JP2015173545A - Rotor structure of rotary electric machine - Google Patents

Rotor structure of rotary electric machine Download PDF

Info

Publication number
JP2015173545A
JP2015173545A JP2014048299A JP2014048299A JP2015173545A JP 2015173545 A JP2015173545 A JP 2015173545A JP 2014048299 A JP2014048299 A JP 2014048299A JP 2014048299 A JP2014048299 A JP 2014048299A JP 2015173545 A JP2015173545 A JP 2015173545A
Authority
JP
Japan
Prior art keywords
rotor
magnet
shaped
cavity
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014048299A
Other languages
Japanese (ja)
Other versions
JP6331506B2 (en
Inventor
健太 犬塚
Kenta Inuzuka
健太 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014048299A priority Critical patent/JP6331506B2/en
Publication of JP2015173545A publication Critical patent/JP2015173545A/en
Application granted granted Critical
Publication of JP6331506B2 publication Critical patent/JP6331506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve both of higher torque and higher speed rotation by mitigating concentration of a stress by centrifugal force during rotation in a width direction end portion of a penetration part of a strip-like permanent magnet in a rotor.SOLUTION: A rotor structure of a rotary electric machine includes: a rotor 2 including a plurality of axial direction permanent magnets 4 in a circumferential direction, and a stator 3 disposed around the rotor 2. The permanent magnets 4 comprise: a V-shaped magnet in which a pair of strip-like permanent magnets 4a and 4b is arranged toward an outer periphery of the rotor with a V-shaped opening angle; and a strip-like outside magnet 4c which is arranged substantially in parallel with an outer peripheral surface of the rotor in a portion where the V-shaped magnets are opened. A cavity 8 is set in an area surrounded by the V-shaped magnets 4a and 4b and the outside magnet 4c of the rotor 2. Thus, a stress produced by centrifugal force tends to be concentrated during high-speed rotation in a width direction end portion of a through-hole 6 where the strip-like permanent magnets 4a-4c are disposed, of the rotor 2, but since the cavity 8 is set in the area surrounded by the V-shaped magnets 4a and 4b and the outside magnet 4c, a mass in the area is reduced and the stress is mitigated, and higher speed rotation is enabled.

Description

本発明は、永久磁石型の回転電機のロータ構造に関する。   The present invention relates to a rotor structure of a permanent magnet type rotating electrical machine.

永久磁石型の回転電機のロータ構造として、例えば、特許文献1には一磁極あたり3つの帯板状の永久磁石を用いて、これをロータの軸方向にΔ状に貫通配置したものが知られている。   As a rotor structure of a permanent magnet type rotating electrical machine, for example, Patent Document 1 discloses a structure in which three strip plate-like permanent magnets are used per magnetic pole and are penetrated in a Δ shape in the axial direction of the rotor. ing.

具体的にはロータの永久磁石を、一対の帯板状の永久磁石をロータ外周面に向けてV字状の開き角度を持って配置したV字磁石と、該V字磁石が開いた部分にロータ外周面と平行に配置した帯板状の外側磁石と、で構成してΔ状の配置としたものである。   Specifically, the permanent magnet of the rotor is arranged with a V-shaped magnet having a pair of strip-shaped permanent magnets facing the outer peripheral surface of the rotor and having a V-shaped opening angle, and a portion where the V-shaped magnet is opened. A belt plate-like outer magnet arranged in parallel with the outer peripheral surface of the rotor, and a Δ-shaped arrangement.

これにより、V字磁石にてそのステータに対向する表面積を大きくし、鎖交磁束を増大して大きなマグネットトルクを得ると共に、V字磁石と外側磁石の配置によりq軸インダクタンスが増大し、d軸インダクタンスが減少することで大きなリラクタンストルクを得ようとするものである。   This increases the surface area of the V-shaped magnet facing the stator, increases the interlinkage magnetic flux to obtain a large magnet torque, and increases the q-axis inductance due to the arrangement of the V-shaped magnet and the outer magnet. A large reluctance torque is obtained by reducing the inductance.

