JP2015180598A - Method for producing graphite material, and graphite material - Google Patents

Method for producing graphite material, and graphite material Download PDF

Info

Publication number
JP2015180598A
JP2015180598A JP2015122202A JP2015122202A JP2015180598A JP 2015180598 A JP2015180598 A JP 2015180598A JP 2015122202 A JP2015122202 A JP 2015122202A JP 2015122202 A JP2015122202 A JP 2015122202A JP 2015180598 A JP2015180598 A JP 2015180598A
Authority
JP
Japan
Prior art keywords
raw material
carbonaceous raw
graphite material
producing
granulated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122202A
Other languages
Japanese (ja)
Other versions
JP6010663B2 (en
Inventor
誠司 箕浦
Seiji Minoura
誠司 箕浦
史仁 小川
Fumihito Ogawa
史仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2015122202A priority Critical patent/JP6010663B2/en
Publication of JP2015180598A publication Critical patent/JP2015180598A/en
Application granted granted Critical
Publication of JP6010663B2 publication Critical patent/JP6010663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a graphite material which allows an anisotropic ratio of the whole base stock thereof to be made lower and which has high isotropy.SOLUTION: A method for producing the graphite material comprises: a kneading step of adding a hydrophobic binding material to a coke powder-containing first carbonaceous raw material and heating/kneading a binding material-added raw material to obtain a mixture; a crushing step of crushing the mixture obtained at the kneading step to obtain a second carbonaceous raw material; a granulating step of granulating the second carbonaceous raw material obtained at the crushing step together with a hydrophilic binding material and a solvent to obtain granulated powder; a molding step of subjecting the granulated powder obtained at the granulating step to cold hydrostatic pressure molding to obtain a molding; a firing step of firing the molding obtained at the molding step to obtain a fired product; and a graphitizing step of graphitizing the fired product obtained at the firing step.

Description

本発明は、黒鉛材の製造方法および黒鉛材に関する。   The present invention relates to a method for producing a graphite material and a graphite material.

黒鉛材の製造方法として、成形原料をラバーケースに充填する工程、ラバーケースに液媒を介して全方向から均等な静水圧をかける成形工程とからなる、等方性の黒鉛材の製造方法が知られている(特許文献1)。全方向から均等な静水圧をかける成形方法は、冷間静水圧成形(CIP成形:Cold Isostatic Press)と呼ばれている。
特許文献1では成形原料として、コークス粉末と、結合材との混合物(混練物)を微粉砕したものあるいは異方性の小さな生コークス微粉が用いられている。
As a method for producing a graphite material, there is a method for producing an isotropic graphite material comprising a step of filling a rubber case with a molding raw material, and a molding step in which a uniform hydrostatic pressure is applied to the rubber case from all directions via a liquid medium. Known (Patent Document 1). A molding method in which uniform hydrostatic pressure is applied from all directions is called cold isostatic pressing (CIP molding: Cold Isostatic Press).
In Patent Document 1, as a forming raw material, a finely pulverized mixture of coke powder and a binder (kneaded material) or raw coke fine powder with small anisotropy is used.

特開昭62−108721号公報JP 62-108721 A

特許文献1の従来のCIP成形により得られる黒鉛材は、一軸方向の成形(型押し成形、押し出し成形)により得られた黒鉛材と比較し材料の異方性は小さくすることができる。しかしながら、近年、CIP成形により得られる黒鉛材はサイズが大きくなり、全体にわたって異方性のない均一な素材を得ることは困難であると考えられる。
本発明は、前記実情に鑑みてなされたもので、素材全体の異方性を低減し、等方性の高
い黒鉛材を提供することを目的とする。
The graphite material obtained by the conventional CIP molding of Patent Document 1 can reduce the anisotropy of the material as compared with the graphite material obtained by uniaxial molding (mold extrusion, extrusion molding). However, in recent years, graphite materials obtained by CIP molding have increased in size, and it is considered difficult to obtain a uniform material having no anisotropy throughout.
This invention is made | formed in view of the said situation, and it aims at reducing the anisotropy of the whole raw material, and providing a highly isotropic graphite material.

本発明者らは、下記黒鉛材の製造方法および黒鉛材により、上記課題を解決した。
[1]
コークス粉末を含む第1の炭素質原料に疎水性結合材を添加し加熱混練して混合物を得る混練工程と、
前記混練工程で得られた混合物を粉砕し第2の炭素質原料を得る粉砕工程と、
前記粉砕工程で得られた第2の炭素質原料とポリビニルアルコールと、溶媒とを用いてスプレードライ法で造粒粉を得る造粒工程と、
前記造粒工程で得られた造粒粉を冷間静水圧成形して成形体を得る成形工程と、
前記成形工程で得られた成形体を焼成し、焼成体を得る焼成工程と
前記焼成工程で得られた焼成体を黒鉛化する工程と、を含む黒鉛材の製造方法。
[2]
[1]に記載の黒鉛材の製造方法であって、
前記造粒工程では、前記造粒粉の内部に空隙を形成する黒鉛材の製造方法。
[3]
[1]または[2]に記載の黒鉛材の製造方法であって、
前記疎水性結合材は、ピッチ又はタールである黒鉛材の製造方法。
[4]
[1]乃至[3]のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒工程は、水系の溶媒を用いて造粒粉を得る工程である黒鉛材の製造方法。
[5]
[1]乃至[4]のいずれか1項に記載の黒鉛材の製造方法であって、
前記第1の炭素質原料の平均粒子直径は、5〜20μmである黒鉛材の製造方法。
[6]
[1]乃至[5]のいずれか1項に記載の黒鉛材の製造方法であって、
前記第2の炭素質原料の平均粒子直径は15〜50μmである黒鉛材の製造方法。
[7]
[1]乃至[6]のいずれか1項に記載の黒鉛材の製造方法であって、
前記第2の炭素質原料の平均粒子直径は第1の炭素質原料の平均粒子直径より大きい黒鉛材の製造方法。
[8]
[1]乃至[7]のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒粉の圧縮破壊強度が0.02〜10.0MPaである黒鉛材の製造方法。
[9]
[1]乃至[8]のいずれか1項に記載の黒鉛材の製造方法であって、
前記ポリビニルアルコールの添加率は前記第2の炭素質原料100重量部に対し0.1〜10.0重量部である黒鉛材の製造方法。
[10]
[1]乃至[9]のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒工程で得られる前記造粒粉の平均粒子直径は60〜1000μmである黒鉛材の製造方法。
[11]
[1]乃至[9]のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒工程で得られる前記造粒粉の平均粒子直径は前記第2の炭素質原料の平均粒子直径より大きい黒鉛材の製造方法。
[12]
[1]乃至[11]のいずれか1項に記載の黒鉛材の製造方法であって、
前記冷間静水圧成形する工程に先立ち、前記前記造粒工程で得られた造粒粉の15μm以下粉末を除去する工程を含む黒鉛材の製造方法。
The present inventors have solved the above problems by the following method for producing graphite material and graphite material.
[1]
A kneading step of adding a hydrophobic binder to the first carbonaceous raw material containing coke powder and heating and kneading to obtain a mixture;
A pulverization step of pulverizing the mixture obtained in the kneading step to obtain a second carbonaceous raw material;
A granulation step of obtaining a granulated powder by a spray drying method using the second carbonaceous raw material obtained in the pulverization step, polyvinyl alcohol, and a solvent;
A molding step to obtain a compact by cold isostatic pressing the granulated powder obtained in the granulation step; and
A method for producing a graphite material, comprising: firing a molded body obtained in the molding step to obtain a fired body; and graphitizing the fired body obtained in the firing step.
[2]
The method for producing a graphite material according to [1],
In the granulation step, a method for producing a graphite material in which voids are formed inside the granulated powder.
[3]
A method for producing a graphite material according to [1] or [2],
The method for producing a graphite material, wherein the hydrophobic binder is pitch or tar.
[4]
[1] A method for producing a graphite material according to any one of [3],
The said granulation process is a manufacturing method of the graphite material which is a process of obtaining granulated powder using an aqueous solvent.
[5]
[1] to [4], the method for producing a graphite material according to any one of
The average particle diameter of said 1st carbonaceous raw material is a manufacturing method of the graphite material which is 5-20 micrometers.
[6]
[1] A method for producing a graphite material according to any one of [5],
The method for producing a graphite material, wherein the second carbonaceous raw material has an average particle diameter of 15 to 50 µm.
[7]
[1] A method for producing a graphite material according to any one of [6],
The method for producing a graphite material, wherein the average particle diameter of the second carbonaceous raw material is larger than the average particle diameter of the first carbonaceous raw material.
[8]
[1] A method for producing a graphite material according to any one of [7],
A method for producing a graphite material, wherein the granulated powder has a compressive fracture strength of 0.02 to 10.0 MPa.
[9]
[1] A method for producing a graphite material according to any one of [8],
The method for producing a graphite material, wherein the addition rate of the polyvinyl alcohol is 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the second carbonaceous raw material.
[10]
[1] A method for producing a graphite material according to any one of [9],
The method for producing a graphite material, wherein the granulated powder obtained in the granulation step has an average particle diameter of 60 to 1000 μm.
[11]
[1] A method for producing a graphite material according to any one of [9],
The average particle diameter of the granulated powder obtained in the granulation step is a method for producing a graphite material that is larger than the average particle diameter of the second carbonaceous raw material.
[12]
[1] A method for producing a graphite material according to any one of [11],
Prior to the cold isostatic pressing step, a method for producing a graphite material including a step of removing 15 μm or less of the granulated powder obtained in the granulation step.

上記構成によれば、異方性の高い第1の炭素質原料を疎水性結合材とともに加熱混練し、混合物を得る工程と、前記混合物を粉砕して得た第2の炭素質原料を得る工程と、さらに第2の炭素質原料に親水性結合材と溶媒とを加えて、造粒し造粒粉を得ている。この造粒粉は、空隙を含み丸く等方性を有する、あるいは、扁平形状など、成形により等方性を得やすい形状を有し、充填容器内で粉の重力による圧力で潰れることのない硬さを備えている。
このため、造粒粉を構成する第2の炭素質原料は、充填容器内で造粒粉の重力によって潰されたり方向を変えられたりすることがない。造粒粉を構成する第2の炭素質原料は方向性がつかないまま、等方的にCIP成形されるため、より素材異方性の小さい黒鉛材を得ることができる。
According to the said structure, the process of obtaining the 2nd carbonaceous raw material obtained by knead | mixing the 1st carbonaceous raw material with high anisotropy with a hydrophobic binder, and obtaining the mixture, and crushing the said mixture Further, a hydrophilic binder and a solvent are added to the second carbonaceous raw material and granulated to obtain a granulated powder. This granulated powder is round and isotropic with voids, or has a shape such as a flat shape that is easy to obtain isotropic by molding, and does not collapse by the pressure due to the gravity of the powder in the filling container. Is equipped.
For this reason, the 2nd carbonaceous raw material which comprises granulated powder is not crushed or changed direction by the gravity of granulated powder within a filling container. Since the second carbonaceous raw material constituting the granulated powder is isotropically CIP-molded without any directionality, a graphite material with smaller material anisotropy can be obtained.

本発明の実施の形態の黒鉛の製造方法を示す説明図Explanatory drawing which shows the manufacturing method of the graphite of embodiment of this invention 本発明の実施の形態の偏光顕微鏡写真を示す図であり、(a)は、第一の炭素質原料、(b)は第2の炭素質原料、(c)は造粒粉をそれぞれ示すIt is a figure which shows the polarizing microscope photograph of embodiment of this invention, (a) shows a 1st carbonaceous raw material, (b) shows a 2nd carbonaceous raw material, (c) shows granulated powder, respectively. 本発明の実施の形態の模式図であり、(a)は第一の炭素質原料、(b)は第2の炭素質原料、(c)は造粒粉をそれぞれ示すIt is a schematic diagram of embodiment of this invention, (a) is a 1st carbonaceous raw material, (b) is a 2nd carbonaceous raw material, (c) shows granulated powder, respectively. (a)及び(b)は本発明の実施の形態のCIP成形で使用するラバーケースに造粒粉を充填する工程の説明図であり、(a)は充填中、(b)は充填後の状態を示す(A) And (b) is explanatory drawing of the process of filling granulated powder in the rubber case used by CIP shaping | molding of embodiment of this invention, (a) is filling, (b) is after filling. Indicate state 本発明の実施の形態の造粒粉をCIP成形する工程の説明図Explanatory drawing of the process of carrying out CIP shaping | molding of the granulated powder of embodiment of this invention (a)は本発明の実施の形態の第2の炭素質原料と造粒粉の圧縮歪みと圧縮応力との関係を示す図、(b)は、本発明の実施の形態の第2の炭素質原料と造粒粉の充填率と圧縮応力との関係を示す図(A) is a figure which shows the relationship between the 2nd carbonaceous raw material of embodiment of this invention, and the compressive strain and compression stress of granulated powder, (b) is the 2nd carbon of embodiment of this invention. Of the relationship between compressive stress and packing ratio of raw material and granulated powder (a)乃至(c)は本発明の実施例及び比較例の工程フローを示す図(A) thru | or (c) is a figure which shows the process flow of the Example and comparative example of this invention. 本発明の実施例及び比較例の製造条件を示す図The figure which shows the manufacturing conditions of the Example and comparative example of this invention 本発明の実施例及び比較例の方法で得られた黒鉛の測定結果を示す図The figure which shows the measurement result of the graphite obtained by the method of the Example and comparative example of this invention 粉体の圧縮破壊強度の説明図であり、粉体にかかる圧縮応力と、充填率との関係により示す図It is explanatory drawing of the compressive fracture strength of powder, and is a figure shown by the relation between the compressive stress applied to powder and the filling factor 粉体の充填率、圧縮応力、圧縮歪みを測定するための装置の模式図Schematic diagram of a device for measuring powder filling rate, compressive stress, and compressive strain (a)及び(b)は従来(比較例1)のCIP成形で使用するラバーケースに第2の炭素質原料を充填する工程の説明図であり、(a)は充填中、(b)は充填後の状態を示す図(A) And (b) is explanatory drawing of the process of filling the 2nd carbonaceous raw material in the rubber case used by the CIP shaping | molding of the past (comparative example 1), (a) is filling, (b) is The figure which shows the state after filling 比較例1の第2の炭素質原料をCIP成形する説明図Explanatory drawing which CIP-molds the 2nd carbonaceous raw material of the comparative example 1

本発明において、異方性とは、特性に方向性がある性質を示す。本発明において、異方比とは、異方性の大きさを数値化したものであり、具体的には素材の特性を直交する2方向で測定し、最大値を最小値で除した値から1を引いた値を異方比とする。
具体的には、熱膨張係数、固有抵抗を材料の方向毎に測定し、得られた測定値から算出する。
本発明では、原材料粒子の配向する方向をWG(with grain)、原材料粒子の配向と直交する方向をAG(across grain)とする。
黒鉛材の上下方向は、特にことわりがない限り、成形前の粉を充填容器に充填したときの上下方向を示す。
In the present invention, the anisotropy indicates a property having a directionality in characteristics. In the present invention, the anisotropic ratio is a value obtained by quantifying the magnitude of anisotropy. Specifically, the characteristic of the material is measured in two orthogonal directions, and the maximum value is divided by the minimum value. The value minus 1 is the anisotropic ratio.
Specifically, the coefficient of thermal expansion and the specific resistance are measured for each direction of the material, and calculated from the obtained measured values.
In the present invention, the direction in which the raw material particles are oriented is WG (with grain), and the direction orthogonal to the orientation of the raw material particles is AG (cross grain).
Unless otherwise specified, the vertical direction of the graphite material indicates the vertical direction when the powder before molding is filled in the filling container.

黒鉛材料では異方性のある原材料を使用し製造される。このため、成形段階で付された方向性はそのまま固定され黒鉛材の方向性として決定される。押し出し成形においては、押し出し方向に原材料粒子が配向し、型押し成形においては、圧縮方向に直交する方向に原材料粒子が配向する。従来の特許文献1に記載のCIP成形においては、成形段階では等方的に成形されるものの、CIP成形に先立ち、粉を充填する段階で充填容器(一般にラバーケースが使用される)の水平面方向に原材料粒子が配向し易くなる。   Graphite materials are manufactured using anisotropic raw materials. For this reason, the directionality given in the forming stage is fixed as it is and is determined as the directionality of the graphite material. In the extrusion molding, the raw material particles are oriented in the extrusion direction, and in the die extrusion molding, the raw material particles are oriented in a direction orthogonal to the compression direction. In the conventional CIP molding described in Patent Document 1, although isotropically molded at the molding stage, the horizontal direction of the filling container (generally a rubber case is used) at the stage of filling the powder prior to the CIP molding. In addition, the raw material particles are easily oriented.

