a groove shape that is concavely recessed toward the abutting direction, and the protruding portion is in contact with the opposite side to the abutting surface of the low melting point conductor at the abutting side end It can be set as the structure which protrudes in the said abutting direction rather than.

上記接続側端部における突出部を突出する部分は、例えば、溝部や凹部における中央部内壁、側部内壁、及び角隅部寄りの内壁等を含む概念である。また、突出部の形状は、例えば、断面略矩形、断面略三角形、断面略円弧形、断面略半円形等で構成することができる。   The part which protrudes the protrusion part in the said connection side edge part is the concept containing the center part inner wall in a groove part or a recessed part, a side part inner wall, the inner wall near a corner part, etc., for example. Further, the shape of the protruding portion can be constituted by, for example, a substantially rectangular cross section, a substantially triangular cross section, a substantially arc shaped cross section, a substantially semicircular cross section, or the like.

この発明によれば、複合導体線同士における接続側端部同士を、確実な導電性が確保される良好な状態により正確に接続することができる。
詳しくは、複合導体線同士における接続側端部同士を、一対の導体接続部材における当接側端部間に挟持する際に、接続側端部における突き合わせる面と反対側の部分を、当接側端部における凹状に窪んだ溝部分に挿嵌することにより、接続側端部同士を、同一種類の導体同士が互いに突き合わされた位置に規制することができる。
これにより、接続側端部同士における同一種類の導体同士の突き合わせ位置が変位することを確実に防止できるとともに、接続側端部の位置決めが容易に行える。
According to this invention, the connection side end parts in the composite conductor wires can be accurately connected in a good state in which reliable conductivity is ensured.
Specifically, when the connection-side ends of the composite conductor wires are sandwiched between the contact-side ends of the pair of conductor connection members, the portion of the connection-side end opposite to the abutting surface is contacted. By inserting into the recessed groove portion in the side end portion, the connection side end portions can be regulated at positions where the same type of conductors are abutted with each other.
Accordingly, it is possible to reliably prevent the contact position of the same type of conductors at the connection side end portions from being displaced, and to easily position the connection side end portion.

また、接続側端部を当接側端部の溝部分に挿嵌する際に、当接側端部に突出した突出部が、接続側端部における高融点導体を突き合わせ方向に押圧するため、高融点導体を加圧変形させることができる。
さらに、一対の導体接続部材を、当接側端部が低融点導体の突き合わせる面と反対側の部分に対して当接される位置まで移動させることにより、当接側端部の溝部分に挿嵌された接続側端部同士の高融点導体同士を、当接側端部間に挟持された高融点導体の断面積が、低融点導体の断面積未満となる大きさに加圧変形することができる。
In addition, when the connection side end is inserted into the groove portion of the contact side end, the protruding portion protruding to the contact side end presses the high melting point conductor at the connection side end in the abutting direction. The high melting point conductor can be deformed under pressure.
Further, by moving the pair of conductor connecting members to a position where the abutting side end is in contact with the portion opposite to the surface where the low melting point conductor abuts, the groove is formed in the abutting side end. The high-melting point conductors of the inserted connection-side end portions are pressed and deformed so that the cross-sectional area of the high-melting point conductor sandwiched between the contact-side end portions is less than the cross-sectional area of the low-melting point conductor. be able to.

上述のように加圧変形した後、当接側端部間から押し出された高融点導体の余剰部を除去することにより、接続側端部における高融点導体の体積を、低融点導体の体積未満に減らすことができるとともに、高融点導体を溶融する際に必要な熱容量を減らすことができる。   After the pressure deformation as described above, the excess portion of the high melting point conductor pushed out between the contact side end portions is removed, so that the volume of the high melting point conductor at the connection side end portion is less than the volume of the low melting point conductor. And the heat capacity required for melting the high melting point conductor can be reduced.

また、当接側端部の突出部を高融点導体に対して通電可能に押し付けるとともに、該当接側端部を低融点導体に対して通電可能に押し付けた状態において、接続側端部同士を挟持する当接側端部間に通電するので、接続側端部同士における高融点導体同士と低融点導体同士を互いに突き合わせたまま溶融させて接続することができる。   In addition, while pressing the protruding portion of the abutting side end against the high melting point conductor so as to allow energization, the connection side end portion is held between the contact side end portions while pressing against the low melting point conductor. Since current is supplied between the contact-side end portions, the high-melting point conductors and the low-melting point conductors at the connection-side end portions can be melted and connected to each other.

この結果、接続側端部同士をより正確に接続することができるとともに、接続側端部同士を突き合わせる作業が容易に行え、作業性を向上できる。
しかも、接続側端部における高融点導体を、当接側端部の突出部と対向する位置に位置規制するため、高融点導体を所定の断面積により正確に加圧変形することができ、加工精度を向上できる。
As a result, the connection side end portions can be more accurately connected, and the operation of abutting the connection side end portions can be easily performed, thereby improving workability.
In addition, since the high melting point conductor at the connection side end is restricted to the position facing the protruding portion at the contact side end, the high melting point conductor can be accurately pressure-deformed with a predetermined cross-sectional area, Accuracy can be improved.

さらに、例えば、高融点導体を中央に配置し、低融点導体を高融点導体の上下に配置した3層構造の複合導体線同士を接続する場合、当接側端部の溝部分に挿嵌した接続側端部同士を互いに突き合わせた際に、接続側端部における上下に積層した低融点導体同士を互いに突き合わせるため、高融点導体が突き合わせ方向と直交する垂直方向に変形することを防止できる。   Furthermore, for example, when connecting a composite conductor wire having a three-layer structure in which a high melting point conductor is disposed in the center and a low melting point conductor is disposed above and below the high melting point conductor, it is inserted into the groove portion of the abutting side end. When the connection-side end portions are butted against each other, the low-melting-point conductors stacked on the upper and lower sides at the connection-side end portion are butted against each other, so that the high-melting-point conductor can be prevented from being deformed in the vertical direction perpendicular to the butting direction.

また、複合導体線の接続側端部を当接側端部の溝部分に対して一端側から挿嵌するため、加圧変形させた際に発生する高融点導体の余剰部は溝部分の他端側から押し出されることになる。
したがって、溝部分の他端側に押し出された高融点導体の余剰部を除去するだけで、接続側端部における高融点導体の体積を、低融点導体の体積未満により容易に減らすことができる。
In addition, since the connection side end of the composite conductor wire is inserted from one end side into the groove portion of the contact side end portion, the surplus portion of the refractory conductor generated when the pressure is deformed is not the groove portion. It will be pushed out from the end side.
Therefore, the volume of the high-melting-point conductor at the connection-side end can be easily reduced to less than the volume of the low-melting-point conductor simply by removing the excess portion of the high-melting-point conductor pushed out to the other end side of the groove portion.

これにより、複合導体線同士における接続側端部同士をより正確に接続することができるとともに、接続側端部同士を突き合わせる作業が容易に行え、作業性を向上できる。
さらにまた、高融点導体の余剰部が押し出される箇所、及び押し出される方向を溝部分の長手方向のみに限定することができるため、高融点導体の加工量を容易に制御できる。
Thereby, while the connection side edge parts in composite conductor wires can be connected more correctly, the operation | work which abuts connection side edge parts can be performed easily, and workability | operativity can be improved.
Furthermore, since the location where the surplus portion of the high melting point conductor is extruded and the direction of extrusion can be limited to only the longitudinal direction of the groove portion, the processing amount of the high melting point conductor can be easily controlled.

またこの発明の態様として、前記突出部を、前記当接側端部間に挟持された前記接続側端部同士の前記高融点導体同士を前記突き合わせ方向に加圧変形した状態において、前記当接側端部間における導体接続範囲内に挟持された前記接続側端部の前記高融点導体及び低融点導体の断面積が、前記低融点導体の断面積に対して前記高融点導体の方が小さい断面積となる凸形状で形成することができる。   Further, as an aspect of the present invention, in the state where the protruding portion is pressed and deformed in the abutting direction between the high melting point conductors of the connection side ends sandwiched between the contact side ends, the contact The cross-sectional area of the high-melting-point conductor and the low-melting-point conductor at the connection-side end sandwiched within the conductor connection range between the side end parts is smaller than the cross-sectional area of the low-melting-point conductor. It can be formed in a convex shape having a cross-sectional area.

上記導体接続範囲は、当接側端部間に挟持された接続側端部同士の高融点導体同士を突き合わせ方向に加圧変形した状態において、当接側端部間における接続側端部同士の突き合わせる面を互いに突き合わせた部分、あるいは、当接側端部間から押し出された余剰部以外の接続側端部同士の突き合わせる面を互いに突き合わせた部分も含む概念である。   In the state where the high melting point conductors of the connection side ends sandwiched between the contact side ends are pressed and deformed in the butting direction, the conductor connection range is between the connection side ends between the contact side ends. It is a concept including a portion where the surfaces to be abutted with each other, or a portion where the abutting surfaces of the connection side end portions other than the surplus portion pushed out between the contact side end portions are abutted with each other.

なお、3種類以上の導体の場合、導体接続範囲における高融点導体と低融点導体の断面積は、融点が低い低融点導体の断面積に対して、その他の融点が高い高融点導体の断面積が小となる。また、その他の高融点導体とした複数の導体のうち、融点が低い低融点導体の断面積に対して、融点が高い高融点導体の断面積が小となる。   In the case of three or more types of conductors, the cross-sectional area of the high-melting point conductor and the low-melting point conductor in the conductor connection range is the cross-sectional area of the high-melting point conductor having a higher melting point than that of the low-melting point conductor having a low melting point Becomes small. Moreover, the cross-sectional area of the high melting point conductor having a high melting point is smaller than the cross sectional area of the low melting point conductor having a low melting point among the plurality of other high melting point conductors.

この発明によれば、高融点導体よりも融点の低い低融点導体を先に溶解させることなく、接続側端部同士における同一種類の導体同士をより確実に溶融接続することができる。   According to the present invention, the same type of conductors at the connection side end portions can be more reliably melt-connected without dissolving the low melting point conductor having a lower melting point than the high melting point conductor first.

詳述すると、接続側端部における高融点導体と低融点導体を、当接側端部の突出部により突き合わせ方向に加圧変形して、当接側端部間における導体接続範囲内に挟持された低融点導体の断面積に対して高融点導体の方を小さい断面積に加工する。   More specifically, the high melting point conductor and the low melting point conductor at the connection side end are pressed and deformed in the abutting direction by the protrusion at the contact side end, and are sandwiched within the conductor connection range between the contact side ends. The high melting point conductor is processed to have a smaller cross sectional area than the low melting point conductor.

すなわち、当接側端部間における導体接続範囲内に挟持された高融点導体の断面積を小さくすれば、該高融点導体を溶融する際に必要な熱容量が減少するため、接続側端部における高融点導体と低融点導体を溶融する際に必要な熱容量を、導体の断面積に対応して減少させることができる。
この結果、接続側端部における高融点導体よりも融点の低い低融点導体を先に溶解させることなく、良好な状態に溶融接続することができる。
That is, if the cross-sectional area of the refractory conductor sandwiched within the conductor connection range between the contact end portions is reduced, the heat capacity required for melting the refractory conductor decreases, The heat capacity required for melting the high melting point conductor and the low melting point conductor can be reduced corresponding to the cross sectional area of the conductor.
As a result, the low melting point conductor having a lower melting point than that of the high melting point conductor at the connection side end can be melt-connected in a good state without first being dissolved.

またこの発明の態様として、前記高融点導体を、銅製導体または銅合金製導体で構成するとともに、前記低融点導体を、アルミ二ウム製導体またはアルミニウム合金製導体で構成し、前記突出部を、前記当接側端部間における導体接続範囲内に挟持された前記接続側端部の前記高融点導体の断面積が、前記低融点導体の断面積に対して0.35倍〜0.45倍となる凸形状で形成することができる。   Further, as an aspect of the present invention, the high melting point conductor is composed of a copper conductor or a copper alloy conductor, the low melting point conductor is composed of an aluminum conductor or an aluminum alloy conductor, and the protrusion is The cross-sectional area of the high-melting-point conductor at the connection-side end sandwiched within the conductor connection range between the abutting-side ends is 0.35 to 0.45 times the cross-sectional area of the low-melting-point conductor. It can be formed in a convex shape.

この発明によれば、接続側端部同士における高融点導体同士及び低融点導体同士をより良好な状態に溶融接続することができる。
詳述すると、接続側端部における高融点導体を、当接側端部に突出した凸形状の突出部により加圧変形させる際に、当接側端部間における導体接続範囲内に挟持された接続側端部の低融点導体の断面積を基準として、該導体接続範囲内における高融点導体の断面積を0.35倍〜0.45倍に加工することにより、高融点導体及び低融点導体を溶融する際に必要な熱容量を同等にすることができる。
According to this invention, the high melting point conductors and the low melting point conductors at the connection side end portions can be melt-connected in a better state.
More specifically, when the high melting point conductor at the connection side end portion is pressed and deformed by the projecting protruding portion protruding to the contact side end portion, it is sandwiched within the conductor connection range between the contact side end portions. By processing the cross-sectional area of the high melting point conductor in the conductor connection range from 0.35 to 0.45 times on the basis of the cross-sectional area of the low melting point conductor at the connection end, the high melting point conductor and the low melting point conductor The heat capacities necessary for melting the can be made equal.

これにより、高融点導体同士及び低融点導体同士の溶融する溶融時間をおおよそ一致させることができる。
この結果、接続側端部における高融点導体よりも融点の低い低融点導体を先に溶解させることなく、接続側端部同士における高融点導体同士及び低融点導体同士をより確実に溶融して、良好な状態に溶融接続することができる。
Thereby, the melting time for melting the high melting point conductors and the low melting point conductors can be approximately matched.
As a result, without melting the low melting point conductor having a lower melting point than the high melting point conductor at the connection side end, the high melting point conductors and the low melting point conductors at the connection side ends are more reliably melted, It can be melt-connected in a good state.

またこの発明は、上述の導体接続部材と、前記突出部による加圧によって前記当接側端部間から押し出された前記高融点導体の余剰部を除去する余剰部除去手段を備えた溶融接続装置であることを特徴とする。
さらにまたこの発明は、融点の異なる複数種の導体うち融点が高い高融点導体と、該高融点導体よりも融点が低い低融点導体とを絶縁状態で積層して一体化した複合導体線における長手方向端部の接続側端部同士を、一対の導体接続部材にて突き合わせた状態に挟持するとともに、通電して溶融接続する複合導体線の接続方法であって、前記導体接続部材における当接側端部を前記接続側端部に当接して、前記当接側端部間における導体接続範囲内に挟持された前記接続側端部の前記高融点導体を、前記当接側端部に突出した突出部により突き合わせ方向に加圧変形させ、前記突出部による加圧によって前記当接側端部間から押し出された前記高融点導体の余剰部を余剰部除去手段にて除去した後、前記接続側端部同士を挟持する前記導体接続部材間に通電して、該接続側端部同士における同一種類の導体同士を溶融接続する複合導体線の接続方法であることを特徴とする。
Further, the present invention provides a fusion connecting device comprising the above-described conductor connecting member and an excess portion removing means for removing an excess portion of the high melting point conductor pushed out from between the abutting side ends by pressurization by the protruding portion. It is characterized by being.
Furthermore, the present invention provides a composite conductor wire in which a high melting point conductor having a high melting point among a plurality of types of conductors having different melting points and a low melting point conductor having a lower melting point than the high melting point conductor are laminated and integrated in an insulating state. A connecting method of a composite conductor wire that sandwiches the connection side end portions of the direction end portions in a state of being butted against each other by a pair of conductor connection members, and is melt-connected by energization, the contact side of the conductor connection member An end portion is brought into contact with the connection side end portion, and the high melting point conductor of the connection side end portion sandwiched within a conductor connection range between the contact side end portions protrudes to the contact side end portion. After pressing and deforming in the abutting direction by the protruding portion, and removing the surplus portion of the high melting point conductor pushed out from between the abutting side ends by pressurization by the protruding portion, the surplus portion removing means, and then the connecting side The conductor contact holding the ends By energizing between the members, characterized in that it is a method of connecting a composite conductor wire which melts connecting the same type of conductor between the said connecting end portions.

上記余剰部除去手段は、例えば、切断刃、研磨体等で構成することができる。また、余剰部除去手段は、導体接続部材に対して独立して移動する構成、あるいは、導体接続部材と一体に移動する構成を含む概念である。
この発明によれば、接続側端部における高融点導体の体積を、低融点導体の体積未満により確実に減らすことができる。
The surplus portion removing means can be constituted by, for example, a cutting blade, a polishing body, or the like. The surplus portion removing means is a concept including a configuration that moves independently with respect to the conductor connection member or a configuration that moves integrally with the conductor connection member.
According to the present invention, the volume of the high melting point conductor at the connection side end can be reliably reduced by less than the volume of the low melting point conductor.

詳述すると、例えば、高融点導体を突出部により加圧変形させた際に、突出部から付与される圧力によって発生した高融点導体の余剰部が、当接側端部間から外部に向けて押し出されるため、加圧変形するだけでは、高融点導体の体積を減らすことができない。
例えば、高融点導体及び低融点導体の体積が同じであれば、低融点導体に比べて、高融点導体の方が溶融する際に必要な熱容量が大きいため、高融点導体を溶融する温度に加熱すると、融点の低い導体の方が先に溶解して流れ落ちてしまうことになる。
More specifically, for example, when the high melting point conductor is pressed and deformed by the protruding portion, the surplus portion of the high melting point conductor generated by the pressure applied from the protruding portion is directed from the abutting side end toward the outside. Since it is pushed out, the volume of the high melting point conductor cannot be reduced only by pressure deformation.
For example, if the high melting point conductor and the low melting point conductor have the same volume, the high melting point conductor has a larger heat capacity when melting than the low melting point conductor, so the high melting point conductor is heated to a melting temperature. Then, the conductor having a lower melting point is dissolved first and flows down.

これに対して、複合導体線同士における接続側端部同士を、一対の導体接続部材における当接側端部間に挟持するとともに、当接側端部を接続側端部における突き合わせる面と反対側の部分に当接する。これにより、当接側端部に突出した突出部が、接続側端部における高融点導体を突き合わせ方向に押圧するため、高融点導体を加圧変形させることができる。   In contrast, the connection-side ends of the composite conductor wires are sandwiched between the contact-side ends of the pair of conductor connection members, and the contact-side ends are opposite to the abutting surfaces of the connection-side ends. It abuts on the side part. Thereby, since the protrusion part which protruded to the contact side edge part presses the high melting point conductor in a connection side edge part in abutting direction, a high melting point conductor can be pressure-deformed.

また、一対の導体接続部材を、当接側端部が接続側端部における低融点導体の突き合わせる面と反対側の部分に対して当接される位置まで移動させることにより、接続側端部における高融点導体を、該高融点導体の断面積が低融点導体の断面積未満となる大きさに加圧変形することができる。この後、当接側端部間から押し出された高融点導体の余剰部を余剰部除去手段にて除去するため、高融点導体の体積を低融点導体の体積未満に確実に減らすことができる。   The pair of conductor connection members are moved to a position where the contact side end is in contact with the portion of the connection side end opposite to the surface where the low melting point conductor abuts. The high melting point conductor in can be deformed under pressure so that the cross sectional area of the high melting point conductor is less than the cross sectional area of the low melting point conductor. Then, since the surplus part of the high melting point conductor pushed out between the contact-side end parts is removed by the surplus part removing means, the volume of the high melting point conductor can be reliably reduced to less than the volume of the low melting point conductor.