特開平10−51984号公報Japanese Patent Laid-Open No. 10-51984

特許文献1の開示技術では、各永久磁石のロータ外周側端部に対応する部分にフラックスバリアを空隙として設けることで、永久磁石の漏れ磁束とd軸磁束の回り込みを抑制しマグネットトルクとリラクタンストルクの増大を図っている。   In the disclosed technique of Patent Document 1, by providing a flux barrier as a gap at a portion corresponding to the rotor outer peripheral side end portion of each permanent magnet, the leakage flux of the permanent magnet and the d-axis flux are prevented from wrapping around, and the magnet torque and the reluctance torque. Increase.

しかし、この構成ではフラックスバリアとロータ外周面との間でコアが薄肉のブリッジ状となり、高速回転時の遠心力による応力集中のためロータ強度が確保できず、高トルク化と高速回転化の両立ができない。   However, in this configuration, the core is a thin bridge between the flux barrier and the outer peripheral surface of the rotor, and the rotor strength cannot be secured due to stress concentration due to centrifugal force during high-speed rotation, so both high torque and high-speed rotation are compatible. I can't.

そこで、本発明はロータにおける帯板状永久磁石の貫通部の幅方向端部に回転時の遠心力により応力が集中するのを緩和し、高トルク化と高速回転化とを両立することができる永久磁石型の回転電機のロータ構造を提供するものである。   Therefore, the present invention can relieve stress concentration due to centrifugal force during rotation at the end in the width direction of the penetrating portion of the strip-shaped permanent magnet in the rotor, and can achieve both high torque and high speed rotation. A rotor structure of a permanent magnet type rotating electrical machine is provided.

本発明の回転電機のロータ構造は、軸方向に貫通配置した永久磁石を周方向に複数備えてステータに内装されるロータであって、   The rotor structure of the rotating electrical machine of the present invention is a rotor that is provided in a stator with a plurality of permanent magnets arranged in the axial direction in the circumferential direction.

前記永久磁石は、一対の帯板状の永久磁石をロータ外周に向けてV字状の開き角度を持って配置したV字磁石と、該V字磁石が開いた部分にロータ外周面と略平行に配置した帯板状の外側磁石と、で構成している。   The permanent magnet includes a V-shaped magnet in which a pair of strip-shaped permanent magnets are arranged with a V-shaped opening angle toward the outer periphery of the rotor, and the rotor outer peripheral surface is substantially parallel to a portion where the V-shaped magnet is opened. And an outer magnet in the form of a strip plate arranged in the above.

そして、前記ロータの、前記V字磁石と前記外側磁石とで囲まれた領域に空洞を設定したことを主要な特徴としている。   The main feature is that a cavity is set in a region of the rotor surrounded by the V-shaped magnet and the outer magnet.

本発明によれば、ロータの帯板状の永久磁石を配置した貫通孔の幅方向端部には高速回転時に遠心力による応力が集中する傾向となるが、V字磁石と外側磁石とで囲まれた領域に空洞を設定してあることで該領域の質量が低減してこの応力が緩和され、回転電機の高速回転化が可能となって高トルク化との両立を実現できる。   According to the present invention, stress due to centrifugal force tends to concentrate at the end in the width direction of the through-hole in which the strip-shaped permanent magnet of the rotor is arranged, but surrounded by the V-shaped magnet and the outer magnet. By setting a cavity in the region, the mass of the region is reduced and this stress is relieved, so that the rotating electrical machine can be rotated at a high speed and a high torque can be achieved.

本発明の対象とする回転電機のロータとステータとの配置関係を示す説明図。Explanatory drawing which shows the arrangement | positioning relationship between the rotor and stator of the rotary electric machine made into the object of this invention. 本発明の第1実施形態におけるロータの一磁極相当部分を拡大して示す説明図。Explanatory drawing which expands and shows the one magnetic pole equivalent part in the rotor in 1st Embodiment of this invention. 空洞の設定とトルク性能との関係を示す説明図。Explanatory drawing which shows the relationship between the setting of a cavity, and torque performance. 本発明の第2実施形態を示す図2と同様の説明図。Explanatory drawing similar to FIG. 2 which shows 2nd Embodiment of this invention. 空洞設定部分の壁厚と応力との関係を示す説明図。Explanatory drawing which shows the relationship between the wall thickness of a cavity setting part, and stress. 空洞の変形例を(A)、(B)、(C)にて示す説明図。Explanatory drawing which shows the modification of a cavity by (A), (B), (C). 空洞の変形例を(A)、(B)、(C)にて示す説明図。Explanatory drawing which shows the modification of a cavity by (A), (B), (C).

