JP2015178946A - Combined-cycle heat pump device - Google Patents

Combined-cycle heat pump device Download PDF

Info

Publication number
JP2015178946A
JP2015178946A JP2014078188A JP2014078188A JP2015178946A JP 2015178946 A JP2015178946 A JP 2015178946A JP 2014078188 A JP2014078188 A JP 2014078188A JP 2014078188 A JP2014078188 A JP 2014078188A JP 2015178946 A JP2015178946 A JP 2015178946A
Authority
JP
Japan
Prior art keywords
cycle
refrigerant
heat pump
expander
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014078188A
Other languages
Japanese (ja)
Inventor
三村 建治
Kenji Mimura
建治 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIMURA YOKO
Original Assignee
MIMURA YOKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIMURA YOKO filed Critical MIMURA YOKO
Priority to JP2014078188A priority Critical patent/JP2015178946A/en
Publication of JP2015178946A publication Critical patent/JP2015178946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump with a reverse Carnot cycle as the principle, also generating electric power.SOLUTION: In a combined heat pump device: a combined cycle comprising a first cycle of a reverse Carnot cycle and a second cycle of a Carnot cycle is used; an expander 2 is installed instead of an expansion valve of the first cycle; the restriction loss of a pressure reducing process performed in the expansion valve of the first cycle is used as auxiliary driving force for a refrigerant pump 6 of the second cycle; and the refrigerant, which passes an expander 7 of the second cycle and is still high in temperature, and the refrigerant, which passes the expander of the first cycle and has reduced pressure and low temperature, are raised in temperature by a heat exchanger 4 to reduce the driving force necessary for a compressor 1 of the first cycle; so that the combined heat pump device is obtained, which also generates electric power by heat exchange with high-temperature water produced through heat exchange with the refrigerant that becomes high temperature by the compressor of the first cycle, and by driving force of the expander by the refrigerant of the second cycle that becomes high temperature and high pressure by the refrigerant pump.

Description

本発明は、逆カルノーサイクルの第1サイクルとカルノーサイクルの第2サイクルとからなる複合サイクルを用いて、第1サイクルの膨張弁の替わりに膨張機を取り付け、第1サイクルの膨張弁で行われている減圧過程の絞り損失を第2サイクルの冷媒ポンプの駆動力の補助として活用し、第2サイクルの膨張機を通過しまだ温度の高い冷媒と第1サイクルの膨張機を通過し減圧、低温となった冷媒を熱交換器によって昇温し第1サイクルの圧縮機に必要な駆動力を低減させ、かつ、第1サイクルの圧縮機により高温となった冷媒との熱交換により作られた高温水との熱交換、および冷媒ポンプにより高温、高圧となった第2サイクルの冷媒による膨張機の駆動力により、発電も行う複合ヒートポンプ装置に関するものである。The present invention is carried out with an expansion valve of the first cycle by using an integrated cycle consisting of a first cycle of the reverse Carnot cycle and a second cycle of the Carnot cycle, with an expander attached instead of the expansion valve of the first cycle. The squeezing loss in the decompression process is used as an auxiliary to the driving force of the refrigerant pump in the second cycle, and it passes through the second cycle expander and passes through the still higher temperature refrigerant and the first cycle expander to reduce the pressure The high temperature generated by heat exchange with the refrigerant that has been heated by the heat exchanger to reduce the driving force required for the compressor of the first cycle and that has become hot by the compressor of the first cycle The present invention relates to a composite heat pump device that also generates electricity by heat exchange with water and driving force of an expander by a second cycle refrigerant that has become high temperature and high pressure by a refrigerant pump.

従来、逆カルノーサイクルを原理としたヒートポンプ装置の案は、多数存在し、将来の低炭素社会への有力な手段となっている。Conventionally, there have been many proposals for a heat pump apparatus based on the reverse Carnot cycle, which has become an effective means for a future low-carbon society.

近年、日本におけるヒートポンプ装置の普及は順調に拡大し、世界をリードするに至っている。In recent years, the spread of heat pump devices in Japan has steadily expanded, leading to the world.

こういった環境においてヒートポンプの更なる性能向上の社会的な意義は計りしれない。
In such an environment, the social significance of further improving the performance of the heat pump is immeasurable.

