JP2015178570A - Ground improvement material and ground improvement method - Google Patents

Ground improvement material and ground improvement method Download PDF

Info

Publication number
JP2015178570A
JP2015178570A JP2014056959A JP2014056959A JP2015178570A JP 2015178570 A JP2015178570 A JP 2015178570A JP 2014056959 A JP2014056959 A JP 2014056959A JP 2014056959 A JP2014056959 A JP 2014056959A JP 2015178570 A JP2015178570 A JP 2015178570A
Authority
JP
Japan
Prior art keywords
allophane
soil
ground improvement
ground
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014056959A
Other languages
Japanese (ja)
Inventor
貴宣 佐藤
Takanobu Sato
貴宣 佐藤
荒木 一司
Ichiji Araki
一司 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014056959A priority Critical patent/JP2015178570A/en
Publication of JP2015178570A publication Critical patent/JP2015178570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground improvement material capable of quickly producing strength of an improved ground to be formed by allowing the ground improvement material used for a ground improvement method and soil to be mixed and cured.SOLUTION: A ground improvement material is used for improving a ground by being mixed with soil. The ground improvement material is made up of an allophane material containing allophane, and a cement-based solidification material. A content of allophane is adjusted so that a proportion of the allophane material and allophane derived from the soil is not less than 5 mass% nor more than 47 mass% with respect to a total amount of the soil and the allophane material when mixed with the soil.

Description

本発明は、地盤の強度改善を図る地盤改良工法に用いられる地盤改良材および該地盤改良材を用いた地盤改良工法に関する。   The present invention relates to a ground improvement material used in a ground improvement method for improving the strength of the ground and a ground improvement method using the ground improvement material.

地盤の改良を行う工法としては、地盤から掘り起こした土壌と地盤改良材と水とを混合して流動化土を形成し、該流動化土を地盤に埋め戻して硬化させることで、地盤改良材が混合される前の地盤よりも強度が向上した改良地盤を形成する方法が採用されている。例えば、掘り起こした土壌に生石灰系土質改良材を混合し、これにセメント系固化材(地盤改良材)のスラリーを混合することで、流動化土を形成する。そして、該流動化土を埋め戻して硬化させることで、元の地盤の強度よりも高い強度を有する改良地盤を形成する地盤改良工法が提案されている(特許文献1参照)。   As a method of improving the ground, the soil improved from the ground, the ground improvement material and water are mixed to form fluidized soil, and the fluidized soil is backfilled into the ground and hardened. A method of forming an improved ground whose strength is higher than that of the ground before being mixed is adopted. For example, a fluidized soil is formed by mixing a quicklime-based soil improvement material into the excavated soil and mixing a cement-based solidifying material (ground improvement material) slurry thereto. And the ground improvement construction method which forms the improved ground which has intensity | strength higher than the intensity | strength of the original ground by backfilling and hardening this fluidized soil is proposed (refer patent document 1).

ところで、上記のような地盤改良工法において、アロフェン(Al23・(1〜2)SiO2・nH2O)を比較的多量に含有する土壌を用いる場合、形成される流動化土を埋め戻して硬化させることで形成される改良地盤は、アロフェンの含有量が低い土壌を用いて形成された改良地盤よりも強度が低くなることが知られている。これは、セメント系固化材として用いるセメント成分から供給されるカルシウムの一部が、アロフェンに吸着し、セメント成分の硬化反応が阻害されるためと考えられる。このため、流動化土中のアロフェンの含有量は、一般的に可能な限り少ない方が望ましい。 By the way, in the ground improvement construction method as described above, when using a soil containing a relatively large amount of allophane (Al 2 O 3 · (1-2) SiO 2 · nH 2 O), the formed fluidized soil is buried. It is known that the improved ground formed by returning and hardening is lower in strength than the improved ground formed using soil having a low allophane content. This is presumably because a part of calcium supplied from the cement component used as the cement-based solidifying material is adsorbed on the allophane, and the hardening reaction of the cement component is inhibited. For this reason, it is generally desirable that the allophane content in the fluidized soil be as small as possible.

特開2001ー19956号公報Japanese Patent Laid-Open No. 2001-19956

しかしながら、アロフェンの含有量が比較的少ない、又は、含有しない土壌を用いた場合であっても、流動化土を埋め戻した後の作業性を考慮すると、改良地盤の強度がより迅速に発現されることが望まれている。   However, even when using soil with relatively low or no allophane content, considering the workability after backfilling the fluidized soil, the strength of the improved ground is expressed more quickly. It is hoped that

そこで、本発明は、地盤改良工法に用いられる地盤改良材と土壌とが混合されて硬化することで形成される改良地盤の強度を迅速に発現させることができる地盤改良材を提供すると共に、該地盤改良材を用いた地盤改良工法を提供することを課題とする。   Therefore, the present invention provides a ground improvement material capable of rapidly expressing the strength of the improved ground formed by mixing and hardening the ground improvement material and soil used in the ground improvement construction method, It is an object to provide a ground improvement method using a ground improvement material.