以下、本発明の実施形態を図面と共に詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の対象とする永久磁石型の回転電機1におけるロータ2と、その周囲に所要の空隙をおいて配置したステータ3との配置関係を示している。   FIG. 1 shows an arrangement relationship between a rotor 2 in a permanent magnet type rotating electrical machine 1 as an object of the present invention and a stator 3 arranged with a required gap around it.

ロータ2は、磁性金属からなる複数のコア単板の積層体で構成され、その外周近傍には周方向に等ピッチで複数の永久磁石4を軸方向に貫通して圧入配置してある。   The rotor 2 is composed of a laminated body of a plurality of single core plates made of magnetic metal, and a plurality of permanent magnets 4 are press-fitted in the vicinity of the outer periphery of the rotor 2 at an equal pitch in the circumferential direction.

本実施形態は8極タイプの回転電機1を例示しており、永久磁石4を一磁極あたり3つの帯板状の永久磁石4a、4b、4cを用いてΔ配置とした構成として、これをロータ2の周方向に交互に極性を変えて等ピッチに配置している。   This embodiment exemplifies an 8-pole type rotating electrical machine 1, and the permanent magnet 4 is configured as a Δ arrangement using three strip-shaped permanent magnets 4 a, 4 b, and 4 c per magnetic pole, and this is a rotor. The polarities are alternately changed in the circumferential direction of 2 and arranged at an equal pitch.

図2に一磁極相当部分の永久磁石4の配置構造を拡大して示す。この永久磁石4は、一対の帯板状の永久磁石4a、4bをロータ2の外周面に向けてV字状の開き角度を持って配置して構成したV字磁石と、該V字磁石4a、4bが開いた部分にロータ2の外周面と略平行に配置した帯板状の外側磁石4cと、で該外側磁石4cを底辺とする三角形のΔ配置構成としている。   FIG. 2 shows an enlarged arrangement structure of the permanent magnets 4 corresponding to one magnetic pole. The permanent magnet 4 includes a V-shaped magnet configured by arranging a pair of strip-shaped permanent magnets 4a and 4b toward the outer peripheral surface of the rotor 2 with a V-shaped opening angle, and the V-shaped magnet 4a. A strip-shaped outer magnet 4c disposed substantially parallel to the outer peripheral surface of the rotor 2 at a portion where 4b is opened, and a triangular Δ arrangement having the outer magnet 4c as a base.

図示する例ではV字磁石4a、4bと外側磁石4cの各幅方向端部に対応する位置に、漏れ磁束対策としてフラックスバリア5を設定している。   In the illustrated example, flux barriers 5 are set as measures against leakage magnetic flux at positions corresponding to the end portions in the width direction of the V-shaped magnets 4a and 4b and the outer magnet 4c.

フラックスバリア5は、V字磁石4a、4bと外側磁石4cを圧入したロータ2の各貫通孔6を幅方向に延長した空隙として形成してあり、ここにV字磁石4a、4bおよび外側磁石4cの各幅方向端部を臨設配置している。   The flux barrier 5 is formed as a space in which each through hole 6 of the rotor 2 into which the V-shaped magnets 4a and 4b and the outer magnet 4c are press-fitted is extended in the width direction. Here, the V-shaped magnets 4a and 4b and the outer magnet 4c are formed. The end portions in the width direction are arranged side by side.

フラックスバリア5の延設基部には、これらV字磁石4a、4bおよび外側磁石4cの各幅方向端部の圧入位置決めを行うための段部7を設けてある。   The extending base of the flux barrier 5 is provided with a stepped portion 7 for performing press-fitting positioning of the respective widthwise ends of the V-shaped magnets 4a, 4b and the outer magnet 4c.

そして、ロータ2の前記V字磁石4a、4bと外側磁石4cとで囲まれた領域に空洞8を設定してある。   A cavity 8 is set in a region of the rotor 2 surrounded by the V-shaped magnets 4a and 4b and the outer magnet 4c.

図1、図2に示す例では空洞8をV字磁石4a、4bと外側磁石4cに平行な3辺を有する略三角形に形成している。   In the example shown in FIGS. 1 and 2, the cavity 8 is formed in a substantially triangular shape having three sides parallel to the V-shaped magnets 4a and 4b and the outer magnet 4c.