特開平10−266983Japanese Patent Laid-Open No. 10-266983 特開2001−141315JP 2001-141315 A

本発明は、逆カルノーサイクルの第1サイクルとカルノーサイクルの第2サイクルとからなる複合サイクルを用いて、第1サイクルの膨張弁の替わりに膨張機を取り付け、第1サイクルの膨張弁で行われている減圧過程の絞り損失を第2サイクルの冷媒ポンプの駆動力の補助として活用し、第2サイクルの膨張機を通過しまだ温度の高い冷媒と第1サイクルの膨張機を通過し減圧、低温となった冷媒を熱交換器によって昇温し第1サイクルの圧縮機に必要な駆動力を低減させ、かつ、第1サイクルの圧縮機により高温となった冷媒との熱交換により作られた高温水との熱交換、および冷媒ポンプにより高温、高圧となった第2サイクルの冷媒による膨張機の駆動力により、発電も行う複合ヒートポンプ装置である。  The present invention is carried out with an expansion valve of the first cycle by using an integrated cycle consisting of a first cycle of the reverse Carnot cycle and a second cycle of the Carnot cycle, with an expander attached instead of the expansion valve of the first cycle. The squeezing loss in the decompression process is used as an auxiliary to the driving force of the refrigerant pump in the second cycle, and it passes through the second cycle expander and passes through the still higher temperature refrigerant and the first cycle expander to reduce the pressure The high temperature generated by heat exchange with the refrigerant that has been heated by the heat exchanger to reduce the driving force required for the compressor of the first cycle and that has become hot by the compressor of the first cycle It is a composite heat pump device that also generates electricity by heat exchange with water and the driving force of the expander by the second cycle refrigerant that has become high temperature and high pressure by the refrigerant pump.

現在、逆カルノーサイクルを原理としたヒートポンプ装置は、将来の低炭素社会への有力な切り札となっている。また、日本におけるヒートポンプ装置の普及は順調に拡大し、世界をリードするに至っている。こういった環境においてヒートポンプの更なる性能向上が求められている。Currently, the heat pump system based on the reverse Carnot cycle is a powerful trump card for the future low-carbon society. In addition, the spread of heat pump devices in Japan has been steadily expanding, leading to the world. In such an environment, further improvement in the performance of the heat pump is required.

前記課題を解決するためには、現在の逆カルノーサイクルを原理としたヒートポンプ装置の基本的な効率向上を検討する必要がある。本発明は複合サイクルを用いて、現在の逆カルノーサイクルにおいて膨張弁で行われている減圧過程の絞り損失を膨張機を用いる事により第2サイクルの冷媒ポンプの駆動力の補助として活用し、第2サイクルの膨張機を通過しまだ温度の高い冷媒と第1サイクルの膨張機を通過し減圧、低温となった冷媒を熱交換器によって昇温し第1サイクルの圧縮機に必要な駆動力を低減させ、かつ、第1サイクルの圧縮機により高温となった冷媒との熱交換により作られた高温水との熱交換、および冷媒ポンプにより高温、高圧となった第2サイクルの冷媒による膨張機の駆動力により、発電も行う事により、大幅な効率向上を行う。In order to solve the above-mentioned problem, it is necessary to study the basic efficiency improvement of the heat pump device based on the current reverse Carnot cycle. The present invention uses a combined cycle to utilize the expansion loss in the decompression process performed at the expansion valve in the current reverse Carnot cycle as an aid to the driving force of the refrigerant pump in the second cycle. The refrigerant that has passed through the two-cycle expander and still has a high temperature and the refrigerant that has passed through the first-cycle expander and has been depressurized and cooled to a low temperature is heated by a heat exchanger to provide the necessary driving force for the first-cycle compressor. Reduced and heat exchanger with high-temperature water produced by heat exchange with the refrigerant having a high temperature by the compressor of the first cycle, and the expander by the refrigerant of the second cycle having a high temperature and high pressure by the refrigerant pump By generating power with this driving force, the efficiency is greatly improved.

本発明は複合サイクルとしてカルノーサイクルと組み合わせる事により、現在の逆カルノーサイクルにおいて膨張弁で行われている減圧過程の絞りの損失を有効に回収し、かつカルノーサイクルにより発電する事により大幅な性能向上を行える可能性がある。The present invention is combined with the Carnot cycle as a combined cycle, effectively recovering the loss of throttling in the decompression process performed by the expansion valve in the current reverse Carnot cycle, and greatly improving performance by generating electricity by the Carnot cycle May be possible.