さらに、接続側端部における高融点導体を所定の断面積に加圧変形した状態において、当接側端部の突出部は高融点導体に対して通電可能に押し付けられており、該当接側端部は低融点導体に対して通電可能に押し付けられているため、接続側端部同士を挟持する当接側端部間に通電すれば、接続側端部同士における高融点導体同士と低融点導体同士を互いに突き合わせたまま溶融させて接続することができる。   Furthermore, in a state where the high melting point conductor at the connection side end is pressed and deformed to a predetermined cross-sectional area, the protruding portion of the contact side end is pressed against the high melting point conductor so as to be energized. Since the portion is pressed against the low melting point conductor so that current can be passed between the high melting point conductors and the low melting point conductors at the connection side ends, if current is passed between the contact side ends sandwiching the connection side ends. They can be melted and connected while abutting each other.

この結果、複合導体線同士における接続側端部同士を、確実な導電性が確保されるより良好な状態に接続することができる。
しかも、高融点導体を溶融する際に必要な熱容量を確実に減らすことができるとともに、高融点導体の体積を減らすための加工が容易に実施できる。
As a result, the connection-side end portions of the composite conductor wires can be connected in a better state in which reliable conductivity is ensured.
In addition, the heat capacity required for melting the high melting point conductor can be reliably reduced, and processing for reducing the volume of the high melting point conductor can be easily performed.

この発明によれば、渦電流損失を低減することができるうえ、確実な導電性が確保される良好な状態に接続することができる複合導体線、接続構造体、導体接続部材、溶融接続装置、及び複合導体線の接続方法を提供することができる。   According to this invention, eddy current loss can be reduced, and a composite conductor wire, a connection structure, a conductor connection member, a fusion connection device, which can be connected in a good state in which reliable conductivity is ensured, And the connection method of a composite conductor wire can be provided.

2層構造を有する実施例1の複合導体線の説明図。Explanatory drawing of the composite conductor wire of Example 1 which has a two-layer structure. 溶融許容部同士を溶融接続した接続構造線の斜視図。The perspective view of the connection structure line | wire which melt-connected the fusion | melting permission parts. 2層構造を有する実施例2の複合導体線の説明図。Explanatory drawing of the composite conductor wire of Example 2 which has a two-layer structure. 3層構造を有する実施例3の複合導体線の説明図。Explanatory drawing of the composite conductor wire of Example 3 which has a 3 layer structure. 多層構造を有する実施例4の複合導体線の説明図。Explanatory drawing of the composite conductor wire of Example 4 which has a multilayer structure. 接続構造線の他の例を示す説明図。Explanatory drawing which shows the other example of a connection structure line. 接続構造線のその他の例を示す説明図。Explanatory drawing which shows the other example of a connection structure line. 実施例5の3層構造を有する複合導体線及び接続構造線の説明図。Explanatory drawing of the composite conductor wire which has the 3 layer structure of Example 5, and a connection structure line. 図8に示す複合導体線の接続方法及び抵抗溶接装置の説明図。Explanatory drawing of the connection method and resistance welding apparatus of a composite conductor wire shown in FIG. 図8に示す複合導体線同士を接続する接続方法の説明図。Explanatory drawing of the connection method which connects the composite conductor wires shown in FIG. 図10に示す接続側端部同士を接続する接続方法の説明図。Explanatory drawing of the connection method which connects the connection side edge parts shown in FIG. 実施例6の複合導体線同士を接続する接続方法の説明図。Explanatory drawing of the connection method which connects the composite conductor wires of Example 6. FIG. 実施例7の複合導体線同士を接続する接続方法の説明図。Explanatory drawing of the connection method which connects the composite conductor wires of Example 7. FIG. 実施例8の複合導体線同士を接続する接続方法の説明図。Explanatory drawing of the connection method which connects the composite conductor lines of Example 8. FIG. 図14に示す接続側端部を突き合わせ方向から見た断面図。Sectional drawing which looked at the connection side edge part shown in FIG. 14 from the butting direction. 実施例9の複合導体線同士を接続する接続方法の説明図。Explanatory drawing of the connection method which connects the composite conductor wires of Example 9. FIG. 従来の複合導体線の接続方法を示す説明図。Explanatory drawing which shows the connection method of the conventional composite conductor wire. 他の従来の複合導体線の接続方法を示す説明図。Explanatory drawing which shows the connection method of the other conventional composite conductor wire.

この発明の一実施形態を以下図面に基づいて詳述する。
(実施例1)
An embodiment of the present invention will be described in detail with reference to the drawings.
Example 1

図1は2層構造を有する実施例1の複合導体線12Aの説明図であり、詳しくは、図1(a)は高融点導体20の厚み方向における積層方向W外側から一部を切削した接続許容部40の積層方向Wの断面図、図1(b)は高融点導体20同士と低融点導体30同士を突き合わせた状態の接続許容部40の斜視図、図2は複合導体線12Aにおける接続許容部40同士を溶融接続した状態の斜視図である。   FIG. 1 is an explanatory view of a composite conductor wire 12A of Example 1 having a two-layer structure. Specifically, FIG. 1 (a) is a connection in which a part is cut from the outside in the laminating direction W in the thickness direction of the high melting point conductor 20. FIG. 1B is a perspective view of the connection permission portion 40 in a state in which the high melting point conductors 20 and the low melting point conductors 30 are butted together, and FIG. 2 is a connection in the composite conductor wire 12A. It is a perspective view of the state where permission parts 40 were fusion-connected.

実施例1の複合導体線12Aは、後述する低融点導体30よりも融点の高い銅製または銅合金製の高融点導体20と、高融点導体20よりも融点の低いアルミニウム製またはアルミニウム合金製の低融点導体30とを、間に絶縁層50を介在させて、積層方向Wに積層して構成している(図1(a)参照)。   The composite conductor wire 12A of Example 1 is made of a high melting point conductor 20 made of copper or copper alloy having a higher melting point than the low melting point conductor 30 described later, and a low melting point made of aluminum or aluminum alloy having a lower melting point than the high melting point conductor 20. The melting point conductor 30 is laminated in the stacking direction W with an insulating layer 50 interposed therebetween (see FIG. 1A).

また、複合導体線12Aは、長手方向Lに連続する導体線本体部11と、導体線本体部11の端部に設けた接続許容部40とで構成し、少なくとも2本の複合導体線12Aの接続許容部40同士を溶融接続して、例えば、モータ用巻線として用いることができる接続構造線102を構成することができる。
導体線本体部11の長手方向L端部には、同一種類の低融点導体30同士、及び高融点導体20同士を溶融接続する、他の複合導体線12Aとの接続を許容する接続許容部40を設けている。
The composite conductor wire 12A includes a conductor wire main body portion 11 that is continuous in the longitudinal direction L and a connection permission portion 40 provided at an end of the conductor wire main body portion 11, and includes at least two composite conductor wires 12A. For example, the connection structure line 102 that can be used as a winding for a motor can be configured by melting and connecting the connection permission portions 40 to each other.
At the end in the longitudinal direction L of the conductor wire main body 11, a connection permitting portion 40 that permits connection with the other composite conductor wire 12A that melt-connects the low melting conductors 30 of the same type and the high melting conductors 20 together. Is provided.

高融点導体20と低融点導体30は、複合導体線12Aの長手方向Lに沿って並列に配置するとともに、該高融点導体20及び低融点導体30における積層方向Wの内側対向面を一体に接合している。高融点導体20、及び低融点導体30の対向面間は、絶縁層50を介在させて互いに絶縁している。   The high melting point conductor 20 and the low melting point conductor 30 are arranged in parallel along the longitudinal direction L of the composite conductor wire 12A, and the inner facing surfaces of the high melting point conductor 20 and the low melting point conductor 30 in the stacking direction W are integrally joined. doing. The opposing surfaces of the high melting point conductor 20 and the low melting point conductor 30 are insulated from each other with an insulating layer 50 interposed therebetween.

接続許容部40は、複合導体線12Aにおける高融点導体20、及び低融点導体30を、長手方向Lと直交する方向に向けて湾曲するとともに、該長手方向Lと直交する方向に突出する突出形状に形成している。   The connection permitting portion 40 bends the high melting point conductor 20 and the low melting point conductor 30 in the composite conductor wire 12 </ b> A in a direction orthogonal to the longitudinal direction L and protrudes in a direction orthogonal to the longitudinal direction L. Is formed.

接続許容部40は、該接続許容部40における積層方向Wの外側に積層した高融点導体20の端部20aから、図1(a)の二点鎖線で示す除去部20bを図示しない切削手段により切削除去している。   The connection permitting portion 40 is formed by removing cutting portions 20b indicated by two-dot chain lines in FIG. 1A from the end 20a of the high melting point conductor 20 stacked outside the stacking direction W in the connection permitting portion 40 by a cutting means (not shown). Cutting removed.

これにより、高融点導体20の端部20aの肉厚t1を、低融点導体30の端部30aの肉厚t2以下となる厚みに加工して、接続許容部40における高融点導体20の体積を、低融点導体30の体積に比べて小さく設定している(図1(a)参照)。   Thus, the thickness t1 of the end portion 20a of the high melting point conductor 20 is processed into a thickness that is equal to or less than the thickness t2 of the end portion 30a of the low melting point conductor 30, and the volume of the high melting point conductor 20 in the connection allowing portion 40 is reduced. The volume of the low melting point conductor 30 is set smaller than that of the low melting point conductor 30 (see FIG. 1A).

導体線本体部11における長手方向Lと直交する面で切断した断面は、断面略正方形に形成した高融点導体20の断面積が、断面略矩形に形成した低融点導体30の断面積に比べて大きく、該高融点導体20よりも低融点導体30の断面積を小さく設定している。   The cross section of the conductor wire main body 11 cut by a plane orthogonal to the longitudinal direction L is larger than the cross sectional area of the low melting point conductor 30 formed in a substantially rectangular cross section. The cross-sectional area of the low melting point conductor 30 is set smaller than that of the high melting point conductor 20.

このように構成した複合導体線12A同士を、接続許容部40で溶融接続して接続構造線102を構成する接続方法について説明する。
先ず、複合導体線12Aと他の複合導体線12Aの接続許容部40同士を、接続許容部40における低融点導体30同士と高融点導体20同士とが隣り合うように突き合わせる(図1(b)参照)。
A connection method for forming the connection structure line 102 by melting and connecting the composite conductor wires 12A configured as described above at the connection permission portion 40 will be described.
First, the connection allowable portions 40 of the composite conductor wire 12A and the other composite conductor wires 12A are abutted so that the low melting point conductors 30 and the high melting point conductors 20 in the connection allowable portion 40 are adjacent to each other (FIG. 1B). )reference).

接続許容部40同士を突き合わせたまま、該接続許容部40同士を、図示しないTIG溶接装置により高融点導体20が溶融する高い温度で加熱して、高融点導体20よりも融点の低い低融点導体30の端部30aと、融点が高い高融点導体20の端部20aを溶融する。   While allowing the connection permitting portions 40 to face each other, the connection permitting portions 40 are heated at a high temperature at which the high melting point conductor 20 is melted by a TIG welding apparatus (not shown), so that the low melting point conductor has a lower melting point than the high melting point conductor 20. 30 end 30a and end 20a of high melting point conductor 20 having a high melting point are melted.

接続許容部40における低融点導体30の体積を、高融点導体20の体積よりも大きく設定しているため、低融点導体30の端部30a同士の突き合わせ部分を、確実な導電性が確保される溶融接続状態に溶融しつつ、高融点導体20の端部20a同士の突き合わせ部分を、確実な導電性が確保される溶融接続状態にまで十分に溶融し、接合部60を形成することができる(図2参照)。   Since the volume of the low melting point conductor 30 in the connection allowing portion 40 is set to be larger than the volume of the high melting point conductor 20, reliable conductivity is ensured at the abutting portion between the end portions 30a of the low melting point conductor 30. While melting into the melt-connected state, the butted portion of the end portions 20a of the high-melting-point conductor 20 can be sufficiently melted to a melt-connected state in which reliable conductivity is ensured to form the joint 60 ( (See FIG. 2).

なお、接続許容部40における高融点導体20の体積を、低融点導体30の体積に比べて小さく設定しているため、接続許容部40を溶融接続して形成された接合部60は、低融点導体30の組成の割合が高融点導体20の組成より大きくなる。   In addition, since the volume of the high melting point conductor 20 in the connection allowable portion 40 is set smaller than the volume of the low melting point conductor 30, the joint 60 formed by melting and connecting the connection allowable portion 40 has a low melting point. The composition ratio of the conductor 30 is larger than the composition of the high melting point conductor 20.

これにより、低融点導体30の端部30aが先に流れ落ちることを防止できるとともに、低融点導体30同士、及び高融点導体20同士の突き合わせ部分が、確実な導電性が確保される溶融接続状態以上に溶融し過ぎることも防止できる。   Thereby, while being able to prevent the edge part 30a of the low melting-point conductor 30 flowing down previously, the butt | matching part of the low melting-point conductors 30 and the high-melting-point conductors 20 is more than the fusion | melting connection state from which reliable electroconductivity is ensured. It is also possible to prevent excessive melting.

この結果、2層構造の複合導体線12A同士を、接続許容部40における高融点導体20同士と低融点導体30同士を互いに突き合わせたまま、確実な導電性が確保される溶融接続することができる。   As a result, the composite conductor wires 12A having a two-layer structure can be melt-connected to ensure reliable conductivity while the high-melting-point conductors 20 and the low-melting-point conductors 30 in the connection allowing portion 40 are abutted with each other. .

しかも、接続許容部40における除去部20bを除去した段付き形状の端部20aに、低融点導体30における端部30aの溶融した溶融部分が流れ落ちずに留まり易く、該溶融部分が、高融点導体20における端部20aの溶融した溶融部分と一体に合体するため、良好な接続状態の接合部60を形成することができる(図2参照)。
さらに、高融点導体20同士、及び低融点導体30同士の溶融接続が略同時(例えば、1回の溶着作業)に行えるので、溶融接続時の作業性を向上できる。
In addition, the melted portion of the end portion 30a of the low melting point conductor 30 does not easily flow down to the stepped end portion 20a from which the removal portion 20b of the connection allowing portion 40 has been removed. 20 is integrated with the melted portion of the end 20a at the end 20a, so that the joint portion 60 in a well-connected state can be formed (see FIG. 2).
Furthermore, since the high-melting conductors 20 and the low-melting conductors 30 can be fusion-bonded substantially simultaneously (for example, one welding operation), workability at the time of fusion-connection can be improved.

さらにまた、複合導体線12Aを、異種金属からなる高融点導体20と低融点導体30で構成するとともに、高融点導体20と低融点導体30の断面積を異なる大きさに設定することにより、渦電流損失を低減することができるうえ、確実な導電性が確保される良好な接続状態の接続構造線102を構成することができる。
上述の複合導体線12Aを、例えば、モータを構成するコイルコアに巻回したのち、上述の接続構造線102にてステーターを形成し、モータ用巻線として使用することにより、モータの駆動効率が向上するうえ、所定の出力が安定して得られる。
Further, the composite conductor wire 12A is composed of the high melting point conductor 20 and the low melting point conductor 30 made of different metals, and the cross-sectional areas of the high melting point conductor 20 and the low melting point conductor 30 are set to different sizes, so that the vortex In addition to reducing current loss, it is possible to configure the connection structure line 102 in a good connection state in which reliable conductivity is ensured.
For example, after the above-described composite conductor wire 12A is wound around a coil core constituting a motor, a stator is formed by the above-described connection structure wire 102 and used as a motor winding, thereby improving the driving efficiency of the motor. In addition, a predetermined output can be stably obtained.

以下、上述の複合導体線12A及び接続構造線102のその他の例について説明する。この説明において、前記構成と同一または同等の部位については同一の符号を記してその詳しい説明を省略する。   Hereinafter, other examples of the composite conductor line 12A and the connection structure line 102 will be described. In this description, parts that are the same as or equivalent to those in the above configuration are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施例2)
実施例1の切削に代わる他の手段として、接続許容部40における高融点導体20の体積を切断により小さく設定した実施例2の複合導体線12Bについて、図3とともに説明する。
(Example 2)
As another means for replacing the cutting of the first embodiment, a composite conductor wire 12B of the second embodiment in which the volume of the high melting point conductor 20 in the connection allowing portion 40 is set to be small by cutting will be described with reference to FIG.

図3は2層構造を有する実施例2の複合導体線12Bの説明図であり、詳しくは、図3(a)は高融点導体20を切断した接続許容部40の積層方向Wの断面図、図3(b)は高融点導体20同士と低融点導体30同士を突き合わせた状態の接続許容部40の斜視図である。   FIG. 3 is an explanatory diagram of the composite conductor wire 12B of Example 2 having a two-layer structure. Specifically, FIG. 3A is a cross-sectional view in the stacking direction W of the connection permission portion 40 obtained by cutting the high melting point conductor 20. FIG. 3B is a perspective view of the connection allowing portion 40 in a state where the high melting point conductors 20 and the low melting point conductors 30 are butted together.

上述の複合導体線12Bの接続許容部40は、該接続許容部40における高融点導体20の端部20aから、図3(a)の二点鎖線で示す除去部20bを図示しない切断手段により切断除去している。   The connection permission portion 40 of the composite conductor wire 12B described above is cut from the end portion 20a of the high melting point conductor 20 in the connection permission portion 40 by a cutting means (not shown) indicated by a two-dot chain line in FIG. It has been removed.

これにより、高融点導体20の端部20aの長さL1を、低融点導体30の端部30aの長さL2以下となる長さ、つまり接続許容部40の長さ以下に加工して、接続許容部40における高融点導体20の端部20aの体積を、低融点導体30の端部30aの体積に比べて小さく設定している(図3(a)参照)。   Thereby, the length L1 of the end portion 20a of the high melting point conductor 20 is processed to a length that is equal to or shorter than the length L2 of the end portion 30a of the low melting point conductor 30, that is, the length of the connection allowable portion 40 or less. The volume of the end portion 20a of the high melting point conductor 20 in the allowable portion 40 is set smaller than the volume of the end portion 30a of the low melting point conductor 30 (see FIG. 3A).

上述の複合導体線12Bと、他の複合導体線12Bの接続許容部40同士を溶融接続する場合、接続許容部40における高融点導体20同士と低融点導体30同士とが隣り合うように突き合わせる(図3(b)参照)。
この後、接続許容部40同士を、高融点導体20が溶融する高い温度で加熱して、低融点導体30の端部30a同士と、高融点導体20の端部20a同士を溶融接続する。
When the above-described composite conductor wire 12B and the connection permission portions 40 of the other composite conductor wires 12B are melt-connected, the high melting point conductors 20 and the low melting point conductors 30 in the connection permission portion 40 are abutted so as to be adjacent to each other. (See FIG. 3B).
Thereafter, the connection permitting portions 40 are heated at a high temperature at which the high melting point conductor 20 melts, and the end portions 30a of the low melting point conductor 30 and the end portions 20a of the high melting point conductor 20 are melted and connected.