本発明に係る地盤改良材は、土壌と混合されて地盤の改良に用いられる地盤改良材であって、アロフェンを含有するアロフェン材とセメント系固化材とから構成されており、土壌と混合された際のアロフェン材と土壌との合計量に対して、アロフェン材および土壌に由来するアロフェンの割合が5質量%以上47質量%以下となるようにアロフェンの含有量が調整されてなることを特徴とする。   The ground improvement material according to the present invention is a ground improvement material used for soil improvement mixed with soil, and is composed of an allophane material containing allophane and a cement-based solidifying material, and is mixed with soil. The content of allophane is adjusted so that the proportion of allophane derived from the allophane material and soil is 5% by mass or more and 47% by mass or less with respect to the total amount of allophane material and soil at the time. To do.

本発明に係る地盤改良工法は、土壌と地盤改良材とを混合したものを用いて地盤の改良を行う地盤改良工法であって、地盤改良材は、アロフェンを含有するアロフェン材とセメント系固化材とから構成されており、アロフェン材および土壌に由来するアロフェンの合計量がアロフェン材と土壌との合計量に対して5質量%以上47質量%以下となるようにアロフェン材の量が調整されてなることを特徴とする。   The ground improvement method according to the present invention is a ground improvement method for improving the ground using a mixture of soil and ground improvement material, the ground improvement material comprising allophane-containing allophane material and cement-based solidification material. The amount of the allophane material is adjusted so that the total amount of allophane derived from the allophane material and the soil is 5% by mass to 47% by mass with respect to the total amount of the allophane material and the soil. It is characterized by becoming.

斯かる構成の地盤改良材および地盤改良工法によれば、アロフェン材および土壌に由来するアロフェンの合計量がアロフェン材と土壌との合計量に対して5質量%以上47質量%以下となるようにアロフェン材の量が調整されてなる地盤改良材を用いることで、セメント系固化材のみから構成される地盤改良材を用いた場合よりも、改良地盤の強度を迅速に発現させることができる。   According to the ground improvement material and the ground improvement construction method having such a configuration, the total amount of allophane derived from the allophane material and the soil is 5% by mass to 47% by mass with respect to the total amount of the allophane material and the soil. By using the ground improvement material in which the amount of the allophane material is adjusted, the strength of the improved ground can be expressed more quickly than in the case of using the ground improvement material composed only of the cement-based solidified material.

上記の地盤改良工法では、地盤改良材を構成するアロフェン材と土壌とを混合して混合物を形成した後、地盤改良材を構成するセメント系固化材と該混合物とを混合することが好ましい。   In the above ground improvement method, it is preferable to mix the allophenic material constituting the ground improvement material and the soil to form a mixture, and then mixing the cement-based solidifying material constituting the ground improvement material and the mixture.

斯かる構成によれば、地盤改良材を構成するアロフェン材と土壌とを混合して混合物が形成された後、地盤改良材を構成するセメント系固化材と該混合物とが混合されることで、地盤改良材を構成するアロフェン材およびセメント系固化材を同時に土壌と混合する場合よりも均一に混合を行うことができる。   According to such a configuration, after the allophane material constituting the ground improvement material and the soil are mixed to form a mixture, the cement-based solidifying material constituting the ground improvement material and the mixture are mixed, The allophane material and the cement-based solidifying material constituting the ground improvement material can be mixed more uniformly than in the case of mixing with soil at the same time.

以上のように、本発明によれば、地盤改良工法に用いられる地盤改良材と土壌とが混合されて硬化することで形成される改良地盤の強度を迅速に発現させることができる。   As described above, according to the present invention, the strength of the improved ground formed by mixing and hardening the ground improvement material used in the ground improvement method and the soil can be rapidly expressed.

本発明に係る地盤改良材は、例えば、地盤から採掘するなどして得られる土壌に混合されて用いられるものである。本発明に係る地盤改良材が適用される土壌としては、アロフェンの含有量が47質量%未満であるが、アロフェンの含有量が21質量%以下であってもよく、1.5質量%以下であってもよく、1質量%以下であってもよい。土壌の種類としては、特に限定されるものではなく、例えば、一般的な粘性土や、砂質土等が挙げられる。   The ground improvement material according to the present invention is used by being mixed with soil obtained by mining from the ground, for example. As the soil to which the ground improvement material according to the present invention is applied, the allophane content is less than 47 mass%, but the allophane content may be 21 mass% or less, and 1.5 mass% or less. It may be 1% by mass or less. The kind of soil is not particularly limited, and examples thereof include general viscous soil and sandy soil.