上述のようにロータ2の外周近傍に配設した永久磁石4を、帯板状のV字磁石4a、4bと外側磁石4cとでΔ配置とした構造にあっては、V字磁石4a、4bと外側磁石4cの各幅方向端部がロータ外周面に近接する部分、およびこれら幅方向端部同士が近接する部分に薄肉のブリッジ部9が生じる。   As described above, in the structure in which the permanent magnets 4 arranged in the vicinity of the outer periphery of the rotor 2 are arranged in Δ by the strip-shaped V-shaped magnets 4a and 4b and the outer magnet 4c, the V-shaped magnets 4a and 4b are arranged. A thin bridge portion 9 is formed at a portion where the widthwise end portions of the outer magnet 4c are close to the outer peripheral surface of the rotor and a portion where the widthwise end portions are close to each other.

特に、本実施形態のように各磁石4a〜4cの幅方向端部に対応する位置にフラックスバリア5を空隙として設定した構造では、図2に示すようにブリッジ部9の薄肉化が助長される。   In particular, in the structure in which the flux barrier 5 is set as a gap at a position corresponding to the width direction end of each of the magnets 4a to 4c as in the present embodiment, thinning of the bridge portion 9 is promoted as shown in FIG. .

この薄肉のブリッジ部9では、回転電機1の回転時に遠心力により応力が集中するため高速回転が抑制されてしまうが、V字磁石4a、4bと外側磁石4cとで囲まれた領域に空洞8を設定することで該領域の質量が低減して各ブリッジ部9の応力を緩和し、回転電機1の高速回転化が可能となる。   In this thin bridge portion 9, stress concentrates due to centrifugal force when the rotating electrical machine 1 rotates, so that high-speed rotation is suppressed. However, in the region surrounded by the V-shaped magnets 4a and 4b and the outer magnet 4c, the cavity 8 Is set, the mass of the region is reduced, the stress of each bridge portion 9 is relaxed, and the rotating electrical machine 1 can be rotated at a high speed.

この結果、帯板状の永久磁石4a〜4cのΔ配置とそれらの幅方向端部でのフラックスバリア5の設定による回転電機1の高トルク化と高速回転化との両立を実現することができる。   As a result, it is possible to realize both high torque and high speed rotation of the rotating electrical machine 1 by the Δ arrangement of the strip-like permanent magnets 4a to 4c and the setting of the flux barrier 5 at the end portions in the width direction. .

ここで、V字磁石4a、4bと外側磁石4cとで囲まれた領域に空洞8を設定すると、電気子鎖交磁束φaの低下によるトルク性能の悪化が考えられる。   Here, if the cavity 8 is set in a region surrounded by the V-shaped magnets 4a and 4b and the outer magnet 4c, the torque performance may be deteriorated due to a decrease in the interlinkage flux φa.

空洞8の設定とトルク性能は、空洞8とV字磁石4a、4bとの間の最短距離Da(mm)と、空洞8と外側磁石4cとの間の最短距離Db(mm)と、V字磁石4a、4bの残留磁束密度Br(T)とに密接に関係している。   The setting and torque performance of the cavity 8 are the shortest distance Da (mm) between the cavity 8 and the V-shaped magnets 4a and 4b, the shortest distance Db (mm) between the cavity 8 and the outer magnet 4c, and the V-shaped. This is closely related to the residual magnetic flux density Br (T) of the magnets 4a and 4b.

図3は本発明者の実験結果を示すもので、これらDa、Db、Brの間に、(Da+Db)/Br≧8、Da/Br≧1、Db/Br≧1の関係が成り立つように前記空洞8を適
切に設定することにより、トルクの低下率を殆ど無視できるほど小さく出来ることが判明している。
FIG. 3 shows the experiment results of the present inventors. The above-mentioned relationships are established so that the relationships of (Da + Db) / Br ≧ 8, Da / Br ≧ 1, and Db / Br ≧ 1 are established among these Da, Db, and Br. It has been found that by appropriately setting the cavity 8, the torque reduction rate can be made small enough to be ignored.