接続許容部40における低融点導体30の体積を、高融点導体20の体積よりも大きく設定しているので、低融点導体30同士の突き合わせ部分と、高融点導体20同士の突き合わせ部分を、確実な導電性が確保される溶融接続することができる。この結果、実施例1と略同等の作用及び効果を奏することができる。   Since the volume of the low melting point conductor 30 in the connection allowing portion 40 is set to be larger than the volume of the high melting point conductor 20, the butt portion between the low melting point conductors 30 and the butt portion between the high melting point conductors 20 are surely secured. It is possible to perform fusion connection to ensure conductivity. As a result, operations and effects substantially equivalent to those of the first embodiment can be achieved.

(実施例3)
上述の実施例1,2では、2層構造の複合導体線12A,12Bについて説明したが、本発明の接続構造は、3層構造を有する複合導体線13A,13B,13Cにも用いることができる。
(Example 3)
In the first and second embodiments, the two-layer composite conductor wires 12A and 12B have been described. However, the connection structure of the present invention can also be used for the composite conductor wires 13A, 13B, and 13C having a three-layer structure. .

図4は接続許容部40を備えた実施例3の複合導体線13A,13B,13Cの説明図であり、詳しくは、図4(a)は積層方向Wの最も外側に積層した高融点導体20の厚み方向の外側から一部を切削した接続許容部40の積層方向Wの断面図、図4(b)は積層方向Wの最も外側に積層した高融点導体20を切断した接続許容部40の積層方向Wの断面図、図4(c)は積層方向Wの中央に積層した高融点導体20を切断した接続許容部40の積層方向Wの断面図である。   FIG. 4 is an explanatory diagram of the composite conductor wires 13A, 13B, and 13C of the third embodiment provided with the connection allowing portion 40. Specifically, FIG. 4A shows the refractory conductor 20 stacked on the outermost side in the stacking direction W. FIG. 4B is a cross-sectional view in the stacking direction W of the connection permitting portion 40 partially cut from the outside in the thickness direction, and FIG. 4B shows the connection permitting portion 40 in which the refractory conductor 20 stacked on the outermost side in the stacking direction W is cut. FIG. 4C is a cross-sectional view in the stacking direction W of the connection allowing portion 40 obtained by cutting the high melting point conductor 20 stacked in the center of the stacking direction W. FIG.

上述の複合導体線13A,13Bは、低融点導体30を積層方向Wの外側に配置した高融点導体20の間に挟み込んだ状態に積層して、3層構造に構成している(図4(a)(b)参照)。   The composite conductor wires 13A and 13B described above are laminated in a state where the low melting point conductor 30 is sandwiched between the high melting point conductors 20 disposed outside the lamination direction W (FIG. 4 (FIG. 4 ( a) (b)).

複合導体線13Aの接続許容部40は、接続許容部40における積層方向Wの最も外側に積層した高融点導体20の端部20aから、図4(a)の二点鎖線で示す除去部20bを図示しない切削手段により切削除去している。   The connection permission portion 40 of the composite conductor wire 13A includes a removal portion 20b indicated by a two-dot chain line in FIG. 4A from the end portion 20a of the high melting point conductor 20 stacked on the outermost side in the stacking direction W in the connection permission portion 40. It is removed by cutting means (not shown).

複合導体線13Bは、接続許容部40における積層方向Wの最も外側に積層した高融点導体20の端部20aから、図4(b)の二点鎖線で示す除去部20bを図示しない切断手段により切断除去している。
これにより、複合導体線13A,13Bは、接続許容部40における高融点導体20の体積を、低融点導体30の体積に比べて小さく設定している。
The composite conductor line 13B is removed from the end 20a of the refractory conductor 20 laminated on the outermost side in the laminating direction W in the connection permission portion 40 by a cutting means (not shown) indicated by a two-dot chain line in FIG. Cutting and removing.
Accordingly, the composite conductor wires 13A and 13B set the volume of the high melting point conductor 20 in the connection allowing portion 40 smaller than the volume of the low melting point conductor 30.

上述の複合導体線13A,13Bのうち、複合導体線13A同士における接続許容部40同士を溶融接続して接続構造線102を構成する接続方法について説明する。
複合導体線13Aと、他の複合導体線13Aを溶融接続する場合、該複合導体線13Aの接続許容部40同士を、接続許容部40における高融点導体20同士と低融点導体30同士とが隣り合うように突き合わせる。
Of the above-described composite conductor wires 13A and 13B, a connection method for forming the connection structure line 102 by melting and connecting the connection permitting portions 40 of the composite conductor wires 13A will be described.
When the composite conductor wire 13A and another composite conductor wire 13A are melt-connected, the connection allowable portions 40 of the composite conductor wire 13A are adjacent to each other between the high melting point conductors 20 and the low melting point conductors 30 in the connection allowable portion 40. Match to fit.

この後、接続許容部40同士を、高融点導体20が溶融する高い温度で加熱して、低融点導体30の端部30a同士と、高融点導体20の端部20a同士を溶融接続する。   Thereafter, the connection permitting portions 40 are heated at a high temperature at which the high melting point conductor 20 melts, and the end portions 30a of the low melting point conductor 30 and the end portions 20a of the high melting point conductor 20 are melted and connected.

接続許容部40における低融点導体30の体積を、高融点導体20の体積よりも大きく設定しているので、低融点導体30同士の突き合わせ部分と、高融点導体20同士の突き合わせ部分を、確実な導電性が確保される溶融接続することができる。この結果、実施例1と略同等の作用及び効果を奏することができる。   Since the volume of the low melting point conductor 30 in the connection allowing portion 40 is set to be larger than the volume of the high melting point conductor 20, the butt portion between the low melting point conductors 30 and the butt portion between the high melting point conductors 20 are surely secured. It is possible to perform fusion connection to ensure conductivity. As a result, operations and effects substantially equivalent to those of the first embodiment can be achieved.

しかも、複合導体線12A,12Bに比べて、複合導体線13A,13Bの方が異種金属の積層数が多く、渦電流損失をより低減することができる。
なお、上述の複合導体線13Aと同様にして、複合導体線13B同士、及び複合導体線13C同士も溶融接続することができる。
Moreover, compared to the composite conductor wires 12A and 12B, the composite conductor wires 13A and 13B have a larger number of layers of dissimilar metals, and eddy current loss can be further reduced.
Note that the composite conductor wires 13B and the composite conductor wires 13C can be fused and connected in the same manner as the composite conductor wire 13A described above.

一方、複合導体線13Cは、高融点導体20を積層方向Wの外側に配置した低融点導体30の間に挟み込んだ状態に積層して、3層構造に構成している(図4(c)参照)。
接続許容部40における積層方向Wの中央部に積層した高融点導体20の端部20aから、図4(c)の二点鎖線で示す除去部20bを図示しない切断手段により切断除去して、高融点導体20の体積を小さくするための加工が実施可能であるが、より加工が容易であることから、複合導体線13Aもしくは13Bを、モータ用巻線として使用することが望ましい。
On the other hand, the composite conductor wire 13C is laminated in a state where the high melting point conductor 20 is sandwiched between the low melting point conductors 30 arranged on the outer side in the laminating direction W to form a three-layer structure (FIG. 4C). reference).
The removal portion 20b indicated by a two-dot chain line in FIG. 4C is cut and removed from the end portion 20a of the high melting point conductor 20 laminated at the central portion in the lamination direction W in the connection permission portion 40 by a cutting means (not shown). Although processing for reducing the volume of the melting point conductor 20 can be performed, since the processing is easier, it is desirable to use the composite conductor wire 13A or 13B as a motor winding.

(実施例4)
上述の実施例3では、3層構造の複合導体線13A,13B,13Cについて説明したが、本発明の接続構造は、実施例4の多層構造を有する複合導体線14A,14B,14Cにも用いることができる。
Example 4
In the above-described third embodiment, the three-layer composite conductor wires 13A, 13B, and 13C have been described. However, the connection structure of the present invention is also used for the composite conductor wires 14A, 14B, and 14C having the multilayer structure of the fourth embodiment. be able to.

図5は接続許容部40を備えた実施例4の複合導体線14A〜14Cの説明図であり、詳しくは、図5(a)は積層方向Wの最も外側に積層した片側1層の高融点導体20を切断した接続許容部40の積層方向Wの断面図である。   FIG. 5 is an explanatory view of the composite conductor wires 14A to 14C of the fourth embodiment provided with the connection permission portion 40. Specifically, FIG. 5 (a) shows a high melting point of one layer on one side laminated on the outermost side in the lamination direction W. FIG. 6 is a cross-sectional view in the stacking direction W of the connection allowing portion 40 with the conductor 20 cut.

図5(b)は積層方向Wの最も外側に積層した両側2層の高融点導体20を切断した接続許容部40の積層方向Wの断面図、図5(c)は積層方向Wの最も外側に積層した両側2層の高融点導体20の厚み方向の外側から一部を切削した接続許容部40の積層方向Wの断面図である。   5B is a cross-sectional view in the stacking direction W of the connection allowing portion 40 obtained by cutting the two high-melting-point conductors 20 on both sides stacked on the outermost side in the stacking direction W, and FIG. It is sectional drawing of the lamination direction W of the connection permission part 40 which cut a part from the outer side of the thickness direction of the refractory conductor 20 of two layers laminated | stacked on both sides.

上述の複合導体線14Aは、低融点導体30と高融点導体20を、積層方向Wの一端側から他端側に向けて交互に積層して4層構造に構成している。
複合導体線14Aの接続許容部40は、接続許容部40における積層方向Wの最も外側に積層した高融点導体20の端部20aから、図5(a)の二点鎖線で示す除去部20bを図示しない切断手段により切断除去して、接続許容部40における最も外側に積層した高融点導体20の体積を、低融点導体30の体積に比べて小さく設定している。
The above-described composite conductor wire 14A has a four-layer structure in which the low melting point conductor 30 and the high melting point conductor 20 are alternately laminated from one end side to the other end side in the lamination direction W.
The connection permission part 40 of the composite conductor wire 14A includes a removal part 20b indicated by a two-dot chain line in FIG. 5A from the end 20a of the high melting point conductor 20 stacked on the outermost side in the stacking direction W in the connection permission part 40. The volume of the high melting point conductor 20 cut and removed by a cutting means (not shown) and laminated on the outermost side in the connection permission portion 40 is set smaller than the volume of the low melting point conductor 30.

複合導体線14B,14Cは、低融点導体30を積層方向Wの中央部に配置した高融点導体20の両側部に積層し、高融点導体20を積層方向Wの両側部に配置した低融点導体30の外側に積層して、5層構造に構成している(図5(b)(c)参照)。   The composite conductor wires 14B and 14C are formed by laminating the low melting point conductor 30 on both side portions of the high melting point conductor 20 disposed in the central portion in the laminating direction W, and the low melting point conductor 20 disposed on both side portions in the laminating direction W. It is laminated on the outside of 30 to form a five-layer structure (see FIGS. 5B and 5C).

上述の複合導体線14Bは、接続許容部40における積層方向Wの最も外側に積層した高融点導体20の端部20aから、図5(b)の二点鎖線で示す除去部20bを図示しない切断手段により切断除去している。   The above-described composite conductor wire 14B is cut from the end portion 20a of the refractory conductor 20 laminated on the outermost side in the laminating direction W in the connection permission portion 40, with the removal portion 20b indicated by a two-dot chain line in FIG. It is cut and removed by means.

複合導体線14Cは、接続許容部40における積層方向Wの最も外側に積層した高融点導体20の端部20aから、図5(c)の二点鎖線で示す除去部20bを図示しない切削手段により切削除去している。   The composite conductor wire 14 </ b> C is removed from the end 20 a of the refractory conductor 20 laminated on the outermost side in the laminating direction W of the connection permission portion 40 by a cutting means (not shown) indicated by a two-dot chain line in FIG. Cutting removed.

これにより、複合導体線14B,14Cは、接続許容部40における高融点導体20の体積を、低融点導体30の体積に比べて小さく設定している。
なお、複合導体線14A,14B,14Cにおいて、接続許容部40の内側に積層した高融点導体20に加工を施してもよい。
Thereby, the composite conductor wires 14B and 14C set the volume of the high melting point conductor 20 in the connection allowing portion 40 smaller than the volume of the low melting point conductor 30.
In the composite conductor wires 14A, 14B, and 14C, the high melting point conductor 20 laminated inside the connection permission portion 40 may be processed.

上述の複合導体線14A,14B,14Cのうち、複合導体線14A同士における接続許容部40同士を溶融接続して接続構造線102を構成する接続方法について説明する。
複合導体線14Aと、他の複合導体線14Aを接続する場合、該複合導体線14Aの接続許容部40同士を、接続許容部40における高融点導体20同士と低融点導体30同士とが隣り合うように突き合わせる。
Of the above-described composite conductor wires 14A, 14B, and 14C, a connection method for forming the connection structure line 102 by melting and connecting the connection permission portions 40 in the composite conductor wires 14A will be described.
When connecting the composite conductor wire 14A and another composite conductor wire 14A, the high melting point conductors 20 and the low melting point conductors 30 in the connection allowable portion 40 are adjacent to each other in the connection allowable portions 40 of the composite conductor wire 14A. Match.

この後、接続許容部40同士を、高融点導体20が溶融する高い温度で加熱して、低融点導体30の端部30a同士と、高融点導体20の端部20a同士を溶融接続する。   Thereafter, the connection permitting portions 40 are heated at a high temperature at which the high melting point conductor 20 melts, and the end portions 30a of the low melting point conductor 30 and the end portions 20a of the high melting point conductor 20 are melted and connected.

接続許容部40における低融点導体30の体積を、高融点導体20の体積よりも大きく設定しているので、低融点導体30同士の突き合わせ部分と、高融点導体20同士の突き合わせ部分を、確実な導電性が確保される溶融接続することができる。この結果、実施例1,2と略同等の作用及び効果を奏することができる。
なお、上述の複合導体線14Aと同様にして、複合導体線14B同士、及び複合導体線14C同士も溶融接続することができる。
Since the volume of the low melting point conductor 30 in the connection allowing portion 40 is set to be larger than the volume of the high melting point conductor 20, the butt portion between the low melting point conductors 30 and the butt portion between the high melting point conductors 20 are surely secured. It is possible to perform fusion connection to ensure conductivity. As a result, operations and effects substantially equivalent to those of the first and second embodiments can be achieved.
Note that the composite conductor wires 14B and the composite conductor wires 14C can be melt-connected in the same manner as the above-described composite conductor wire 14A.

しかも、2層構造の複合導体線12A,12Bや3層構造の複合導体線13A,13B,13Cに比べて、複合導体線14Aの方が異種金属の積層数が多く、渦電流損失をより低減することができる。
さらに、複合導体線14Aに比べて、複合導体線14B,14Cの方が異種金属の積層数がさらに多く、渦電流損失をより一層低減することができる。
In addition, the composite conductor wire 14A has a larger number of layers of dissimilar metals than the two-layer composite conductor wires 12A and 12B and the three-layer composite conductor wires 13A, 13B, and 13C, thereby further reducing eddy current loss. can do.
Furthermore, compared to the composite conductor wire 14A, the composite conductor wires 14B and 14C have a larger number of different types of metal layers, and eddy current loss can be further reduced.

上述の実施例1では、複合導体線12Aにおける接続許容部40同士を互いに突き合わせて溶融接続する例を説明したが、図6、図7に示すように、接続許容部40同士を重ね合わせて溶融接続してもよい。
図6は接続構造線102の他の例を示す説明図であり、図6(a)は接続許容部40同士を並列に重ね合わせた状態の斜視図、図6(b)は接続許容部40同士を溶融接続した状態の斜視図である。
In the first embodiment described above, the example in which the connection permitting portions 40 in the composite conductor wire 12A are brought into contact with each other and melted is described. However, as shown in FIGS. You may connect.
6A and 6B are explanatory views showing another example of the connection structure line 102. FIG. 6A is a perspective view in which the connection permission portions 40 are overlapped in parallel, and FIG. It is a perspective view of the state which melt-connected each other.

詳述すると、複合導体線12Aの接続許容部40を長手方向Lに対して同一方向に向けて並列配置し、複合導体線12Aの接続許容部40同士を、接続許容部40における低融点導体30の端部30a同士と高融点導体20の端部20a同士とが隣り合うように重ね合わせる(図6(a)参照)。   More specifically, the connection permission portions 40 of the composite conductor wire 12A are arranged in parallel in the same direction with respect to the longitudinal direction L, and the connection permission portions 40 of the composite conductor wire 12A are connected to the low melting point conductor 30 in the connection permission portion 40. The end portions 30a of the refractory conductors and the end portions 20a of the refractory conductor 20 are adjacent to each other (see FIG. 6A).

この後、複合導体線12Aの接続許容部40同士を重ね合わせたまま加熱して溶融接続するので、接続許容部40における高融点導体20同士と低融点導体30同士を確実に接続することができる(図6(b)参照)。   Thereafter, since the connection permitting portions 40 of the composite conductor wire 12A are heated and melted while being overlapped, the high melting point conductors 20 and the low melting point conductors 30 in the connection allowing portion 40 can be reliably connected. (See FIG. 6 (b)).

図7は接続構造線102のその他の例を示す説明図であり、図7(a)は接続許容部40同士を重ね合わせる前の状態を示す斜視図、図7(b)は接続許容部40同士を溶融接続した状態の斜視図である。   FIG. 7 is an explanatory view showing another example of the connection structure line 102, FIG. 7A is a perspective view showing a state before the connection permission portions 40 are overlapped, and FIG. 7B is a connection permission portion 40. It is a perspective view of the state which melt-connected each other.

複合導体線12Aの接続許容部40を長手方向Lに対して逆方向に向けて配置し、複合導体線12Aの接続許容部40同士を、接続許容部40における高融点導体20の端部20a同士と低融点導体30の端部30a同士とが隣り合うように重ね合わせる(図7(a)参照)。   The connection allowable portions 40 of the composite conductor wire 12A are arranged in the direction opposite to the longitudinal direction L, and the connection allowable portions 40 of the composite conductor wire 12A are connected to each other between the end portions 20a of the high melting point conductor 20 in the connection allowable portion 40. And the end portions 30a of the low melting point conductors 30 are adjacent to each other (see FIG. 7A).

この後、複合導体線12Aの接続許容部40同士を互いに重ね合わせたまま加熱して溶融接続するので、接続許容部40における高融点導体20同士と低融点導体30同士を確実に接続することができる(図7(b)参照)。
この結果、上述の実施例1〜4と略同等の作用及び効果を奏することができる。
なお、図6、図7に示す接続方法を用いて、上述の複合導体線12A,12B、13A〜13C、14A〜14Cを溶融接続してもよい。
Thereafter, since the connection permitting portions 40 of the composite conductor wire 12A are heated and melt-connected while being superposed on each other, the high melting point conductors 20 and the low melting point conductors 30 in the connection allowing portion 40 can be reliably connected. (See FIG. 7B).
As a result, operations and effects substantially equivalent to those of the first to fourth embodiments can be obtained.
Note that the above-described composite conductor wires 12A, 12B, 13A to 13C, and 14A to 14C may be melt-connected using the connection method shown in FIGS.