本発明に係る地盤改良材は、アロフェンを含有するアロフェン材とセメント系固化材とから構成される。アロフェン材としては、アロフェンの含有量が90%以上の試薬や粘土鉱物等が挙げられる。また、地盤改良材は、土壌中のアロフェンの含有量に対応した量のアロフェンを含有するように構成される。具体的には、地盤改良材は、土壌と混合された際のアロフェン材と土壌との合計量に対するアロフェン材および土壌に由来するアロフェンの割合が5質量%以上47質量%以下となるようにアロフェンの含有量が調整されてなるものである。また、斯かる割合は、種々の条件によっては、10質量%以上39質量%以下であってもよく、10質量%以上29質量%以下であってもよい。また、斯かる割合は、他の条件によっては、5質量%以上15質量%以下であってもよく、5質量%以上10質量%以下であってもよい。また、斯かる割合は、更に他の条件によっては、24質量%以上28質量%以下であってもよく、24質量%以上35質量%以下であってもよい。   The ground improvement material according to the present invention includes an allophane material containing allophane and a cement-based solidifying material. Examples of the allophane material include reagents and clay minerals having an allophane content of 90% or more. The ground improvement material is configured to contain allophane in an amount corresponding to the content of allophane in the soil. Specifically, the ground improvement material is allophane so that the ratio of the allophane material and the allophane derived from the soil to the total amount of the allophane material and the soil when mixed with the soil is 5% by mass or more and 47% by mass or less. The content of is adjusted. Moreover, such a ratio may be 10 mass% or more and 39 mass% or less depending on various conditions, and may be 10 mass% or more and 29 mass% or less. In addition, depending on other conditions, such a ratio may be 5% by mass or more and 15% by mass or less, or 5% by mass or more and 10% by mass or less. Further, such a ratio may be 24% by mass or more and 28% by mass or less, or may be 24% by mass or more and 35% by mass or less depending on other conditions.

セメント系固化材としては、特に限定されるものではなく、例えば、普通、早強、超早強等の各種ポルトランドセメント、該ポルトランドセメントに高炉スラグ、シリカ、フライアッシュを混合してなる各種混合セメント、白色セメント、超速硬セメント、アルミナセメントなど、一般的なセメントを使用することができる。   The cement-based solidifying material is not particularly limited. For example, various portland cements such as normal, early strength, and super early strength, and various mixed cements obtained by mixing blast furnace slag, silica, and fly ash with the portland cement. Common cements such as white cement, super-hard cement, and alumina cement can be used.

地盤改良材を構成するセメント系固化材の量としては、特に限定されるものではなく、土壌の性状に応じて適宜設定することができる。例えば、対象土1m3に対して50kg以上500kg以下であることが好ましく、150kg以上250kg以下であることがより好ましい。 It does not specifically limit as quantity of the cement-type solidification material which comprises a ground improvement material, According to the property of soil, it can set suitably. For example, it is preferably 50 kg or more and 500 kg or less, more preferably 150 kg or more and 250 kg or less with respect to 1 m 3 of the target soil.

なお、上記のアロフェン材および土壌におけるアロフェンの含有量は、北川、「土壌中のアロフェンおよび非晶質無機成分の定量に関する研究」(農技研報 B、(1977)、第29号、p.1〜48)に報告された「8N HCl−0.5N NaOH交互溶解法」に従って求まるものである。   In addition, allophane content in the above-mentioned allophane material and soil is as follows: Kitagawa, “Study on Quantification of Allophane and Amorphous Inorganic Components in Soil” (Agricultural Research Institute B, (1977), No. 29, p. 1 To 48), which is determined according to the “8N HCl-0.5N NaOH alternating dissolution method”.

具体的には、あらかじめ105℃で24時間乾燥したアロフェンを含む原料1gを重量既知のガラス製蓋付遠心管に入れ、8N 塩酸を50mL加えて、30分間振とうした後、2800rpmで6分間遠心分離後、上澄みを捨てる。次に、沈殿を1度蒸留水によって洗浄(2800rpmで6分間遠心分離洗浄を2回)した後、0.5N 水酸化ナトリウム水溶液を50ml加えて、60℃の湯浴中に5分間遠心管ごと浸した後、2800rpmで6分間遠心分離洗浄後、上澄みを捨てる。以上の操作を1〜5回繰返して最後の0.5N水酸化ナトリウム水溶液処理後の沈殿を蒸留水で洗浄した後、105℃で24時間乾燥し、秤量して処理に伴う減量を求める。処理回数に対する減量をそれぞれx軸とy軸にプロットして作成した溶解曲線から、その曲線の直線部分を延長して、y軸との交点を求めて、交点のy軸の値をアロフェンの含量とし、アロフェンを含む原料に対する割合からアロフェン含有量(質量%)を算出した。   Specifically, 1 g of a raw material containing allophane previously dried at 105 ° C. for 24 hours is put into a centrifuge tube with a known weight, added with 50 mL of 8N hydrochloric acid, shaken for 30 minutes, and then centrifuged at 2800 rpm for 6 minutes. Discard the supernatant after separation. Next, the precipitate is washed once with distilled water (centrifuged and washed twice at 2800 rpm for 6 minutes), 50 ml of 0.5N aqueous sodium hydroxide solution is added, and the whole tube is placed in a 60 ° C. water bath for 5 minutes. After soaking, the supernatant is discarded after centrifugation and washing at 2800 rpm for 6 minutes. The above operation is repeated 1 to 5 times, and the precipitate after the final 0.5N sodium hydroxide aqueous solution treatment is washed with distilled water, dried at 105 ° C. for 24 hours, and weighed to determine the weight loss associated with the treatment. From the dissolution curve created by plotting the weight loss with respect to the number of treatments on the x-axis and y-axis, respectively, the linear part of the curve is extended to obtain the intersection with the y-axis, and the y-axis value of the intersection is the allophane content The allophane content (% by mass) was calculated from the ratio to the raw material containing allophane.