また、これと併せて図4に示す第2実施形態のように上述のDaとDbとの関係を、Da<Dbに設定することにより、Da≧Dbの範囲で空洞8を形成した場合に較べて該空洞8の体積を大きく出来るため、高速回転時の応力低減効果を大きくすることができる。しかも、d軸中心側(V字磁石4a、4bの内周側)のブリッジ部9を通る磁束を低減できるため、リラクタンストルクを向上することができる。   In addition to this, the relationship between Da and Db is set to Da <Db as in the second embodiment shown in FIG. 4, compared with the case where the cavity 8 is formed in the range of Da ≧ Db. Since the volume of the cavity 8 can be increased, the stress reduction effect during high-speed rotation can be increased. Moreover, since the magnetic flux passing through the bridge portion 9 on the d-axis center side (the inner peripheral side of the V-shaped magnets 4a and 4b) can be reduced, the reluctance torque can be improved.

図2、図4に示す何れの実施形態にあってもV字磁石4a、4bの内周側のブリッジ部9は隣接のフラックスバリア5、5が近接しているため、ここが最大応力部となりうる。   In any of the embodiments shown in FIGS. 2 and 4, the bridge portion 9 on the inner peripheral side of the V-shaped magnets 4a and 4b is adjacent to the adjacent flux barriers 5 and 5, so that this is the maximum stress portion. sell.

そこで、例えば前述のDa、Dbの関係をDa=Db=2.5mmとして空洞8を設定した図2の構造例と、Da=1.5mm、Db=3.5mmとして空洞8を設定した図4の構造例とした場合では、図5に示すように空洞8の無い比較例に対して、何れも高速回転時の最大応力を18%、21%の割合で低減できることが分かる。   Therefore, for example, the structure example of FIG. 2 in which the relationship between Da and Db is set to Da = Db = 2.5 mm and the cavity 8 is set, and FIG. 4 in which the cavity 8 is set with Da = 1.5 mm and Db = 3.5 mm. In the case of this structure example, it can be seen that the maximum stress during high-speed rotation can be reduced by 18% and 21% as compared with the comparative example without the cavity 8 as shown in FIG.

因みに、例えばBr=0.45Tのフェライト磁石をV字磁石4a、4bに用いた場合、図2、図4の構造例では共に(Da+Db)/Br=11.1(>8)mm/Tとなるため、空洞8が無いものと較べてトルク性能の低下は無い(図3参照)。   Incidentally, for example, when a ferrite magnet of Br = 0.45T is used for the V-shaped magnets 4a, 4b, both (Da + Db) /Br=11.1 (> 8) mm / T in the structural examples of FIGS. Therefore, there is no decrease in torque performance as compared with the case without the cavity 8 (see FIG. 3).

空洞8の構成態様は前記実施形態に限ることはなく、例えば図6、図7に示す変形例の
構成とすることもできる。
The configuration mode of the cavity 8 is not limited to the above embodiment, and for example, the configuration of the modification shown in FIGS.

図6の(A)は空洞8のV字磁石4a、4bに沿う辺をそれらと非平行として、V字磁石4a、4bと空洞8との距離がロータ外周面に向かって広がるようにした構造例を、(B)は空洞8をd軸中心からずらしてV字磁石4a、4bの一方に偏って形成した構造例を、(C)は空洞8の三角コーナー部を平坦にカットして多角形に形成した構造例を示している。   FIG. 6A shows a structure in which the sides of the cavity 8 along the V-shaped magnets 4a and 4b are made non-parallel to them so that the distance between the V-shaped magnets 4a and 4b and the cavity 8 increases toward the rotor outer peripheral surface. For example, (B) shows a structural example in which the cavity 8 is shifted from the center of the d-axis and is biased to one of the V-shaped magnets 4a and 4b. The structural example formed in the square is shown.

また、図7の(A)は空洞8を円形に形成した構造例を、(B)はV字磁石4a、4bおよび外側磁石4cを弧状の帯板形状とし、空洞8の各辺をそれらと平行に弧状に形成した構造例を、(C)は空洞8を複数の小さな円形孔をV字磁石4a、4bと外側磁石4cと平行に集合した形状として形成した構造例を示している。   7A shows an example of a structure in which the cavity 8 is formed in a circle, and FIG. 7B shows an arc-shaped band plate shape of the V-shaped magnets 4a and 4b and the outer magnet 4c, and each side of the cavity 8 is connected to them. (C) shows a structural example in which the cavity 8 is formed in a shape in which a plurality of small circular holes are gathered in parallel with the V-shaped magnets 4a and 4b and the outer magnet 4c.