(実施例5)
上述の実施例1〜4では、接続許容部40における高融点導体20の体積を切削して小さくした後、複合導体線12A同士を接続する接続方法について説明したが、図8に示すように、接続側端部16における高融点導体20の体積を加圧変形して小さくした後、複合導体線15A同士を溶融接続して接続構造線103を構成する実施例5の接続方法について説明する。
(Example 5)
In the above-described Examples 1 to 4, the connection method for connecting the composite conductor wires 12A to each other after cutting the volume of the high melting point conductor 20 in the connection permission portion 40 to reduce the volume, as shown in FIG. A connection method of Example 5 in which the volume of the high-melting-point conductor 20 at the connection-side end portion 16 is reduced by pressurization and then the composite conductor wires 15A are melt-connected to form the connection structure line 103 will be described.

図8は実施例1の複合導体線15A同士を接続した接続構造線11の説明図であり、詳しくは、図8(a)は複合導体線15A同士における接続側端部16同士を突き合わせた状態の斜視図、図8(b)は複合導体線15A同士における接続側端部16同士を接続した接続構造線103の斜視図、図9は図8に示す複合導体線15Aの接続方法及び抵抗溶接装置70の斜視図である。   FIG. 8 is an explanatory view of the connection structure line 11 in which the composite conductor lines 15A of Example 1 are connected. Specifically, FIG. 8A shows a state in which the connection side end portions 16 of the composite conductor lines 15A are butted together. 8B is a perspective view of the connection structure line 103 in which the connection side ends 16 of the composite conductor wires 15A are connected to each other, and FIG. 9 is a connection method and resistance welding of the composite conductor wire 15A shown in FIG. 3 is a perspective view of the device 70. FIG.

図10は図8に示す複合導体線15A同士を接続する接続方法の説明図であり、詳しくは、図10(a)は突き合わせ直前の接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図10(b)は突き合わせ直後の接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図10(c)は加圧変形した接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図である。   FIG. 10 is an explanatory diagram of a connection method for connecting the composite conductor wires 15A shown in FIG. 8, and in detail, FIG. 10 (a) divides the butt portion of the connection side end portions 16 just before the butt in the butt direction H. FIG. 10B is a cross-sectional view in which the abutting portion between the connection side end portions 16 immediately after the abutment is divided in the abutting direction H, and FIG. 10C is the abutment between the connection side end portions 16 that are pressure-deformed. It is sectional drawing which divided the part in the butting direction H.

図11(a)は図10(c)に示す余剰部20cを除去した接続側端部16を突き合わせ方向Hに分断した断面図、図11(b)は接続側端部16同士の接続部分を突き合わせ方向Hに分断した断面図である。   11A is a cross-sectional view in which the connection side end portion 16 from which the surplus portion 20c shown in FIG. 10C is removed is divided in the abutting direction H, and FIG. 11B shows a connection portion between the connection side end portions 16. It is sectional drawing divided in the butting direction H.

なお、図8〜図11に示す長手方向Lとは、複合導体線15Aにおける長手方向と一致する方向である。積層方向Wは、高融点導体20と低融点導体30を積層した方向(図8に示す上下方向)である。また、突き合わせ方向Hは、複合導体線15A同士における接続側端部16同士を互いに突き合わせた状態に挟持する方向である。   In addition, the longitudinal direction L shown in FIGS. 8-11 is a direction which corresponds with the longitudinal direction in 15 A of composite conductor wires. The stacking direction W is the direction in which the high melting point conductor 20 and the low melting point conductor 30 are stacked (the vertical direction shown in FIG. 8). The abutting direction H is a direction in which the connection side end portions 16 of the composite conductor wires 15A are sandwiched in a state of abutting each other.

実施例5の接続構造線103は、低融点導体30を高融点導体20間に挟み込んだ状態に積層方向Wに積層して一体化した3層構造の複合導体線15Aと、該複合導体線15Aと同一構成の複合導体線15Aとにおける接続側端部16同士を溶融接続して構成している(図8(b)参照)。   The connection structure line 103 of Example 5 includes a composite conductor line 15A having a three-layer structure in which the low melting point conductor 30 is sandwiched between the high melting point conductors 20 and laminated in the lamination direction W, and the composite conductor line 15A. The connection-side end portions 16 of the composite conductor wire 15A having the same configuration as those of FIG. 8 are fused and connected (see FIG. 8B).

複合導体線15Aは、長手方向Lに連続する導体線本体部13と、導体線本体部13における長手方向Lの端部に設けた他の複合導体線15Aとの接続を許容する接続側端部16とで構成している。
接続側端部16は、導体線本体部13における長手方向Lの端部を、導体線本体部13における長手方向Lと直交する方向に向けて湾曲させて形成している。(図8(a)参照)。
15 A of composite conductor wires are the connection side edge parts which accept | permit connection with the conductor wire main-body part 13 which continues in the longitudinal direction L, and the other composite conductor line 15A provided in the edge part of the longitudinal direction L in the conductor wire main-body part 13 16.
The connection-side end portion 16 is formed by bending an end portion in the longitudinal direction L of the conductor wire main body portion 13 toward a direction orthogonal to the longitudinal direction L of the conductor wire main body portion 13. (See FIG. 8 (a)).

少なくとも2本の複合導体線15Aにおける接続側端部16同士を抵抗溶接して接合部60を形成することにより、例えば、モータ用巻線として用いることができる接続構造線103を構成する(図8(b)参照)。   The connection structure line 103 that can be used as, for example, a motor winding is formed by resistance welding the connection-side end portions 16 of at least two composite conductor wires 15A to form the joint portion 60 (FIG. 8). (See (b)).

また、複合導体線15Aは、高融点導体20よりも融点の低いアルミニウム製導体(融点660℃)の低融点導体30を、低融点導体30よりも融点の高い銅製導体(融点1085℃)の高融点導体20間に挟み込むとともに、該導体20,30の間に絶縁層50を介在させて積層方向Wに積層している。   Further, the composite conductor wire 15 </ b> A is composed of an aluminum conductor (melting point 660 ° C.) having a lower melting point than the high melting point conductor 20 and a copper conductor (melting point 1085 ° C.) having a higher melting point than the low melting point conductor 30. While being sandwiched between the melting point conductors 20, an insulating layer 50 is interposed between the conductors 20 and 30 and laminated in the laminating direction W.

すなわち、低融点導体30を積層方向Wの中央に配置し、高融点導体20を低融点導体30における積層方向Wの外側(図8(a)に示す上側、下側)に配置して、3層構造に構成している。   That is, the low melting point conductor 30 is arranged at the center in the laminating direction W, and the high melting point conductor 20 is arranged outside the laminating direction W in the low melting point conductor 30 (upper side and lower side shown in FIG. 8A). It has a layer structure.

高融点導体20及び低融点導体30は、略同一の厚み及び形状に形成した断面略矩形の平角導体で構成しており、長手方向Lと直交する垂直な面で分断した高融点導体20及び低融点導体30の断面は、加圧変形前において略同一の断面積を有している。   The high melting point conductor 20 and the low melting point conductor 30 are constituted by flat rectangular conductors having a substantially rectangular cross section formed in substantially the same thickness and shape, and the high melting point conductor 20 and the low melting point conductor 20 divided by a vertical plane orthogonal to the longitudinal direction L. The cross section of the melting point conductor 30 has substantially the same cross sectional area before pressure deformation.

高融点導体20及び低融点導体30を、複合導体線15Aの長手方向Lに沿って並列に配置するとともに、中央に配置した1層の高融点導体20と、高融点導体20の外側に配置した2層の低融点導体30における対向面を一体に接合している。高融点導体20及び低融点導体30の対向面間は、絶縁層50を介在させて互いに絶縁している。   The high melting point conductor 20 and the low melting point conductor 30 are arranged in parallel along the longitudinal direction L of the composite conductor wire 15 </ b> A, and are disposed on the outer side of the single layer of the high melting point conductor 20 and the high melting point conductor 20. The opposing surfaces of the two layers of the low melting point conductor 30 are joined together. The opposing surfaces of the high melting point conductor 20 and the low melting point conductor 30 are insulated from each other with an insulating layer 50 interposed therebetween.

上述のように構成した複合導体線15A同士を接続する際に用いられる抵抗溶接装置70について説明する。
抵抗溶接装置70は、複合導体線15A同士における接続側端部16同士を突き合わせ方向Hに突き合わせた状態に挟持するとともに、該接続側端部16同士に通電して溶融する一対の電極71Aと、加圧変形させた際に発生した高融点導体20の余剰部20cを切除する余剰部切断刃71Bとを備えている(図11参照)。
The resistance welding apparatus 70 used when connecting the composite conductor wires 15A configured as described above will be described.
The resistance welding device 70 sandwiches the connection-side end portions 16 of the composite conductor wires 15A in the butting direction H, and energizes the connection-side end portions 16 to melt the pair of electrodes 71A. And a surplus portion cutting blade 71B that cuts off the surplus portion 20c of the high melting point conductor 20 generated when being deformed under pressure (see FIG. 11).

電極71Aは、突き合わせ方向Hと直交する垂直な面で分断した断面が断面略丸形を有する導電性の金属棒で構成しており、接続側端部16における突き合わせ方向Hの外側端面と対向して左右に配置している(図9、図10参照)。   The electrode 71A is composed of a conductive metal rod having a cross section divided by a vertical plane orthogonal to the abutting direction H and having a substantially round cross section, and faces the outer end surface of the connecting side end portion 16 in the abutting direction H. (See FIGS. 9 and 10).

一対の電極71Aは、図示しない電極移動手段により接続側端部16同士を突き合わせた状態に挟持する突き合わせ方向Hと、接続側端部16同士の挟持が解除される突き合わせ方向Hと反対側の方向とに相対移動される。
なお、電極71Aには、接続側端部16同士を抵抗溶接する際に必要な電流を通電するための図示しない通電装置を接続している。
The pair of electrodes 71A are in a direction opposite to the butting direction H in which the connection side end portions 16 are held in a state where the connection side end portions 16 are put in contact with each other by an electrode moving means (not shown) And relative movement.
In addition, the electrode 71A is connected to an energization device (not shown) for energizing a current necessary for resistance welding of the connection side end portions 16 to each other.

余剰部切断刃71Bは、電極71Aにおける当接側端部72Aの外周面に近接して上下に配置しており、図示しない移動手段により電極71Aの外周面に沿って、電極71Aにおける当接側端部72A間から押し出された高融点導体20の余剰部20cを切除する方向に移動される(図11(a)参照)。   The surplus part cutting blade 71B is arranged close to the outer peripheral surface of the abutting side end 72A of the electrode 71A, and is arranged along the outer peripheral surface of the electrode 71A by a moving means (not shown). It moves to the direction which cuts off the surplus part 20c of the high melting point conductor 20 extruded from between the end parts 72A (see FIG. 11A).

電極71Aにおける接続側端部16を挟持する挟持側端部には、接続側端部16に当接して通電する当接側端部72Aを形成している。
当接側端部72Aにおける接続側端部16の突き合わせる面と反対側の部分に当接される当接部分には、接続側端部16における中央に配置した低融点導体30の突き合わせる面と反対側の部分と対向する中央当接部を基準として、該中央当接部より上側の上側当接部と下側の下側当接部に、接続側端部16における上下に配置した高融点導体20の突き合わせる面と反対側の部分と対向して、突き合わせ方向Hに向けて突出する断面略矩形の突出部73Aを形成している(図9、図10参照)。
A contact-side end 72A that contacts the connection-side end 16 and energizes is formed at the holding-side end that holds the connection-side end 16 in the electrode 71A.
The abutting portion of the abutting side end portion 72 </ b> A that abuts the portion on the opposite side of the abutting surface of the connecting side end portion 16 is the abutting surface of the low melting point conductor 30 disposed in the center of the connecting side end portion 16. The upper and lower contact portions on the upper side and the lower contact portion on the upper side of the center contact portion are arranged on the upper and lower sides of the connection side end portion 16 on the basis of the center contact portion facing the opposite side portion. A protruding portion 73A having a substantially rectangular cross section that protrudes in the abutting direction H is formed facing the portion of the melting point conductor 20 opposite to the abutting surface (see FIGS. 9 and 10).

当接側端部72Aにおける中央当接部には、接続側端部16における中央に配置した低融点導体30の突き合わせる面と反対側の部分と対向して、低融点導体30における突き合わせる面と反対側の部分の挿嵌を許容するとともに、突き合わせ方向Hに向けて凹状に窪んだ溝形状の導体受け溝74Aを形成している(図9、図10参照)。   The abutting surface of the low-melting-point conductor 30 faces the center abutting portion of the abutting-side end portion 72A opposite to the abutting surface of the low-melting-point conductor 30 disposed in the center of the connection-side end portion 16. And a groove-like conductor receiving groove 74A that is recessed in the abutting direction H is formed (see FIGS. 9 and 10).

突出部73A及び導体受け溝74Aは、当接側端部72Aにおける当接側端部に沿って突き合わせ方向Hと直交する方向に平行して形成している。
導体受け溝74Aにおける突き合わせ方向Hと直交する方向の両端部は、該突き合わせ方向Hと直交する方向に向けて開放している(図9参照)。
The protrusion 73A and the conductor receiving groove 74A are formed in parallel to the direction orthogonal to the abutting direction H along the contact side end portion of the contact side end portion 72A.
Both ends of the conductor receiving groove 74A in the direction orthogonal to the abutting direction H are open toward the direction orthogonal to the abutting direction H (see FIG. 9).

突出部73Aは、接続側端部16における高融点導体20の突き合わせる面と反対側に露出する外側端面と対向して形成するとともに、低融点導体30に対して当接が回避される間隔に隔てて配置している(図9、図10参照)。   The protruding portion 73A is formed opposite to the outer end surface exposed to the opposite side of the surface of the connection-side end portion 16 where the high-melting-point conductor 20 abuts, and at an interval at which contact with the low-melting-point conductor 30 is avoided. They are spaced apart (see FIGS. 9 and 10).

突出部73Aにおける突き合わせ方向Hに突出する突出寸法CDは、接続側端部16における低融点導体30の断面積(突き合わせ方向Hと平行する垂直な面で分断した断面積)を基準として、接続側端部16における高融点導体20を0.35倍〜0.45倍の断面積に加圧変形させる突出寸法に設定している(図10(a)参照)。
具体的には、高融点導体20と低融点導体30の体積比が、銅:アルミニウム=0.43:1となるように加圧変形させる突出寸法に設定している(下記の表1参照)。
The projecting dimension CD projecting in the butting direction H in the projecting portion 73A is based on the cross-sectional area of the low-melting-point conductor 30 in the connecting-side end 16 (cross-sectional area divided by a vertical plane parallel to the butting direction H). The high melting point conductor 20 at the end portion 16 is set to a protruding dimension that causes pressure deformation to a cross-sectional area of 0.35 to 0.45 times (see FIG. 10A).
Specifically, the projecting dimension is set so that the volume ratio of the high melting point conductor 20 and the low melting point conductor 30 is pressure-deformed so as to be copper: aluminum = 0.43: 1 (see Table 1 below). .

突出部73A及び導体受け溝74Aにおける突き合わせ方向Hと平行する垂直な面で分断した断面は、接続側端部16における高融点導体20を所定の断面積に加圧変形させた状態において、低融点導体30における高融点導体20の突き合わせる面と反対側に突出される断面略矩形の突出部分30bと略対応する大きさ及び形状に形成している(図10(c)参照)。
突出部73Aの突出寸法CDと、導体受け溝74Aの深さADは、低融点導体30の突出部分30bと対応する寸法に設定している。
The cross section of the protrusion 73A and the conductor receiving groove 74A divided by the vertical plane parallel to the abutting direction H is a low melting point in a state where the high melting point conductor 20 at the connection side end 16 is pressure-deformed into a predetermined cross sectional area. The conductor 30 is formed in a size and shape substantially corresponding to the protruding portion 30b having a substantially rectangular cross section protruding to the opposite side of the surface of the high melting point conductor 20 to be abutted (see FIG. 10C).
The protrusion dimension CD of the protrusion 73A and the depth AD of the conductor receiving groove 74A are set to dimensions corresponding to the protrusion part 30b of the low melting point conductor 30.

上述の高融点導体20及び低融点導体30を溶融するために必要な熱量について説明する。
例えば、溶融する際の雰囲気温度を0℃に設定した場合、熱量を、(密度)×(比熱)×(融点)×(体積)であらわすことができる。密度、比熱、融点は物性値であるので、定数である。
高融点導体20が銅、低融点導体30がアルミニウムの場合を下記表1に示す。
The amount of heat necessary to melt the high melting point conductor 20 and the low melting point conductor 30 will be described.
For example, when the atmospheric temperature at the time of melting is set to 0 ° C., the amount of heat can be expressed as (density) × (specific heat) × (melting point) × (volume). Since density, specific heat, and melting point are physical property values, they are constants.
The case where the high melting point conductor 20 is copper and the low melting point conductor 30 is aluminum is shown in Table 1 below.

Figure 2015181328
上記表1によると(密度)×(比熱)×(融点)の値の比率は、銅:アルミ=1:約0.43である。
したがって溶融に必要な熱量=(密度)×(比熱)×(融点)×(体積)を一定にして、高融点導体20及び低融点導体30が略同時に溶融するためには、体積比が、銅:アルミニウム=0.43:1となるような加工が望ましい。
Figure 2015181328
According to Table 1 above, the ratio of the values of (density) × (specific heat) × (melting point) is copper: aluminum = 1: about 0.43.
Therefore, in order for the high melting point conductor 20 and the low melting point conductor 30 to be melted substantially simultaneously with the amount of heat required for melting = (density) × (specific heat) × (melting point) × (volume) being constant, the volume ratio is copper : Aluminum is desirable to be 0.43: 1.

しかし、銅のほうが、アルミニウムよりも熱伝導率が大きく、熱が逃げやすいことや、隣接する導体からの熱伝導があること、電極と接する面積が異なる等、溶融する部分の形状によって必要熱量が変動する要因があるため、実際の体積比は、銅:アルミニウム=0.35〜0.45:1程度が好ましい。   However, the heat conductivity of copper is larger than that of aluminum, and heat is more likely to escape, the heat conduction from the adjacent conductor, the area in contact with the electrode, etc. Since there are fluctuating factors, the actual volume ratio is preferably about copper: aluminum = 0.35 to 0.45: 1.

上述した複合導体線15A同士を、抵抗溶接装置70により接続側端部16同士を互いに溶融接続して接続構造線103を構成する接続方法について説明する。
先ず、抵抗溶接装置70における一対の電極71Aを突き合わせ方向Hに相対移動させて、複合導体線15A同士における接続側端部16同士を、同一種類の高融点導体20同士と、低融点導体30同士とが隣り合うように突き合わせたまま、一対の電極71Aにおける当接側端部72A間に挟み込むとともに、当接側端部72Aを接続側端部16における突き合わせる面と反対側の部分に当接する(図10(a)(b)参照)。
A connection method in which the above-described composite conductor wires 15 </ b> A are fused and connected to each other by the resistance welding apparatus 70 to form the connection structure wire 103 will be described.
First, the pair of electrodes 71A in the resistance welding apparatus 70 are moved relative to each other in the butting direction H, and the connection-side end portions 16 of the composite conductor wires 15A are connected to each other between the high melting point conductors 20 and the low melting point conductors 30. And abutting between the abutting side end portions 72A of the pair of electrodes 71A, and abutting the abutting side end portion 72A with a portion of the connection side end portion 16 opposite to the abutting surface. (See FIGS. 10A and 10B).