次に、本発明に係る地盤改良工法について説明する。該地盤改良工法は、例えば、地盤改良の対象となる地盤を掘削して得られる土壌と地盤改良材とを混合して改良地盤を形成したり、地盤改良の対象となる地盤以外の地盤等から得られる土壌と地盤改良材とを混合して改良地盤を形成したりするものである。   Next, the ground improvement method according to the present invention will be described. The ground improvement construction method is, for example, forming the improved ground by mixing the soil obtained by excavating the ground to be ground improvement and the ground improvement material, or from the ground other than the ground to be ground improvement, etc. The obtained soil and the ground improvement material are mixed to form an improved ground.

土壌と地盤改良材とを混合する方法としては、特に限定されるものではないが、アロフェン材とセメント系固化材とが別々に土壌と混合されることが好ましい。具体的には、地盤改良材を構成するアロフェン材と土壌とを粉体同士で混合して混合物を形成する。一方、地盤改良材を構成するセメント系固化材と所定量の水とを混合してスラリー状の注入材を形成する。水量としては、特に限定されるものではないが、例えば、セメント系固化材100重量部に対して60重量部以上150重量部以下とすることができる。なお、土壌と地盤改良材とを混合する方法としては、アロフェン材と土壌との混合物にセメント系固化材の粉体を添加して混合するようにしてもよい。   The method of mixing the soil and the ground improvement material is not particularly limited, but it is preferable that the allophane material and the cement-based solidifying material are separately mixed with the soil. Specifically, the allophane material which comprises a ground improvement material, and soil are mixed with powder, and a mixture is formed. On the other hand, a cement-type solidifying material constituting the ground improvement material and a predetermined amount of water are mixed to form a slurry-like injection material. The amount of water is not particularly limited, but can be, for example, 60 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the cement-based solidified material. In addition, as a method of mixing the soil and the ground improvement material, a cement-based solidifying material powder may be added to and mixed with the mixture of the allophane material and the soil.

そして、混合物と注入材とを混合して流動化土を形成する。そして、得られた流動化土を土壌に形成した孔へ供給して硬化させることで、孔の周囲の地盤よりも強度が高い改良地盤が形成される。斯かる地盤改良工法では、流動化土は、アロフェン材および土壌に由来するアロフェンの合計量がアロフェン材と土壌との合計量に対して5質量%以上47質量%以下となるため、地盤改良材としてセメント系固化材のみを用いた場合よりも、改良地盤の強度を迅速に発現させることができる。   Then, the mixture and the injection material are mixed to form fluidized soil. And the improved ground whose intensity | strength is higher than the ground around a hole is formed by supplying and hardening the obtained fluidized soil to the hole formed in the soil. In such ground improvement method, since the total amount of allophane derived from the allophane material and the soil is 5% by mass or more and 47% by mass or less with respect to the total amount of the allophane material and the soil, As compared with the case where only cement-based solidified material is used, the strength of the improved ground can be rapidly expressed.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

<試験1>
1.使用材料
・試料土1:カオリン試薬(キシダ化学社製)を含水比50%に加水したもの。
・試料土2:砂質土(ジョイフル本田社製)を含水比20%に加水したもの。
・試料土3:自然土(成田市において採取したもの)
・試料土4:自然土(佐倉市において採取したもの)
・アロフェン材:アロフォサイトP−1(品川化成社製)
・セメント系固化材1:高炉セメントB種(住友大阪セメント社製)
・セメント系固化材2:タフロック3E(住友大阪セメント社製)
・水
<Test 1>
1. Materials used / Sample soil 1: A kaolin reagent (manufactured by Kishida Chemical Co., Ltd.) added to a water content ratio of 50%.
Sample soil 2: Sandy soil (manufactured by Joyfull Honda Co., Ltd.) hydrated to a moisture content of 20%.
・ Sample soil 3: Natural soil (collected in Narita City)
・ Sample soil 4: Natural soil (collected in Sakura City)
・ Allophane material: Allophytosite P-1 (manufactured by Shinagawa Kasei Co., Ltd.)
・ Cement-based solidification material 1: Blast furnace cement type B (manufactured by Sumitomo Osaka Cement)
・ Cement-based solidification material 2: Tough rock 3E (manufactured by Sumitomo Osaka Cement)
·water