以下、本発明による複合サイクルヒートポンプ装置を 図1、に示す全体の構成図に基づいて説明する。Hereinafter, a combined cycle heat pump apparatus according to the present invention will be described with reference to an overall configuration diagram shown in FIG.

図1、において第1サイクルの圧縮機1は外部駆動機19により駆動される。圧縮され高温、高圧となった冷媒は冷媒配管9を経て凝縮器3に流入し低温となり排出され冷媒配管10を経て膨張機2に入るIn FIG. 1, the compressor 1 of the first cycle is driven by an external driver 19. The refrigerant that has been compressed and becomes high temperature and high pressure flows into the condenser 3 through the refrigerant pipe 9 and is discharged at a low temperature and enters the expander 2 through the refrigerant pipe 10.

図1、において第1サイクルの膨張機2に流入した冷媒は膨張し低圧となり膨張機2の駆動力を発生させ第2サイクルの冷媒ポンプの駆動6を補助する。In FIG. 1, the refrigerant that has flowed into the expander 2 in the first cycle expands to a low pressure, and generates a driving force for the expander 2 to assist the driving 6 of the refrigerant pump in the second cycle.

図1、において膨張機2により膨張し低圧となった冷媒は冷媒配管11を経て熱交換器4に入り、第2サイクルの膨張機7を通過しまだ温度の高い冷媒と熱交換し昇温し冷媒配管12を経て圧縮機1に戻り圧縮に必要な駆動力を低減させる。In FIG. 1, the refrigerant that has been expanded by the expander 2 to a low pressure enters the heat exchanger 4 through the refrigerant pipe 11, passes through the second cycle expander 7, exchanges heat with the still higher temperature refrigerant, and rises in temperature. It returns to the compressor 1 through the refrigerant | coolant piping 12, and the driving force required for compression is reduced.

図1、において第1サイクルの凝縮器3により高温となった高温水は第2サイクルの熱交換器8に流入し第2サイクルの冷媒を昇温し排出され冷媒配管15を経て膨張機7に入る。In FIG. 1, the high-temperature water heated to high temperature by the condenser 3 in the first cycle flows into the heat exchanger 8 in the second cycle, raises the temperature of the refrigerant in the second cycle, and is discharged to the expander 7 via the refrigerant pipe 15. enter.

図1、において第2サイクルの膨張機7に流入した冷媒は膨張し低圧となり膨張機7の駆動力を発生させ発電機22により発電をする。In FIG. 1, the refrigerant that has flowed into the expander 7 in the second cycle expands to a low pressure, generates a driving force for the expander 7, and generates power by the generator 22.

図1、において膨張機7により膨張し低圧となった冷媒は冷媒配管18を経て熱交換器4に入り、第1サイクルの膨張機を通過し減圧、低温となった冷媒を昇温し冷媒配管17を経て冷媒ポンプ6に戻る。In FIG. 1, the refrigerant expanded by the expander 7 to a low pressure enters the heat exchanger 4 through the refrigerant pipe 18, passes through the first cycle expander, depressurizes, and raises the low-temperature refrigerant to raise the refrigerant pipe. Return to the refrigerant pump 6 via 17.

図1、において貯湯タンク20から冷水がポンプ5により配管13を経て凝縮器3に流入し第1サイクルの高温となった冷媒により昇温され流出し、第2サイクルの熱交換機8に入り、配管14を経て貯湯タンク20に戻る。In FIG. 1, cold water flows from a hot water storage tank 20 into a condenser 3 via a pipe 13 through a pipe 13 and is heated and discharged by a refrigerant having a high temperature in the first cycle, and enters a heat exchanger 8 in a second cycle. 14 and return to the hot water storage tank 20.

図1、第1サイクルの膨張機2と第2サイクルの冷媒ポンプ6は等速または変速機21で連結されている1, the first cycle expander 2 and the second cycle refrigerant pump 6 are connected at a constant speed or by a transmission 21.