本発明は、コークス粉末を含む第1の炭素質原料に疎水性結合材を添加し加熱混練して混合物を得る混練工程と、前記混練工程で得られた混合物を粉砕し第2の炭素質原料を得る粉砕工程と、前記粉砕工程で得られた第2の炭素質原料と親水性結合材とから造粒粉を得る造粒工程と、前記造粒工程で得られた造粒粉を冷間静水圧成形して成形体を得る成形工程と、前記成形工程で得られた成形体を焼成して黒鉛化する工程と、を含み、前記造粒工程では、前記第2の炭素質原料と親水性結合材が溶媒を用いて造粒されていることを特徴とする黒鉛材の製造方法である。また、本発明は、上記の黒鉛材の製造方法で製造され、熱膨張係数の異方比が5%以下であることを特徴とする黒鉛材である。   The present invention includes a kneading step in which a hydrophobic binder is added to the first carbonaceous raw material containing coke powder and heated and kneaded to obtain a mixture, and the mixture obtained in the kneading step is pulverized to obtain a second carbonaceous raw material A granulating step of obtaining a granulated powder from the second carbonaceous raw material obtained in the pulverizing step and a hydrophilic binder, and the granulated powder obtained in the granulating step cold A molding step of obtaining a molded body by isostatic pressing, and a step of firing and graphitizing the molded body obtained in the molding step. In the granulation step, the second carbonaceous raw material and hydrophilic It is a method for producing a graphite material, characterized in that the conductive binder is granulated using a solvent. The present invention is also a graphite material produced by the above-described method for producing a graphite material, wherein an anisotropic ratio of a thermal expansion coefficient is 5% or less.

以下本発明の実施の形態について図面を参照しつつ詳細に説明する。
図1は本発明の実施の形態の黒鉛の製造方法を示す説明図である。図2(a)は、本発明の実施の形態の第1の炭素質原料の偏光顕微鏡写真を示す図、(b)は本発明の実施の形態の第2の炭素質原料の偏光顕微鏡写真を示す図、(c)は本発明の実施の形態の造粒粉の偏光顕微鏡写真を示す図である。図2(a)、(b)、(c)は、それぞれ100倍、50倍、12.5倍の偏光顕微鏡にカメラを接続し、コリメート法で撮影した。図3(a)は、本発明の実施の形態の第1の炭素質原料の模式図、(b)は、本発明の実施の形態の第2の炭素質原料の模式図、(c)は、本発明の実施の形態の造粒粉の模式図である。図4(a)乃至(b)は本発明の実施の形態CIP成形で使用するラバーケースに造粒粉を充填する工程の説明図であり、(a)は充填中、(b)は充填後の状態を示す。図5は本発明の実施の形態の造粒粉をCIP成形する工程を示す説明図である。図6(a)は本発明の実施の形態の第2の炭素質原料と造粒粉の圧縮歪みと圧縮応力との関係を示す図、(b)は、本発明の実施の形態の第2の炭素質原料と造粒粉の充填率と圧縮応力との関係を示す図である。図12(a)及び(b)は比較例1のCIP成形で使用するラバーケースに第2の炭素質原料を充填する説明図であり、(a)は充填中、(b)は充填後の状態を示す。図13は比較例1の第2の炭素質原料をCIP成形する工程を示す説明図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view showing a method for producing graphite according to an embodiment of the present invention. FIG. 2 (a) is a diagram showing a polarization micrograph of the first carbonaceous raw material according to the embodiment of the present invention, and FIG. 2 (b) is a polarization micrograph of the second carbonaceous raw material according to the embodiment of the present invention. The figure to show, (c) is a figure which shows the polarizing microscope photograph of the granulated powder of embodiment of this invention. In FIGS. 2A, 2B, and 2C, the cameras were connected to polarizing microscopes of 100 times, 50 times, and 12.5 times, respectively, and images were taken by the collimating method. 3A is a schematic diagram of the first carbonaceous raw material according to the embodiment of the present invention, FIG. 3B is a schematic diagram of the second carbonaceous raw material according to the embodiment of the present invention, and FIG. It is a schematic diagram of the granulated powder of embodiment of this invention. 4 (a) to 4 (b) are explanatory diagrams of the process of filling the rubber case used in the CIP molding of the present invention with the granulated powder, (a) being filled and (b) being after filling. Shows the state. FIG. 5 is an explanatory view showing a step of CIP molding the granulated powder according to the embodiment of the present invention. FIG. 6 (a) is a diagram showing the relationship between the second carbonaceous raw material and the compressive strain and compressive stress of the granulated powder according to the embodiment of the present invention, and FIG. It is a figure which shows the relationship between the filling rate of carbonaceous raw material of this, granulated powder, and compressive stress. 12 (a) and 12 (b) are explanatory views of filling the rubber case used in the CIP molding of Comparative Example 1 with the second carbonaceous raw material, (a) during filling, (b) after filling. Indicates the state. FIG. 13 is an explanatory view showing a step of CIP molding the second carbonaceous material of Comparative Example 1.

本発明の実施の形態の第1の炭素質原料は、結晶化度は低いものの六方晶系の結晶構造をとるコークスを含んでいる。このため、これを粉砕したコークスの粉末は六方晶のc軸方向が剥離し易いため、図2(a)に示すように、板状、針状に粉砕されやすくアスペクト比が高くなる。本発明の実施の形態では、まずコークス粉末を含む第1の炭素質原料1(図2(a)及び図3(a)参照)に疎水性結合材2としてのピッチを添加し加熱混練して混合物を得る。このようにして得られた混合物を粉砕し、第2の炭素質原料10を得る(図2(b)及び図3(b)参照)。第2の炭素質原料10はアスペクト比の高い第1の炭素質原料1を疎水性結合材2で結合させて構成されているので、第1の炭素質原料よりアスペクト比の小さい粒子が得られ易い。しかしながら第2の炭素質原料10は、混合物を粉砕して得られるので、第1の炭素質原料1の方向に沿って粉砕されやすい。このため、一旦小さくなったアスペクト比は、粉砕によってアスペクト比は大きくなり易い。このような理由から、第2の炭素質原料は主に扁平粒子、針状粒子で構成される。そこでさらに、この第2の炭素質原料10に親水性結合材20を添加し、溶媒を用いて造粒することで空隙を含んだ例えば丸い造粒粉100を得る(図2(c)、図3(c))。そして、この造粒粉100をCIP成形して成形体を得たのち、焼成および黒鉛化することで、異方性の発現を抑制し、等方性の高い黒鉛材を形成することができる。造粒粉100は丸以外に、アスペクト比が2以下の扁平な形状であれば等方性の高い黒鉛材を形成することができる。   The first carbonaceous raw material according to the embodiment of the present invention includes coke having a hexagonal crystal structure although the crystallinity is low. For this reason, since the coke powder obtained by pulverizing this is easily peeled off in the c-axis direction of the hexagonal crystal, as shown in FIG. In the embodiment of the present invention, first, the pitch as the hydrophobic binder 2 is added to the first carbonaceous raw material 1 (see FIGS. 2A and 3A) containing coke powder, and the mixture is heated and kneaded. A mixture is obtained. The mixture thus obtained is pulverized to obtain the second carbonaceous raw material 10 (see FIG. 2 (b) and FIG. 3 (b)). Since the second carbonaceous raw material 10 is configured by bonding the first carbonaceous raw material 1 having a high aspect ratio with the hydrophobic binder 2, particles having an aspect ratio smaller than that of the first carbonaceous raw material can be obtained. easy. However, since the second carbonaceous raw material 10 is obtained by pulverizing the mixture, it is easily pulverized along the direction of the first carbonaceous raw material 1. For this reason, the aspect ratio once reduced tends to increase with grinding. For this reason, the second carbonaceous raw material is mainly composed of flat particles and acicular particles. Therefore, for example, a round granulated powder 100 containing voids is obtained by adding the hydrophilic binder 20 to the second carbonaceous raw material 10 and granulating it using a solvent (FIG. 2 (c), FIG. 3 (c)). Then, the granulated powder 100 is CIP-molded to obtain a molded body, and then fired and graphitized to suppress anisotropy and form a highly isotropic graphite material. If the granulated powder 100 has a flat shape with an aspect ratio of 2 or less in addition to the round shape, a highly isotropic graphite material can be formed.

すなわち、本発明の黒鉛は、図1に示すフローチャートのように、以下の工程に従って形成される。
コークス粉末を含む第1の炭素質原料に疎水性結合材を添加し加熱混練して混合物を得る(S1:混練工程)。
そして前記混練工程で得られた混合物を粉砕し第2の炭素質原料10を得る(S2:粉砕工程)。
粉砕工程で得られた第2の炭素質原料10と親水性結合材20とを溶媒を用いて造粒粉を得る(S3:造粒工程)。
造粒工程で得られた造粒粉を冷間静水圧成形して成形体を得る(S4:成形工程)。
成形工程で得られた成形体を焼成して焼成体を得る(S5:焼成工程)。
焼成工程で得られた焼成体を黒鉛化する(S6:黒鉛化工程)。
That is, the graphite of the present invention is formed according to the following steps as shown in the flowchart of FIG.
A hydrophobic binder is added to the first carbonaceous raw material containing coke powder and heated and kneaded to obtain a mixture (S1: kneading step).
Then, the mixture obtained in the kneading step is pulverized to obtain the second carbonaceous raw material 10 (S2: pulverizing step).
A granulated powder is obtained using the second carbonaceous raw material 10 and the hydrophilic binder 20 obtained in the pulverization step using a solvent (S3: granulation step).
The granulated powder obtained in the granulation step is subjected to cold isostatic pressing to obtain a molded body (S4: molding step).
The molded body obtained in the molding process is fired to obtain a fired body (S5: firing process).
The fired body obtained in the firing step is graphitized (S6: graphitization step).

次に各工程について詳細に説明する。
<S1:混練工程>
本実施の形態の第一の炭素質材料は、疎水性結合材を加え加熱混練されている。このため、第一の炭素質材料は、機械的な力により強く疎水性結合材と結びつけられる。このため第一の炭素質材料どうしは強く結びつけられ、高強度の黒鉛材を得ることができる。
Next, each step will be described in detail.
<S1: Kneading step>
The first carbonaceous material of the present embodiment is kneaded with heating by adding a hydrophobic binder. For this reason, the first carbonaceous material is strongly bound to the hydrophobic binder by mechanical force. For this reason, the first carbonaceous materials are strongly connected to each other, and a high-strength graphite material can be obtained.

疎水性結合材としては、ピッチあるいはタールなどを用いるのが好ましい。ピッチ、タールは炭化収率が高い上に、黒鉛材を製造する過程で残留し易い不純物(金属、硼素、シリコンなど)が少ないため、高純度、高強度の黒鉛材を得ることができる。   Pitch or tar is preferably used as the hydrophobic binder. Pitch and tar have a high carbonization yield and few impurities (metal, boron, silicon, etc.) that are likely to remain in the process of producing the graphite material, so that a high purity and high strength graphite material can be obtained.

また、混練工程で、ピッチ、タールなどの疎水性結合材を加え加熱混練すると、疎水性結合材から揮発分が除去され、疎水性結合材の軟化点が150〜300℃と硬質化している。このため得られた第2の炭素質原料10は、室温では粉同士が付着し合うことがないため、得られる黒鉛材の組織を細かくすることができ、高強度の黒鉛材を得ることができる。   Further, when a hydrophobic binder such as pitch and tar is added and heated and kneaded in the kneading step, volatile components are removed from the hydrophobic binder, and the softening point of the hydrophobic binder is hardened to 150 to 300 ° C. For this reason, since the obtained second carbonaceous raw material 10 does not adhere to each other at room temperature, the structure of the obtained graphite material can be made fine, and a high-strength graphite material can be obtained. .

本実施の形態の第一の炭素質材料としては、例えば、コークス、無煙炭、天然黒鉛、人造黒鉛などを粉砕した粉末が利用できる。中でもコークスは、炭素以外に、水素、酸素、窒素、硫黄などを多く含有し、結晶化が進行していないので、疎水性結合材と結びつきやすい例えば不飽和官能基、含酸素官能基などの官能基を多く含有していると考えられる。このため、疎水性結合材と強く結びつくことができ、高強度の黒鉛材を得ることができる。   As the first carbonaceous material of the present embodiment, for example, powder obtained by pulverizing coke, anthracite, natural graphite, artificial graphite or the like can be used. In particular, coke contains a large amount of hydrogen, oxygen, nitrogen, sulfur, etc. in addition to carbon, and since crystallization has not progressed, functionalities such as unsaturated functional groups and oxygen-containing functional groups that are easily associated with hydrophobic binders. It is thought that it contains many groups. Therefore, it can be strongly bonded to the hydrophobic binder, and a high-strength graphite material can be obtained.

コークスには、単に石炭を仮焼したコークス、コークスから得られたピッチをコーキングして仮焼したピッチコークス、石油コークスなどの仮焼コークス、及びこれらの混合物が利用できる。中でもピッチコークスは、出発物質がタール、ピッチなど石炭の乾留ガスから得られたものであるため、固形不純物が少なく、異物又は、異物の揮散した痕の空隙の少ない黒鉛材を得ることができる。また、石油コークスでも出発物質が液体であるため、固形不純物が少なく、異物又は、異物の揮散した痕の空隙の少ない黒鉛材を得ることができる。   As the coke, coke obtained by simply calcining coal, pitch coke obtained by coking the pitch obtained from coke, calcined coke such as petroleum coke, and mixtures thereof can be used. Among them, since pitch coke is obtained from coal dry distillation gas such as tar and pitch, it is possible to obtain a graphite material with less solid impurities and less foreign matter or voids of traces from which foreign matter has been volatilized. In addition, since the starting material is liquid even in petroleum coke, it is possible to obtain a graphite material with less solid impurities and less foreign matter or voids of traces from which foreign matter has been volatilized.

混練工程で用いられる、第一の炭素質材料の平均粒子直径は、5〜20μmであることが望ましい。第一の炭素質材料の平均粒子直径が、5μm以上であれば、比表面積が小さいので疎水性結合材を第一の炭素質材料の表面を十分に覆うことができ疎水性結合材の使用量を少なくすることができる。また含有している疎水性結合材の量が少ないため、後の焼成工程で成形体内部から疎水性結合材が分解し発生するガスの量を減らすことが出来る。これにより、焼成の過程でガスによる内圧で成形体が割れることを防止することができる。第一の炭素質材料の平均粒子直径が、20μm以下であれば、黒鉛材を構成する第1の炭素質材料間にできる気孔のサイズを小さくできるため、気孔周辺での応力集中が起きにくくなり高強度の黒鉛材を得ることができる。   The average particle diameter of the first carbonaceous material used in the kneading step is desirably 5 to 20 μm. If the average particle diameter of the first carbonaceous material is 5 μm or more, the specific surface area is small, so that the surface of the first carbonaceous material can be sufficiently covered with the hydrophobic binder, and the amount of the hydrophobic binder used Can be reduced. Further, since the amount of the hydrophobic binder contained is small, it is possible to reduce the amount of gas generated by decomposition of the hydrophobic binder from the inside of the molded body in the subsequent firing step. Thereby, it can prevent that a molded object cracks with the internal pressure by gas in the process of baking. If the average particle diameter of the first carbonaceous material is 20 μm or less, the pore size formed between the first carbonaceous materials constituting the graphite material can be reduced, and stress concentration around the pores is less likely to occur. A high-strength graphite material can be obtained.

本実施の形態の混練工程では、例えば、加熱したニーダーに、第1の炭素質原料及び疎水性結合材を投入し、混合羽根を使用して混練する。混練することにより、第1の炭素質原料の表面が疎水性結合材で覆われた塊状の混合物が得られる。   In the kneading step of the present embodiment, for example, the first carbonaceous raw material and the hydrophobic binder are put into a heated kneader and kneaded using a mixing blade. By kneading, a massive mixture in which the surface of the first carbonaceous raw material is covered with a hydrophobic binder is obtained.

<S2:粉砕工程>
本実施の形態の粉砕工程では、前記混練工程で得られた塊状の混合物を粉状に粉砕し、第2の炭素質原料10を得る。この粉砕工程で得られる第2の炭素質原料10の平均粒子直径は、15〜50μmが望ましく、更に第1の炭素質原料の平均粒子直径よりも大きいことが望ましい。
第2の炭素質原料10の平均粒子直径が、15μm以上であると接着力の無い第1の炭素質原料の表面が第2の炭素質原料10の表面に露出しにくいので、高強度の黒鉛材が得られ易い。言い換えれば、平均粒子直径が15μm以上になるように粉砕すると、前記混練工程で得られた混合物を過剰に粉砕することにならないので、過剰な粉砕により、第1の炭素質原料と疎水性結合材がバラバラになることを防止することができる。そのため、接着力の無い第1の炭素質原料の表面が第2の炭素質原料10の表面に露出しにくいので、高強度の黒鉛材が得られ易い。
このように、粉砕工程で得られる、第2の炭素質原料10の平均粒子直径は、50μm以下であることが好ましい。第2の炭素質原料10の平均粒子直径が、50μm以下であると、第2の炭素質原料10の粒子間に大きな気孔が出来にくいため、高強度の黒鉛材が得られ易い。
<S2: Grinding step>
In the pulverization step of the present embodiment, the massive mixture obtained in the kneading step is pulverized into powder to obtain the second carbonaceous raw material 10. The average particle diameter of the second carbonaceous raw material 10 obtained in this pulverization step is desirably 15 to 50 μm, and further desirably larger than the average particle diameter of the first carbonaceous raw material.
When the average particle diameter of the second carbonaceous raw material 10 is 15 μm or more, the surface of the first carbonaceous raw material having no adhesive force is difficult to be exposed on the surface of the second carbonaceous raw material 10, so that high strength graphite It is easy to obtain materials. In other words, if the average particle diameter is pulverized so as to be 15 μm or more, the mixture obtained in the kneading step is not excessively pulverized, so that the first carbonaceous raw material and the hydrophobic binder are not excessively pulverized. Can be prevented from falling apart. Therefore, since the surface of the first carbonaceous raw material having no adhesive force is difficult to be exposed on the surface of the second carbonaceous raw material 10, a high-strength graphite material is easily obtained.
Thus, it is preferable that the average particle diameter of the 2nd carbonaceous raw material 10 obtained by a grinding | pulverization process is 50 micrometers or less. When the average particle diameter of the second carbonaceous raw material 10 is 50 μm or less, it is difficult to form large pores between the particles of the second carbonaceous raw material 10, and thus a high-strength graphite material is easily obtained.