2.アロフェンの含有量の測定
試料土1〜4およびアロフェン材に対して、上記実施形態の方法で、アロフェンの含有量を測定した。測定結果については、下記表1に示す。
2. Measurement of Allophane Content The content of allophane was measured for the sample soils 1 to 4 and the allophane material by the method of the above embodiment. The measurement results are shown in Table 1 below.

3.一軸圧縮強さの測定と評価
下記表2〜9に記載の実施例1〜28、比較例1〜18の配合で、上記の各材料を混練し、JGS 0821に準拠して供試体(φ5×10cm)を作製した。なお、「アロフェン量」とは、試料土とアロフェン材との合計量に対する試料土およびアロフェン材に由来するアロフェンの割合(%)を意味する。得られた各供試体を20℃、湿度95%の環境下で、28日間、封緘養生した。そして、養生後の各供試体に対して供試体作製後1日目(材齢1日)、および、28日目(材齢28日)の一軸圧縮強さをJIS A 1216に準拠して測定した。測定結果については、下記表2〜9に示す。そして、材齢1日、および、材齢28日の一軸圧縮強さが同配合の基準例に対して高い場合には「◎」、材齢1日の一軸圧縮強さが同配合の基準例に対して高い場合には「○」、材齢1日、および、材齢28日の一軸圧縮強さが同配合の基準例に対して低い場合には「×」として評価を行った。評価結果については、下記表2〜9に示す。
3. Measurement and Evaluation of Uniaxial Compressive Strength Each of the above materials was kneaded in the formulations of Examples 1 to 28 and Comparative Examples 1 to 18 shown in Tables 2 to 9 below, and a specimen (φ5 × 10 cm). The “allophane amount” means the ratio (%) of allophane derived from the sample soil and the allophane material to the total amount of the sample soil and the allophane material. Each obtained specimen was sealed and cured for 28 days in an environment of 20 ° C. and 95% humidity. Then, for each specimen after curing, the uniaxial compressive strength was measured according to JIS A 1216 on the first day after the specimen preparation (material age 1 day) and on the 28th day (material age 28 days). did. The measurement results are shown in Tables 2 to 9 below. And, when the uniaxial compressive strength of the material age is 1 day and the material age of 28 days is higher than the reference example of the same composition, “◎”, and the uniaxial compressive strength of the material age of 1 day is the reference example of the same composition On the other hand, when the uniaxial compressive strength was low with respect to the reference example of the same composition, the evaluation was made as “X”. The evaluation results are shown in Tables 2 to 9 below.

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570

4.まとめ
表2を見ると、各比較例よりも各実施例の方が材齢1日および材齢28日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材と高炉セメントB種とから構成される地盤改良材を用いて、カオリンから構成される土壌からなる地盤を改良する際には、アロフェン量が10質量%以上30質量%以下、好ましくは19質量%以上25質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、迅速に強度発現する改良地盤を得ることができる。
4). Summary When Table 2 is seen, it is recognized that the uniaxial compressive strength of each Example is higher than that of each Comparative Example. That is, when using the ground improvement material composed of allophane material and blast furnace cement type B to improve the ground composed of soil composed of kaolin, the amount of allophane is 10% by mass to 30% by mass, preferably By adjusting the allophane content in the ground improvement material so as to be 19% by mass or more and 25% by mass or less, it is possible to obtain an improved ground that rapidly develops strength.

表3を見ると、各比較例よりも各実施例の方が材齢1日および材齢28日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材とタフロック3Eとから構成される地盤改良材を用いて、カオリンから構成される土壌からなる地盤を改良する際には、アロフェン量が10質量%以上40質量%以下、好ましくは19質量%以上25質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、迅速に強度発現する改良地盤を得ることができる。   When Table 3 is seen, it is recognized that the uniaxial compressive strength of each Example is higher than that of each Comparative Example. That is, when using the ground improvement material composed of allophane material and tough rock 3E to improve the ground composed of soil composed of kaolin, the amount of allophane is 10 mass% or more and 40 mass% or less, preferably 19 By adjusting the allophane content in the ground improvement material so as to be not less than 25% by mass and not more than 25% by mass, it is possible to obtain an improved ground that rapidly develops strength.