当接側端部72Aが接続側端部16に当接する際に、当接側端部72Aにおける突出部73Aが、接続側端部16における高融点導体20の端部20aを突き合わせ方向Hに押圧するため、高融点導体20の端部20aを加圧変形させることができる(図10(b)(c)参照)。   When the contact-side end 72A contacts the connection-side end 16, the protrusion 73A at the contact-side end 72A presses the end 20a of the refractory conductor 20 at the connection-side end 16 in the butting direction H. Therefore, the end 20a of the high melting point conductor 20 can be deformed under pressure (see FIGS. 10B and 10C).

当接側端部72Aを接続側端部16に当接した際、突出部73Aの間に形成した導体受け溝74Aは、接続側端部16における低融点導体30に対して接触が回避されており、突出部73Aによる押圧によって高融点導体20の端部20aが加圧変形されるのに伴って、低融点導体30の端部30aに対して徐々に近接される(図10(b)(c)参照)。   When the abutting side end 72A abuts on the connection side end 16, the conductor receiving groove 74A formed between the protrusions 73A is prevented from contacting the low melting point conductor 30 at the connection side end 16. As the end 20a of the high melting point conductor 20 is pressed and deformed by the pressing by the projecting portion 73A, it gradually approaches the end 30a of the low melting point conductor 30 (FIG. 10B). c)).

一対の電極71Aを、当接側端部72Aにおける導体受け溝74Aの中央部内壁が、接続側端部16における低融点導体30の突き合わせる面と反対側の部分に対して当接される位置まで移動させることにより、接続側端部16における高融点導体20の端部20aを、当接側端部72A間における接続側端部16同士の突き合わせる面を互いに突き合わせた状態に接続する導体接続範囲Fにおいて、当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の端部20aの断面積が、低融点導体30の端部30aの断面積未満となる大きさに加圧変形することができる(図10(c)、図11(b)参照)。   A position where the inner wall of the central portion of the conductor receiving groove 74A in the contact side end portion 72A is in contact with a portion of the connection side end portion 16 on the opposite side to the abutting surface of the low melting point conductor 30. Is connected to the end 20a of the high melting point conductor 20 at the connection side end 16 so that the abutting surfaces of the connection side ends 16 between the abutting end 72A are abutted with each other. In the range F, the cross-sectional area of the end portion 20a of the high melting point conductor 20 sandwiched in the conductor connection range F between the contact-side end portions 72A is less than the cross sectional area of the end portion 30a of the low melting point conductor 30. (See FIGS. 10 (c) and 11 (b)).

高融点導体20の端部20aを加圧変形させる際、低融点導体30の端部30aは突出部73Aの間に形成した導体受け溝74A内に嵌り込むため、低融点導体30の端部30aが加圧変形されることを防止できるとともに、該端部30aの断面積を一定に保つことができる。   When the end portion 20a of the high melting point conductor 20 is subjected to pressure deformation, the end portion 30a of the low melting point conductor 30 is fitted into the conductor receiving groove 74A formed between the projecting portions 73A. Can be prevented from being deformed by pressure, and the cross-sectional area of the end 30a can be kept constant.

上述のように高融点導体20を加圧変形させた際、突出部73Aによる押圧によって高融点導体20の余剰部20cが、当接側端部72A間から突き合わせ方向Wと直交する積層方向Wに向けて押し出されることになる(図10(c)参照)。   When the high melting point conductor 20 is pressure-deformed as described above, the excess portion 20c of the high melting point conductor 20 is pressed in the stacking direction W perpendicular to the abutting direction W from between the contact end portions 72A by the pressing by the protrusion 73A. It will be pushed out (see FIG. 10C).

しかし、当接側端部72A間から押し出された高融点導体20の余剰部20cを余剰部除去刃71Bで切除するため、当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の体積を、低融点導体30aの体積未満に確実に減らすことができる(図11(a)参照)。   However, since the surplus portion 20c of the high melting point conductor 20 pushed out between the contact-side end portions 72A is cut off by the surplus portion removing blade 71B, the height sandwiched within the conductor connection range F between the contact-side end portions 72A is high. The volume of the melting point conductor 20 can be surely reduced to less than the volume of the low melting point conductor 30a (see FIG. 11A).

具体的には、導体接続範囲Fにおける当接側端部72A間に挟持された挟持部分の高融点導体20と低融点導体30の体積比が、銅:アルミニウム=0.43:1となるように加工する。
これにより、接続側端部16における高融点導体20を溶融する際に必要な熱容量を減らすことができるとともに、体積を減らすための加工が容易に実施できる。
Specifically, the volume ratio of the high melting point conductor 20 and the low melting point conductor 30 in the sandwiched portion sandwiched between the contact end portions 72A in the conductor connection range F is copper: aluminum = 0.43: 1. To process.
Thereby, while being able to reduce the heat capacity required when melting the high melting point conductor 20 at the connection-side end portion 16, processing for reducing the volume can be easily performed.

高融点導体20の体積を減らす加工が完了した状態において、当接側端部72Aの突出部73Aは高融点導体20に対して通電可能に押し付けられており、導体受け溝74Aは、低融点導体30に対して通電可能に押し付けられている(図11(a)参照)。   In a state in which the processing for reducing the volume of the high melting point conductor 20 is completed, the protruding portion 73A of the abutting side end portion 72A is pressed against the high melting point conductor 20 so as to be energized, and the conductor receiving groove 74A is formed of the low melting point conductor. 30 is pressed against the power supply 30 (see FIG. 11A).

したがって、複合導体線15A同士における接続側端部16同士を、抵抗溶接装置70における一対の電極71A間に挟持したまま、接続側端部16同士を介して一対の電極71A間に通電すれば、高融点導体20の端部20a同士を溶融する温度(融点1085℃)に発熱させるとともに、該端部20a同士を互いに溶融させて通電可能に接続することができる。   Accordingly, if the connection-side end portions 16 of the composite conductor wires 15A are sandwiched between the pair of electrodes 71A in the resistance welding apparatus 70 and the pair of electrodes 71A are energized through the connection-side end portions 16 of each other, While generating heat to the temperature which melt | dissolves the edge parts 20a of the high melting point conductor 20 (melting | fusing point 1085 degreeC), this edge parts 20a can mutually be fuse | melted and it can connect so that electricity supply is possible.

さらに低融点導体30の端部30a同士を溶融する温度(融点660℃)に発熱させるとともに、該端部30a同士を溶融させながら、上述の高融点導体20の端部20a同士を略同時に溶融させて通電可能に接続することができる(図11(b)参照)。   Further, the end portions 30a of the low melting point conductor 30 are heated to a temperature (melting point 660 ° C.), and the end portions 20a of the high melting point conductor 20 are melted substantially simultaneously while melting the end portions 30a. Can be connected so as to be energized (see FIG. 11B).

当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の端部20aの体積を、低融点導体30の端部30aの体積未満に減らしているため、低融点導体30の端部30a同士を確実な導電性が確保される溶融接続状態に溶融しつつ、高融点導体20の端部20a同士を確実な導電性が確保される溶融接続状態にまで十分に溶融することができる。   Since the volume of the end portion 20a of the high melting point conductor 20 sandwiched within the conductor connection range F between the contact end portions 72A is reduced to less than the volume of the end portion 30a of the low melting point conductor 30, the low melting point conductor 30 The end portions 30a of the refractory conductors 20 are melted in a melt-connected state in which reliable conductivity is ensured, and the end portions 20a of the refractory conductors 20 are sufficiently melted in a melt-connected state in which reliable conductivity is ensured. Can do.

複合導体線15A同士における接続側端部16同士を、接続側端部16における高融点導体20の端部30a同士、及び低融点導体30の端部30a同士を互いに突き合わせたまま溶融して接合部60を形成することにより、接続構造線103を構成することができる(図8(b)参照)。   The connection-side end portions 16 of the composite conductor wires 15A are melted while the end portions 30a of the high melting point conductors 20 and the end portions 30a of the low melting point conductors 30 of the connection side end portions 16 are abutted with each other. By forming 60, the connection structure line 103 can be formed (see FIG. 8B).

したがって、複合導体線15A同士における接続側端部16同士を溶融接続する際に、高融点導体20よりも融点が低い低融点導体30が先に流れ落ちることを防止できるとともに、低融点導体30同士、及び高融点導体20同士の突き合わせ部分が、確実な導電性が確保される溶融接続状態以上に溶融し過ぎることを防止できる。   Therefore, the low melting point conductor 30 having a lower melting point than the high melting point conductor 20 can be prevented from flowing down first when the connection-side end portions 16 of the composite conductor wires 15A are melt-connected, and the low melting point conductors 30; And it can prevent that the butting | matching part of the high melting point conductors 20 melt | dissolves too much more than the fusion | melting connection state by which reliable electroconductivity is ensured.

この結果、複合導体線15A同士における接続側端部16同士を、接続側端部16同士における高融点導体20同士、及び低融点導体30同士を互いに突き合わせたまま略同時に溶融させて、確実な導電性が確保される良好な状態に接続することができる。   As a result, the connection-side end portions 16 of the composite conductor wires 15A are melted substantially simultaneously with the high-melting-point conductors 20 and the low-melting-point conductors 30 of the connection-side end portions 16 facing each other, thereby ensuring reliable conduction. It is possible to connect to a good state in which the property is ensured.

しかも、融点の異なる高融点導体20同士、及び低融点導体30同士の溶融接続が略同時(例えば、1回の溶着作業)に行えるため、作業性を向上できる。
さらに、同一種類の高融点導体20同士、及び低融点導体30同士を互いに溶融接続するため、例えば、半田付けに比べて接続した部分の耐熱温度および強度が高く、車載用モータのように200℃前後で振動のある過酷な環境下で接続構造線103を使用しても、確実な導電性が確保される接続状態を保つことができるとともに、電気的に接続した状態を長期に亘り維持することができる。
In addition, since the high-melting point conductors 20 having different melting points and the low-melting point conductors 30 can be fused and connected substantially simultaneously (for example, one welding operation), workability can be improved.
Further, since the high melting point conductors 20 of the same kind and the low melting point conductors 30 are melt-connected to each other, for example, the heat resistance temperature and strength of the connected portion are higher than that of soldering, and 200 ° C. like an in-vehicle motor. Even when the connection structure wire 103 is used in a harsh environment with vibrations before and after, it is possible to maintain a connection state that ensures reliable conductivity and to maintain an electrically connected state for a long period of time. Can do.

さらにまた、複合導体線15Aを、異種金属からなる高融点導体20と低融点導体30とを積層して構成しているため、渦電流損失を低減することができるとともに、確実な導電性が確保される良好な接続状態の接続構造線103を構成することができる(図8(b)参照)。
上述の複合導体線15Aを、例えば、モータを構成するコイルコアに巻回したのち、上述の接続構造線103にてステーターを形成し、モータ用巻線として使用することにより、モータの駆動効率が向上するうえ、所定の出力が安定して得られる。
Furthermore, since the composite conductor wire 15A is formed by laminating the high melting point conductor 20 and the low melting point conductor 30 made of different metals, eddy current loss can be reduced and reliable conductivity is ensured. The connection structure line 103 having a good connection state can be configured (see FIG. 8B).
The above-described composite conductor wire 15A is wound around, for example, a coil core constituting a motor, and then a stator is formed by the above-described connection structure wire 103, which is used as a motor winding, thereby improving the driving efficiency of the motor. In addition, a predetermined output can be stably obtained.

(実施例6)
上述の実施例5では、接続側端部16の高融点導体20を断面略矩形に加圧変形した後、複合導体線15A同士を接続する接続方法について説明したが、図12に示すように、接続側端部16の高融点導体20を断面略三角形に加圧変形した後、複合導体線15A同士を溶融接続して接続構造線103を構成する実施例6の接続方法について説明する。
(Example 6)
In Example 5 described above, the connection method for connecting the composite conductor wires 15A to each other after pressurizing and deforming the high melting point conductor 20 of the connection side end portion 16 into a substantially rectangular cross section, as shown in FIG. A connection method of Example 6 in which the high melting point conductor 20 at the connection side end portion 16 is pressed and deformed into a substantially triangular cross section and then the composite conductor wires 15A are melt-connected to form the connection structure line 103 will be described.

図12は実施例6の複合導体線15A同士を接続する接続方法の説明図であり、詳しくは、図12(a)は突き合わせ直後の接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図12(b)は加圧変形した接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図12(c)は接続側端部16同士の接続部分を突き合わせ方向Hに分断した断面図である。   FIG. 12 is an explanatory diagram of a connection method for connecting the composite conductor wires 15A of the sixth embodiment. Specifically, FIG. 12 (a) divides the butted portion of the connection side end portions 16 immediately after butting in the butting direction H. FIG. 12B is a cross-sectional view in which the abutting portion between the connection-side end portions 16 subjected to pressure deformation is divided in the abutting direction H, and FIG. 12C is a diagram in which the connecting portion between the connection-side end portions 16 is abutted. 3 is a cross-sectional view divided in a direction H. FIG.

電極71Aにおける当接側端部72Aには、複合導体線15Aにおける接続側端部16の突き合わせる面と反対側の部分と対向して、該接続側端部16における突き合わせる面と反対側の部分の挿嵌を許容するとともに、突き合わせ方向Hに向けて凹状に窪んだ溝形状の導体受け溝74Bを形成している。   The contact-side end portion 72A of the electrode 71A is opposite to the portion of the composite conductor wire 15A opposite to the surface of the connection-side end portion 16 to be abutted, and is opposite to the surface of the connection-side end portion 16 of the abutting surface. While allowing the part to be inserted, a groove-shaped conductor receiving groove 74 </ b> B that is recessed toward the butting direction H is formed.

導体受け溝74Bにおける接続側端部16の突き合わせる面と反対側の部分に当接される当接部分には、接続側端部16における中央に配置した低融点導体30の突き合わせる面と反対側の部分と対向する中央部を基準として、該中央部より上側の部分と下側の部分に、接続側端部16における上下に配置した高融点導体20の突き合わせる面と反対側の部分と対向して、突き合わせ方向Hに向けて突出する断面略三角形の突出部73Bを形成している。
突出部73Bにおける高融点導体20に当接される部分は、導体受け溝74Bの中央部から上下端部に向けて傾斜する斜面形状に形成している(図12参照)。
The contact portion of the conductor receiving groove 74B that is in contact with the portion on the opposite side of the connection side end portion 16 is opposite to the surface of the low melting point conductor 30 disposed in the center of the connection side end portion 16 A portion on the opposite side to the face of the high-melting point conductor 20 disposed on the upper and lower sides of the connection-side end portion 16 on the upper and lower portions from the central portion facing the side portion; Oppositely, a projecting portion 73B having a substantially triangular cross-section projecting in the butting direction H is formed.
The portion of the protruding portion 73B that is in contact with the high melting point conductor 20 is formed in a slope shape that is inclined from the center portion of the conductor receiving groove 74B toward the upper and lower end portions (see FIG. 12).

導体挿嵌溝74Bの溝深さd3は、一方の複合導体線15Aにおける接続側端部16の厚みt3未満の深さに形成している。より詳しくは、導体挿嵌溝74Bに挿嵌した接続側端部16の高融点導体20を所定の断面積に加圧変形した状態において、接続側端部16の突き合わせる面と対応する部分が、当接側端部72A(具体的には導体挿嵌溝74B)より突き合わせ方向Hに向けて所定寸法分だけ突出が許容される深さに形成している(図12(a)(b)参照)。   The groove depth d3 of the conductor insertion groove 74B is formed to a depth less than the thickness t3 of the connection side end portion 16 in one composite conductor wire 15A. More specifically, in a state where the high melting point conductor 20 of the connection side end portion 16 inserted into the conductor insertion groove 74B is pressure-deformed into a predetermined cross-sectional area, a portion corresponding to the surface to which the connection side end portion 16 abuts is The contact-side end portion 72A (specifically, the conductor insertion groove 74B) is formed to a depth that allows protrusion by a predetermined dimension in the butting direction H (FIGS. 12A and 12B). reference).

詳述すると、複合導体線15A同士における接続側端部16同士を、一対の電極71Aにおける当接側端部72A間に挟持するとともに、当接側端部72Aにおける断面略三角形の突出部73Bを、接続側端部16における上下に積層した高融点導体20に当接する(図12(a)参照)。   Specifically, the connection-side end portions 16 of the composite conductor wires 15A are sandwiched between the contact-side end portions 72A of the pair of electrodes 71A, and the protrusion 73B having a substantially triangular cross section at the contact-side end portion 72A is formed. Then, it contacts the refractory conductor 20 stacked on the upper and lower sides of the connection side end 16 (see FIG. 12A).

一対の電極71Aを、当接側端部72Aにおける導体受け溝74Bの中央部内壁が、接続側端部16における低融点導体30の突き合わせる面と反対側の部分に対して当接される位置まで移動させるとともに、高融点導体20の端部20aを突出部73Bで押圧して断面略三角形に加圧変形させる(図12(b)参照)。   A position where the inner wall of the central portion of the conductor receiving groove 74B in the contact side end portion 72A is in contact with the portion of the connection side end portion 16 on the opposite side to the abutting surface of the low melting point conductor 30. And the end portion 20a of the refractory conductor 20 is pressed by the projecting portion 73B to be pressure deformed into a substantially triangular cross section (see FIG. 12B).

すなわち、実施例1のように突出部73Aの垂直面を高融点導体20に当接するよりも、突出部73Bの斜面を一端から徐々に当接する方が加圧開始時に付与される反発力が小さく、高融点導体20が徐々に加圧変形されるため、所定の断面積により確実に加圧変形することができる。   That is, the repulsive force applied at the start of pressurization is smaller when the inclined surface of the protruding portion 73B is gradually contacted from one end than when the vertical surface of the protruding portion 73A is contacted with the high melting point conductor 20 as in the first embodiment. Since the high melting point conductor 20 is gradually deformed under pressure, it can be reliably deformed under pressure with a predetermined cross-sectional area.

これにより、接続側端部16における高融点導体20を、当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の断面積が、低融点導体30の断面積未満となる大きさに加圧変形することができる(図12(b)(c)参照)。   Thereby, the cross-sectional area of the high melting point conductor 20 sandwiching the high melting point conductor 20 in the connection side end portion 16 within the conductor connection range F between the contact side end portions 72A is less than the cross sectional area of the low melting point conductor 30. It can be pressurized and deformed to a certain size (see FIGS. 12B and 12C).

また、高融点導体20の端部20aを断面略三角形に加圧変形する際に、低遊端導体30の端部30aが突き合わせ方向Hに加圧変形されてもよく、最終的に、当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の断面積が、低融点導体30の断面積未満であればよい。   Further, when the end portion 20a of the high melting point conductor 20 is pressure-deformed into a substantially triangular cross section, the end portion 30a of the low free end conductor 30 may be pressure-deformed in the abutting direction H, and finally the contact The cross-sectional area of the high melting point conductor 20 sandwiched in the conductor connection range F between the side end portions 72 </ b> A may be less than the cross sectional area of the low melting point conductor 30.