粉砕は、乾式の粉砕機であれば、どのようなもので粉砕しても良い。粉砕機と、分級機とを複合した循環式の粉砕設備を用いて粉砕することが望ましい。分級機と組み合わせた循環式の粉砕設備で粉砕すれば、粉砕機が過粉砕することなく、接着力の無い第1の炭素質原料の表面が第2の炭素質原料10の表面に露出しにくいので、高強度の黒鉛材を得易い。   The pulverization may be performed using any dry pulverizer. It is desirable to pulverize using a circulation type pulverization facility in which a pulverizer and a classifier are combined. If pulverization is performed with a circulation type pulverization facility combined with a classifier, the surface of the first carbonaceous raw material without adhesive force is not easily exposed to the surface of the second carbonaceous raw material 10 without excessive pulverization by the pulverizer. Therefore, it is easy to obtain a high-strength graphite material.

<S3:造粒工程>
本実施の形態の造粒工程では、前記工程で得られた第2の炭素質原料10を、親水性結合材20を用いて造粒し、造粒粉を得ている。このため、混練工程で使用する疎水性結合材と親水性結合材20は、互いに相溶性がない。このため疎水性結合材と、親水性結合材20の接着力に差をつけることができる。疎水性結合材は、第1の炭素質原料1どうしの強固な結合に作用し、親水性結合材20は、第2の炭素質原料10どうしの弱い結合に作用する。また、親水性結合材20は、造粒の結合材であるため、第2の炭素質原料10を球状になるように結合し造粒粉の方向性がつきにくくするように作用する。このため、このような造粒粉を経て製造された黒鉛材は方向性がつきにくく、異方性の小さい黒鉛材を得ることができる。このような黒鉛材の熱膨張係数は、材料の切り出し方向によるばらつきが小さいので高温で使用する黒鉛部品として好適に利用することが出来る。また、このような黒鉛材の固有抵抗は材料の切り出し方向によるばらつきが小さいので、黒鉛ヒーターとして利用したとき、黒鉛ヒーターの発熱量のばらつきを小さくすることができる。
本実施の形態の親水性結合材20としては、親水性高分子であることが好ましい。高分子であるため、黒鉛材の製造過程で不純物が残留しにくい。
さらにまた、親水性結合材20は、PVA(ポリビニルアルコール)、CMC(カルボキシメチルセルロース)、でんぷん等が利用可能である。
<S3: Granulation process>
In the granulation step of the present embodiment, the second carbonaceous raw material 10 obtained in the above step is granulated using the hydrophilic binder 20 to obtain granulated powder. For this reason, the hydrophobic binder and the hydrophilic binder 20 used in the kneading step are not compatible with each other. For this reason, the adhesive force between the hydrophobic binder and the hydrophilic binder 20 can be made different. The hydrophobic binder acts on a strong bond between the first carbonaceous raw materials 1, and the hydrophilic binder 20 acts on a weak bond between the second carbonaceous raw materials 10. Further, since the hydrophilic binder 20 is a granulated binder, the second carbonaceous raw material 10 is bound in a spherical shape and acts so that the directionality of the granulated powder is less likely. For this reason, the graphite material manufactured through such granulated powder is difficult to be oriented, and a graphite material with small anisotropy can be obtained. Such a coefficient of thermal expansion of the graphite material can be suitably used as a graphite part to be used at a high temperature because the variation due to the cutting direction of the material is small. In addition, since the specific resistance of such a graphite material is small in variation depending on the cutting direction of the material, when used as a graphite heater, variation in the calorific value of the graphite heater can be reduced.
The hydrophilic binding material 20 of the present embodiment is preferably a hydrophilic polymer. Since it is a polymer, it is difficult for impurities to remain in the process of manufacturing the graphite material.
Furthermore, as the hydrophilic binder 20, PVA (polyvinyl alcohol), CMC (carboxymethyl cellulose), starch, or the like can be used.

また、親水性結合材20の添加率は、第2の炭素質原料10を100重量部に対し0.1〜10.0重量部であることがこのましい。親水性結合材20の添加率は、第2の炭素質原料10を100重量部に対し0.1重量部未満であると、親水性結合材の結合力が弱くなるので造粒粉が軟らかくなり、充填容器に充填した際に、造粒粉が粉の自重で潰れ易くなる。造粒粉が重力で潰れ、圧縮されると黒鉛材の方向性がつき易くなる。そのため、黒鉛材の固有抵抗あるいは熱膨張係数のばらつきが大きくなる。親水性結合材20の添加率は、第2の炭素質原料100重量部に対し10.0重量部を越えると、親水性結合材20と結びつく水系の溶媒の量が多くなるので造粒粉の乾燥が困難になり長時間あるいは高温での乾燥を要する。このため、熱で疎水性結合材が変質しやすくなる。
本実施の形態において、水系の溶媒とは、水が大部分を占めていれば良く、水に、界面活性剤、アルコールなどを添加したものも含まれる。
Moreover, the addition rate of the hydrophilic binder 20 is preferably 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the second carbonaceous raw material 10. When the addition rate of the hydrophilic binder 20 is less than 0.1 parts by weight with respect to 100 parts by weight of the second carbonaceous raw material 10, since the binding force of the hydrophilic binder is weakened, the granulated powder becomes soft. When the filling container is filled, the granulated powder is easily crushed by its own weight. When the granulated powder is crushed by gravity and compressed, the orientation of the graphite material is easily obtained. Therefore, the variation in the specific resistance or thermal expansion coefficient of the graphite material increases. If the addition rate of the hydrophilic binder 20 exceeds 10.0 parts by weight with respect to 100 parts by weight of the second carbonaceous raw material, the amount of the aqueous solvent associated with the hydrophilic binder 20 increases, so Drying becomes difficult and requires drying for a long time or at a high temperature. For this reason, the hydrophobic binder is easily altered by heat.
In the present embodiment, the water-based solvent only needs to occupy most of the water, and includes those obtained by adding a surfactant, alcohol, or the like to water.

本実施の形態の造粒粉の平均粒子直径は、60〜1000μmとするのが好ましい。本実施の形態の造粒粉の平均粒子直径が60μm以上であると、第2の炭素質原料10を多く集め造粒粉を大きくすることができるので、方向性の小さい造粒粉を得ることができる。本実施の形態の造粒粉の平均粒子直径が1000μm以下であると、体積に対して表面積が大きいので、水系の溶媒を容易に乾燥させることができる。   The average particle diameter of the granulated powder of the present embodiment is preferably 60 to 1000 μm. When the average particle diameter of the granulated powder of the present embodiment is 60 μm or more, a large amount of the second carbonaceous raw material 10 can be collected and the granulated powder can be enlarged. Can do. When the average particle diameter of the granulated powder of the present embodiment is 1000 μm or less, the surface area is large with respect to the volume, so that the aqueous solvent can be easily dried.

さらに、造粒粉については粒径が15μmに満たない微粉末を除去する工程を含むことが好ましい。15μm以上の造粒粉は、粒が大きく成長しているので比表面積が小さい。このため、造粒時に用いた溶媒を容易に短時間で乾燥することができ、熱で疎水性結合材の変質を少なくすることができる。造粒粉の15μmに満たない微粉末を除去する方法としては、超音波振動を用いた振動篩、気流分級機などが利用できる。   Further, the granulated powder preferably includes a step of removing fine powder having a particle size of less than 15 μm. The granulated powder of 15 μm or more has a small specific surface area because the grains are growing large. For this reason, the solvent used at the time of granulation can be easily dried in a short time, and the alteration of the hydrophobic binder can be reduced by heat. As a method for removing fine powder less than 15 μm of the granulated powder, a vibration sieve using ultrasonic vibration, an air classifier, or the like can be used.

本実施の形態では親水性結合材に、水系の溶媒を使用し造粒するので造粒時に第1の炭素質材料を結合する疎水性結合材は水系の溶媒にほとんど溶解しない。このため造粒時には、親水性結合材が疎水性結合材2を第1の炭素質原料表面から溶出させたり、剥離させたりすることがない。一方、親水性結合材で造粒された造粒粉100は、例えば丸く成形され、第2の炭素質原料10が造粒粉の中で空隙を含んで等方的に配列された状態で結合されている。そしてこの造粒粉100は、親水性結合材の弱い結合力で構成されているので、CIP成形の圧力で潰れやすくすることができる。そのため、造粒粉100内部の空隙が容易に潰され、高密度の成形体を得ることができ、気孔が少ないので高強度の黒鉛材を得ることができる。
造粒粉100は、粒子径が第2の炭素質原料10より大きく、粒子間に大きな空隙が存在している。一般に大きな空隙は、空隙周辺で応力集中が起きやすいので素材の欠陥となって強度を大きく低下させる原因となる。造粒粉100は、成形圧力で容易に潰れるので、造粒粉間に形成される大きな空隙が黒鉛材に残留しにくい。そのため、均一で、強度の高い黒鉛材の成形体を得ることができる。また、造粒粉は、CIP成形で等方的に潰されるので、等方的な黒鉛材を得ることができる。
In this embodiment, since the hydrophilic binder is granulated using an aqueous solvent, the hydrophobic binder that binds the first carbonaceous material during granulation hardly dissolves in the aqueous solvent. For this reason, at the time of granulation, the hydrophilic binder does not cause the hydrophobic binder 2 to elute from the surface of the first carbonaceous raw material or peel off. On the other hand, the granulated powder 100 granulated with the hydrophilic binder is formed into a round shape, for example, and the second carbonaceous raw material 10 is bound in an isotropically arranged state including voids in the granulated powder. Has been. And since this granulated powder 100 is comprised with the weak binding force of a hydrophilic binder, it can make it easy to crush with the pressure of CIP shaping | molding. Therefore, the voids inside the granulated powder 100 are easily crushed, a high-density molded body can be obtained, and since there are few pores, a high-strength graphite material can be obtained.
The granulated powder 100 has a particle size larger than that of the second carbonaceous raw material 10, and a large void exists between the particles. In general, large voids tend to cause stress concentration around the voids and become a defect of the material, causing a significant decrease in strength. Since the granulated powder 100 is easily crushed by the molding pressure, large voids formed between the granulated powders hardly remain in the graphite material. Therefore, a uniform and high-strength graphite material can be obtained. Further, since the granulated powder is isotropically crushed by CIP molding, an isotropic graphite material can be obtained.

本実施の形態の造粒粉は、圧縮破壊強度が0.02〜10.0MPaであることが好ましい。
図10は、圧縮破壊強度の説明図であり、粉体にかかる圧縮応力と、充填率との関係により示す。図11は、粉体の充填率、圧縮応力、圧縮歪みを測定するための装置の模式図である。
図10及び図11を用いて圧縮破壊強度の測定方法を説明する。図10において縦軸は粉体の充填率、横軸は粉体の圧縮応力(対数軸)であり、詳しくは以下に示す。
圧縮破壊強度は以下のように測定する。
(1)充填率の測定:試料をタッピングしながら測定セルに均一に充填し、上蓋をのせて一定速度で圧縮する。(図11参照)このとき、充填率Vmは、
Vm=ρb/ρpとして算出することができる。ρbは試料のかさ密度(質量/造粒粉の占有体積V)、ρpは、試料の真密度である。
(2)充填率(Y軸)−圧縮応力の対数(X軸)の片対数グラフに、圧縮応力に対する充填率の変化をプロットする。
(3)試料が造粒粉である場合、圧縮応力が上昇する過程でグラフの傾きが大きくなる箇所がある。その前後で、近似線a,bを引き、その交点cに対応する圧縮応力が圧縮破壊強度(圧縮崩壊強度ともいう)である。
The granulated powder of the present embodiment preferably has a compressive fracture strength of 0.02 to 10.0 MPa.
FIG. 10 is an explanatory diagram of the compressive fracture strength, and shows the relationship between the compressive stress applied to the powder and the filling rate. FIG. 11 is a schematic diagram of an apparatus for measuring powder filling rate, compressive stress, and compressive strain.
A method for measuring the compressive fracture strength will be described with reference to FIGS. In FIG. 10, the vertical axis represents the powder filling rate, and the horizontal axis represents the compressive stress (logarithmic axis) of the powder.
The compressive fracture strength is measured as follows.
(1) Measurement of filling rate: The sample is uniformly filled into the measurement cell while tapping the sample, and the upper cover is put on and compressed at a constant speed. (See FIG. 11) At this time, the filling rate Vm is
Vm = ρb / ρp can be calculated. ρb is the bulk density of the sample (mass / volume occupied by granulated powder V), and ρp is the true density of the sample.
(2) Plotting the change of the filling factor against the compressive stress on a semi-logarithmic graph of filling factor (Y axis) -logarithm of compressive stress (X axis)
(3) When the sample is granulated powder, there is a portion where the inclination of the graph increases in the process of increasing the compressive stress. Before and after that, the approximate lines a and b are drawn, and the compressive stress corresponding to the intersection c is the compressive fracture strength (also referred to as compressive collapse strength).

圧縮破壊強度の測定は、ホソカワミクロン株式会社製圧縮破壊強度・引張破断強度測定装置「アグロボット」で、測定することができる。
圧縮破壊強度とは、試料の粒子が潰れることにより、充填率が大きくなり始める圧縮応力であると考えられる。本実施の形態の造粒粉では、圧縮破壊強度以下の圧縮応力では、造粒粉が破壊されていないので造粒粉の圧縮挙動を示し、圧縮破壊強度を越える圧縮応力では造粒粉の第2の炭素質原料10をつなぐ親水性結合材20が壊されるので第2の炭素質原料10の圧縮挙動を示すようになると考えられる。
The compression fracture strength can be measured with a compression fracture strength / tensile fracture strength measuring device “Ag Robot” manufactured by Hosokawa Micron Corporation.
The compressive fracture strength is considered to be a compressive stress at which the filling rate starts to increase as the sample particles are crushed. In the granulated powder of the present embodiment, the compressive stress below the compressive fracture strength shows that the granulated powder is not broken, and thus shows the compression behavior of the granulated powder. It is considered that the hydrophilic binding material 20 that connects the two carbonaceous raw materials 10 is broken, so that the compression behavior of the second carbonaceous raw material 10 is exhibited.

圧縮破壊強度の望ましい範囲は、0.02〜10.0MPaが好ましい。造粒粉が充填された充填容器内で重力は一方向にしか働かない。このため重力により充填容器内で造粒粉が圧縮し潰れると、潰れた箇所で異方性材料が形成されやすくなる。圧縮破壊強度が0.02MPa以上であると、球状に形成された造粒粉は充填容器で造粒粉の重力により潰れにくく、CIP成形で等方的に潰されるので、得られる黒鉛材が異方性を生じにくい。圧縮破壊強度が10MPa以下であれば、後のCIP成形で造粒粉を十分に潰すことができるので、造粒粉の大きさに由来する大きな気孔ができにくく、高強度の黒鉛材ができる。本実施の形態の造粒粉は、表面の親水基が少なく、主に芳香環からなるコークスと疎水性結合材とが強く結びついた第2の炭素質原料10を、親水性結合材20で弱く結合し造粒粉を得ている。このため、CIP成形で造粒粉が壊れ易く、造粒粉が壊れた後に、第2の炭素質原料10どうしが強く結びつけられる。このため、異方比が小さく強固な黒鉛材を得ることができる。   The desirable range of compressive fracture strength is preferably 0.02 to 10.0 MPa. In a filled container filled with granulated powder, gravity works only in one direction. For this reason, when the granulated powder is compressed and crushed in the filling container by gravity, an anisotropic material is easily formed at the crushed portion. When the compressive fracture strength is 0.02 MPa or more, the granulated powder formed into a spherical shape is not easily crushed by the gravity of the granulated powder in the filling container, and is isotropically crushed by CIP molding. It is difficult to produce a directivity. If the compression fracture strength is 10 MPa or less, the granulated powder can be sufficiently crushed by the subsequent CIP molding, so that it is difficult to form large pores derived from the size of the granulated powder, and a high-strength graphite material can be obtained. In the granulated powder of the present embodiment, the second carbonaceous raw material 10 in which coke mainly composed of an aromatic ring and a hydrophobic binder are strongly bonded is weakened by the hydrophilic binder 20 with less hydrophilic groups on the surface. Combined to obtain granulated powder. For this reason, the granulated powder is easily broken by the CIP molding, and after the granulated powder is broken, the second carbonaceous raw materials 10 are strongly bound to each other. For this reason, a strong graphite material with a small anisotropic ratio can be obtained.