表4および5を見ると、表4では比較例5よりも各実施例の方が、表5では比較例6よりも各実施例の方が、材齢1日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材と高炉セメントB種又はタフロック3Eとから構成される地盤改良材を用いて、砂質土から構成される土壌からなる地盤を改良する際には、アロフェン量が5質量%以上47質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、少なくとも材齢1日の強度発現が迅速な改良地盤を得ることができる。   Tables 4 and 5 show that the uniaxial compressive strength of each example is higher in Table 4 than in Comparative Example 5 in Table 4, and each Example in Table 5 is higher than Comparative Example 6 in Table 5. Is recognized. That is, when improving the ground made of soil composed of sandy soil using the ground improvement material composed of allophane material and blast furnace cement B type or tough rock 3E, the amount of allophane is 5% by mass or more and 47%. By adjusting the allophane content in the ground improvement material so as to be equal to or less than the mass%, it is possible to obtain an improved ground having a rapid strength development of at least one day of age.

また、表4の実施例10および11と実施例12〜16および比較例5とを比較すると、実施例10および11の方が材齢1日および材齢28日の一軸圧縮強さが高いことが認められる。また、表5の実施例17および18と実施例19〜23および比較例6とを比較すると、実施例17および18の方が材齢1日および材齢28日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材と高炉セメントB種又はタフロック3Eとから構成される地盤改良材を用いて、砂質土から構成される土壌からなる地盤を改良する際には、アロフェン量が5質量%以上13質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、迅速に強度発現する改良地盤を得ることができる。   In addition, when Examples 10 and 11 in Table 4 are compared with Examples 12 to 16 and Comparative Example 5, Examples 10 and 11 have higher uniaxial compressive strength than material 1 day and material 28 days. Is recognized. Moreover, when Examples 17 and 18 in Table 5 were compared with Examples 19 to 23 and Comparative Example 6, Examples 17 and 18 had higher uniaxial compressive strength than material 1 day and material 28 days. Is recognized. That is, when improving the ground consisting of soil composed of sandy soil using the ground improvement material composed of allophane material and blast furnace cement type B or tough rock 3E, the amount of allophane is 5% by mass or more and 13%. By adjusting the allophane content in the ground improvement material so as to be equal to or less than mass%, it is possible to obtain an improved ground that rapidly develops strength.

表6を見ると、比較例7よりも各実施例の方が材齢1日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材と高炉セメントB種とから構成される地盤改良材を用いて、試料土3のような土壌からなる地盤を改良する際には、アロフェン量が24質量%以上30質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、少なくとも材齢1日の強度発現が迅速な改良地盤を得ることができる。   When Table 6 is seen, it is recognized that the uniaxial compressive strength of each Example is higher than the comparative example 7 at the age of 1 day. That is, when the ground improvement material composed of the allophane material and the blast furnace cement B type is used to improve the ground made of soil such as the sample soil 3, the amount of allophane is 24% by mass or more and 30% by mass or less. By adjusting the content of allophane in the ground improvement material as described above, it is possible to obtain an improved ground having a rapid strength development of at least one day of age.

また、実施例24と実施例25および比較例7とを比較すると、実施例24の方が材齢1日および材齢28日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材と高炉セメントB種とから構成される地盤改良材を用いて、試料土3のような土壌からなる地盤を改良する際には、アロフェン量が24質量%以上27質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、迅速に強度発現する改良地盤を得ることができる。   Moreover, when Example 24 is compared with Example 25 and Comparative Example 7, it is recognized that Example 24 has higher uniaxial compressive strength than material age 1 day and material age 28 days. That is, when the ground improvement material composed of the allophane material and the blast furnace cement type B is used to improve the ground made of soil such as the sample soil 3, the amount of allophane is 24% by mass or more and 27% by mass or less. By adjusting the content of allophane in the ground improvement material as described above, an improved ground that rapidly develops strength can be obtained.

表7を見ると、比較例8よりも各実施例の方が材齢1日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材とタフロック3Eとから構成される地盤改良材を用いて、試料土3のような土壌からなる地盤を改良する際には、アロフェン量が24質量%以上40質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、少なくとも材齢1日の強度発現が迅速な改良地盤を得ることができる。   When Table 7 is seen, it is recognized that the uniaxial compressive strength of each Example is higher than the comparative example 8 at the age of 1 day. That is, when using the ground improvement material composed of the allophane material and the tough rock 3E to improve the ground made of soil such as the sample soil 3, the amount of allophane is 24% by mass or more and 40% by mass or less. In addition, by adjusting the content of allophane in the ground improvement material, it is possible to obtain an improved ground having a rapid strength development of at least one day of age.