複合サイクルヒートポンプ装置示す構成図Configuration diagram showing combined cycle heat pump device

1・・・第1サイクルの圧縮機、2・・・第1サイクルの膨張機、3・・・凝縮器、4・・・熱交換器、5・・・ポンプ、6・・・冷媒ポンプ、7・・・第2サイクルの膨張機、8・・・第2サイクルの熱交換器、9、10、11、12・・・第1サイクルの冷媒配管、13、14・・・紿水配管、15、16、17、18・・・第2サイクルの冷媒配管、19・・・駆動機、20・・・貯湯タンク、21・・・変速機、22・・・発電機DESCRIPTION OF SYMBOLS 1 ... 1st cycle compressor, 2 ... 1st cycle expander, 3 ... Condenser, 4 ... Heat exchanger, 5 ... Pump, 6 ... Refrigerant pump, 7 ... second cycle expander, 8 ... second cycle heat exchanger, 9, 10, 11, 12 ... first cycle refrigerant piping, 13, 14 ... flooded piping, 15, 16, 17, 18 ... second cycle refrigerant piping, 19 ... drive unit, 20 ... hot water storage tank, 21 ... transmission, 22 ... generator

Claims (4)

逆カルノーサイクルの第1サイクルと、カルノーサイクルの第2サイクルを有するヒートポンプシステムの、第1サイクルのヒートポンプにおいて従来、膨張弁で行われている減圧過程の絞り損失を減らすため、替わりに膨張機を用い、その駆動力を第2サイクルの冷媒ポンプに連結し補助の駆動力として有効に活用し、大幅な効率向上を行うヒートポンプ装置。In order to reduce throttling loss in the decompression process conventionally performed in the expansion valve in the heat pump of the first cycle of the heat pump system having the first cycle of the reverse Carnot cycle and the second cycle of the Carnot cycle, an expander is used instead. A heat pump device that uses the driving force connected to the refrigerant pump of the second cycle and effectively uses it as an auxiliary driving force to greatly improve the efficiency. 逆カルノーサイクルの第1サイクルと、カルノーサイクルの第2サイクルを有するヒートポンプシステムの、第1サイクルのヒートポンプにおいて、第2サイクルの膨張機を通過しまだ温度の高い冷媒を熱交換器により第1サイクルの圧縮機に至る第1サイクルの冷媒を昇温し,第1サイクルの圧縮機に必要な駆動力を低減させ、大幅な効率向上を行うヒートポンプ装置。In the heat pump of the first cycle of the heat pump system having the first cycle of the reverse Carnot cycle and the second cycle of the Carnot cycle, the refrigerant having passed through the second cycle expander and still having a high temperature is passed through the first cycle by the heat exchanger. The heat pump device that raises the temperature of the first cycle refrigerant that reaches the compressor of the compressor, reduces the driving force required for the compressor of the first cycle, and greatly improves the efficiency. 逆カルノーサイクルの第1サイクルと、カルノーサイクルの第2サイクルを有するヒートポンプにおいて、第1サイクルの圧縮機により高温となった冷媒との熱交換により作られた高温水と第2サイクルの熱交換器、および冷媒ポンプにより高温、高圧となった第2サイクルの冷媒による膨張機の駆動力により、発電を行うヒートポンプ装置。In the heat pump having the first cycle of the reverse Carnot cycle and the second cycle of the Carnot cycle, the high-temperature water produced by heat exchange with the refrigerant having a high temperature by the compressor of the first cycle and the heat exchanger of the second cycle , And a heat pump device that generates electric power by the driving force of the expander by the refrigerant of the second cycle that has become high temperature and high pressure by the refrigerant pump. 第1、第2の複合サイクルを有するヒートポンプシステムの、第1サイクルのヒートポンプにおいて従来、膨張弁で行われている減圧過程の絞り損失を減らすため、替わりに膨張機を用い、その駆動力を第2サイクルの冷媒ポンプに連結し補助の駆動力として有効に活用し、かつ第2サイクルの膨張機を通過しまだ温度の高い冷媒を熱交換器により第1サイクルの圧縮機に至る第1サイクルの冷媒を昇温し,第1サイクルの圧縮機に必要な駆動力を低減させる。さらに第1サイクルの圧縮機により高温となった冷媒との熱交換により作られた高温水と第2サイクルの熱交換器、および冷媒ポンプにより高温、高圧となった第2サイクルの冷媒による膨張機の駆動力により、発電も行うヒートポンプにおいて第1サイクルの冷媒と第2サイクルの冷媒をそれぞれの特性に合った異なった冷媒を用いたヒートポンプ装置。In the heat pump system having the first and second combined cycles, in order to reduce the drawing loss of the decompression process conventionally performed in the expansion valve in the heat pump of the first cycle, an expander is used instead, and the driving force is reduced to the first. It is connected to a two-cycle refrigerant pump and effectively used as an auxiliary driving force, and the refrigerant that has passed through the second-cycle expander and still has a high temperature passes through the heat exchanger to the first-cycle compressor. The refrigerant is heated to reduce the driving force required for the first cycle compressor. Further, the high-temperature water produced by heat exchange with the refrigerant having a high temperature by the first-cycle compressor, the second-cycle heat exchanger, and the expander by the second-cycle refrigerant having a high temperature and high pressure by the refrigerant pump. In the heat pump that also generates electricity by the driving force, the heat pump device using the refrigerant of the first cycle and the refrigerant of the second cycle that are different from each other in accordance with the respective characteristics.
JP2014078188A 2014-03-18 2014-03-18 Combined-cycle heat pump device Pending JP2015178946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078188A JP2015178946A (en) 2014-03-18 2014-03-18 Combined-cycle heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078188A JP2015178946A (en) 2014-03-18 2014-03-18 Combined-cycle heat pump device