<S4:成形工程>
本実施の形態の成形工程では、前記造粒工程で得られた造粒粉を充填容器に充填し、冷間静水圧成形(CIP成形)する。
成形の圧力は、特に限定されないが、10MPa〜300MPaで成形することが好ましい。成形の圧力が10MPa以上であると、潰された造粒粉から得られる第2の炭素質原料10どうしを強く結合させることができる。そのため、高強度の黒鉛材を得ることができる。成形の圧力を、300MPaを越える成形圧力に高めても、成形体の密度がほとんど変わらないので、300MPa以下の成形の圧力で十分な密度の成形体を得ることができる。
充填容器は、どのようなものでもかまわないが、例えばゴムを素材としたケース(ラバーケース)を用いることができる。
混合物を粉砕して得られた第2の炭素質原料10は、粉砕時(S2:粉砕工程)に第1の炭素質原料1に沿って粉砕され、第1の炭素質原料1の一部も劈開される。このため、第2の炭素質原料10は2〜10程度のアスペクト比をもつ。通常CIP成形では、水等の加圧媒体で等方的に加圧するため成形過程(S5:成形工程)で異方性を生じにくい特徴がある。しかしながら大きなブロックを成形する際には前述したようにCIP成形を用いても、ラバーケースへの充填時に、特にラバーケースの下部では、第2の炭素質原料10の自重により一軸成形され、部分的に異方性が大きくなってしまうと考えられる。
<S4: Molding process>
In the molding step of the present embodiment, the granulated powder obtained in the granulation step is filled into a filling container, and cold isostatic pressing (CIP molding) is performed.
Although the pressure of shaping | molding is not specifically limited, It is preferable to shape | mold at 10 MPa-300 MPa. When the molding pressure is 10 MPa or more, the second carbonaceous raw materials 10 obtained from the crushed granulated powder can be strongly bonded to each other. Therefore, a high strength graphite material can be obtained. Even if the molding pressure is increased to a molding pressure exceeding 300 MPa, the density of the molded body is hardly changed. Therefore, a molded body having a sufficient density can be obtained with a molding pressure of 300 MPa or less.
The filling container may be anything, but for example, a case made of rubber (rubber case) can be used.
The second carbonaceous raw material 10 obtained by pulverizing the mixture is pulverized along the first carbonaceous raw material 1 at the time of pulverization (S2: pulverization step), and a part of the first carbonaceous raw material 1 is also obtained. Cleaved. For this reason, the second carbonaceous raw material 10 has an aspect ratio of about 2 to 10. Normally, CIP molding is characterized in that anisotropy is hardly generated in a molding process (S5: molding process) because isotropic pressing is performed with a pressurizing medium such as water. However, when a large block is formed, even if CIP molding is used as described above, it is uniaxially molded by the weight of the second carbonaceous raw material 10 at the time of filling the rubber case, particularly at the lower part of the rubber case. It is thought that the anisotropy increases.

こうして得られる黒鉛材の製造方法(成形)の特徴を、図4及び図12を用いて説明する。図4(a)及び(b)は本発明の実施の形態のCIP成形で使用するラバーケースに造粒粉を充填する工程の説明図であり、(a)は充填中、(b)は充填後の状態を示す。図12(a)及び(b)は従来(比較例1)のCIP成形で使用するラバーケースに第2の炭素質原料を充填する工程を示す説明図であり、(a)は充填中、(b)は充填後の状態を示す。まず、従来例(後述の比較例1)の黒鉛材の製造方法の場合、図12(a)乃至(b)に示すように、第2の炭素質原料10の充填時においてラバーケース31内の上部では第2の炭素質原料10の自重による圧縮が小さいので炭素質原料による方向性がつきにくく、異方性を生じにくい。これに対し第2の炭素質原料10の充填時においてラバーケース31内の下部では、第2の炭素質原料10が自重により一方向に圧縮されるため方向性がつくために、素材の中での異方性に偏りが生じ、異方性を生じやすい。   The characteristics of the graphite material production method (molding) thus obtained will be described with reference to FIGS. 4 (a) and 4 (b) are explanatory views of the process of filling the rubber case used in the CIP molding of the embodiment of the present invention with granulated powder, (a) being filled and (b) being filled. Shown later. 12 (a) and 12 (b) are explanatory views showing a process of filling a second carbonaceous raw material into a rubber case used in the conventional (comparative example 1) CIP molding. b) shows the state after filling. First, in the case of the method of manufacturing the graphite material of the conventional example (Comparative Example 1 described later), as shown in FIGS. 12 (a) to 12 (b), the rubber case 31 is filled with the second carbonaceous raw material 10. In the upper part, since the compression by the weight of the second carbonaceous raw material 10 is small, the directionality by the carbonaceous raw material is not easily obtained, and anisotropy is hardly generated. On the other hand, at the lower portion in the rubber case 31 when the second carbonaceous raw material 10 is filled, the second carbonaceous raw material 10 is compressed in one direction by its own weight, so that directionality is obtained. The anisotropy is biased and tends to cause anisotropy.

これに対し、本実施の形態では図4(a)及び(b)に示すように、ラバーケース31には、第2の炭素質原料10にさらに親水性結合材20を添加して造粒した造粒粉100の状態で充填される。造粒粉100は、充填容器内で造粒粉の自重で潰れない程度の圧縮破壊強度(0.02〜10.0MPaが好ましい)を備えている。このため、造粒粉100は、粉の自重では潰れにくい。CIP成形でこうした造粒粉を充填したラバーケース31(充填容器)ごと加圧すると、圧縮破壊強度に相当する圧力が加わったとき、造粒粉100が潰れ、成形されていく。このとき、造粒粉100の自重による圧力よりも圧縮破壊強度に相当する圧力の方が大きいので一軸的に加圧されることはほとんど無く等方的に成形される。このため成形体の素材全体にわたって、異方性の小さい黒鉛材を得ることができる。   In contrast, in the present embodiment, as shown in FIGS. 4A and 4B, the rubber case 31 is granulated by further adding the hydrophilic binder 20 to the second carbonaceous raw material 10. The granulated powder 100 is filled. The granulated powder 100 has a compressive fracture strength (preferably 0.02 to 10.0 MPa) that is not crushed by the weight of the granulated powder in the filled container. For this reason, the granulated powder 100 is not easily crushed by its own weight. When the rubber case 31 (filled container) filled with such granulated powder is pressurized by CIP molding, the granulated powder 100 is crushed and molded when a pressure corresponding to the compression fracture strength is applied. At this time, since the pressure corresponding to the compressive fracture strength is larger than the pressure due to the weight of the granulated powder 100, the pressure is uniaxially pressed and isotropically formed. For this reason, a graphite material with small anisotropy can be obtained over the whole raw material of a molded object.

さらに図6(a)を用いてさらに詳しく説明する。
図6(a)は、本発明の実施の形態の第2の炭素質原料10と造粒粉の圧縮歪みと圧縮応力との関係を示す図である。図6(a)の本発明の実施の形態の第2の炭素質原料10と造粒粉の圧縮歪みと圧縮応力との関係は、図11に示す装置を用いて測定することができる。
測定する試料(第2の炭素質原料10および造粒粉)をタッピングしながら測定セルに均一に充填し、上蓋をのせて一定速度で圧縮する。このときの上蓋にかける加圧圧力が圧縮応力である。圧縮歪みεは加圧前の試料の体積Vと加圧中の体積Vから、以下算式に従って得ることができる。
ε=(V−V)/V
圧縮応力と、得られた圧縮歪みとをプロットし、図6(a)の本発明の実施の形態の第2の炭素質原料10と造粒粉の圧縮歪みと圧縮応力との関係を示す図が得られる。
第2の炭素質原料10と造粒粉は、何れも第1の炭素質原料1を用いて作られているので、かさ密度は、0.6〜0.7g/cm程度である。(発明者らによって確認された。)このため、例えば高さ1400mmのラバーケースに実施の形態の第2の炭素質原料10が充填された場合と、実施の形態の造粒粉が充填された場合の、ラバーケース下部にかかる粉の圧力は、ほぼ同等であり、その値は8〜10kPaとなる。図6(a)中Aは、約1400mmの高さの充填容器の下部にかかる第2の炭素質原料(または造粒粉)の自重による圧力を示す。
Further details will be described with reference to FIG.
Fig.6 (a) is a figure which shows the relationship between the 2nd carbonaceous raw material 10 of embodiment of this invention, and the compressive distortion and compressive stress of granulated powder. The relationship between the compressive strain and compressive stress of the second carbonaceous raw material 10 and the granulated powder in the embodiment of the present invention shown in FIG. 6A can be measured using the apparatus shown in FIG.
The sample to be measured (second carbonaceous raw material 10 and granulated powder) is uniformly filled in the measurement cell while tapping, and is compressed at a constant speed with an upper lid. The pressure applied to the upper lid at this time is the compressive stress. The compressive strain ε can be obtained from the volume V 0 of the sample before pressing and the volume V during pressing according to the following formula.
ε = (V 0 −V) / V 0
The figure which plots the compressive stress and the obtained compressive strain, and shows the relationship between the compressive strain and the compressive stress of the 2nd carbonaceous raw material 10 and granulated powder of embodiment of this invention of Fig.6 (a). Is obtained.
Since the second carbonaceous raw material 10 and the granulated powder are both made using the first carbonaceous raw material 1, the bulk density is about 0.6 to 0.7 g / cm 3 . (Confirmed by the inventors.) For this reason, for example, a rubber case having a height of 1400 mm was filled with the second carbonaceous raw material 10 of the embodiment and the granulated powder of the embodiment was filled. In this case, the pressure of the powder applied to the lower part of the rubber case is almost the same, and the value is 8 to 10 kPa. In FIG. 6A, A indicates the pressure due to the weight of the second carbonaceous raw material (or granulated powder) applied to the lower part of the filling container having a height of about 1400 mm.

第1の実施の形態の造粒粉を高さ1400mmのラバーケース31に充填した場合には、ラバーケース31下部では1%弱の圧縮歪み(d)であるのに対し、第2の炭素質原料10を高さ1400mmのラバーケース31に充填した場合では7%の圧縮歪み(e)が図6のグラフから確認される。このため、第2の炭素質原料10から親水性結合材20を用いて造粒粉を形成することによって、粉の自重による圧縮歪みの大きさを小さくしていることが確認できる。   When the granulated powder of the first embodiment is filled in a rubber case 31 having a height of 1400 mm, the compressive strain (d) is less than 1% at the bottom of the rubber case 31, whereas the second carbonaceous material is used. When the raw material 10 is filled in a rubber case 31 having a height of 1400 mm, a compression strain (e) of 7% is confirmed from the graph of FIG. For this reason, it can confirm that the magnitude | size of the compressive strain by the weight of powder itself is made small by forming granulated powder from the 2nd carbonaceous raw material 10 using the hydrophilic binding material 20. FIG.

さらに図6(b)を用いて説明する。
図6(b)は、本発明の実施の形態の第2の炭素質原料10と造粒粉の充填率と圧縮応力との関係を示す図である。図6(b)の本発明の実施の形態の第2の炭素質原料10と造粒粉の充填率と圧縮応力との関係は、図11に示す装置を用いて測定することができる。
測定する試料(第2の炭素質原料10および造粒粉)をタッピングしながら測定セルに均一に充填し、上蓋をのせて一定速度で圧縮する。このときの上蓋にかける加圧圧力が圧縮応力であり、充填率Vmは、
Vm=ρb/ρpとして算出することができる。ρbは試料のかさ密度(質量/造粒粉の占有体積V)、ρpは、試料の真密度である。
圧縮応力と、得られた充填率とをプロットし、図6(b)の本発明の実施の形態の第2の炭素質原料10と造粒粉の充填率と圧縮応力との関係を示す図が得られる。
図6(b)中Aは、約1400mmの高さの充填容器の下部にかかる第2の炭素質原料(または造粒粉)の自重による圧力を示す。前述したように高さ1400mmのラバーケースに実施の形態の第2の炭素質原料10が充填された場合と、実施の形態の造粒粉が充填された場合の、ラバーケース下部にかかる粉の圧力はほぼ同等であり、その値は8〜10kPaとなる。本実施の形態の造粒粉の場合、ラバーケース下部にかかる粉の圧力(8〜10kPa)の領域では、充填率はほとんど変化しない。これに対し本実施の形態の第2の炭素質原料10の場合、ラバーケース下部にかかる粉の圧力(8〜10kPa)の領域では、充填率は圧力に比例して大きくなっていることが確認される。このため、第2の炭素質原料10から、親水性結合材20を用いて造粒粉を形成することによって、造粒粉が潰れにくくなり、粉の自重による圧縮歪みの大きさを小さくしていることが確認できる。
Further description will be made with reference to FIG.
FIG.6 (b) is a figure which shows the relationship between the 2nd carbonaceous raw material 10 of embodiment of this invention, the filling rate of granulated powder, and compressive stress. The relationship between the second carbonaceous raw material 10 in FIG. 6B and the filling rate of the granulated powder and the compressive stress can be measured using the apparatus shown in FIG.
The sample to be measured (second carbonaceous raw material 10 and granulated powder) is uniformly filled in the measurement cell while tapping, and is compressed at a constant speed with an upper lid. The pressure applied to the upper lid at this time is compressive stress, and the filling rate Vm is
Vm = ρb / ρp can be calculated. ρb is the bulk density of the sample (mass / volume occupied by granulated powder V), and ρp is the true density of the sample.
The figure which plots the compressive stress and the obtained filling rate, and shows the relationship between the filling rate and compressive stress of the 2nd carbonaceous raw material 10 and granulated powder of embodiment of this invention of FIG.6 (b). Is obtained.
In FIG. 6B, A indicates the pressure due to the weight of the second carbonaceous raw material (or granulated powder) applied to the lower part of the filling container having a height of about 1400 mm. As described above, when the rubber case having a height of 1400 mm is filled with the second carbonaceous raw material 10 of the embodiment and when the granulated powder of the embodiment is filled, the powder applied to the lower portion of the rubber case The pressure is almost the same, and the value is 8 to 10 kPa. In the case of the granulated powder of the present embodiment, the filling rate hardly changes in the region of the powder pressure (8 to 10 kPa) applied to the lower part of the rubber case. On the other hand, in the case of the second carbonaceous raw material 10 of the present embodiment, it is confirmed that the filling rate increases in proportion to the pressure in the region of the powder pressure (8 to 10 kPa) applied to the lower part of the rubber case. Is done. For this reason, by forming the granulated powder from the second carbonaceous raw material 10 using the hydrophilic binder 20, the granulated powder is less likely to be crushed, and the size of the compressive strain due to the weight of the powder is reduced. It can be confirmed.

<S5:焼成工程>
前記成形工程で得られた成形体を、不活性ガス、還元性ガス雰囲気中で焼成する。不活性ガスとは、窒素、アルゴン、ヘリウムなどであり、還元性ガスとは、炭化水素ガス、水素、一酸化炭素等が挙げられる。このような雰囲気を形成するには、焼成炉中にこれらのガスを導入し成形体を焼成することによりできる。
還元性の雰囲気であればステンレスなどの金属、アルミナなどのセラミックスの焼成缶に成形体を入れ、蓋をした上で外気が内部に浸透しないように成形体を焼成しても良い。こうすることにより成形体から発生する炭化水素ガス、一酸化炭素ガスなどによって還元性ガス雰囲気が形成され、焼成体の酸化を防止することができる。さらに成形体を焼成缶に入れて、焼成する場合には、数ミリ程度のコークスの詰め粉にうめて焼成することにより、焼成缶の外気が成形体に到達し焼成体の酸化を防止することができる。更に、生コークス、硬ピッチなどの揮発分を含む炭素系の粉または粒で詰め粉の上を覆うことにより、炭化水素ガス、一酸化炭素ガスなどの還元性ガスを発生させ、焼成缶の外気が成形体に到達し焼成体が酸化することを防止することができる。
<S5: Firing step>
The molded body obtained in the molding step is fired in an inert gas or reducing gas atmosphere. The inert gas is nitrogen, argon, helium or the like, and the reducing gas is a hydrocarbon gas, hydrogen, carbon monoxide or the like. Such an atmosphere can be formed by introducing these gases into a firing furnace and firing the compact.
If the atmosphere is a reducing atmosphere, the compact may be placed in a fired can of a metal such as stainless steel or a ceramic such as alumina, and the compact may be fired so that the outside air does not permeate into the interior after being covered. By doing so, a reducing gas atmosphere is formed by the hydrocarbon gas, carbon monoxide gas and the like generated from the molded body, and oxidation of the fired body can be prevented. Furthermore, when the molded product is put into a fired can and fired, it is fired by filling it with a coke powder of about several millimeters, so that the outside air of the fired can reaches the molded product to prevent the fired body from being oxidized. Can do. Furthermore, by covering the filling powder with carbon-based powder or grains containing volatile components such as raw coke and hard pitch, reducing gas such as hydrocarbon gas and carbon monoxide gas is generated, and the outside air of the calcined can Can be prevented from reaching the molded body and oxidizing the fired body.