また、実施例26および27と、実施例28および比較例8とを比較すると、実施例26および27の方が材齢1日および材齢28日の一軸圧縮強さが高いことが認められる。つまり、アロフェン材とタフロック3Eとから構成される地盤改良材を用いて、試料土3のような土壌からなる地盤を改良する際には、アロフェン量が24質量%以上33質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、迅速に強度発現する改良地盤を得ることができる。   In addition, when Examples 26 and 27 are compared with Example 28 and Comparative Example 8, it is recognized that Examples 26 and 27 have higher uniaxial compressive strength at a material age of 1 day and a material age of 28 days. That is, when the ground improvement material composed of the allophane material and the tough rock 3E is used to improve the ground made of soil such as the sample soil 3, the amount of allophane is 24% by mass or more and 33% by mass or less. In addition, by adjusting the allophane content in the ground improvement material, it is possible to obtain an improved ground that rapidly develops strength.

表8および9を見ると、アロフェン量が47質量%を超えるような範囲では、アロフェン材を含む地盤改良材を用いた場合であっても、材齢1日および材齢28日に良好な一軸圧縮強さを得ることができないことが認められる。つまり、アロフェン量が47質量%以下となるように地盤改良材中のアロフェンの含有量が調節されることで、迅速に強度発現する改良地盤を得ることができる。   As shown in Tables 8 and 9, in the range where the amount of allophane exceeds 47% by mass, even when the ground improvement material containing the allophane material is used, it is a good uniaxial material at 1 day of age and 28 days of age. It is recognized that the compressive strength cannot be obtained. In other words, by adjusting the allophane content in the ground improvement material so that the amount of allophane is 47% by mass or less, it is possible to obtain an improved ground that rapidly develops strength.

以上のことから、アロフェンの含有量が47質量%以下の土壌に対して、アロフェン量が5質量%以上47質量%以下となるようにアロフェンの含有量が調整された地盤改良材を用いることで、改良地盤の一軸圧縮強さを迅速に発現させることができると認められる。   From the above, by using the ground improvement material in which the allophane content is adjusted so that the allophane content is 5% by mass to 47% by mass with respect to the soil having the allophane content of 47% by mass or less. It is recognized that the uniaxial compressive strength of the improved ground can be rapidly expressed.

<試験2>
なお、上記のアロフェン材に代えてスメクタイトを用いた場合の比較例を下記に示す。
<Test 2>
In addition, the comparative example at the time of using smectite instead of said allophane material is shown below.

1.使用材料
・試料土1:カオリン試薬(キシダ化学社製)を含水比50%に加水したもの。
・スメクタイト(ベントナイト穂高 ホージュン社製)
・セメント系固化材1:高炉セメントB種(住友大阪セメント社製)
・セメント系固化材2:タフロック3E(住友大阪セメント社製)
・水
1. Materials used / Sample soil 1: A kaolin reagent (manufactured by Kishida Chemical Co., Ltd.) added to a water content ratio of 50%.
・ Smectite (Bentonite Hotaka Hojun Co.)
・ Cement-based solidification material 1: Blast furnace cement type B (manufactured by Sumitomo Osaka Cement)
・ Cement-based solidification material 2: Tough rock 3E (manufactured by Sumitomo Osaka Cement)
·water

2.アロフェンの含有量の測定
試料土1およびスメクタイトに対して、上記実施形態の方法で、アロフェンの含有量を測定した。測定結果については、下記表10に示す。
2. Measurement of Allophane Content The content of allophane was measured for the sample soil 1 and smectite by the method of the above embodiment. The measurement results are shown in Table 10 below.

3.一軸圧縮強さの測定と評価
上記の<試験1>と同一の方法で材齢1日、および、材齢28日の一軸圧縮強さを測定して評価した。測定結果および評価結果は、下記表11に示す。
3. Measurement and Evaluation of Uniaxial Compressive Strength The uniaxial compressive strength was measured by the same method as in the above <Test 1>, and the uniaxial compressive strength was measured and evaluated for 28 days. The measurement results and evaluation results are shown in Table 11 below.

Figure 2015178570
Figure 2015178570

Figure 2015178570
Figure 2015178570
Figure 2015178570
Figure 2015178570

4.まとめ
表2〜9の各実施例と表11および12の各比較例とを比較すると、アロフェン材に代えてスメクタイトを用いた比較例19〜24の場合には、アロフェン材を用いた場合よりも、材齢1日、および、材齢28日の一軸圧縮強さが顕著に向上しないことが認められる。つまり、地盤改良材の構成としてアロフェン材を用いることで、改良地盤の一軸圧縮強さを迅速に発揮させることができると認められる。
4). Summary When comparing each example in Tables 2 to 9 and each comparative example in Tables 11 and 12, in the case of Comparative Examples 19 to 24 using smectite instead of the allophane material, compared to the case of using the allophane material. It can be seen that the uniaxial compressive strength of material 1 day and material 28 days is not significantly improved. That is, it is recognized that the uniaxial compressive strength of the improved ground can be rapidly exhibited by using the allophane material as the structure of the ground improving material.