ところで、このような永久磁石型の回転電機1では、稼働時における永久磁石4の発熱に起因して減磁することによるモータ運転効率の低下を抑制する必要がある。   By the way, in such a permanent magnet type rotating electrical machine 1, it is necessary to suppress a reduction in motor operation efficiency due to demagnetization due to heat generation of the permanent magnet 4 during operation.

そこで、前記空洞8を有効利用してこれを冷却油等の冷媒通路として構成することが可能で、この場合V字磁石4a、4bおよび外側磁石4cに近接して冷媒通路8を構成できるため、永久磁石4の冷却効率を高めてその発熱による減磁を抑制することができる。   Therefore, it is possible to effectively use the cavity 8 as a coolant passage such as cooling oil, and in this case, the coolant passage 8 can be configured close to the V-shaped magnets 4a and 4b and the outer magnet 4c. The cooling efficiency of the permanent magnet 4 can be increased and demagnetization due to the heat generation can be suppressed.

なお、前記実施形態では帯板状の永久磁石4a〜4cの各幅方向端部にフラックスバリア5を空隙として設定した構造例を示したが、低透磁率の材料でフラックスバリア5を構成した構造や、フラックスバリア5を設定していないものにも適用することができる。   In the above embodiment, the structure example in which the flux barrier 5 is set as a gap at each width direction end of the strip-shaped permanent magnets 4a to 4c is shown. However, the structure in which the flux barrier 5 is configured with a low permeability material. In addition, the present invention can also be applied to those in which the flux barrier 5 is not set.

1…回転電機
2…ロータ
3…ステータ
4…永久磁石
4a、4b…V字磁石
4c…外側磁石
5…フラックスバリア
6…貫通孔
7…位置決め段部
8…空洞(冷媒通路)
9…ブリッジ部
DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine 2 ... Rotor 3 ... Stator 4 ... Permanent magnet 4a, 4b ... V-shaped magnet 4c ... Outer magnet 5 ... Flux barrier 6 ... Through-hole 7 ... Positioning step part 8 ... Cavity (refrigerant passage)
9 ... Bridge part

Claims (4)

軸方向に貫通配置した永久磁石を周方向に複数備えてステータに内装されるロータであって、
前記永久磁石は、一対の帯板状の永久磁石をロータ外周面に向けてV字状の開き角度を持って配置したV字磁石と、該V字磁石が開いた部分にロータ外周面と略平行に配置した帯板状の外側磁石と、で構成し、
前記ロータの、前記V字磁石と前記外側磁石とで囲まれた領域に空洞を設定したことを特徴とする回転電機のロータ構造。
A rotor that is provided in the stator with a plurality of permanent magnets arranged in the axial direction in the circumferential direction,
The permanent magnet has a V-shaped magnet in which a pair of strip-shaped permanent magnets are arranged with a V-shaped opening angle toward the rotor outer circumferential surface, and the rotor outer circumferential surface substantially at a portion where the V-shaped magnet is opened. It is composed of a strip-shaped outer magnet arranged in parallel,
A rotor structure for a rotating electrical machine, wherein a cavity is set in a region surrounded by the V-shaped magnet and the outer magnet of the rotor.
前記空洞と前記V字磁石との間の最短距離Da(mm)と、
前記空洞と前記外側磁石との間の最短距離Db(mm)と、
前記V字磁石の残留磁束密度Br(T)との間に、
(Da+Db)/Br≧8、Da/Br≧1、Db/Br≧1(mm/T)
の関係が成り立つように前記空洞を形成したことを特徴とする請求項1に記載の回転電機のロータ構造。
The shortest distance Da (mm) between the cavity and the V-shaped magnet;
The shortest distance Db (mm) between the cavity and the outer magnet;
Between the residual magnetic flux density Br (T) of the V-shaped magnet,
(Da + Db) / Br ≧ 8, Da / Br ≧ 1, Db / Br ≧ 1 (mm / T)
The rotor structure for a rotating electric machine according to claim 1, wherein the cavity is formed so as to satisfy the following relationship.
前記空洞と前記V字磁石との間の最短距離Da(mm)と、
前記空洞と前記外側磁石との間の最短距離Db(mm)と、の間に、
Da<Db
の関係が成り立つように前記空洞を形成したことを特徴とする請求項1または2に記載の回転電機のロータ構造。
The shortest distance Da (mm) between the cavity and the V-shaped magnet;
Between the shortest distance Db (mm) between the cavity and the outer magnet,
Da <Db
The rotor structure for a rotating electric machine according to claim 1, wherein the cavity is formed so that the following relationship is established.
前記空洞を冷媒通路としたことを特徴とする請求項1〜3の何れか1つに記載の回転電機のロータ構造。   The rotor structure for a rotating electrical machine according to any one of claims 1 to 3, wherein the cavity is a refrigerant passage.
JP2014048299A 2014-03-12 2014-03-12 Rotor structure of rotating electrical machine Active JP6331506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048299A JP6331506B2 (en) 2014-03-12 2014-03-12 Rotor structure of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048299A JP6331506B2 (en) 2014-03-12 2014-03-12 Rotor structure of rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2015173545A true JP2015173545A (en) 2015-10-01
JP6331506B2 JP6331506B2 (en) 2018-05-30