上述のように加圧変形させた後、当接側端部72A間から押し出された高融点導体20の余剰部20cを余剰部除去刃71Bで切除するため、接続側端部16における高融点導体20の体積を、低融点導体30の体積未満に確実に減らすことができる(図12(c)参照)。   After the pressure deformation as described above, the surplus portion 20c of the high melting point conductor 20 pushed out between the contact side end portions 72A is cut off by the surplus portion removing blade 71B. The volume of 20 can be reliably reduced below the volume of the low melting point conductor 30 (see FIG. 12C).

高融点導体20の体積を減らす加工が完了した後、接続側端部16同士を介して当接側端部72A間に通電すれば、接続側端部16同士における高融点導体20同士、及び低融点導体30同士を互いに突き合わせたまま溶融させて良好な状態に接続することができるため、上述の実施例5と略同等の作用及び効果を奏することができる。   After the processing for reducing the volume of the high melting point conductor 20 is completed, if current is passed between the contact side end portions 72A via the connection side end portions 16, the high melting point conductors 20 at the connection side end portions 16 and low Since the melting point conductors 30 can be melted while being in contact with each other and connected in a good state, operations and effects substantially the same as those of the fifth embodiment described above can be achieved.

(実施例7)
上述の実施例6では、接続側端部16の高融点導体20を断面略三角形に加圧変形した後、複合導体線15A同士を接続する接続方法について説明したが、図13に示すように、接続側端部16の高融点導体20を断面略円弧形に加圧変形した後、複合導体線15A同士を溶融接続して接続構造線103を構成する実施例7の接続方法について説明する。
(Example 7)
In the above-described embodiment 6, after the high melting point conductor 20 of the connection side end portion 16 is pressed and deformed into a substantially triangular cross section, the connection method of connecting the composite conductor wires 15A is described, but as shown in FIG. A connection method of Example 7 will be described in which the high melting point conductor 20 of the connection side end portion 16 is pressed and deformed into a substantially arc shape in cross section, and then the composite conductor wires 15A are melt-connected to form the connection structure line 103.

図13は実施例7の複合導体線15A同士を接続する接続方法の説明図であり、詳しくは、図13(a)は突き合わせ直後の接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図13(b)は加圧変形した接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図13(c)は接続側端部16同士の接続部分を突き合わせ方向Hに分断した断面図である。   FIG. 13 is an explanatory diagram of a connection method for connecting the composite conductor wires 15A of the seventh embodiment. Specifically, FIG. 13A divides the butt portion of the connection side end portions 16 immediately after the butt in the butt direction H. 13B is a cross-sectional view in which the abutting portions of the connection-side end portions 16 that have been pressure-deformed are divided in the abutting direction H, and FIG. 13C is a diagram in which the connecting portions of the connection-side end portions 16 are abutted. 3 is a cross-sectional view divided in a direction H. FIG.

電極71Aにおける当接側端部72Aには、複合導体線15Aにおける接続側端部16の突き合わせる面と反対側の部分と対向して、該接続側端部16における突き合わせる面と反対側の部分の挿嵌を許容するとともに、突き合わせ方向Hに向けて凹状に窪んだ溝形状の導体受け溝74Bを形成している(図13参照)。   The contact-side end portion 72A of the electrode 71A is opposite to the portion of the composite conductor wire 15A opposite to the surface of the connection-side end portion 16 to be abutted, and is opposite to the surface of the connection-side end portion 16 of the abutting surface. The insertion of the portion is allowed, and a groove-shaped conductor receiving groove 74B that is recessed in the abutting direction H is formed (see FIG. 13).

導体受け溝74Bにおける接続側端部16の突き合わせる面と反対側の部分に当接される当接部分には、接続側端部16における中央に配置した低融点導体30の突き合わせる面と反対側の部分と対向する中央部を基準として、該中央部より上側の部分と下側の部分に、接続側端部16における上下に配置した高融点導体20の突き合わせる面と反対側の部分と対向して、突き合わせ方向Hに向けて弧状に突出する断面略円弧形の突出部73Cを形成している(図13参照)。   The contact portion of the conductor receiving groove 74B that is in contact with the portion on the opposite side of the connection side end portion 16 is opposite to the surface of the low melting point conductor 30 disposed in the center of the connection side end portion 16 A portion on the opposite side to the face of the high-melting point conductor 20 disposed on the upper and lower sides of the connection-side end portion 16 on the upper and lower portions from the central portion facing the side portion; Oppositely, a projecting portion 73C having a substantially arc-shaped cross section projecting in an arc shape toward the abutting direction H is formed (see FIG. 13).

突出部73Cにおける高融点導体20に当接される部分は、導体受け溝74Bの中央部から上下端部に向けて弧状に突出する滑らかな曲面形状に形成している(図13参照)。
なお、突出部73Cは、突き合わせ方向Hに向けて弧状に窪んだ曲面形状であってもよい。
The portion of the protruding portion 73C that is in contact with the high melting point conductor 20 is formed in a smooth curved shape that protrudes in an arc shape from the central portion of the conductor receiving groove 74B toward the upper and lower end portions (see FIG. 13).
The protruding portion 73 </ b> C may have a curved shape that is recessed in an arc shape toward the abutting direction H.

詳述すると、複合導体線15A同士における接続側端部16同士を、一対の電極71Aにおける当接側端部72A間に挟持するとともに、当接側端部72Aにおける断面略円弧形の突出部73Cを、接続側端部16における上下に積層した高融点導体20に当接する(図13(a)参照)。   More specifically, the connection-side ends 16 of the composite conductor wires 15A are sandwiched between the contact-side ends 72A of the pair of electrodes 71A, and the protrusions having a substantially arc-shaped cross section at the contact-side ends 72A. 73C is brought into contact with the high melting point conductor 20 stacked on the upper and lower sides at the connection side end portion 16 (see FIG. 13A).

一対の電極71Aを、当接側端部72Aにおける導体受け溝74Bの中央部内壁が、接続側端部16における低融点導体30の突き合わせる面と反対側の部分に対して当接される位置まで移動させるとともに、高融点導体20の端部20aを突出部73Cで押圧して断面略三角形に加圧変形させる。   A position where the inner wall of the central portion of the conductor receiving groove 74B in the contact side end portion 72A is in contact with the portion of the connection side end portion 16 on the opposite side to the abutting surface of the low melting point conductor 30. And the end portion 20a of the refractory conductor 20 is pressed by the projecting portion 73C to be pressure deformed into a substantially triangular cross section.

すなわち、実施例1のように突出部73Aの垂直面を高融点導体20に当接するよりも、突出部73Cの弧状曲面を一端から徐々に当接する方が加圧開始時に付与される反発力が小さく、高融点導体20が徐々に加圧変形されるため、所定の断面積により確実に加圧変形することができる。   That is, the repulsive force applied at the start of pressurization is more gradually brought into contact with the arcuate curved surface of the protrusion 73C from one end than the vertical surface of the protrusion 73A is in contact with the high melting point conductor 20 as in the first embodiment. Since the small and high melting point conductor 20 is gradually pressure-deformed, it can be reliably pressure-deformed with a predetermined cross-sectional area.

これにより、接続側端部16における高融点導体20を、当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の断面積が、低融点導体30の断面積未満となる大きさに加圧変形することができる(図13(b)(c)参照)。   Thereby, the cross-sectional area of the high melting point conductor 20 sandwiching the high melting point conductor 20 in the connection side end portion 16 within the conductor connection range F between the contact side end portions 72A is less than the cross sectional area of the low melting point conductor 30. It can be pressurized and deformed to a certain size (see FIGS. 13B and 13C).

上述のように加圧変形させた際、当接側端部72A間から押し出された高融点導体20の余剰部20cを余剰部除去刃71Bで切除するため、接続側端部16における高融点導体20の体積を、低融点導体30の体積未満に確実に減らすことができる(図13(c)参照)。   When the pressure deformation is performed as described above, the excess portion 20c of the high melting point conductor 20 pushed out from between the contact side end portions 72A is cut off by the excess portion removing blade 71B, so that the high melting point conductor at the connection side end portion 16 is removed. The volume of 20 can be reliably reduced below the volume of the low melting point conductor 30 (see FIG. 13C).

高融点導体20の体積を減らす加工が完了した後、接続側端部16同士を介して当接側端部72A間に通電すれば、接続側端部16同士における同一種類の高融点導体20同士、及び低融点導体30同士を互いに突き合わせたまま溶融させて良好な状態に接続することができるため、上述の実施例5及び6と略同等の作用及び効果を奏することができる。   After the processing for reducing the volume of the high melting point conductor 20 is completed, the same kind of high melting point conductors 20 at the connection side end portions 16 may be connected to each other by passing current between the contact side end portions 72A via the connection side end portions 16. In addition, since the low melting point conductors 30 can be melted while being in contact with each other and connected to each other in a good state, operations and effects substantially equivalent to those of the fifth and sixth embodiments can be obtained.

(実施例8)
上述の実施例5〜7では、一対の電極71A間に挟持した接続側端部16同士を接続する接続方法について説明したが、図14に示すように、一対の電極71Aにおける当接側端部72Aの導体挿嵌溝75Dに挿嵌した接続側端部16同士を互いに溶融接続して接続構造線103を構成する実施例8の接続方法について説明する。
(Example 8)
In the above-described Examples 5 to 7, the connection method of connecting the connection side end portions 16 sandwiched between the pair of electrodes 71A has been described. However, as shown in FIG. 14, the contact side end portions of the pair of electrodes 71A A connection method according to the eighth embodiment in which the connection side end portions 16 inserted into the conductor insertion groove 75D of 72A are melt-connected to each other to form the connection structure line 103 will be described.

図14は実施例8の複合導体線15B同士を接続する接続方法の説明図であり、詳しくは、図14(a)は突き合わせ直後の接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図14(b)は加圧変形した接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図14(c)は(b)に示す接続側端部16を突き合わせ方向Hから見た断面図である。   FIG. 14 is an explanatory diagram of a connection method for connecting the composite conductor wires 15B of the eighth embodiment. Specifically, FIG. 14 (a) divides the butted portion of the connection side end portions 16 immediately after butting in the butting direction H. FIG. 14B is a cross-sectional view in which the butted portions of the connection-side end portions 16 that have been deformed by pressure are divided in the butting direction H, and FIG. 14C is a cross-sectional view of the connection-side end portion 16 shown in FIG. FIG. 5 is a cross-sectional view seen from a butting direction H.

図15(a)は図14(c)に示す余剰部20cを除去した接続側端部16を突き合わせ方向Hから見た断面図、図15(b)は接続側端部16同士の接続部分を突き合わせ方向Hに分断した断面図である。   FIG. 15A is a cross-sectional view of the connection side end portion 16 from which the surplus portion 20c shown in FIG. 14C is removed as seen from the abutting direction H, and FIG. 15B shows the connection portion between the connection side end portions 16. It is sectional drawing divided in the butting direction H.

実施例8における複合導体線15Bは、高融点導体20を積層方向Wの中央に配置し、低融点導体30を高融点導体20における積層方向Wの外側(上下)に配置して、3層構造に構成している(図14(a)参照)。   The composite conductor wire 15B in Example 8 has a three-layer structure in which the high melting point conductor 20 is arranged in the center of the lamination direction W and the low melting point conductor 30 is arranged outside (up and down) in the lamination direction W of the high melting point conductor 20. (See FIG. 14A).

複合導体線15B同士を接続する抵抗溶接装置70は、複合導体線15B同士における接続側端部16同士を突き合わせ方向Hに突き合わせた状態に挟持するとともに、該接続側端部16同士に通電して溶融する一対の電極71Aと、加圧変形させた際に発生した高融点導体20の余剰部20cを切除する余剰部切断刃71Bとを備えている。   The resistance welding apparatus 70 for connecting the composite conductor wires 15B sandwiches the connection side end portions 16 of the composite conductor wires 15B in the butting direction H and energizes the connection side end portions 16 to each other. A pair of electrodes 71A to be melted and an excess portion cutting blade 71B for excising the excess portion 20c of the high melting point conductor 20 generated when being deformed under pressure are provided.

電極71Aにおける当接側端部72Aには、複合導体線15Bにおける接続側端部16の突き合わせる面と反対側の部分と対向して、該接続側端部16における突き合わせる面と反対側の部分の挿嵌を許容するとともに、突き合わせ方向Hに向けて凹状に窪んだ溝形状の導体挿嵌溝75Dを形成している(図14(a)参照)。   The contact-side end portion 72A of the electrode 71A is opposed to the portion of the composite conductor wire 15B opposite to the surface of the connection-side end portion 16 to be abutted, and is opposite to the surface of the connection-side end portion 16 of the abutting surface. The insertion of the portion is allowed, and a groove-shaped conductor insertion groove 75 </ b> D that is recessed in the abutting direction H is formed (see FIG. 14A).

導体挿嵌溝75Dにおける接続側端部16の突き合わせる面と反対側の部分に当接される当接部分には、接続側端部16における中央に配置した高融点導体20の突き合わせる面と反対側の部分と対向して、該高突き合わせ方向Hに向けて突出する突出部73Dを形成している。   The contact portion of the conductor insertion groove 75D that is in contact with the portion on the opposite side of the connection-side end portion 16 is in contact with the surface of the high-melting-point conductor 20 disposed in the center of the connection-side end portion 16. A protruding portion 73 </ b> D that protrudes toward the high butting direction H is formed facing the opposite side portion.

導体挿嵌溝75Dにおける突出部73Dより上側の部分と下側の部分には、接続側端部16における上下に配置した低融点導体30の突き合わせる面と反対側の部分と対向して、該低融点導体30の突き合わせる面と反対側の部分の挿嵌を許容するとともに、突き合わせ方向Hに向けて凹状に窪んだ溝形状の導体受け溝74Dを形成している。   In the conductor insertion groove 75D, the upper part and the lower part of the protruding part 73D are opposed to the part of the connection side end 16 opposite to the face of the low melting point conductor 30 that is disposed above and below, A portion of the low-melting-point conductor 30 opposite to the surface to be abutted is allowed to be inserted, and a groove-shaped conductor receiving groove 74D that is recessed in the abutting direction H is formed.

当接側端部72Aにおける導体挿嵌溝75Dより外側の上下端部には、接続側端部16における上下に配置した低融点導体30の積層方向Wの外側端面と平行して、突き合わせ方向Hに向けて突出する壁部76Dを形成している。壁部76Dは、導体受け溝74Dよりも突き合わせ方向Hに突出している(図14(a)参照)。   The abutting direction H is parallel to the outer end surface in the stacking direction W of the low-melting-point conductors 30 arranged above and below the connection-side end portion 16 at the upper and lower end portions outside the conductor insertion groove 75D in the contact-side end portion 72A. Wall part 76D which protrudes toward is formed. The wall 76D protrudes in the abutting direction H from the conductor receiving groove 74D (see FIG. 14A).

導体挿嵌溝75Dの溝形状は、接続側端部16を突き合わせ方向Hと平行する垂直な面で分断した断面形状と略同一の溝形状に形成するとともに、導体挿嵌溝75Dの溝幅W1を、接続側端部16の幅W2と略同一幅に形成している。
より詳しくは、導体挿嵌溝75Dの溝幅W1を、接続側端部16の幅W2よりも所定寸法分だけ幅広に形成している(図14(a)参照)。
The conductor insertion groove 75D has a groove shape that is substantially the same as the cross-sectional shape obtained by dividing the connection-side end portion 16 by a vertical surface parallel to the abutting direction H, and the groove width W1 of the conductor insertion groove 75D. Are formed to have substantially the same width as the width W <b> 2 of the connection-side end portion 16.
More specifically, the groove width W1 of the conductor insertion groove 75D is formed wider than the width W2 of the connection side end portion 16 by a predetermined dimension (see FIG. 14A).

導体挿嵌溝75Dの溝深さd4は、一方の複合導体線15Bにおける接続側端部16の厚みt4未満の深さに形成している。より詳しくは、導体挿嵌溝75Dに挿嵌した接続側端部16の高融点導体20を所定の断面積に加圧変形した状態において、接続側端部16の突き合わせる面と対応する部分が、当接側端部72A(具体的には導体挿嵌溝75D)より突き合わせ方向Hに向けて所定寸法分だけ突出が許容される深さに形成している(図14(a)(b)参照)。   The groove depth d4 of the conductor insertion groove 75D is formed to a depth less than the thickness t4 of the connection side end 16 in one composite conductor wire 15B. More specifically, in a state where the high melting point conductor 20 of the connection side end portion 16 inserted into the conductor insertion groove 75D is pressure-deformed into a predetermined cross-sectional area, a portion corresponding to the abutting surface of the connection side end portion 16 is The contact-side end portion 72A (specifically, the conductor insertion groove 75D) is formed to a depth that allows protrusion by a predetermined dimension in the butting direction H (FIGS. 14A and 14B). reference).

当接側端部72Aの間は、導体挿嵌溝75Dに挿嵌した接続側端部16同士を突き合わせた際に、接続側端部16同士における突き合わせ方向Hへの溶融変形を許容する変形許容代として、該接続側端部16同士の溶融変形が許容される間隔に隔てられている。   Between the contact-side end portions 72A, when the connection-side end portions 16 inserted into the conductor insertion groove 75D are abutted with each other, a deformation allowance that allows melting deformation in the abutting direction H between the connection-side end portions 16 is allowed. As an alternative, the connection-side end portions 16 are separated by an interval at which melting deformation is allowed.

上述した複合導体線15B同士を、抵抗溶接装置70により接続側端部16同士を互いに溶融接続して接続構造線103を構成する接続方法について説明する。
先ず、複合導体線15B同士における接続側端部16同士を、同一種類の高融点導体20同士と、低融点導体30同士とが隣り合うように突き合わせたまま、一対の電極71Aにおける当接側端部72A間に挟み込むとともに、当接側端部72Aを接続側端部16における突き合わせる面と反対側の部分に当接する(図14(a)参照)。
A connection method in which the above-described composite conductor wires 15 </ b> B are fusion-connected to each other by the resistance welding device 70 to form the connection structure wire 103 will be described.
First, the contact-side ends 16 A of the pair of electrodes 71 </ b> A with the connection-side end portions 16 of the composite conductor wires 15 </ b> B abutting so that the high melting point conductors 20 of the same type and the low melting point conductors 30 are adjacent to each other. While being sandwiched between the portions 72A, the abutting side end portion 72A is abutted against a portion of the connection side end portion 16 opposite to the abutting surface (see FIG. 14A).