焼成工程の処理温度は特に限定されない。室温(25℃)から700℃の温度領域では分解ガスの発生が非常に多いので、分解ガスの排気に対応できる焼成炉で焼成することが望ましい。室温(25℃)から1200℃の温度範囲で、成形体を焼成しておくと、成形体の揮発分が十分に抜け炭素化が進み、揮発物が除去されるので後の黒鉛化で発生するガスをより減らすことができる。   The processing temperature of a baking process is not specifically limited. In the temperature range from room temperature (25 ° C.) to 700 ° C., the generation of cracked gas is very large, so it is desirable to fire in a firing furnace that can handle the exhaust of cracked gas. If the molded body is fired in the temperature range from room temperature (25 ° C.) to 1200 ° C., the volatile matter of the molded body is sufficiently removed, carbonization proceeds, and volatiles are removed, resulting in subsequent graphitization. Gas can be reduced more.

焼成時の昇温速度は、成形体のサイズによって適宜選択すると良い。30×50×150mm程度の成形体であれば、例えば、20℃/Hで焼成することにより、焼成体内部の熱歪みを小さくできるので割れにくくすることができる。300×600×1000程度の成形体であれば、例えば、2℃/H程度まで昇温速度を低下させると、焼成体内部の熱歪みを小さくできるので割れにくくことができる。   The temperature increase rate during firing may be appropriately selected depending on the size of the molded body. In the case of a molded body of about 30 × 50 × 150 mm, for example, by firing at 20 ° C./H, the thermal strain inside the fired body can be reduced, so that it is difficult to break. In the case of a molded body of about 300 × 600 × 1000, for example, if the rate of temperature increase is reduced to about 2 ° C./H, the thermal strain inside the fired body can be reduced, so that it is difficult to break.

この焼成工程で、大半の親水性結合材20は、熱分解しガス化する。このため親水性結合材20に由来する炭素は、もともと含有量が少ない(第2の炭素質原料100重量部に対し10重量部以下)ので、ほとんどがガス化して無くなり、疎水性結合材によるコークスの結合力に与える影響は小さく黒鉛材の強度を低下させにくい。   In this firing step, most of the hydrophilic binder 20 is pyrolyzed and gasified. For this reason, the carbon derived from the hydrophilic binder 20 is originally low in content (less than 10 parts by weight with respect to 100 parts by weight of the second carbonaceous raw material), so that most of the carbon is gasified and coke is produced by the hydrophobic binder. The effect on the bonding strength of the graphite is small, and it is difficult to reduce the strength of the graphite material.

<S6:黒鉛化工程>
前記焼成工程に引き続き、焼成された成形体を更に高温で熱処理し黒鉛化する。黒鉛化の処理温度は特に限定されない。黒鉛材の用途に応じて適宜する。例えば2000〜3400℃の範囲で黒鉛化することができる。2000℃以上で熱処理すると、黒鉛の結晶化が進み、黒鉛材が軟らかくなり、容易に加工することができる。このような黒鉛材は、細かな加工の必要な半導体製造装置用部品、電子部品用位置決め治具などに利用できる。3400℃以下の熱処理温度であれば、黒鉛の昇華温度(約3650℃)と離れている。このため黒鉛表面の昇華が少ないので、昇華によってエネルギーが消費されにくく容易に昇温することができる。
黒鉛化の方法は、どのような方法で行っても良いが、焼成体を炉に埋め、電極から焼成体に通電し発熱させるアチェソン炉、誘導コイルにより焼成体に誘導電流を流し発熱させる誘導炉などが利用できる。
<S6: Graphitization step>
Subsequent to the firing step, the fired molded body is further heat-treated at a high temperature to be graphitized. The processing temperature for graphitization is not particularly limited. Appropriate according to the use of the graphite material. For example, it can graphitize in the range of 2000-3400 degreeC. When heat treatment is performed at 2000 ° C. or higher, crystallization of graphite proceeds and the graphite material becomes soft and can be easily processed. Such a graphite material can be used for parts for semiconductor manufacturing apparatuses and electronic component positioning jigs that require fine processing. If the heat treatment temperature is 3400 ° C. or lower, the temperature is far from the sublimation temperature of graphite (about 3650 ° C.). For this reason, since there is little sublimation of the graphite surface, energy is not easily consumed by sublimation, and it can raise temperature easily.
Any method may be used for the graphitization, but the fired body is buried in the furnace, the Acheson furnace that heats the fired body by supplying electricity from the electrode, and the induction furnace that generates heat by flowing an induction current to the fired body by an induction coil. Etc. are available.

<S7:含浸工程>
黒鉛材を高密度化し、固有抵抗を下げ、熱伝導率を上げるために焼成工程と黒鉛化工程の間に含浸工程を加えても良い。含浸工程は、成形体を焼成した焼成体をオートクレーブに入れ、真空引き及び加熱した後、溶融したピッチを導入し、窒素ガスなどの気体で圧力を加え含浸する。ピッチ中から焼成体を取り出し、前記焼成工程と同様の方法で焼成することによって行われる。
含浸工程は1回でも複数回行っても良い。含浸時のオートクレーブの温度はピッチが溶融していれば特に限定されないが、例えば150〜300℃で行うことができる。含浸の圧力は特に限定されないが例えば4MPaで行う。
<S7: impregnation step>
In order to increase the density of the graphite material, lower the specific resistance, and increase the thermal conductivity, an impregnation step may be added between the firing step and the graphitization step. In the impregnation step, the fired body obtained by firing the molded body is placed in an autoclave, evacuated and heated, and then a melted pitch is introduced and impregnated by applying pressure with a gas such as nitrogen gas. The fired body is taken out from the pitch and fired by the same method as in the firing step.
The impregnation step may be performed once or a plurality of times. The temperature of the autoclave at the time of impregnation is not particularly limited as long as the pitch is melted, but can be performed at 150 to 300 ° C., for example. The impregnation pressure is not particularly limited, but is performed at 4 MPa, for example.

図7は、本発明の実施例及び比較例の工程フローを示す図、図8は、本発明の実施例及び比較例の製造条件を示す表、図9は、本発明の実施例及び比較例の方法で得られた黒鉛の測定結果を示す表である。図8において、HGIとは、ハードグローブ指数をさし、コークスの粉砕性指数を示す。(JIS M8801)混練の温度とは、混練時に到達した最高の温度を示す。図8において、Dp50とは、積算%の分布曲線が50%の横軸と交差するポイントの粒子直径を示す。具体的にはレーザー回折式粒度分布計で測定することにより得ることができる。図9においてCTEとは、熱膨張係数50−400℃の範囲における熱膨張係数を示す。   FIG. 7 is a diagram showing the process flow of the examples and comparative examples of the present invention, FIG. 8 is a table showing the manufacturing conditions of the examples and comparative examples of the present invention, and FIG. 9 is the examples and comparative examples of the present invention. It is a table | surface which shows the measurement result of the graphite obtained by this method. In FIG. 8, HGI refers to the hard glove index, and indicates the grindability index of coke. (JIS M8801) The kneading temperature refers to the highest temperature reached during kneading. In FIG. 8, Dp50 indicates the particle diameter at the point where the cumulative distribution curve intersects the horizontal axis of 50%. Specifically, it can be obtained by measuring with a laser diffraction particle size distribution meter. In FIG. 9, CTE indicates a thermal expansion coefficient in a range of 50 to 400 ° C.

(実施例1)
実施例1について説明する。
<S1:混練工程>
熱媒オイルによって210℃に加熱したニーダーに仮焼コークス粉末(第1の炭素質原料)100重量部、ピッチ(疎水性結合材)287重量部を加え混練した。仮焼コークスのDp50は、14.7μm、HGIは、28であった。混練を2時間継続し、混練された混合物を取り出す。混練時、混合物は最高251℃に到達した。
Example 1
Example 1 will be described.
<S1: Kneading step>
100 parts by weight of calcined coke powder (first carbonaceous raw material) and 287 parts by weight of pitch (hydrophobic binder) were added to a kneader heated to 210 ° C. with heat transfer oil and kneaded. The calcined coke had a Dp50 of 14.7 μm and an HGI of 28. Kneading is continued for 2 hours, and the kneaded mixture is taken out. During kneading, the mixture reached a maximum of 251 ° C.

<S2:粉砕工程>
前記混合物を、粉砕機により粉砕し、第2の炭素質原料10を得る。図2に示すように、第2の炭素質原料10はコークスからなる第1の炭素質原料1をピッチからなる疎水性結合材2で結合してなるものである。第2の炭素質原料のDp50は、27.7μmであった。
<S2: Grinding step>
The said mixture is grind | pulverized with a grinder, and the 2nd carbonaceous raw material 10 is obtained. As shown in FIG. 2, the second carbonaceous raw material 10 is formed by bonding the first carbonaceous raw material 1 made of coke with a hydrophobic binder 2 made of pitch. The Dp50 of the second carbonaceous raw material was 27.7 μm.

<S3:造粒工程>
前記第2の炭素質原料10を水系の溶媒に分散させ、親水性結合材20として、PVA(ポリビニルアルコール)を加える。それぞれの比率は、第2の炭素質原料100重量部、水100重量部、PVA1.0重量部であった。また、第2の炭素質原料は、疎水性であるため水系の溶媒への溶解性を高めるために界面活性剤(ポリアルキレングリコール0.1重量部)を加え、撹拌しながらスラリー化した。
このようにして得られたスラリーをスプレードライ法により110℃の乾燥室内に噴霧し造粒した。尚、得られた造粒粉100のうち、気流分級機で15μm以上、振動篩で800μm以下を分級し15〜800μmの造粒粉が得られた。
造粒粉のDp50は203μm、圧縮破壊強度は93.7kPa(0.0937MPa)であった。
<S3: Granulation process>
The second carbonaceous raw material 10 is dispersed in an aqueous solvent, and PVA (polyvinyl alcohol) is added as the hydrophilic binder 20. The respective ratios were 100 parts by weight of the second carbonaceous raw material, 100 parts by weight of water, and 1.0 part by weight of PVA. Further, since the second carbonaceous raw material is hydrophobic, a surfactant (polyalkylene glycol 0.1 part by weight) was added to increase the solubility in an aqueous solvent, and the mixture was slurried with stirring.
The slurry thus obtained was sprayed and granulated in a drying chamber at 110 ° C. by a spray drying method. In addition, among the obtained granulated powder 100, 15 micrometers or more were classified with the airflow classifier and 800 micrometers or less with the vibration sieve, and 15-800 micrometers granulated powder was obtained.
The granulated powder had a Dp50 of 203 μm and a compressive fracture strength of 93.7 kPa (0.0937 MPa).

<S4:成形工程>
前記造粒工程で得られた造粒粉100を図4(a)及び(b)に示すように、内寸900×450×高さ1400mmのラバーケース(ゴムバック)31に充填し8時間放置した。尚、実施例1では、放置後造粒粉100の沈み込みは見られず、造粒粉の重力による圧縮はなかった。放置後、ラバーケース31の上部の造粒粉100をならしたのちゴムの蓋をして密封し100MPaの圧力でCIP成形した。(図5(a)(b)(c))成形後、ラバーケース31を開け、成形体40を得た。
<S4: Molding process>
As shown in FIGS. 4A and 4B, the granulated powder 100 obtained in the granulation step is filled in a rubber case (rubber bag) 31 having an inner size of 900 × 450 × height of 1400 mm and left for 8 hours. did. In Example 1, the granulated powder 100 did not sink after standing, and the granulated powder was not compressed by gravity. After standing, the granulated powder 100 on the upper part of the rubber case 31 was smoothed, sealed with a rubber lid, and CIP molded at a pressure of 100 MPa. (FIG. 5 (a) (b) (c)) After shaping | molding, the rubber case 31 was opened and the molded object 40 was obtained.

<S5:焼成工程>
前記工程で得られた成形体を、ステンレス製の焼成缶に詰め、粒子径が5mm以下のコークス粒からなる詰め粉で覆い、さらに表層を揮発性の生コークスで覆った後、ステンレス製の蓋をして900℃で焼成した。昇温は28日間かけて室温(25℃)から昇温し、900℃で16時間保持した。
<S5: Firing step>
The molded body obtained in the above step is packed in a stainless steel baking can, covered with a packing powder made of coke particles having a particle diameter of 5 mm or less, and further, the surface layer is covered with volatile raw coke, and then a stainless steel lid And fired at 900 ° C. The temperature was raised from room temperature (25 ° C.) over 28 days and held at 900 ° C. for 16 hours.

<S6:黒鉛化工程>
前記焼成工程で得られた焼成体を、アチェソン炉に入れ、2500℃に加熱し、黒鉛化した。室温(約25℃)〜1500℃までは、5日間かけ概ね一定の速度で昇温し、1500℃〜2500℃は出力を上げ2日間で昇温した。
(実施例2)
次に実施例2について説明する。
<S1:混練工程>
熱媒オイルによって210℃に加熱したニーダーに仮焼コークス粉末(第1の炭素質原料)100重量部、ピッチ(疎水性結合材)287重量部を加え混練した。仮焼コークスのDp50は、14.7μm、HGIは、28であった。混練を2時間継続し、混練された混合物を取り出す。混練時、混合物は最高261℃に到達した。
<S6: Graphitization step>
The fired body obtained in the firing step was placed in an Acheson furnace and heated to 2500 ° C. to graphitize. From room temperature (about 25 ° C.) to 1500 ° C., the temperature was raised at a substantially constant rate over 5 days, and from 1500 ° C. to 2500 ° C., the output was increased and the temperature was raised in 2 days.
(Example 2)
Next, Example 2 will be described.
<S1: Kneading step>
100 parts by weight of calcined coke powder (first carbonaceous raw material) and 287 parts by weight of pitch (hydrophobic binder) were added to a kneader heated to 210 ° C. with heat transfer oil and kneaded. The calcined coke had a Dp50 of 14.7 μm and an HGI of 28. Kneading is continued for 2 hours, and the kneaded mixture is taken out. During kneading, the mixture reached a maximum of 261 ° C.

<S2:粉砕工程>
前記混合物を、粉砕機により粉砕し、第2の炭素質原料10を得る。図2に示すように、第2の炭素質原料10はコークスからなる第1の炭素質原料1をピッチからなる疎水性結合材2で結合してなるものである。第2の炭素質原料のDp50は、28.2μmであった。
<S2: Grinding step>
The said mixture is grind | pulverized with a grinder, and the 2nd carbonaceous raw material 10 is obtained. As shown in FIG. 2, the second carbonaceous raw material 10 is formed by bonding the first carbonaceous raw material 1 made of coke with a hydrophobic binder 2 made of pitch. The Dp50 of the second carbonaceous raw material was 28.2 μm.

<S3:造粒工程>
前記第2の炭素質原料10を水系の溶媒に分散させ、親水性結合材20として、PVA
(ポリビニルアルコール)を加える。それぞれの比率は、第2の炭素質原料100重量部、水100重量部、PVA1.0重量部であった。また、第2の炭素質原料は、疎水性であるため水系の溶媒への溶解性を高めるために界面活性剤(ポリアルキレングリコール0.1重量部)を加え、撹拌しながらスラリー化した。
このようにして得られたスラリーをスプレードライ法により110℃の乾燥室内に噴霧し造粒した。尚、得られた造粒粉100のうち、気流分級機で15μm以上、振動篩で800μm以下を分級し15〜800μmの造粒粉が得られた。
造粒粉のDp50は、261μm、圧縮破壊強度は95.7kPa(0.0957MPa)であった。
<S3: Granulation process>
The second carbonaceous raw material 10 is dispersed in an aqueous solvent, and the hydrophilic binder 20 is used as a PVA.
Add (polyvinyl alcohol). The respective ratios were 100 parts by weight of the second carbonaceous raw material, 100 parts by weight of water, and 1.0 part by weight of PVA. Further, since the second carbonaceous raw material is hydrophobic, a surfactant (polyalkylene glycol 0.1 part by weight) was added to increase the solubility in an aqueous solvent, and the mixture was slurried with stirring.
The slurry thus obtained was sprayed and granulated in a drying chamber at 110 ° C. by a spray drying method. In addition, among the obtained granulated powder 100, 15 micrometers or more were classified with the airflow classifier and 800 micrometers or less with the vibration sieve, and 15-800 micrometers granulated powder was obtained.
The granulated powder had a Dp50 of 261 μm and a compressive fracture strength of 95.7 kPa (0.0957 MPa).

<S4:成形工程>
前記造粒工程で得られた造粒粉100を図4(a)及び(b)に示すように、内寸900×450×高さ1400mmのラバーケース(ゴムバック)31に充填し8時間放置した。尚、実施例2では、放置後造粒粉100の沈み込みは見られず、造粒粉の重力による圧縮はなかった。放置後、ラバーケース31の上部の造粒粉100をならしたのちゴムの蓋をして密封し100MPaの圧力でCIP成形した。(図5(a)(b)(c))成形後、ラバーケース31を開け、成形体40を得た。
<S4: Molding process>
As shown in FIGS. 4A and 4B, the granulated powder 100 obtained in the granulation step is filled in a rubber case (rubber bag) 31 having an inner size of 900 × 450 × height of 1400 mm and left for 8 hours. did. In Example 2, the granulated powder 100 did not sink after standing, and the granulated powder was not compressed by gravity. After standing, the granulated powder 100 on the upper part of the rubber case 31 was smoothed, sealed with a rubber lid, and CIP molded at a pressure of 100 MPa. (FIG. 5 (a) (b) (c)) After shaping | molding, the rubber case 31 was opened and the molded object 40 was obtained.