Claims (3)

土壌と混合されて地盤の改良に用いられる地盤改良材であって、
アロフェンを含有するアロフェン材とセメント系固化材とから構成されており、
土壌と混合された際のアロフェン材と土壌との合計量に対して、アロフェン材および土壌に由来するアロフェンの割合が5質量%以上47質量%以下となるようにアロフェンの含有量が調整されてなることを特徴とする地盤改良材。
A ground improvement material that is mixed with soil and used to improve the ground,
It consists of an allophane material containing allophane and a cement-based solidifying material,
The content of allophane is adjusted so that the ratio of allophane material and allophane derived from the soil is 5 mass% or more and 47 mass% or less with respect to the total amount of the allophane material and the soil when mixed with the soil. The ground improvement material characterized by becoming.
土壌と地盤改良材とを混合したものを用いて地盤の改良を行う地盤改良工法であって、
地盤改良材は、アロフェンを含有するアロフェン材とセメント系固化材とから構成されており、アロフェン材および土壌に由来するアロフェンの合計量がアロフェン材と土壌との合計量に対して5質量%以上47質量%以下となるようにアロフェン材の量が調整されてなることを特徴とする地盤改良工法。
A ground improvement method for improving the ground using a mixture of soil and ground improvement material,
The ground improvement material is composed of an allophane material containing allophane and a cement-based solidified material, and the total amount of allophane derived from allophane material and soil is 5% by mass or more based on the total amount of allophane material and soil. A ground improvement method characterized in that the amount of allophane material is adjusted to 47% by mass or less.
地盤改良材を構成するアロフェン材と土壌とを混合して混合物を形成した後、地盤改良材を構成するセメント系固化材と該混合物とを混合することを特徴とする請求項2に記載の地盤改良工法。   3. The ground according to claim 2, wherein the allophane material constituting the ground improvement material and soil are mixed to form a mixture, and then the cement-based solidifying material constituting the ground improvement material and the mixture are mixed. Improved construction method.
JP2014056959A 2014-03-19 2014-03-19 Ground improvement material and ground improvement method Pending JP2015178570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056959A JP2015178570A (en) 2014-03-19 2014-03-19 Ground improvement material and ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056959A JP2015178570A (en) 2014-03-19 2014-03-19 Ground improvement material and ground improvement method

Publications (1)

Publication Number Publication Date
JP2015178570A true JP2015178570A (en) 2015-10-08

Family

ID=54262853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056959A Pending JP2015178570A (en) 2014-03-19 2014-03-19 Ground improvement material and ground improvement method

Country Status (1)

Country Link
JP (1) JP2015178570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089319A (en) * 2015-11-16 2017-05-25 鹿島建設株式会社 Vertical shaft construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017089319A (en) * 2015-11-16 2017-05-25 鹿島建設株式会社 Vertical shaft construction method

Similar Documents

Publication Publication Date Title
Dinakar et al. Concrete mix design for high strength self-compacting concrete using metakaolin
Oti et al. Compressive strength and microstructural analysis of unfired clay masonry bricks
James et al. Effect of phosphogypsum on strength of lime stabilized expansive soil
CN106277953B (en) C30 recycled aggregate concrete and preparation method thereof
Abdalla et al. Mechanical properties of eco-friendly concrete made with sugarcane bagasse ash
Muthusamy et al. Assessment of Malaysian laterite aggregate in concrete
Suksiripattanapong et al. Properties of soft Bangkok clay stabilized with cement and fly ash geopolymer for deep mixing application
CN101445342B (en) Concrete material for reinforcing high-performance structure project, preparation method and use thereof
Cristelo Estabilização de solos residuais graníticos através da adição de cal
Sharma et al. Use of waste marble powder as partial replacement in cement sand mix
JP2015178570A (en) Ground improvement material and ground improvement method
JP2019059886A (en) Solidification material
Behak et al. Performance of low-volume roads with wearing course of silty sand modified with rice husk ash and lime
Naik et al. Comparative study of effect of silica fume and quarry dust on strength of self compacting concrete
Witzany et al. Physical and mechanical characteristics of building materials of historic buildings
Chompoorat et al. Engineering properties of controlled low-strength material (CLSM) as an alternative fill material
WO2019138538A1 (en) Method for improving ground
JP2014152223A (en) Ground improvement material, assistant for ground improvement and ground improvement method
Nithin et al. Stabilization of silty sand using fly ash and coir fiber
JP2016074559A (en) Cement slurry and ground improvement method
CA2545810C (en) Cementitious composition for use in elevated to fully saturated salt environments
Mukharjee et al. Compressive strength of nano-silica incorporated recycled aggregate concrete
JP6568431B2 (en) Soil improvement material and soil improvement method
JP6679837B2 (en) Cement composition
JP6512472B2 (en) Method of predicting strength of improved soil and method of producing improved soil