接続側端部16同士を当接側端部72A間に挟み込む際に、接続側端部16における突き合わせる面と反対側の部分を、当接側端部72Aの導体挿嵌溝75Dに挿嵌するとともに、導体挿嵌溝75Dの突出部73Dを、接続側端部16における高融点導体20における突き合わせる面と反対側の部分に当接する(図14(a)参照)。
さらに当接側端部72Aにおける上下壁部76Dを、接続側端部16における低融点導体30の積層方向Wの外側水平面に当接して位置規制する。
When the connection-side end portions 16 are sandwiched between the contact-side end portions 72A, the portion of the connection-side end portion 16 opposite to the face to be abutted is inserted into the conductor insertion groove 75D of the contact-side end portion 72A. At the same time, the projecting portion 73D of the conductor insertion groove 75D is brought into contact with a portion of the connection side end portion 16 on the opposite side to the face to be abutted (see FIG. 14A).
Further, the upper and lower wall portions 76D at the contact-side end portion 72A are in contact with the outer horizontal surface in the stacking direction W of the low-melting-point conductor 30 at the connection-side end portion 16 to regulate the position.

当接側端部72Aを接続側端部16に当接した際、当接側端部72Aにおける突出部73Dが、接続側端部16における高融点導体20の端部20aを突き合わせ方向Hに押圧するため、高融点導体20の端部20aを加圧変形させることができる(図14(b)参照)。   When the abutting side end 72A abuts on the connection side end 16, the protrusion 73D at the abutting side end 72A presses the end 20a of the high melting point conductor 20 at the connection side end 16 in the butting direction H. Therefore, the end portion 20a of the high melting point conductor 20 can be deformed under pressure (see FIG. 14B).

接続側端部16を導体挿嵌溝75Dに挿嵌した際、突出部73Dの上下に形成した導体受け溝74Dは、接続側端部16における低融点導体30に対して接触が回避されており、突出部73Dによる押圧によって高融点導体20が加圧変形されるのに伴って、低融点導体30に対して徐々に近接される(図14(a)(b)参照)。   When the connection side end 16 is inserted into the conductor insertion groove 75D, the conductor receiving grooves 74D formed above and below the protrusion 73D are prevented from contacting the low melting point conductor 30 at the connection side end 16. As the high melting point conductor 20 is pressurized and deformed by the pressing by the projecting portion 73D, it gradually approaches the low melting point conductor 30 (see FIGS. 14A and 14B).

一対の電極71Aを、当接側端部72Aにおける導体挿嵌溝75Dの内壁、すなわち、導体受け溝74Dの中央部内壁が、接続側端部16における低融点導体30の突き合わせる面と反対側の部分に対して当接される位置まで移動させることにより、接続側端部16における高融点導体20を、当接側端部72A間における導体接続範囲F内に挟持された高融点導体20の断面積が、低融点導体30の断面積未満となる大きさに加圧変形することができる(図14(b)、図15(b)参照)。   The pair of electrodes 71A are arranged so that the inner wall of the conductor insertion groove 75D at the abutting side end portion 72A, that is, the inner wall of the central portion of the conductor receiving groove 74D is opposite to the surface where the low melting point conductor 30 abuts the connection side end portion 16 The high melting point conductor 20 at the connection side end portion 16 is moved to the position where it abuts against this portion of the high melting point conductor 20 sandwiched within the conductor connection range F between the contact side end portions 72A. The cross-sectional area can be pressed and deformed to a size that is less than the cross-sectional area of the low melting point conductor 30 (see FIGS. 14B and 15B).

上述のように高融点導体20を加圧変形させる際、接続側端部16同士における上下の低融点導体30同士を互いに突き合わせた状態で加圧変形させるため、突出部73Dにより押圧される高融点導体20は突き合わせ方向Hと直交する積層方向Wに変形しにくく、導体挿嵌溝75Dの長手方向のみに変形が許容される(図14(c)参照)。   When the high melting point conductor 20 is pressure-deformed as described above, the high melting point pressed by the projecting portion 73 </ b> D in order to cause pressure deformation in the state where the upper and lower low melting point conductors 30 in the connection-side end portions 16 face each other. The conductor 20 is not easily deformed in the stacking direction W perpendicular to the abutting direction H, and deformation is allowed only in the longitudinal direction of the conductor insertion groove 75D (see FIG. 14C).

つまり、複合導体線15Bの接続側端部16は、当接側端部72Aの導体挿嵌溝75Dに対して一端側から挿嵌するため、突出部73Dにより押圧された高融点導体20の余剰部20cは導体挿嵌溝75Dの他端側から押し出されることになり、突き合わせ方向Hと直交する積層方向Wに向けて押し出されることを防止できる。   That is, the connection-side end portion 16 of the composite conductor wire 15B is inserted from one end side into the conductor insertion groove 75D of the abutting-side end portion 72A, and therefore the surplus of the high melting point conductor 20 pressed by the protruding portion 73D. The part 20c is pushed out from the other end side of the conductor insertion groove 75D, and can be prevented from being pushed out in the stacking direction W orthogonal to the butting direction H.

所定の断面積に加圧変形した後、導体挿嵌溝75Dの他端側から押し出された高融点導体20の余剰部20cを余剰部除去刃71Bで切除するため、接続側端部16における高融点導体20の端部20aの体積を、低融点導体30の端部30aの体積未満により確実かつ容易に減らすことができる(図15(a)参照)。   After the pressure deformation to a predetermined cross-sectional area, the surplus portion 20c of the high melting point conductor 20 pushed out from the other end side of the conductor insertion groove 75D is removed by the surplus portion removing blade 71B. The volume of the end 20a of the melting point conductor 20 can be reliably and easily reduced by being less than the volume of the end 30a of the low melting point conductor 30 (see FIG. 15A).

高融点導体20の体積を減らす加工が完了した状態において、当接側端部72Aの突出部73Dは高融点導体20に対して通電可能に押し付けられており、当接側端部72Aにおける導体挿嵌溝75Dの内壁、すなわち、導体受け溝74Dの中央部内壁は、低融点導体30に対して通電可能に押し付けられている(図15(b)参照)。   In a state where the processing for reducing the volume of the high melting point conductor 20 is completed, the protrusion 73D of the contact side end portion 72A is pressed against the high melting point conductor 20 so as to be energized, and the conductor insertion at the contact side end portion 72A is performed. The inner wall of the fitting groove 75D, that is, the central inner wall of the conductor receiving groove 74D is pressed against the low-melting-point conductor 30 so as to be energized (see FIG. 15B).

したがって、複合導体線15B同士における接続側端部16同士を、抵抗溶接装置70における一対の電極71A間に挟持したまま、接続側端部16同士を介して一対の電極71A間に通電すれば、低融点導体30の端部30a同士を溶融させながら、高融点導体20の端部20a同士を溶融させて互いに通電可能に接続することができる。   Accordingly, if the connection-side end portions 16 of the composite conductor wires 15B are sandwiched between the pair of electrodes 71A in the resistance welding apparatus 70 and the pair of electrodes 71A are energized through the connection-side end portions 16 of each other, While melting the end portions 30 a of the low melting point conductors 30, the end portions 20 a of the high melting point conductors 20 can be melted and connected so that they can be energized.

この結果、複合導体線15B同士における接続側端部16同士をより正確に接続することができるとともに、接続側端部16同士を突き合わせる作業が容易に行え、作業性を向上できる。   As a result, the connection side end portions 16 of the composite conductor wires 15B can be more accurately connected, and the operation of abutting the connection side end portions 16 can be easily performed, thereby improving workability.

しかも、複合導体線15Bの接続側端部16を、当接側端部72Aの導体挿嵌溝75Dに挿嵌したまま互いに突き合わせるため、高融点導体20の端部20a同士と、低融点導体30の端部30a同士が互いに突き合わされる位置に規制することができる。   In addition, the end portions 20a of the high melting point conductors 20 and the low melting point conductors are in contact with each other while the connection side end portions 16 of the composite conductor wires 15B are fitted into the conductor insertion grooves 75D of the abutting side end portions 72A. It can restrict | limit to the position where 30 edge part 30a mutually faces | abuts.

これにより、接続側端部16同士における高融点導体20同士、及び低融点導体30同士の突き合わせ位置が変位することを確実に防止できるとともに、接続側端部16の位置決めが容易に行える。   Accordingly, it is possible to reliably prevent the contact positions of the high melting point conductors 20 and the low melting point conductors 30 at the connection side end portions 16 from being displaced, and the connection side end portion 16 can be easily positioned.

さらに、接続側端部16における高融点導体20を、溝形状を有する当接側端部74Bの突出部73Dと対向する位置に位置規制するため、高融点導体20の端部20aを所定の断面積により正確に加圧変形することができ、加工精度を向上できる。   Further, in order to restrict the position of the high melting point conductor 20 at the connection side end portion 16 to a position facing the protrusion 73D of the contact side end portion 74B having a groove shape, the end portion 20a of the high melting point conductor 20 is cut to a predetermined cut-off. The pressure can be accurately deformed depending on the area, and processing accuracy can be improved.

さらにまた、高融点導体20の余剰部20cが押し出される箇所、及び押し出される方向を導体挿嵌溝75Dの長手方向のみに限定することができるため、上述した3層構造の複合導体線15Bにおいて、接続側端部16における高融点導体20の加工量を容易に制御することができる。   Furthermore, since the portion where the surplus portion 20c of the high melting point conductor 20 is extruded and the direction in which it is extruded can be limited only to the longitudinal direction of the conductor insertion groove 75D, in the composite conductor wire 15B having the three-layer structure described above, The processing amount of the high melting point conductor 20 at the connection side end portion 16 can be easily controlled.

(実施例9)
上述の実施例5〜8では、高融点導体20と低融点導体30を積層した3層構造の複合導体線15B同士を接続する接続方法について説明したが、図16に示すように、高融点導体20、中融点導体25、及び低融点導体30を積層した3層構造の複合導体線15C同士を溶融接続して接続構造線103を構成する実施例9の接続方法について説明する。
Example 9
In Examples 5 to 8 described above, the connection method for connecting the composite conductor wires 15B having the three-layer structure in which the high melting point conductor 20 and the low melting point conductor 30 are laminated is described. However, as shown in FIG. 20, a connection method of Example 9 in which the connection structure line 103 is configured by melting and connecting the composite conductor wires 15C having a three-layer structure in which the medium melting point conductor 25 and the low melting point conductor 30 are laminated.

図16は実施例9の複合導体線15C同士を接続する接続方法の説明図であり、詳しくは、図16(a)は突き合わせ直後の接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図16(b)は加圧変形した接続側端部16同士の突き合わせ部分を突き合わせ方向Hに分断した断面図、図16(c)は接続側端部16同士の接続部分を突き合わせ方向Hに分断した断面図である。   FIG. 16 is an explanatory diagram of a connection method for connecting the composite conductor wires 15C of the ninth embodiment. Specifically, FIG. 16A divides the butt portion between the connection side end portions 16 immediately after the butt in the butt direction H. FIG. 16B is a cross-sectional view in which the abutting portion between the connection-side end portions 16 subjected to pressure deformation is divided in the abutting direction H, and FIG. 16C is a diagram in which the connecting portion between the connection-side end portions 16 is abutted. 3 is a cross-sectional view divided in a direction H. FIG.

実施例9における複合導体線15Cは、積層方向Wの中央に配置した低融点導体30の上側に高融点導体20を配置し、低融点導体30の下側に中融点導体25を配置して、3層構造に構成している。中融点導体25は、高融点導体20よりも融点が低く、低融点導体30よりも融点が高い銀製導体(融点962℃の導体)で構成している(図16(a)参照)。   In the composite conductor wire 15C in Example 9, the high melting point conductor 20 is arranged above the low melting point conductor 30 arranged in the center in the stacking direction W, and the medium melting point conductor 25 is arranged below the low melting point conductor 30. It has a three-layer structure. The medium melting point conductor 25 is composed of a silver conductor (a conductor having a melting point of 962 ° C.) having a melting point lower than that of the high melting point conductor 20 and higher than that of the low melting point conductor 30 (see FIG. 16A).

電極71Aにおける当接側端部72Aには、該当接側端部72Aの中央当接部に形成した導体受け溝74Aより上側の部分に、接続側端部16における高融点導体20の突き合わせる面と反対側の部分と対向して、後述する突出部73A2よりも突き合わせ方向Hに突出する断面略矩形の突出部73A1を形成している。
導体受け溝74Aより下側の部分には、接続側端部16における中融点導体25の突き合わせる面と反対側の部分と対向して、導体受け溝74Aよりも突き合わせ方向Hに突出する断面略矩形の突出部73A2を形成している。
The abutting side end 72A of the electrode 71A has a surface abutting the high melting point conductor 20 on the connecting side end 16 on a portion above the conductor receiving groove 74A formed in the central abutting portion of the corresponding contacting end 72A. A protruding portion 73A1 having a substantially rectangular cross section that protrudes in the abutting direction H from a protruding portion 73A2 described later is formed facing the opposite side portion.
The portion below the conductor receiving groove 74A has a cross-section that protrudes in the abutting direction H from the conductor receiving groove 74A so as to face the portion of the connection side end 16 opposite to the abutting surface of the medium melting point conductor 25. A rectangular protrusion 73A2 is formed.

詳述すると、複合導体線15C同士における接続側端部16同士を、一対の電極71Aにおける当接側端部72A間に挟持するとともに、当接側端部72Aの突出部73A1を、接続側端部16における高融点導体20の突き合わせる面と反対側の部分に当接し、続いて当接側端部72Aの突出部73A2を、接続側端部16における中融点導体25の突き合わせる面と反対側の部分に当接する(図16(a)(b)参照)。   More specifically, the connection-side ends 16 of the composite conductor wires 15C are sandwiched between the contact-side ends 72A of the pair of electrodes 71A, and the protrusion 73A1 of the contact-side end 72A is connected to the connection-side end. Abutting on a portion of the portion 16 opposite to the surface of the high melting point conductor 20 to be abutted, and subsequently projecting portion 73A2 of the abutting side end portion 72A is opposite to the surface of the connection side end portion 16 of the medium melting point conductor 25 to be abutted It abuts on the side portion (see FIGS. 16A and 16B).

一対の電極71Aを、当接側端部72Aにおける導体受け溝74Aの中央部内壁が、接続側端部16における低融点導体30の突き合わせる面と反対側の部分に対して当接される位置まで移動させるとともに、高融点導体20の端部20aを突出部73A1で押圧して加圧変形させ、中融点導体25の端部25aを突出部73A2で押圧して加圧変形させる。   A position where the inner wall of the central portion of the conductor receiving groove 74A in the contact side end portion 72A is in contact with a portion of the connection side end portion 16 on the opposite side to the abutting surface of the low melting point conductor 30. And the end portion 20a of the high melting point conductor 20 is pressed and deformed by the protrusion 73A1, and the end portion 25a of the medium melting point conductor 25 is pressed and deformed by the protrusion 73A2.

これにより、接続側端部16同士における導体接続範囲F内の低融点導体30、中融点導体25、及び高融点導体20を、中融点導体25の断面積が低融点導体30の断面積未満となる大きさに加圧変形するとともに、高融点導体20の断面積が中融点導体25の断面積未満となる大きさに加圧変形することができる(図16(b)(c)参照)。   As a result, the low melting point conductor 30, the medium melting point conductor 25, and the high melting point conductor 20 within the conductor connection range F between the connection side end portions 16 have a cross sectional area of the medium melting point conductor 25 less than the cross sectional area of the low melting point conductor 30. In addition to being deformed under pressure, the high melting point conductor 20 can be deformed under pressure so that the cross-sectional area of the high melting point conductor 20 is less than the cross sectional area of the medium melting point conductor 25 (see FIGS.

上述のように加圧変形させた後、当接側端部72A間から押し出された高融点導体20の余剰部20cと、中融点導体25の余剰部25cとを余剰部除去刃71Bで切除するため、接続側端部16における高融点導体20の体積を、中融点導体25の体積未満に減らすことができるとともに、中融点導体25の体積を、低融点導体30の体積未満に減らすことができる(図16(c)参照)。   After the pressure deformation as described above, the surplus portion 20c of the high melting point conductor 20 and the surplus portion 25c of the middle melting point conductor 25 pushed out from between the contact end portions 72A are cut off by the surplus portion removing blade 71B. Therefore, the volume of the high melting point conductor 20 at the connection side end 16 can be reduced to less than the volume of the medium melting point conductor 25, and the volume of the medium melting point conductor 25 can be reduced to less than the volume of the low melting point conductor 30. (See FIG. 16 (c)).

高融点導体20及び中融点導体25の体積を減らす加工が完了した状態において、当接側端部72Aの突出部73A1,73A2は、高融点導体20及び中融点導体25に対して通電可能に押し付けられており、導体受け溝74Aの中央部内壁は、低融点導体30に対して通電可能に押し付けられている(図16(b)参照)。   In a state where the processing for reducing the volume of the high melting point conductor 20 and the middle melting point conductor 25 is completed, the protrusions 73A1 and 73A2 of the contact end portion 72A are pressed against the high melting point conductor 20 and the middle melting point conductor 25 so as to be energized. The inner wall of the central portion of the conductor receiving groove 74A is pressed against the low melting point conductor 30 so as to be energized (see FIG. 16B).

したがって、接続側端部16同士を、一対の電極71Aにおける当接側端部72A間に挟持したまま、接続側端部16同士を介して当接側端部72A間に通電すれば、接続側端部16同士における高融点導体20同士、中融点導体25同士、及び低融点導体30同士を互いに突き合わせたまま溶融させて接続することができる。   Accordingly, if the connection side end portions 16 are sandwiched between the contact side end portions 72A of the pair of electrodes 71A and the current is passed between the contact side end portions 72A via the connection side end portions 16, the connection side The high melting point conductors 20, the intermediate melting point conductors 25, and the low melting point conductors 30 at the end portions 16 can be melted and connected to each other while abutting each other.

すなわち、接続側端部16同士における導体接続範囲F内の低融点導体30、中融点導体25、及び高融点導体20の断面積を、低融点導体30の断面積を基準として、中融点導体25の断面積を、低融点導体30の断面積よりも小さくするとともに、高融点導体20の断面積を、中融点導体25の断面積よりも小さくすることができるため、各導体20,25,30を溶融する際に必要な熱容量を断面積に対応して順に減らすことができる。   That is, the cross-sectional areas of the low-melting-point conductor 30, the medium-melting-point conductor 25, and the high-melting-point conductor 20 within the conductor connection range F between the connection-side ends 16 are determined based on the cross-sectional area of the low-melting-point conductor 30. Can be made smaller than the cross-sectional area of the low-melting-point conductor 30, and the cross-sectional area of the high-melting-point conductor 20 can be made smaller than the cross-sectional area of the medium-melting-point conductor 25. It is possible to sequentially reduce the heat capacity required for melting the metal in accordance with the cross-sectional area.

この結果、接続側端部における高融点導体20よりも融点の低い中融点導体25、及び低融点導体30を先に溶解させることなく、互いに突き合わせたまま溶融させてより良好な状態に溶融接続することができるため、上述の実施例5〜9と略同等、あるいは同等以上の作用及び効果を奏することができる。   As a result, the intermediate melting point conductor 25 and the low melting point conductor 30 having a melting point lower than that of the high melting point conductor 20 at the end on the connection side are melted and bonded to each other in a better state without being melted first. Therefore, operations and effects substantially equivalent to, or equivalent to or greater than those of Examples 5 to 9 described above can be achieved.