Family

ID=54260535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048299A Active JP6331506B2 (en) 2014-03-12 2014-03-12 Rotor structure of rotating electrical machine

Country Status (1)

Country Link
JP (1) JP6331506B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871097A (en) * 2016-06-06 2016-08-17 上海川也电机有限公司 Low-fluctuation permanent magnetic rotor of electromobile motor
DE102016209712A1 (en) * 2016-06-02 2017-12-07 Volkswagen Aktiengesellschaft rotor core
CN107516953A (en) * 2017-10-23 2017-12-26 安徽栋霖电气有限公司 A kind of mixed type permanent-magnet pole rotor
DE102016209711A1 (en) * 2016-06-02 2018-01-04 Volkswagen Aktiengesellschaft rotor core
CN107546887A (en) * 2016-06-23 2018-01-05 沃尔沃汽车公司 Motor
CN109660042A (en) * 2019-01-16 2019-04-19 华中科技大学 A kind of tandem type hybrid permanent magnet change flux electric machine
WO2019179862A1 (en) * 2018-03-21 2019-09-26 Zf Friedrichshafen Ag Rotor of a permanent-magnet-excited electric machine
CN110326191A (en) * 2017-02-28 2019-10-11 日立汽车***株式会社 The rotor of rotating electric machine and the rotating electric machine for having it
GB2592889A (en) * 2019-12-17 2021-09-15 Bowman Power Group Ltd A rotor
CN114243973A (en) * 2021-12-21 2022-03-25 中车株洲电机有限公司 Permanent magnet traction motor and electric wheel vehicle
DE112021002229T5 (en) 2020-04-07 2023-03-02 Mitsubishi Electric Corporation ROTATING ELECTRICAL MACHINE
DE102021126750A1 (en) 2021-10-15 2023-04-20 Schaeffler Technologies AG & Co. KG Process for manufacturing a rotor for an electrical machine
WO2023238309A1 (en) * 2022-06-09 2023-12-14 日立Astemo株式会社 Rotary electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231589A (en) * 1994-02-16 1995-08-29 Yaskawa Electric Corp Rotor for permanent magnet electric rotating machine
JPH1051984A (en) * 1996-08-06 1998-02-20 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JPH11103546A (en) * 1997-09-29 1999-04-13 Fujitsu General Ltd Permanent magnet motor
JP2001339922A (en) * 2000-05-24 2001-12-07 Toshiba Corp Permanent-magnet reluctance rotating electric machine
JP2007159196A (en) * 2005-12-01 2007-06-21 Aichi Elec Co Permanent magnet rotating machine and compressor
US20110012464A1 (en) * 2009-07-14 2011-01-20 Hyundai Motor Company Rotor for an interior permanent magnet synchronous motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231589A (en) * 1994-02-16 1995-08-29 Yaskawa Electric Corp Rotor for permanent magnet electric rotating machine
JPH1051984A (en) * 1996-08-06 1998-02-20 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JPH11103546A (en) * 1997-09-29 1999-04-13 Fujitsu General Ltd Permanent magnet motor
JP2001339922A (en) * 2000-05-24 2001-12-07 Toshiba Corp Permanent-magnet reluctance rotating electric machine
JP2007159196A (en) * 2005-12-01 2007-06-21 Aichi Elec Co Permanent magnet rotating machine and compressor
US20110012464A1 (en) * 2009-07-14 2011-01-20 Hyundai Motor Company Rotor for an interior permanent magnet synchronous motor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016209712A1 (en) * 2016-06-02 2017-12-07 Volkswagen Aktiengesellschaft rotor core
DE102016209711A1 (en) * 2016-06-02 2018-01-04 Volkswagen Aktiengesellschaft rotor core