Publications (1)

Publication Number Publication Date
JP2015178946A true JP2015178946A (en) 2015-10-08

Family

ID=54263106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078188A Pending JP2015178946A (en) 2014-03-18 2014-03-18 Combined-cycle heat pump device

Country Status (1)

Country Link
JP (1) JP2015178946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049725A (en) * 2016-08-15 2019-05-09 퓨처베이 리미티드 Thermodynamic cycle apparatus and method
CN110530058A (en) * 2018-05-20 2019-12-03 李华玉 Combined cycle heat pump assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049725A (en) * 2016-08-15 2019-05-09 퓨처베이 리미티드 Thermodynamic cycle apparatus and method
KR102263742B1 (en) 2016-08-15 2021-06-10 퓨처베이 리미티드 Thermodynamic cycle apparatus and method
CN110530058A (en) * 2018-05-20 2019-12-03 李华玉 Combined cycle heat pump assembly
CN110530058B (en) * 2018-05-20 2022-07-26 李华玉 Combined cycle heat pump device

Similar Documents

Publication Publication Date Title
US10082049B2 (en) Supercritical carbon dioxide power generation system
US8783034B2 (en) Hot day cycle
JP5254219B2 (en) Improved compressor device
US20240003272A1 (en) Multistage-compression energy storage apparatus and method based on carbon dioxide gas-liquid phase change
RU2673959C2 (en) System and method for energy regeneration of wasted heat
RU2011146858A (en) RENKIN CYCLE COMBINED WITH ORGANIC RENKIN CYCLE AND ABSORPTION REFRIGERATING CYCLE
US20220228512A1 (en) Combined cycle power device
JP5261473B2 (en) Medium temperature engine
KR101752230B1 (en) Generation system using supercritical carbon dioxide and method of driving the same by heat sink temperature
WO2015017873A2 (en) Multi-cycle power generator
JP2015178946A (en) Combined-cycle heat pump device
JP2015068630A (en) Heat pump device and cogeneration device
RU2018129741A (en) Cascade cycle and method for the recovery of waste heat
US20170241675A1 (en) Cooling system powered by thermal energy and related methods
JP6382127B2 (en) Heat exchanger, energy recovery device, and ship
US20150247654A1 (en) Direct use of acoustic power in stirling engine for heat removal
JP2015210070A (en) Complex air-conditioning refrigeration system
CN103775146B (en) A kind of air-cooled expansion power generator system
JP2015083912A (en) Complex cycle heat pump device
US20200217293A1 (en) Ocean powered rankine cycle turbine
JP5173477B2 (en) Hybrid refrigerator
CN205477784U (en) Cogeneration of heat and power device
KR20190077692A (en) heat transmitter
JP2015203561A (en) Complex air conditioner
JP6137858B2 (en) Heat supply equipment