この発明の構成と、前記実施形態との対応において、
この発明の導体は、実施形態の高融点導体20、中融点導体25、低融点導体30に対応し、
以下同様に、
導体接続部材は、電極71Aに対応し、
溶融接続装置は、抵抗溶接装置70に対応し、
接続構造体は、接続構造線102,103に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the embodiment,
The conductor of the present invention corresponds to the high melting point conductor 20, the middle melting point conductor 25, the low melting point conductor 30 of the embodiment,
Similarly,
The conductor connecting member corresponds to the electrode 71A,
The fusion splicing device corresponds to the resistance welding device 70,
The connection structure corresponds to the connection structure lines 102 and 103,
The present invention is not limited to the configuration of the above-described embodiment, but can be applied based on the technical idea shown in the claims, and many embodiments can be obtained.

上述の実施例1〜9では、高融点導体20、中融点導体25、及び低融点導体30を断面略矩形の導体で構成しているが、例えば、断面略丸形の丸線や断面略平角形の平角線等の導体で構成してもよい。   In the above-described Examples 1 to 9, the high melting point conductor 20, the middle melting point conductor 25, and the low melting point conductor 30 are configured by a conductor having a substantially rectangular cross section. You may comprise by conductors, such as a rectangular flat wire.

また、絶縁層50を、高融点導体20と低融点導体30の間に介在した例について説明したが、高融点導体20、及び低融点導体30の少なくとも一方の外周を覆うように被覆してもよい。
低融点導体30における導体自体の表面にはアルマイト層が形成されるため、該アルマイト層を絶縁層50として機能させることができる。
絶縁層50は、低融点導体30の表面に形成されたエナメルや、高融点導体20、及び低融点導体30を接着する絶縁性を備えた接着剤、あるいは高融点導体20、及び低融点導体30の表面に形成された酸化被膜であってもよい。
In addition, although the example in which the insulating layer 50 is interposed between the high melting point conductor 20 and the low melting point conductor 30 has been described, the insulating layer 50 may be covered so as to cover at least one outer periphery of the high melting point conductor 20 and the low melting point conductor 30. Good.
Since the alumite layer is formed on the surface of the conductor itself in the low melting point conductor 30, the alumite layer can function as the insulating layer 50.
The insulating layer 50 is formed of an enamel formed on the surface of the low melting point conductor 30, an adhesive having an insulating property for bonding the high melting point conductor 20 and the low melting point conductor 30, or the high melting point conductor 20 and the low melting point conductor 30. It may be an oxide film formed on the surface.

上述の実施例では、銅製導体の高融点導体20と、銀製導体の中融点導体25と、アルミニウム製導体の低融点導体30とを用いた例について説明したが、所望の導通性を有するならば、銅合金製導体、アルミニウム合金製導体、あるいは真鍮製導体等の融点が異なる適宜の複数種の金属で構成する導体を用いることができる。   In the above-described embodiment, the example using the high melting point conductor 20 made of copper conductor, the middle melting point conductor 25 made of silver conductor, and the low melting point conductor 30 made of aluminum conductor has been described. A conductor made of a plurality of appropriate metals having different melting points, such as a copper alloy conductor, an aluminum alloy conductor, or a brass conductor, can be used.

また、例えば、融点が高い高融点導体20に対して、融点が低い銀製導体または真鍮製導体を低融点導体として用いることができる。あるいは、融点が低い低融点導体30に対して、融点が高い銀製導体または真鍮製導体を高融点導体として用いることができる。   Further, for example, a silver conductor or a brass conductor having a low melting point can be used as the low melting point conductor for the high melting point conductor 20 having a high melting point. Alternatively, a silver conductor or brass conductor having a high melting point can be used as the high melting point conductor for the low melting point conductor 30 having a low melting point.

さらに、本発明における複合導体線の溶融接続装置、及び接続方法は、例えば、4層構造、6層構造等の積層構造を有する複合導体線同士の接続にも用いることができる。
さらにまた、抵抗溶接に代わる他の溶接手段として、例えば、ヒュージング接合(熱カシメ)、超音波溶接等の方法にて接続することもできる。
Furthermore, the fusion connecting device and connecting method for composite conductor wires in the present invention can also be used for connecting composite conductor wires having a laminated structure such as a four-layer structure or a six-layer structure.
Furthermore, as another welding means replacing the resistance welding, for example, it is possible to connect by a method such as fusing bonding (thermal caulking) or ultrasonic welding.

102,103…接続構造線
12A,12B…複合導体線
13A,13B,13C…複合導体線
14A,14B,14C…複合導体線
15A,15B,15C…複合導体線
11,13…導体線本体部
16…接続側端部
20…高融点導体
25…中融点導体
30…低融点導体
20a,25a,30a…端部
20b…除去部
20c,25c…余剰部
40…接続許容部
50…絶縁層
60…接合部
70…抵抗溶接装置
71A…電極
71B…余剰部除去刃
72A…当接側端部
73A,73B,73C,73D…突出部
73A1,73A2…突出部
74A,74B,74D…導体受け溝
75D…導体挿嵌溝
76D…壁部
102, 103 ... connection structure line 12A, 12B ... composite conductor line 13A, 13B, 13C ... composite conductor line 14A, 14B, 14C ... composite conductor line 15A, 15B, 15C ... composite conductor line 11, 13 ... conductor wire main body 16 ... Connection side end 20 ... High melting point conductor 25 ... Medium melting point conductor 30 ... Low melting point conductor 20a, 25a, 30a ... End 20b ... Removal part 20c, 25c ... Excess part 40 ... Connection allowance part 50 ... Insulating layer 60 ... Join Part 70 ... Resistance welding device 71A ... Electrode 71B ... Excess part removing blade 72A ... Abutting side end 73A, 73B, 73C, 73D ... Projection part 73A1, 73A2 ... Projection part 74A, 74B, 74D ... Conductor receiving groove 75D ... Conductor Insertion groove 76D ... Wall

Claims (11)

融点の異なる少なくとも2種類の導体を、互いに絶縁した状態で積層して一体に構成するとともに、
導体線本体部と、該導体線本体部の長手方向端部に備えた接続許容部とで構成し、
前記融点の異なる少なくとも2種類の導体を、
相対的に融点が高い導体を高融点導体に設定するとともに、該高融点導体よりも融点が低い導体を低融点導体に設定し、
前記接続許容部における前記低融点導体の体積を、前記高低融点導体の体積に比べて大きく設定した
複合導体線。
At least two types of conductors having different melting points are laminated in a state of being insulated from each other, and are configured integrally.
Consists of a conductor wire body part and a connection permission part provided at the longitudinal end of the conductor wire body part,
At least two kinds of conductors having different melting points,
A conductor having a relatively high melting point is set as a high melting point conductor, a conductor having a melting point lower than that of the high melting point conductor is set as a low melting point conductor,
A composite conductor wire in which a volume of the low melting point conductor in the connection allowing portion is set larger than a volume of the high and low melting point conductor.
前記高融点導体を、
前記接続許容部における前記導体を積層した積層方向の最も外側に配置した
請求項1に記載の複合導体線。
The high melting point conductor,
The composite conductor wire according to claim 1, wherein the composite conductor wire is disposed on the outermost side in the laminating direction in which the conductors in the connection permission portion are laminated.
前記高融点導体を銅または銅合金で構成し、
前記低融点導体をアルミニウムまたはアルミニウム合金で構成した
請求項1又は2に記載の複合導体線。
The high melting point conductor is composed of copper or a copper alloy,
The composite conductor wire according to claim 1, wherein the low melting point conductor is made of aluminum or an aluminum alloy.
請求項1〜3のうちいずれかに記載の複合導体線における接続許容部同士を、同一種類の導体同士が隣り合うように突き合わせて溶融接続した
接続構造体。
A connection structure in which the connection permitting portions in the composite conductor wire according to any one of claims 1 to 3 are fused and connected so that the same type of conductors are adjacent to each other.
融点の異なる少なくとも2種類の導体を、互いに絶縁した状態で積層して一体に構成するとともに、導体線本体部と、該導体線本体部の長手方向端部に備えた接続許容部とで、複合導体線を構成し、
前記融点の異なる少なくとも2種類の導体を、
相対的に融点が高い導体を高融点導体に設定するとともに、該高融点導体よりも融点が低い導体を低融点導体に設定し、
前記接続許容部における前記低融点導体の体積を、前記高低融点導体の体積に比べて大きく設定し、
前記複合導体線と他の複合導体線とにおける接続許容部同士を、
同一種類の導体同士が隣り合うように突き合わせるとともに、該接続許容部同士を前記高融点導体が溶融する高い温度で加熱して、該接続許容部同士における前記同一種類の導体同士を溶融接続する
複合導体線の接続方法。
At least two types of conductors having different melting points are laminated and integrally formed in a state of being insulated from each other, and a composite of a conductor wire main body portion and a connection permission portion provided at a longitudinal end portion of the conductor wire main body portion. Configure the conductor wire,
At least two kinds of conductors having different melting points,
A conductor having a relatively high melting point is set as a high melting point conductor, a conductor having a melting point lower than that of the high melting point conductor is set as a low melting point conductor,
The volume of the low melting point conductor in the connection allowing portion is set larger than the volume of the high and low melting point conductor,
Connection allowable portions in the composite conductor wire and other composite conductor wires,
The conductors of the same type are abutted so that they are adjacent to each other, and the connection-permissible portions are heated at a high temperature at which the high-melting-point conductor melts to melt-connect the conductors of the same type in the connection-permitted portions. How to connect composite conductor wires.
融点の異なる複数種の導体うち融点が高い高融点導体と、該高融点導体よりも融点が低い低融点導体とを絶縁状態で積層して一体化した複合導体線における長手方向端部の接続側端部同士を溶融接続する際に、該接続側端部同士を突き合わせ方向に突き合わせた状態に挟持するとともに、通電して溶融する一対の導体接続部材であって、
前記複合導体線の接続側端部に当接して通電する当接側端部に、
前記突き合わせ方向に突出し、前記接続側端部の前記高融点導体を加圧変形する突出部を備えた
導体接続部材。
The connecting side of the longitudinal end of a composite conductor wire in which a high melting point conductor having a high melting point and a low melting point conductor having a lower melting point than the high melting point conductor are laminated and integrated in an insulating state among a plurality of types of conductors having different melting points A pair of conductor connecting members that melt and energize the connection side ends in a state where they are butted in the butting direction when melting and connecting the ends,
In the contact side end that is in contact with the connection side end of the composite conductor wire and energizes,
A conductor connecting member provided with a protruding portion that protrudes in the abutting direction and pressurizes and deforms the high melting point conductor at the connection side end.
前記当接側端部を、
前記複合導体線における接続側端部の突き合わせる面と反対側の部分の挿嵌を許容するとともに、該接続側端部の厚み未満の深さを有し、前記突き合わせ方向に向けて凹状に窪んだ溝形状に形成し、
前記突出部を、
前記当接側端部における前記低融点導体の突き合わせる面と反対側に当接される部分よりも前記突き合わせ方向に突出する構成とした
請求項6に記載の導体接続部材。
The abutting side end,
The composite conductor wire allows insertion of a portion on the opposite side to the surface to be abutted on the connection side end, and has a depth less than the thickness of the connection side end, and is recessed in a concave shape toward the abutting direction. Formed into a groove shape,
The protrusion,
The conductor connecting member according to claim 6, wherein the conductor connecting member is configured to protrude in the abutting direction from a portion abutting on the opposite side to the abutting surface of the low melting point conductor in the abutting side end.
前記突出部を、
前記当接側端部間に挟持された前記接続側端部同士の前記高融点導体同士を前記突き合わせ方向に加圧変形した状態において、
前記当接側端部間における導体接続範囲内に挟持された前記接続側端部の前記高融点導体及び低融点導体の断面積が、前記低融点導体の断面積に対して前記高融点導体の方が小さい断面積となる凸形状で形成した
請求項6又は7に記載の導体接続部材。
The protrusion,
In a state where the high melting point conductors of the connection side ends sandwiched between the contact side ends are pressure-deformed in the butting direction,
A cross-sectional area of the high-melting-point conductor and a low-melting-point conductor at the connection-side end sandwiched within a conductor connection range between the abutting-side ends is such that the cross-sectional area of the low-melting-point conductor is The conductor connection member according to claim 6, wherein the conductor connection member is formed in a convex shape having a smaller cross-sectional area.
前記高融点導体を、銅製導体または銅合金製導体で構成するとともに、
前記低融点導体を、アルミ二ウム製導体またはアルミニウム合金製導体で構成し、
前記突出部を、
前記当接側端部間における導体接続範囲内に挟持された前記接続側端部の前記高融点導体の断面積が、前記低融点導体の断面積に対して0.35倍〜0.45倍となる凸形状で形成した
請求項6〜8のいずれか一つに記載の導体接続部材。
The high melting point conductor is composed of a copper conductor or a copper alloy conductor,
The low melting point conductor is composed of an aluminum conductor or an aluminum alloy conductor,
The protrusion,
The cross-sectional area of the high-melting-point conductor at the connection-side end sandwiched within the conductor connection range between the abutting-side ends is 0.35 to 0.45 times the cross-sectional area of the low-melting-point conductor. The conductor connection member according to any one of claims 6 to 8, wherein the conductor connection member is formed in a convex shape.
前記請求項6〜9のうちいずれかに記載の導体接続部材と、
前記突出部による加圧によって前記当接側端部間から押し出された前記高融点導体の余剰部を除去する余剰部除去手段を備えた
溶融接続装置。
The conductor connection member according to any one of claims 6 to 9,
A fusion splicing device comprising surplus portion removing means for removing surplus portions of the high-melting-point conductor pushed out from between the contact-side end portions by pressurization by the protruding portion.
融点の異なる複数種の導体うち融点が高い高融点導体と、該高融点導体よりも融点が低い低融点導体とを絶縁状態で積層して一体化した複合導体線における長手方向端部の接続側端部同士を、一対の導体接続部材にて突き合わせた状態に挟持するとともに、通電して溶融接続する複合導体線の接続方法であって、
前記導体接続部材における当接側端部を前記接続側端部に当接して、
前記当接側端部間における導体接続範囲内に挟持された前記接続側端部の前記高融点導体を、前記当接側端部に突出した突出部により突き合わせ方向に加圧変形させ、
前記突出部による加圧によって前記当接側端部間から押し出された前記高融点導体の余剰部を余剰部除去手段にて除去した後、
前記接続側端部同士を挟持する前記導体接続部材間に通電して、該接続側端部同士における同一種類の導体同士を溶融接続する
複合導体線の接続方法。
The connecting side of the longitudinal end of a composite conductor wire in which a high melting point conductor having a high melting point and a low melting point conductor having a lower melting point than the high melting point conductor are laminated and integrated in an insulating state among a plurality of types of conductors having different melting points It is a method of connecting composite conductor wires that are sandwiched between a pair of conductor connection members and end-to-end with a pair of conductor connection members,
Abutting the contact side end of the conductor connection member to the connection side end,
The refractory conductor at the connection side end sandwiched within the conductor connection range between the contact side ends is pressure-deformed in the abutting direction by a protruding portion protruding to the contact side end,
After removing the surplus portion of the high melting point conductor pushed out from between the contact-side end portions by pressurization by the projecting portion by surplus portion removing means,
A method of connecting composite conductor wires in which a current is passed between the conductor connecting members sandwiching the connection side ends, and the same type of conductors at the connection side ends are melt-connected.
JP2015019204A 2014-03-04 2015-02-03 Composite conductor wire, connection structure, conductor connection member, fusion connection device, and method of connecting composite conductor wire Active JP6117258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019204A JP6117258B2 (en) 2014-03-04 2015-02-03 Composite conductor wire, connection structure, conductor connection member, fusion connection device, and method of connecting composite conductor wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014041099 2014-03-04
JP2014041099 2014-03-04
JP2015019204A JP6117258B2 (en) 2014-03-04 2015-02-03 Composite conductor wire, connection structure, conductor connection member, fusion connection device, and method of connecting composite conductor wire

Publications (2)

Publication Number Publication Date
JP2015181328A true JP2015181328A (en) 2015-10-15
JP6117258B2 JP6117258B2 (en) 2017-04-19

Family

ID=54329330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019204A Active JP6117258B2 (en) 2014-03-04 2015-02-03 Composite conductor wire, connection structure, conductor connection member, fusion connection device, and method of connecting composite conductor wire

Country Status (1)

Country Link
JP (1) JP6117258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160706A (en) * 2018-03-15 2019-09-19 古河電気工業株式会社 Electrical connection unit material and electrical connection unit material set

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373146B2 (en) * 2014-09-26 2018-08-15 古河電気工業株式会社 Composite conductor wire connection method, connection device, and conductor holding member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101275U (en) * 1991-02-05 1992-09-01 三菱電機株式会社 DC machine armature
JP2006302543A (en) * 2005-04-15 2006-11-02 Tokai Kogyo Co Ltd Bus bar, electric parts case, mounting method of electric parts, and terminal connection method
JP2012146473A (en) * 2011-01-12 2012-08-02 Kyowa Densen Kk Multi-core electric wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101275U (en) * 1991-02-05 1992-09-01 三菱電機株式会社 DC machine armature
JP2006302543A (en) * 2005-04-15 2006-11-02 Tokai Kogyo Co Ltd Bus bar, electric parts case, mounting method of electric parts, and terminal connection method
JP2012146473A (en) * 2011-01-12 2012-08-02 Kyowa Densen Kk Multi-core electric wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160706A (en) * 2018-03-15 2019-09-19 古河電気工業株式会社 Electrical connection unit material and electrical connection unit material set

Also Published As

Publication number Publication date
JP6117258B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP2006190662A (en) Wiring material, its manufacturing method, and resistance welding machine used in such manufacturing method
JPWO2017141838A1 (en) Coil component and method for manufacturing coil component
JP6472424B2 (en) Wire joining method
WO2019208004A1 (en) Inductor
JP6117258B2 (en) Composite conductor wire, connection structure, conductor connection member, fusion connection device, and method of connecting composite conductor wire
JP2015076208A (en) Terminal joint structure for wire, electrode for resistance welding and method of joining terminal of wire
CN106537691B (en) Terminal connection structure and manufacturing method thereof
JP5219913B2 (en) Terminal, motor and electrical equipment
JP6074285B2 (en) Terminal and electric wire joining method and electric wire connection terminal
JP2018185898A (en) Electric wire and wire harness
JP2011181189A (en) Connection terminal, and manufacturing method thereof
WO2014199914A1 (en) Terminal bonding structure for wire and electrode for resistance-welding
JP2014154443A (en) Terminal connection structure and manufacturing method thereof
JP5066622B1 (en) Fusing structure and terminal with fusing structure
JP6686978B2 (en) Coil component and manufacturing method thereof
JP2000301356A (en) Joining method of metallic foil and ultrasonic welding tool
JP6373146B2 (en) Composite conductor wire connection method, connection device, and conductor holding member
JP4553931B2 (en) Connection method of armature coil and commutator piece
JP6416959B2 (en) Electrical conductor joining method
JP2013163210A (en) Electrode for resistance welding
JP6648100B2 (en) Conductive terminal, apparatus for producing conductive terminal, and rotating electric machine provided with conductive terminal
JP6990858B2 (en) Terminal and terminal joining method
JP7016022B2 (en) Terminal
JP5613097B2 (en) Fusing method
JP5005382B2 (en) Electrical member connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R151 Written notification of patent or utility model registration

Ref document number: 6117258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151