CN105871097A (en) * 2016-06-06 2016-08-17 上海川也电机有限公司 Low-fluctuation permanent magnetic rotor of electromobile motor
CN107546887B (en) * 2016-06-23 2020-11-17 沃尔沃汽车公司 Electric machine
CN107546887A (en) * 2016-06-23 2018-01-05 沃尔沃汽车公司 Motor
EP3261220B1 (en) * 2016-06-23 2020-08-12 Volvo Car Corporation Electric machine
US10270324B2 (en) 2016-06-23 2019-04-23 Volvo Car Corporation Electric machine
CN110326191A (en) * 2017-02-28 2019-10-11 日立汽车***株式会社 The rotor of rotating electric machine and the rotating electric machine for having it
CN107516953A (en) * 2017-10-23 2017-12-26 安徽栋霖电气有限公司 A kind of mixed type permanent-magnet pole rotor
WO2019179862A1 (en) * 2018-03-21 2019-09-26 Zf Friedrichshafen Ag Rotor of a permanent-magnet-excited electric machine
CN109660042A (en) * 2019-01-16 2019-04-19 华中科技大学 A kind of tandem type hybrid permanent magnet change flux electric machine
GB2592889A (en) * 2019-12-17 2021-09-15 Bowman Power Group Ltd A rotor
DE112021002229T5 (en) 2020-04-07 2023-03-02 Mitsubishi Electric Corporation ROTATING ELECTRICAL MACHINE
DE102021126750A1 (en) 2021-10-15 2023-04-20 Schaeffler Technologies AG & Co. KG Process for manufacturing a rotor for an electrical machine
DE102021126750B4 (en) 2021-10-15 2023-06-22 Schaeffler Technologies AG & Co. KG Process for manufacturing a rotor for an electrical machine
CN114243973A (en) * 2021-12-21 2022-03-25 中车株洲电机有限公司 Permanent magnet traction motor and electric wheel vehicle
WO2023115606A1 (en) * 2021-12-21 2023-06-29 中车株洲电机有限公司 Permanent magnet traction motor and electric wheel vehicle
WO2023238309A1 (en) * 2022-06-09 2023-12-14 日立Astemo株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP6331506B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6331506B2 (en) Rotor structure of rotating electrical machine
US9935513B2 (en) Rotating electrical machine
JP5774081B2 (en) Rotating electric machine
JP5565170B2 (en) Permanent magnet rotating machine
JP6229147B2 (en) Electric motor and compressor equipped with the same
JP6573031B2 (en) Rotor
JP5073692B2 (en) Rotating electric machine
JP2009131070A (en) Magnet type synchronous machine
JP2007274798A (en) Permanent-magnet rotating electric machine
WO2014162804A1 (en) Rotating electrical machine with embedded permanent magnet
JP2017046545A (en) Rotary electric machine rotor
JP2010088219A (en) Embedded permanent magnet rotor and cleaner
JP4574297B2 (en) Rotating electrical machine rotor
JP6507956B2 (en) Permanent magnet type rotating electric machine
JP2014192907A (en) Embedded magnet motor
KR20130062872A (en) Brushless motor
JP2014064427A (en) Rotor and rotary electric machine
JP2015047009A (en) Rotary electric machine
JP2015033245A (en) Rotor for permanent magnet motor
JP2016001933A (en) Rotor structure of rotary electric machine
JP2019170091A (en) Rotary electric machine
JP2006340507A (en) Stator of rotary electric machine
CN114726127A (en) Rotor for rotating electrical machine
JP2014087229A (en) Magnet embedded type rotor
JP2011193627A (en) Rotor core and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R151 Written notification of patent or utility model registration

Ref document number: 6331506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151