<S5:焼成工程>
前記工程で得られた成形体を、ステンレス製の焼成缶に詰め、粒子径が5mm以下のコークス粒からなる詰め粉で覆い、さらに表層を揮発性の生コークスで覆った後、ステンレス製の蓋をして900℃で焼成した。昇温は28日間かけて室温(25℃)から昇温し、900℃で16時間保持した。
<S5: Firing step>
The molded body obtained in the above step is packed in a stainless steel baking can, covered with a packing powder made of coke particles having a particle diameter of 5 mm or less, and further, the surface layer is covered with volatile raw coke, and then a stainless steel lid And fired at 900 ° C. The temperature was raised from room temperature (25 ° C.) over 28 days and held at 900 ° C. for 16 hours.

<S6:黒鉛化工程>
前記焼成工程で得られた焼成体を、アチェソン炉に入れ、2500℃に加熱し、黒鉛化した。室温(約25℃)〜1500℃までは、5日間かけ概ね一定の速度で昇温し、1500℃〜2500℃は出力を上げ2日間で昇温した。
(実施例3)
次に実施例3について説明する。
<S1:混練工程>
熱媒オイルによって210℃に加熱したニーダーに仮焼コークス粉末(第1の炭素質原料)100重量部、ピッチ(疎水性結合材)287重量部を加え混練した。仮焼コークスのDp50は、15.2μm、HGIは、34であった。混練を2時間継続し、混練された混合物を取り出す。混練時、混合物は最高253℃に到達した。
<S6: Graphitization step>
The fired body obtained in the firing step was placed in an Acheson furnace and heated to 2500 ° C. to graphitize. From room temperature (about 25 ° C.) to 1500 ° C., the temperature was raised at a substantially constant rate over 5 days, and from 1500 ° C. to 2500 ° C., the output was increased and the temperature was raised in 2 days.
(Example 3)
Next, Example 3 will be described.
<S1: Kneading step>
100 parts by weight of calcined coke powder (first carbonaceous raw material) and 287 parts by weight of pitch (hydrophobic binder) were added to a kneader heated to 210 ° C. with heat transfer oil and kneaded. The calcined coke had a Dp50 of 15.2 μm and an HGI of 34. Kneading is continued for 2 hours, and the kneaded mixture is taken out. Upon kneading, the mixture reached a maximum of 253 ° C.

<S2:粉砕工程>
前記混合物を、粉砕機により粉砕し、第2の炭素質原料10を得る。図2に示すように、第2の炭素質原料10はコークスからなる第1の炭素質原料1をピッチからなる疎水性結合材2で結合してなるものである。第2の炭素質原料のDp50は、26.7μmであった。
<S2: Grinding step>
The said mixture is grind | pulverized with a grinder, and the 2nd carbonaceous raw material 10 is obtained. As shown in FIG. 2, the second carbonaceous raw material 10 is formed by bonding the first carbonaceous raw material 1 made of coke with a hydrophobic binder 2 made of pitch. The Dp50 of the second carbonaceous raw material was 26.7 μm.

<S3:造粒工程>
前記第2の炭素質原料10を水系の溶媒に分散させ、親水性結合材20として、PVA(ポリビニルアルコール)を加える。それぞれの比率は、第2の炭素質原料100重量部、水100重量部、PVA1.0重量部であった。また、第2の炭素質原料は、疎水性であるため水系の溶媒への溶解性を高めるために界面活性剤(ポリアルキレングリコール0.1重量部)を加え、撹拌しながらスラリー化した。
このようにして得られたスラリーをスプレードライ法により110℃の乾燥室内に噴霧し造粒した。尚、得られた造粒粉100のうち、気流分級機で15μm以上、振動篩で800μm以下を分級し15〜800μmの造粒粉が得られた。
造粒粉のDp50は、231μm、圧縮破壊強度は96.2kPa(0.0962MPa)であった。
<S3: Granulation process>
The second carbonaceous raw material 10 is dispersed in an aqueous solvent, and PVA (polyvinyl alcohol) is added as the hydrophilic binder 20. The respective ratios were 100 parts by weight of the second carbonaceous raw material, 100 parts by weight of water, and 1.0 part by weight of PVA. Further, since the second carbonaceous raw material is hydrophobic, a surfactant (polyalkylene glycol 0.1 part by weight) was added to increase the solubility in an aqueous solvent, and the mixture was slurried with stirring.
The slurry thus obtained was sprayed and granulated in a drying chamber at 110 ° C. by a spray drying method. In addition, among the obtained granulated powder 100, 15 micrometers or more were classified with the airflow classifier and 800 micrometers or less with the vibration sieve, and 15-800 micrometers granulated powder was obtained.
The granulated powder had a Dp50 of 231 μm and a compressive fracture strength of 96.2 kPa (0.0962 MPa).

<S4:成形工程>
前記造粒工程で得られた造粒粉100を図4(a)及び(b)に示すように、内寸900×450×高さ1400mmのラバーケース(ゴムバック)31に充填し8時間放置した。尚、実施例3では、放置後造粒粉100の沈み込みは見られず、造粒粉の重力による圧縮はなかった。放置後、ラバーケース31の上部の造粒粉100をならしたのちゴムの蓋をして密封し100MPaの圧力でCIP成形した。(図5(a)(b)(c))成形後、ラバーケース31を開け、成形体40を得た。
<S4: Molding process>
As shown in FIGS. 4A and 4B, the granulated powder 100 obtained in the granulation step is filled in a rubber case (rubber bag) 31 having an inner size of 900 × 450 × height of 1400 mm and left for 8 hours. did. In Example 3, the granulated powder 100 did not sink after standing, and the granulated powder was not compressed by gravity. After standing, the granulated powder 100 on the upper part of the rubber case 31 was smoothed, sealed with a rubber lid, and CIP molded at a pressure of 100 MPa. (FIG. 5 (a) (b) (c)) After shaping | molding, the rubber case 31 was opened and the molded object 40 was obtained.

<S5:焼成工程>
前記工程で得られた成形体を、ステンレス製の焼成缶に詰め、粒子径が5mm以下のコークス粒からなる詰め粉で覆い、さらに表層を揮発性の生コークスで覆った後、ステンレス製の蓋をして900℃で焼成した。昇温は28日間かけて室温(25℃)から昇温し、900℃で16時間保持した。
<S5: Firing step>
The molded body obtained in the above step is packed in a stainless steel baking can, covered with a packing powder made of coke particles having a particle diameter of 5 mm or less, and further, the surface layer is covered with volatile raw coke, and then a stainless steel lid And fired at 900 ° C. The temperature was raised from room temperature (25 ° C.) over 28 days and held at 900 ° C. for 16 hours.

<S6:黒鉛化工程>
前記焼成工程で得られた焼成体を、アチェソン炉に入れ、2500℃に加熱し、黒鉛化した。室温(約25℃)〜1500℃までは、5日間かけ概ね一定の速度で昇温し、1500℃〜2500℃は出力を上げ2日間で昇温した。
<S6: Graphitization step>
The fired body obtained in the firing step was placed in an Acheson furnace and heated to 2500 ° C. to graphitize. From room temperature (about 25 ° C.) to 1500 ° C., the temperature was raised at a substantially constant rate over 5 days, and from 1500 ° C. to 2500 ° C., the output was increased and the temperature was raised in 2 days.

次に比較例について説明する。
比較例1,2では水系の溶媒を用いた造粒工程(実施例1〜3の造粒工程S3)を省略した。他の工程については前記実施の形態と同様である。
Next, a comparative example will be described.
In Comparative Examples 1 and 2, the granulation step using the aqueous solvent (granulation step S3 of Examples 1 to 3) was omitted. Other steps are the same as in the above embodiment.

(比較例1)
次に本発明の比較例1について説明する。
<S1:混練工程>
熱媒オイルによって210℃に加熱したニーダーに仮焼コークス(第1の炭素質原料)100重量部、ピッチ(疎水性結合材)287重量部を加え混練した。仮焼コークスのDp50は、14.1μm、HGIは、31であった。混練を2時間程度継続し、混練された混合物を取り出した。混練時、混合物は最高257℃に到達した。この混練工程S1は実施例と同様である。
(Comparative Example 1)
Next, Comparative Example 1 of the present invention will be described.
<S1: Kneading step>
To a kneader heated to 210 ° C. with a heat transfer oil, 100 parts by weight of calcined coke (first carbonaceous raw material) and 287 parts by weight of pitch (hydrophobic binder) were added and kneaded. The calcined coke had a Dp50 of 14.1 μm and an HGI of 31. Kneading was continued for about 2 hours, and the kneaded mixture was taken out. During kneading, the mixture reached a maximum of 257 ° C. This kneading step S1 is the same as in the example.

<S2:粉砕工程>
前記混合物を、粉砕機により粉砕し、第2の炭素質原料10を得る。図2に示すように、第2の炭素質原料10はコークスからなる第1の炭素質原料1をピッチからなる疎水性結合材2で結合してなるものである。第2の炭素質原料のDp50は、25.6μmであった。圧縮破壊強度は、圧縮応力に対する充填率の急激な変化がなく検出出来なかった。
<S2: Grinding step>
The said mixture is grind | pulverized with a grinder, and the 2nd carbonaceous raw material 10 is obtained. As shown in FIG. 2, the second carbonaceous raw material 10 is formed by bonding the first carbonaceous raw material 1 made of coke with a hydrophobic binder 2 made of pitch. The Dp50 of the second carbonaceous raw material was 25.6 μm. The compressive fracture strength could not be detected because there was no sudden change in the filling rate with respect to the compressive stress.

<S4:成形工程>
前記粉砕工程で得られた第2の炭素質原料10を図11に示すように、内寸900×450×高さ1400mmのラバーケース(ゴムバック)31に充填し8時間放置した。尚、放置後充填された第2の炭素質原料10は約100mmの沈下が見られた。ラバーケース下部に充填された第2の炭素質原料10が、重力によって圧縮されたためと考えられる。放置後、ラバーケース31の上部の第2の炭素質原料10をならしたのちゴムの蓋をして密封し100MPaの圧力でCIP成形した。(図13(a)(b)(c))成形後、ラバーケース31を開け、成形体40を得た。
<S4: Molding process>
As shown in FIG. 11, the second carbonaceous raw material 10 obtained in the pulverization step was filled in a rubber case (rubber bag) 31 having an inner size of 900 × 450 × height of 1400 mm and left for 8 hours. In addition, the second carbonaceous raw material 10 filled after being allowed to stand was found to sink about 100 mm. This is probably because the second carbonaceous raw material 10 filled in the lower part of the rubber case was compressed by gravity. After standing, the second carbonaceous raw material 10 at the top of the rubber case 31 was leveled, sealed with a rubber lid, and CIP molded at a pressure of 100 MPa. (FIG. 13 (a) (b) (c)) After shaping | molding, the rubber case 31 was opened and the molded object 40 was obtained.

<S5:焼成工程>
前記工程で得られた成形体を、ステンレス製の焼成缶に詰め、粒子径が5mm以下のコークス粒からなる詰め粉で覆い、さらに表層を揮発性の生コークスで覆った後、ステンレス製の蓋をして900℃で焼成した。昇温は28日間かけて室温(25℃)から昇温し、900℃で16時間保持した。
<S5: Firing step>
The molded body obtained in the above step is packed in a stainless steel baking can, covered with a packing powder made of coke particles having a particle diameter of 5 mm or less, and further, the surface layer is covered with volatile raw coke, and then a stainless steel lid And fired at 900 ° C. The temperature was raised from room temperature (25 ° C.) over 28 days and held at 900 ° C. for 16 hours.

<S6:黒鉛化工程>
前記焼成工程で得られた焼成体を、アチェソン炉に入れ、2500℃に加熱し、黒鉛化した。室温(約25℃)〜1500℃までは、5日間かけ概ね一定の速度で昇温し、1500℃〜2500℃は出力を上げ、2日間で昇温した。この黒鉛化工程S6は実施例1と同様である。
<S6: Graphitization step>
The fired body obtained in the firing step was placed in an Acheson furnace and heated to 2500 ° C. to graphitize. From room temperature (about 25 ° C.) to 1500 ° C., the temperature was raised at a substantially constant rate over 5 days, and the output increased from 1500 ° C. to 2500 ° C. over 2 days. This graphitization step S6 is the same as that in Example 1.

(比較例2)
次に本発明の比較例2について説明する。
<S1:混練工程>
熱媒オイルによって210℃に加熱したニーダーに仮焼コークス(第1の炭素質原料)100重量部、ピッチ(疎水性結合材)287重量部を加え混練した。仮焼コークスのDp50は、14.5μm、HGIは、25であった。混練を2時間程度継続し、混練された混合物を取り出した。混練時、混合物は最高255℃に到達した。この混練工程S1は実施例と同様である。
(Comparative Example 2)
Next, Comparative Example 2 of the present invention will be described.
<S1: Kneading step>
To a kneader heated to 210 ° C. with a heat transfer oil, 100 parts by weight of calcined coke (first carbonaceous raw material) and 287 parts by weight of pitch (hydrophobic binder) were added and kneaded. The calcined coke had a Dp50 of 14.5 μm and an HGI of 25. Kneading was continued for about 2 hours, and the kneaded mixture was taken out. Upon kneading, the mixture reached a maximum of 255 ° C. This kneading step S1 is the same as in the example.

<S2:粉砕工程>
前記混合物を、粉砕機により粉砕し、第2の炭素質原料10を得る。図2に示すように、第2の炭素質原料10はコークスからなる第1の炭素質原料1をピッチからなる疎水性結合材2で結合してなるものである。第2の炭素質原料のDp50は、26.3μmであった。圧縮破壊強度は、圧縮応力に対する充填率の急激な変化がなく検出出来なかった。
<S2: Grinding step>
The said mixture is grind | pulverized with a grinder, and the 2nd carbonaceous raw material 10 is obtained. As shown in FIG. 2, the second carbonaceous raw material 10 is formed by bonding the first carbonaceous raw material 1 made of coke with a hydrophobic binder 2 made of pitch. The Dp50 of the second carbonaceous raw material was 26.3 μm. The compressive fracture strength could not be detected because there was no sudden change in the filling rate with respect to the compressive stress.

<S4:成形工程>
前記粉砕工程で得られた第2の炭素質原料10を図11に示すように、内寸Φ500×高さ1500mmのラバーケース(ゴムバック)31に充填し8時間放置した。尚、放置後充填された第2の炭素質原料10は約100mmの沈下が見られた。ラバーケース下部に充填された第2の炭素質原料10が、重力によって圧縮されたためと考えられる。放置後、ラバーケース31の上部の第2の炭素質原料10をならしたのちゴムの蓋をして密封し100MPaの圧力でCIP成形した。(図13(a)(b)(c))成形後、ラバーケース31を開け、成形体40を得た。
<S4: Molding process>
As shown in FIG. 11, the second carbonaceous raw material 10 obtained in the pulverization step was filled in a rubber case (rubber bag) 31 having an inner size of Φ500 × height of 1500 mm and left for 8 hours. In addition, the second carbonaceous raw material 10 filled after being allowed to stand was found to sink about 100 mm. This is probably because the second carbonaceous raw material 10 filled in the lower part of the rubber case was compressed by gravity. After standing, the second carbonaceous raw material 10 at the top of the rubber case 31 was leveled, sealed with a rubber lid, and CIP molded at a pressure of 100 MPa. (FIG. 13 (a) (b) (c)) After shaping | molding, the rubber case 31 was opened and the molded object 40 was obtained.

<S5:焼成工程>
前記工程で得られた成形体を、ステンレス製の焼成缶に詰め、粒子径が5mm以下のコークス粒からなる詰め粉で覆い、さらに表層を揮発性の生コークスで覆った後、ステンレス製の蓋をして900℃で焼成した。昇温は28日間かけて室温(25℃)から昇温し、900℃で16時間保持した。
<S5: Firing step>
The molded body obtained in the above step is packed in a stainless steel baking can, covered with a packing powder made of coke particles having a particle diameter of 5 mm or less, and further, the surface layer is covered with volatile raw coke, and then a stainless steel lid And fired at 900 ° C. The temperature was raised from room temperature (25 ° C.) over 28 days and held at 900 ° C. for 16 hours.

<S6:黒鉛化工程>
前記焼成工程で得られた焼成体を、アチェソン炉に入れ、2500℃に加熱し、黒鉛化した。室温(約25℃)〜1500℃までは、5日間かけ概ね一定の速度で昇温し、1500℃〜2500℃は出力を上げ、2日間で昇温した。この黒鉛化工程S6は実施例1と同様である。
<S6: Graphitization step>
The fired body obtained in the firing step was placed in an Acheson furnace and heated to 2500 ° C. to graphitize. From room temperature (about 25 ° C.) to 1500 ° C., the temperature was raised at a substantially constant rate over 5 days, and the output increased from 1500 ° C. to 2500 ° C. over 2 days. This graphitization step S6 is the same as that in Example 1.

(比較例3)
次に本発明の比較例3について説明する。
比較例3では水系の溶媒を用い,第1の炭素質原料を水系の溶媒と親水性結合材20を用いて造粒する造粒工程と、疎水性結造材を加え混練し混合物を得る混練工程S1と、粉砕工程S2、成形工程S4、焼成工程S5、黒鉛化工程S6とからなる。すなわち水系の溶媒と、親水性結合材20とを用いて造粒する造粒工程は、混練工程S1の前の第1の炭素質原料を造粒する工程である。混練工程の後には、造粒工程はない。
つまり、実施例1〜3とは造粒工程S3の代わりに第1の炭素質原料の造粒工程を行った後に混練工程S1、粉砕工程S2を行うことが異なる。比較例1及び2は、造粒工程S3を省略したのに対して、比較例は第1の炭素質原料の造粒工程を最初に行う点が異なる。
(Comparative Example 3)
Next, Comparative Example 3 of the present invention will be described.
In Comparative Example 3, an aqueous solvent is used, a granulation step of granulating the first carbonaceous raw material using an aqueous solvent and the hydrophilic binder 20, and kneading to add a hydrophobic binder and knead to obtain a mixture It consists of a step S1, a pulverizing step S2, a forming step S4, a firing step S5, and a graphitization step S6. That is, the granulation step of granulating using the aqueous solvent and the hydrophilic binder 20 is a step of granulating the first carbonaceous raw material before the kneading step S1. There is no granulation step after the kneading step.
That is, it differs from Examples 1 to 3 in that the kneading step S1 and the pulverizing step S2 are performed after performing the granulating step of the first carbonaceous raw material instead of the granulating step S3. In Comparative Examples 1 and 2, the granulating step S3 is omitted, whereas the Comparative Example is different in that the first carbonaceous raw material is granulated first.

<造粒工程>
第1の炭素質原料を水系の溶媒に分散させ、親水性結合材20として、PVA(ポリビニルアルコール)を加える。それぞれの比率は、仮焼コークス(第1の炭素質原料)100重量部、水100重量部、PVA1.0重量部であった。また、第1の炭素質原料は、疎水性であるため溶解性を高めるために界面活性剤(ポリアルキレングリコール0.1重量部)を加えスラリー化した。
こうして得られたスラリーを110℃の装置内にスプレードライ法により噴霧し、造粒し造粒された第1の炭素質原料を得た。造粒前の仮焼コークスのDp50は、14.4μm、HGIは、31であった。
<Granulation process>
The first carbonaceous raw material is dispersed in an aqueous solvent, and PVA (polyvinyl alcohol) is added as the hydrophilic binder 20. Each ratio was 100 parts by weight of calcined coke (first carbonaceous raw material), 100 parts by weight of water, and 1.0 part by weight of PVA. Further, since the first carbonaceous raw material is hydrophobic, a surfactant (0.1 parts by weight of polyalkylene glycol) was added to form a slurry in order to improve solubility.
The slurry thus obtained was sprayed into an apparatus at 110 ° C. by a spray drying method to obtain a granulated first carbonaceous raw material. The pre-granulated calcined coke had a Dp50 of 14.4 μm and an HGI of 31.

<混練工程>
熱媒オイルによって210℃に加熱したニーダーに造粒された第1の炭素質原料100重量部、ピッチ(疎水性結合材)287重量部を加え混練した。混練を2時間程度継続し内容物を取り出す。混練時、混合物は最高255℃に到達した。
<Kneading process>
100 parts by weight of the first carbonaceous raw material granulated in a kneader heated to 210 ° C. with heat transfer oil and 287 parts by weight of pitch (hydrophobic binder) were added and kneaded. Kneading is continued for about 2 hours and the contents are taken out. Upon kneading, the mixture reached a maximum of 255 ° C.

<S2:粉砕工程>
前記混合物を、粉砕機により粉砕し、疎水性結合材で結合された炭素質原料を得る。疎水性結合材で結合された炭素質原料は、本比較例の炭素質原料は親水性結合材20で造粒されたコークスからなる第1の炭素質原料1をピッチからなる疎水性結合材で結合してなるものである。疎水性結合材で結合された炭素質原料のDp50は、27.2μmであった。圧縮破壊強度は、圧縮応力に対する充填率の急激な変化がなく検出出来なかった。
<S2: Grinding step>
The said mixture is grind | pulverized with a grinder, and the carbonaceous raw material couple | bonded with the hydrophobic binder is obtained. The carbonaceous raw material bonded with the hydrophobic binder is the hydrophobic carbonaceous material of the comparative example is the first carbonaceous raw material 1 made of coke granulated with the hydrophilic binder 20 made of pitch. It is a combination. The Dp50 of the carbonaceous raw material bonded with the hydrophobic binder was 27.2 μm. The compressive fracture strength could not be detected because there was no sudden change in the filling rate with respect to the compressive stress.

<S4:成形工程>
前記粉砕工程で得られた疎水性結合材で結合された炭素質原料を、内寸Φ500×高さ1500mmのラバーケース(ゴムバック)31に充填し8時間放置した。尚、放置後充填された疎水性結合材で結合された炭素質原料は約100mmの沈下が見られた。ラバーケース下部に充填された疎水性結合材で結合された炭素質原料が、重力によって圧縮されたためと考えられる。放置後、ラバーケース31の上部の造粒粉100をならしたのちゴムの蓋をして密封し100MPaの圧力でCIP成形した。(図13(a)(b)(c))CIP成形後ラバーケース31を開け、成形体40を得た。
<S4: Molding process>
The carbonaceous raw material bound by the hydrophobic binder obtained in the pulverization step was filled in a rubber case (rubber bag) 31 having an inner size of Φ500 × height of 1500 mm and left for 8 hours. In addition, the carbonaceous raw material bound by the hydrophobic binder filled after being allowed to stand was found to sink about 100 mm. This is probably because the carbonaceous raw material bound by the hydrophobic binder filled in the lower part of the rubber case was compressed by gravity. After standing, the granulated powder 100 on the upper part of the rubber case 31 was smoothed, sealed with a rubber lid, and CIP molded at a pressure of 100 MPa. (FIGS. 13A, 13B, and 13C) After forming the CIP, the rubber case 31 was opened to obtain a molded body 40.

<S5:焼成工程>
前記工程で得られた成形体を、ステンレス製の焼成缶に詰め、粒子径5mm以下のコークス粒からなる詰め粉で覆い、さらに表層を揮発性の生コークスで覆った後、ステンレス製の蓋をして900℃で焼成した。昇温は28日間かけて室温(25℃)から昇温し、900℃で16時間保持した。
<S5: Firing step>
The molded body obtained in the above step is packed in a stainless steel baking can, covered with packing powder made of coke particles having a particle diameter of 5 mm or less, and the surface layer is covered with volatile raw coke, and then a stainless steel lid is covered. And calcined at 900 ° C. The temperature was raised from room temperature (25 ° C.) over 28 days and held at 900 ° C. for 16 hours.

<S6:黒鉛化工程>
前記焼成工程で得られた焼成体をアチェソン炉に入れ、2500℃に加熱し、黒鉛化した。室温(約25℃)〜1500℃までは、5日間かけ概ね一定の速度で昇温し、1500℃〜2500℃は出力を上げ2日間で昇温した。
<S6: Graphitization step>
The fired body obtained in the firing step was placed in an Acheson furnace and heated to 2500 ° C. to graphitize. From room temperature (about 25 ° C.) to 1500 ° C., the temperature was raised at a substantially constant rate over 5 days, and from 1500 ° C. to 2500 ° C., the output was increased and the temperature was raised in 2 days.

実施例1〜3及び比較例1〜3の各条件を図8の表にまとめて示す。
このようにして得られた、黒鉛材に対し、黒鉛材の上、中又は下の位置におけるかさ比重、ショア硬度、曲げ強度、固有抵抗、CTEを測定した結果を図9の表にまとめて示す。
The conditions of Examples 1 to 3 and Comparative Examples 1 to 3 are collectively shown in the table of FIG.
The results obtained by measuring the bulk specific gravity, shore hardness, bending strength, specific resistance, and CTE at the upper, middle or lower positions of the graphite material are summarized in the table of FIG. 9 for the graphite material thus obtained. .

なお、得られた黒鉛材の上、中又は下の位置からΦ8×80mmの試料を切り出して評価用のサンプルとした。Φ8mm×80mmの各試料の、直径、長さ、質量から試料のかさ密度を測定した。   In addition, the sample of (PHI) 8 * 80mm was cut out from the upper, middle, or lower position of the obtained graphite material, and it was set as the sample for evaluation. The bulk density of each sample was measured from the diameter, length, and mass of each sample of Φ8 mm × 80 mm.

次に前記の試料を、ショア硬度計にてショア硬度を測定した。
次に前記の各試料(Φ8mm×80mm)の長さ方向に1Aの定電流を流し、試料中央付近の1cm間の電圧降下を測定し、試料の固有抵抗を測定した。固有抵抗は下記式から求めた。
固有抵抗=(電圧降下×断面積)/(電流×電圧降下の測定距離)
Next, the Shore hardness of the sample was measured with a Shore hardness meter.
Next, a constant current of 1 A was passed in the length direction of each sample (Φ8 mm × 80 mm), the voltage drop between 1 cm near the center of the sample was measured, and the specific resistance of the sample was measured. The specific resistance was obtained from the following formula.
Specific resistance = (voltage drop x cross-sectional area) / (current x voltage drop measurement distance)

株式会社島津製作所製オートグラフAG−IS(5kN)を使用し、3点曲げ強度を測定した。   Using an autograph AG-IS (5 kN) manufactured by Shimadzu Corporation, the three-point bending strength was measured.

またCTE(熱膨張率)は次のようにして測定した。
前記の各試料(Φ8mm×80mm)から、Φ4mm×20mmの試料を加工し、リガク電機製熱膨張計(DLY−1500)を使用し測定した。測定範囲は50〜400℃であり、この間の伸び率を350℃(400−50℃)で除することによって算出した。
実施例1〜3及び比較例1〜3の各位置の固有抵抗の異方比はそれぞれ、以下のとおりである。
実施例1の上部の固有抵抗は、AG方向で1.44mΩcm、WG方向で1.43mΩcmであり、異方比=最大値(1.44)/最小値(1.43)−1=0.7%
実施例1の下部の固有抵抗は、AG方向で1.40mΩcm、WG方向で1.42mΩcmであり、異方比=最大値(1.42)/最小値(1.40)−1=1.4%
実施例2の上部の固有抵抗は、AG方向で1.43mΩcm、WG方向で1.43mΩcmであり、異方比=最大値(1.43)/最小値(1.43)−1=0.0%
実施例2の下部の固有抵抗は、AG方向で1.42mΩcm、WG方向で1.45mΩcmであり、異方比=最大値(1.45)/最小値(1.42)−1=2.1%
実施例3の上部の固有抵抗は、AG方向で1.20mΩcm、WG方向で1.19mΩcmであり、異方比=最大値(1.20)/最小値(1.19)−1=0.8%
実施例3の中央部の固有抵抗は、AG方向で1.15mΩcm、WG方向で1.17mΩcmであり、異方比=最大値(1.17)/最小値(1.15)−1=1.7%
実施例3の下部の固有抵抗は、AG方向で1.20mΩcm、WG方向で1.21mΩcmであり、異方比=最大値(1.21)/最小値(1.20)−1=1.8%
比較例1の上部の固有抵抗は、AG方向で1.26mΩcm、WG方向で1.23mΩcmであり、異方比=最大値(1.26)/最小値(1.23)−1=2.4%
比較例1の中央部の固有抵抗は、AG方向で1.25mΩcm、WG方向で1.18mΩcmであり、異方比=最大値(1.25)/最小値(1.18)−1=5.9%
比較例1の下部の固有抵抗は、AG方向で1.33mΩcm、WG方向で1.17mΩcmであり、異方比=最大値(1.33)/最小値(1.17)−1=13.7%
比較例2の上部の固有抵抗は、AG方向で1.30mΩcm、WG方向で1.23mΩcmであり、異方比=最大値(1.30)/最小値(1.23)−1=5.7%
比較例2の中央部の固有抵抗は、AG方向で1.27mΩcm、WG方向で1.16mΩcmであり、異方比=最大値(1.27)/最小値(1.16)−1=9.5%
比較例2の下部の固有抵抗は、AG方向で1.34mΩcm、WG方向で1.13mΩcmであり、異方比=最大値(1.34)/最小値(1.13)−1=18.6%
比較例3の上部の固有抵抗は、AG方向で1.30mΩcm、WG方向で1.23mΩcmであり、異方比=最大値(1.30)/最小値(1.23)−1=5.7%
比較例3の下部の固有抵抗は、AG方向で1.34mΩcm、WG方向で1.13mΩcmであり、異方比=最大値(1.34)/最小値(1.13)−1=18.6%
また、実施例1〜3及び比較例1〜3の各位置の熱膨張係数の異方比はそれぞれ以下のとおりである。
実施例1の上部の熱膨張係数は、AG方向で5.10×10-6℃、WG方向で5.09×10-6℃であり、異方比=最大値(5.10)/最小値(5.09)−1=0.2%
実施例1の下部の熱膨張係数は、AG方向で5.08×10-6℃、WG方向で5.23×10-6℃であり、異方比=最大値(5.23)/最小値(5.08)−1=3.0%
実施例2の上部の熱膨張係数は、AG方向で5.08×10-6℃、WG方向で5.23×10-6℃であり、異方比=最大値(5.23)/最小値(5.08)−1=3.0%
実施例2の下部の熱膨張係数は、AG方向で5.16×10-6℃、WG方向で5.30×10-6℃であり、異方比=最大値(5.30)/最小値(5.16)−1=2.7%
実施例3の上部の熱膨張係数は、AG方向で4.51×10-6℃、WG方向で4.35×10-6℃であり、異方比=最大値(4.51)/最小値(4.35)−1=3.7%
実施例3の中央部の熱膨張係数は、AG方向で4.34×10-6℃、WG方向で4.45×10-6℃であり、異方比=最大値(4.45)/最小値(4.34)−1=2.5%
実施例3の下部の熱膨張係数は、AG方向で4.49×10-6℃、WG方向で4.37×10-6℃であり、異方比=最大値(4.49)/最小値(4.37)−1=2.7%
比較例1の上部の熱膨張係数は、AG方向で4.10×10-6℃、WG方向で3.82×10-6℃であり、異方比=最大値(4.10)/最小値(3.82)−1=7.3%
比較例1の中央部の熱膨張係数は、AG方向で4.30×10-6℃、WG方向で3.86×10-6℃であり、異方比=最大値(4.30)/最小値(3.86)−1=11.4%
比較例1の下部の熱膨張係数は、AG方向で4.43×10-6℃、WG方向で3.75×10-6℃であり、異方比=最大値(4.43)/最小値(3.75)−1=18.1%
比較例2の上部の熱膨張係数は、AG方向で4.34×10-6℃、WG方向で4.09×10-6℃であり、異方比=最大値(4.34)/最小値(4.09)−1=6.1%
比較例2の中央部の熱膨張係数は、AG方向で4.50×10-6℃、WG方向で3.73×10-6℃であり、異方比=最大値(4.50)/最小値(3.73)−1=20.6%
比較例2の下部の熱膨張係数は、AG方向で4.65×10-6℃、WG方向で3.83×10-6℃であり、異方比=最大値(4.65)/最小値(3.83)−1=21.4%
比較例3の上部の熱膨張係数は、AG方向で4.34×10-6℃、WG方向で4.09×10-6℃であり、異方比=最大値(4.34)/最小値(4.09)−1=6.1%
比較例3の下部の熱膨張係数は、AG方向で4.64×10-6℃、WG方向で3.83×10-6℃であり、異方比=最大値(4.64)/最小値(3.83)−1=21.1%
図9に示す表から明らかなように、実施例1-3の場合は熱膨張係数、固有抵抗ともに素材全体で5%以下である。
CTE (coefficient of thermal expansion) was measured as follows.
Samples of Φ4 mm × 20 mm were processed from each of the samples (Φ8 mm × 80 mm) and measured using a Rigaku Electric thermal dilatometer (DLY-1500). The measurement range was 50 to 400 ° C., and the elongation rate was calculated by dividing by 350 ° C. (400-50 ° C.).
The anisotropic ratios of the specific resistance at each position in Examples 1 to 3 and Comparative Examples 1 to 3 are as follows.
The upper specific resistance of Example 1 is 1.44 mΩcm in the AG direction and 1.43 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.44) / minimum value (1.43) −1 = 0. 7%
The specific resistance of the lower part of Example 1 is 1.40 mΩcm in the AG direction and 1.42 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.42) / minimum value (1.40) −1 = 1. 4%
The upper specific resistance of Example 2 is 1.43 mΩcm in the AG direction and 1.43 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.43) / minimum value (1.43) −1 = 0. 0%
The specific resistance of the lower part of Example 2 is 1.42 mΩcm in the AG direction and 1.45 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.45) / minimum value (1.42) −1 = 2. 1%
The upper specific resistance of Example 3 is 1.20 mΩcm in the AG direction and 1.19 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.20) / minimum value (1.19) −1 = 0. 8%
The specific resistance at the center of Example 3 is 1.15 mΩcm in the AG direction and 1.17 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.17) / minimum value (1.15) −1 = 1. .7%
The specific resistance of the lower part of Example 3 is 1.20 mΩcm in the AG direction and 1.21 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.21) / minimum value (1.20) −1 = 1. 8%
The upper specific resistance of Comparative Example 1 is 1.26 mΩcm in the AG direction and 1.23 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.26) / minimum value (1.23) −1 = 2. 4%
The specific resistance at the center of Comparative Example 1 is 1.25 mΩcm in the AG direction and 1.18 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.25) / minimum value (1.18) −1 = 5. .9%
The specific resistance in the lower part of Comparative Example 1 is 1.33 mΩcm in the AG direction and 1.17 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.33) / minimum value (1.17) −1 = 13. 7%
The upper specific resistance of Comparative Example 2 is 1.30 mΩcm in the AG direction and 1.23 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.30) / minimum value (1.23) −1 = 5. 7%
The specific resistance at the center of Comparative Example 2 is 1.27 mΩcm in the AG direction and 1.16 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.27) / minimum value (1.16) −1 = 9. .5%
The specific resistance at the bottom of Comparative Example 2 is 1.34 mΩcm in the AG direction and 1.13 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.34) / minimum value (1.13) −1 = 18. 6%
The upper specific resistance of Comparative Example 3 is 1.30 mΩcm in the AG direction and 1.23 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.30) / minimum value (1.23) −1 = 5. 7%
The specific resistance at the bottom of Comparative Example 3 is 1.34 mΩcm in the AG direction and 1.13 mΩcm in the WG direction, and the anisotropic ratio = maximum value (1.34) / minimum value (1.13) −1 = 18. 6%
Moreover, the anisotropic ratio of the thermal expansion coefficient of each position of Examples 1-3 and Comparative Examples 1-3 is as follows, respectively.
The thermal expansion coefficient of the upper part of Example 1 is 5.10 × 10 −6 ° C. in the AG direction and 5.09 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (5.10) / minimum. Value (5.09) -1 = 0.2%
The thermal expansion coefficient of the lower part of Example 1 is 5.08 × 10 −6 ° C. in the AG direction and 5.23 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (5.23) / minimum. Value (5.08) -1 = 3.0%
The thermal expansion coefficient at the top of Example 2 is 5.08 × 10 −6 ° C. in the AG direction and 5.23 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (5.23) / minimum. Value (5.08) -1 = 3.0%
The thermal expansion coefficient of the lower part of Example 2 is 5.16 × 10 −6 ° C. in the AG direction and 5.30 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (5.30) / minimum. Value (5.16) -1 = 2.7%
The thermal expansion coefficient at the top of Example 3 is 4.51 × 10 −6 ° C. in the AG direction and 4.35 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.51) / minimum. Value (4.35) -1 = 3.7%
The thermal expansion coefficient of the center part of Example 3 is 4.34 × 10 −6 ° C. in the AG direction and 4.45 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.45) / Minimum value (4.34) -1 = 2.5%
The thermal expansion coefficient in the lower part of Example 3 is 4.49 × 10 −6 ° C. in the AG direction and 4.37 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.49) / minimum. Value (4.37) -1 = 2.7%
The thermal expansion coefficient at the top of Comparative Example 1 is 4.10 × 10 −6 ° C. in the AG direction and 3.82 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.10) / minimum. Value (3.82) -1 = 7.3%
The thermal expansion coefficient of the center part of Comparative Example 1 is 4.30 × 10 −6 ° C. in the AG direction and 3.86 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.30) / Minimum value (3.86) -1 = 11.4%
The thermal expansion coefficient of the lower part of Comparative Example 1 is 4.43 × 10 −6 ° C. in the AG direction and 3.75 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.43) / minimum. Value (3.75) -1 = 18.1%
The thermal expansion coefficient of the upper part of Comparative Example 2 is 4.34 × 10 −6 ° C. in the AG direction and 4.09 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.34) / minimum. Value (4.09) -1 = 6.1%
The thermal expansion coefficient of the center part of Comparative Example 2 is 4.50 × 10 −6 ° C. in the AG direction and 3.73 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.50) / Minimum value (3.73) -1 = 20.6%
The lower part of Comparative Example 2 has a thermal expansion coefficient of 4.65 × 10 −6 ° C. in the AG direction and 3.83 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.65) / minimum. Value (3.83) -1 = 21.4%
The thermal expansion coefficient of the upper part of Comparative Example 3 is 4.34 × 10 −6 ° C. in the AG direction and 4.09 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.34) / minimum. Value (4.09) -1 = 6.1%
The thermal expansion coefficient of the lower part of Comparative Example 3 is 4.64 × 10 −6 ° C. in the AG direction and 3.83 × 10 −6 ° C. in the WG direction, and the anisotropic ratio = maximum value (4.64) / minimum. Value (3.83) -1 = 21.1%
As is apparent from the table shown in FIG. 9, in the case of Example 1-3, both the thermal expansion coefficient and the specific resistance are 5% or less for the entire material.

比較例1〜2では、熱膨張係数、固有抵抗共に、素材の成形上部では異方比は8%以下、成形下部の異方比は20%前後である。これより、比較例1〜2では、成形下部で異方比が大きくなっているのに対し、実施例1〜3は、素材の熱膨張係数の異方比は、何れの部位でも5%以下である。実施例1〜3において、異方比が小さくなっているのは、第2の炭素質原料10を造粒したために重力による圧縮が起きにくくなったことと、造粒粉自体に方向性がない効果によるものと推定される。
また、比較例3では、第1の炭素質原料を造粒し、粒子を球形化しているにもかかわらず、材料の成形下部では固有抵抗、熱膨張係数とも異方比が20%前後と大きくなっている。
In Comparative Examples 1 and 2, both the thermal expansion coefficient and the specific resistance have an anisotropic ratio of 8% or less at the upper part of the material and an anisotropic ratio of about 20% at the lower part of the material. From this, in Comparative Examples 1-2, the anisotropic ratio is large at the lower part of the molding, whereas in Examples 1-3, the anisotropic ratio of the thermal expansion coefficient of the material is 5% or less in any part. It is. In Examples 1 to 3, the anisotropic ratio is small because the second carbonaceous raw material 10 is granulated and compression due to gravity is less likely to occur, and the granulated powder itself has no directionality. Presumably due to effects.
Further, in Comparative Example 3, although the first carbonaceous raw material was granulated and the particles were made spherical, the specific resistance and the thermal expansion coefficient were large at around 20% at the lower part of the material molding. It has become.

比較例3では、第1の炭素質原料を造粒しているにもかかわらず異方比が大きくなっている原因は以下のように考えられる。
比較例3は結合力の弱い親水性結合材20を用い第1の炭素質原料を造粒したのち、疎水性結合材を用い混練している。このため、混練の過程で第1の炭素質原料を造粒する親水性結合材20が崩れ、第1の炭素質原料を造粒した効果がなくなっている。つまり、実質的に第1の炭素質原料を、疎水性結合材を用いて混練した場合と同じ状態になっていると考えられる。また、混練して得られた混合物を粉砕し得られた粉をそのままCIP成形している。混練した混合物を粉砕し、そのままCIP成形しているので、異方比のある粉が、ラバーケースの中で重力によって一軸成形され、異方性が大きくなったと考えられる。
In Comparative Example 3, the reason why the anisotropic ratio is increased despite the granulation of the first carbonaceous raw material is considered as follows.
In Comparative Example 3, the first carbonaceous raw material is granulated using the hydrophilic binding material 20 having a weak binding force, and then kneaded using the hydrophobic binding material. For this reason, the hydrophilic binder 20 which granulates the first carbonaceous raw material in the course of kneading collapses, and the effect of granulating the first carbonaceous raw material is lost. That is, it is considered that the first carbonaceous raw material is substantially in the same state as when kneaded using the hydrophobic binder. Further, the powder obtained by pulverizing the mixture obtained by kneading is directly CIP-molded. Since the kneaded mixture is pulverized and CIP-molded as it is, it is considered that the anisotropic ratio powder was uniaxially molded by gravity in the rubber case and increased anisotropy.

1 第1の炭素質材料
2 疎水性結合材
10 第2の炭素質原料
20 親水性結合材
31 ラバーケース
100 造粒粉
S1 混練工程
S2 粉砕工程
S3 造粒工程
S4 成形工程
S5 焼成工程
S6 黒鉛化工程
DESCRIPTION OF SYMBOLS 1 1st carbonaceous material 2 Hydrophobic binder 10 Second carbonaceous raw material 20 Hydrophilic binder 31 Rubber case 100 Granulated powder S1 Kneading process S2 Grinding process S3 Granulating process S4 Molding process S5 Firing process S6 Graphitization Process

Claims (12)

コークス粉末を含む第1の炭素質原料に疎水性結合材を添加し加熱混練して混合物を得る混練工程と、
前記混練工程で得られた混合物を粉砕し第2の炭素質原料を得る粉砕工程と、
前記粉砕工程で得られた第2の炭素質原料とポリビニルアルコールと、溶媒とを用いてスプレードライ法で造粒粉を得る造粒工程と、
前記造粒工程で得られた造粒粉を冷間静水圧成形して成形体を得る成形工程と、
前記成形工程で得られた成形体を焼成し、焼成体を得る焼成工程と
前記焼成工程で得られた焼成体を黒鉛化する工程と、を含む黒鉛材の製造方法。
A kneading step of adding a hydrophobic binder to the first carbonaceous raw material containing coke powder and heating and kneading to obtain a mixture;
A pulverization step of pulverizing the mixture obtained in the kneading step to obtain a second carbonaceous raw material;
A granulation step of obtaining a granulated powder by a spray drying method using the second carbonaceous raw material obtained in the pulverization step, polyvinyl alcohol, and a solvent;
A molding step to obtain a compact by cold isostatic pressing the granulated powder obtained in the granulation step; and
A method for producing a graphite material, comprising: a firing step of firing the molded body obtained in the molding step to obtain a fired body; and a step of graphitizing the fired body obtained in the firing step.
請求項1に記載の黒鉛材の製造方法であって、
前記造粒工程では、前記造粒粉の内部に空隙を形成する黒鉛材の製造方法。
It is a manufacturing method of the graphite material according to claim 1,
In the granulation step, a method for producing a graphite material in which voids are formed inside the granulated powder.
請求項1または2に記載の黒鉛材の製造方法であって、
前記疎水性結合材は、ピッチ又はタールである黒鉛材の製造方法。
A method for producing a graphite material according to claim 1 or 2,
The method for producing a graphite material, wherein the hydrophobic binder is pitch or tar.
請求項1乃至請求項3のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒工程は、水系の溶媒を用いて造粒粉を得る工程である黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 3,
The said granulation process is a manufacturing method of the graphite material which is a process of obtaining granulated powder using an aqueous solvent.
請求項1乃至請求項4のいずれか1項に記載の黒鉛材の製造方法であって、
前記第1の炭素質原料の平均粒子直径は、5〜20μmである黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 4,
The average particle diameter of said 1st carbonaceous raw material is a manufacturing method of the graphite material which is 5-20 micrometers.
請求項1乃至請求項5のいずれか1項に記載の黒鉛材の製造方法であって、
前記第2の炭素質原料の平均粒子直径は15〜50μmである黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 5,
The method for producing a graphite material, wherein the second carbonaceous raw material has an average particle diameter of 15 to 50 µm.
請求項1乃至請求項6のいずれか1項に記載の黒鉛材の製造方法であって、
前記第2の炭素質原料の平均粒子直径は第1の炭素質原料の平均粒子直径より大きい黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 6,
The method for producing a graphite material, wherein the average particle diameter of the second carbonaceous raw material is larger than the average particle diameter of the first carbonaceous raw material.
請求項1乃至請求項7のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒粉の圧縮破壊強度が0.02〜10.0MPaである黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 7,
A method for producing a graphite material, wherein the granulated powder has a compressive fracture strength of 0.02 to 10.0 MPa.
請求項1乃至8のいずれか1項に記載の黒鉛材の製造方法であって、
前記ポリビニルアルコールの添加率は前記第2の炭素質原料100重量部に対し0.1〜10.0重量部である黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 8,
The method for producing a graphite material, wherein the addition rate of the polyvinyl alcohol is 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the second carbonaceous raw material.
請求項1乃至請求項9のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒工程で得られる前記造粒粉の平均粒子直径は60〜1000μmである黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 9,
The method for producing a graphite material, wherein the granulated powder obtained in the granulation step has an average particle diameter of 60 to 1000 μm.
請求項1乃至9のいずれか1項に記載の黒鉛材の製造方法であって、
前記造粒工程で得られる前記造粒粉の平均粒子直径は前記第2の炭素質原料の平均粒子直径より大きい黒鉛材の製造方法。
A method for producing a graphite material according to any one of claims 1 to 9,
The average particle diameter of the granulated powder obtained in the granulation step is a method for producing a graphite material that is larger than the average particle diameter of the second carbonaceous raw material.
請求項1乃至11のいずれか1項に記載の黒鉛材の製造方法であって、
前記冷間静水圧成形する工程に先立ち、前記前記造粒工程で得られた造粒粉の15μm以下粉末を除去する工程を含む黒鉛材の製造方法。

A method for producing a graphite material according to any one of claims 1 to 11,
Prior to the cold isostatic pressing step, a method for producing a graphite material including a step of removing 15 μm or less of the granulated powder obtained in the granulation step.

JP2015122202A 2015-06-17 2015-06-17 Method for producing graphite material and graphite material Active JP6010663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122202A JP6010663B2 (en) 2015-06-17 2015-06-17 Method for producing graphite material and graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122202A JP6010663B2 (en) 2015-06-17 2015-06-17 Method for producing graphite material and graphite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011130530A Division JP2013001576A (en) 2011-06-10 2011-06-10 Method for producing graphite material, and graphite material

Publications (2)

Publication Number Publication Date
JP2015180598A true JP2015180598A (en) 2015-10-15
JP6010663B2 JP6010663B2 (en) 2016-10-19

Family

ID=54329087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122202A Active JP6010663B2 (en) 2015-06-17 2015-06-17 Method for producing graphite material and graphite material

Country Status (1)

Country Link
JP (1) JP6010663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117550896A (en) * 2024-01-12 2024-02-13 山东红点新材料有限公司 High-strength high-purity isostatic graphite and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184715A (en) * 1983-04-06 1984-10-20 Hitachi Chem Co Ltd Manufacture of carbonaceous material
JP2009140648A (en) * 2007-12-04 2009-06-25 Panasonic Corp Lithium battery
JP2009269996A (en) * 2008-05-07 2009-11-19 Asahi Kasei Chemicals Corp Conductive polyacetal resin composition and molded product
JP2010228934A (en) * 2009-03-26 2010-10-14 Fuji Electric Systems Co Ltd Method for heat-treating thin plate-like molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184715A (en) * 1983-04-06 1984-10-20 Hitachi Chem Co Ltd Manufacture of carbonaceous material
JP2009140648A (en) * 2007-12-04 2009-06-25 Panasonic Corp Lithium battery
JP2009269996A (en) * 2008-05-07 2009-11-19 Asahi Kasei Chemicals Corp Conductive polyacetal resin composition and molded product
JP2010228934A (en) * 2009-03-26 2010-10-14 Fuji Electric Systems Co Ltd Method for heat-treating thin plate-like molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117550896A (en) * 2024-01-12 2024-02-13 山东红点新材料有限公司 High-strength high-purity isostatic graphite and preparation method thereof
CN117550896B (en) * 2024-01-12 2024-04-05 山东红点新材料有限公司 High-strength high-purity isostatic graphite and preparation method thereof

Also Published As

Publication number Publication date
JP6010663B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP2013001576A (en) Method for producing graphite material, and graphite material
JP7358331B2 (en) Method for manufacturing silicon nitride powder
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
JP6344844B2 (en) Boron carbide / titanium boride composite ceramics and method for producing the same
JP6871173B2 (en) Fragile ceramic bonded diamond composite particles and their manufacturing method
JP2010503605A (en) Low CTE isotropic graphite
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
CN112521172A (en) Composite carbon material for in-situ growth of carbon fibers and preparation method and application thereof
CN103553627A (en) Ceramic matrix composite and preparation method and application thereof
CN111320476A (en) Diamond-silicon carbide composite material, preparation method thereof and electronic equipment
JPS6128627B2 (en)
JPH0617270B2 (en) Boron nitride atmospheric pressure sintered body
JP6010663B2 (en) Method for producing graphite material and graphite material
JP2015074565A (en) Spherical silicon carbide powder and method for producing the same
JP2000007436A (en) Graphite material and its production
CN113260690A (en) Powder material for sintering and latent heat type solid heat storage member using the same
JP2008001571A (en) High thermal conductive carbon material and method of manufacturing the same
CN109665847A (en) A kind of complete fine and close boron carbide ceramic composite and preparation method
KR101349527B1 (en) Method of fabricating silicon carbide powder
JPS60151205A (en) Improved graphite for nuclear power and manufacture
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
JP2008156169A (en) Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact
JP3899402B2 (en) Method for producing diamond-titanium carbide composite sintered body
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
Carlson et al. Effects of time, temperature, and pressure on the microstructure of spark plasma sintered silicon carbide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6010663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250