JP2015172496A - 管内走行超音波検査装置 - Google Patents

管内走行超音波検査装置 Download PDF

Info

Publication number
JP2015172496A
JP2015172496A JP2014047837A JP2014047837A JP2015172496A JP 2015172496 A JP2015172496 A JP 2015172496A JP 2014047837 A JP2014047837 A JP 2014047837A JP 2014047837 A JP2014047837 A JP 2014047837A JP 2015172496 A JP2015172496 A JP 2015172496A
Authority
JP
Japan
Prior art keywords
pipe
base
peripheral surface
inner peripheral
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014047837A
Other languages
English (en)
Inventor
智 藤田
Satoshi Fujita
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014047837A priority Critical patent/JP2015172496A/ja
Publication of JP2015172496A publication Critical patent/JP2015172496A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】管内を走行しながら、超音波を用いて管の内周面から管壁の減肉等の検査を行うことができる管内走行超音波検査装置が要望されている。【解決手段】管の内周面を複数の駆動車輪5を用いて走行する走行台車ユニット6に連結された連結部材72に設けられた基台2と、基台に支持されるとともに、管の径方向に変位可能で管の内周面に常時接触するように付勢された案内部4と、案内部4の径方向変位と連動するように基台2に支持された送信探触子1A及び受信探触子1Bとが備えられている。送信探触子1Aは、内周面に入射される超音波が空間伝播する間隔を内周面との間であけており、受信探触子1Bは、内周面から出てくる超音波が空間伝播する間隔を内周面との間であけている。【選択図】図1

Description

本発明は、埋設配管などの管内を走行しながら、超音波を用いて管の内周面から管壁の検査を行う管内走行超音波検査装置に関する。
埋設配管では、外面の腐食減肉を計測することが保全上重要であるが、減肉を外面から直接検査するためには地面を掘削して配管を露出させる必要があるため、コストがかかる。そのような配管露出作業を避けるため、管内を移動する検査装置を用いて、管の内周面から腐食減肉を検査することが提案されている。例えば、特許文献1では、磁気センサを取り付けた移動体を磁気飽和させた配管に挿入し、磁気センサによって漏洩磁束を検出することで、管の減肉部を検査する検査装置が開示されている。このような漏洩磁束を検出することにより減肉の有無を知る漏洩磁束法は、管体を磁化するために永久磁石や大がかりな電磁石が必要となり、不利である。
漏洩磁束法以外の検査方法として、管壁に入射した超音波の反射波が戻ってくるまでの伝播時間を計測して減肉部を検査する超音波検査法がよく知られており、この超音波検査法を管内を走行する台車に適用させた自走式検査装置が、特許文献2に開示されている。しかしながら、管内が水などの液体で満たされていない場合、超音波探触子から送信された超音波を管の内周面に効率よく入射させるためには、超音波探触子と管の内周面との間に水や油等の接触媒質(カップリング剤)が必要である。しかしながら、管内を移動しながら超音波探触子と管の内周面との隙間に接触媒質を供給して検査を行い、さらにその後に供給した接触媒質を除去するためには、大掛かりな装置が要求され、コスト的に問題となる。仮に、接触媒質なしで、このような肉厚検査を行った場合、空気と管との音響インピーダンスの違いから、管の内周面から反射する反射波(表面反射波)のエネルギーが大き過ぎ、減肉検査のために必要な表面反射波と管壁底面からの反射波(底面反射波)とが重なり合って、その測定はほとんど不可能となる。
特開2003−270210号公報 特開2003−302217号公報
上記実情から、管内を走行しながら、超音波を用いて管の内周面側から管壁の減肉等の検査を行うことができる管内走行超音波検査装置が要望されている。
管の内部を走行しながら管を検査する、本発明による管内走行超音波検査装置は、
前記管の内周面を複数の駆動車輪を用いて走行する走行台車ユニットと、前記走行台車ユニットに連結されるとともに前記管の管軸方向に延びる連結部材と、前記連結部材に設けられた基台と、前記管の軸芯に対して対称となるように前記基台に支持されるとともに、前記管の径方向に変位可能で前記管の内周面に常時接触するように付勢された案内部と、前記案内部の径方向変位と連動するように前記基台に支持された送信探触子保持部と、前記案内部の径方向変位と連動するように前記基台に支持された受信探触子保持部と、前記内周面に入射される超音波が空間伝播する間隔を前記内周面との間であけるように前記送信探触子保持部に固定された送信探触子と、前記内周面から出てくる超音波が空間伝播する間隔を前記内周面との間であけるように前記受信探触子保持部に固定された受信探触子とを備えている。なお、本発明において用いられている「空間」なる語句は、主に空気が詰まった空気空間やガス(都市ガスなど)が詰まったガス空間を意味している。
この構成によれば、管壁の減肉等の超音波検査を内周面から行う際に、超音波探触子(送信探触子及び受信探触子)と管の内周面との間にはカップリング剤を介在させずに超音波を空間伝播させているので、カップリング剤の前処理及び後処理が不要となるだけでなく、管内走行時に超音波探触子が管の内周面に引っ掛かるといった不都合を避けることができる。また、超音波を管壁に入射させる送信探触子と管壁から出てきた超音波を受けとる受信探触子が別体である、いわゆるタンデム透過法(片面斜角透過法)を採用しているので、管の内周面からの表面反射波が評価すべき受信波に及ぼす悪影響を回避することができる。さらに、送信探触子及び受信探触子は、それぞれ送信探触子及び受信探触子における管壁内周面に対する姿勢(距離及び角度)の変動は、管の径方向に変位可能で管の内周面に常時接触するように付勢されていることで内周面に追従する案内部に連動する探触子保持部(送信探触子保持部及び受信探触子保持部)に固定されている。これにより、検査対象となる管の歪などに起因する管内走行時の送信探触子及び受信探触子における管壁内周面に対する姿勢(距離及び角度)の変動は、実質的に回避することができる。特に、本願発明の対象の1つとなっているような、前走行台車と後走行台車とからなる走行台車ユニットにおける前走行台車と後走行台車との間に、送信探触子及び受信探触子を配置する場合、走行中に管の内周面に対する送信探触子及び受信探触子の位置が変動し、超音波測定の精度が悪化する。このような走行中の送信探触子及び受信探触子の管の内周面に対する位置変動は、管の内周面に常時接触するように付勢された案内部によって回避することができる。特に、片面斜角透過法においては、送信探触子及び受信探触子の管壁内周面に対する姿勢の変動は検査結果に大きな悪影響を与えるので、この案内部の構成は重要である。
案内部を管の内周面に追従させるために必要な径方向変位構造に関する、本発明の好適な実施形態の1つでは、前記基台は、前記連結部材から管径方向で両側に延びるアームベースと当該アームベースの両側に径方向変位可能に支持された可動台とからなり、前記可動台に前記案内部が設けられている。走行ユニットと連結している連結部材に設けられている基台を構成するアームベースは、走行時に管の内周面に対して位置ずれすることは避けられないが、アームベースに対して径方向変位可能な可動台は、案内部の動きに合わせて管の内周面に対する姿勢を維持すべくアームベースに対して変位することができる。
埋設ガス管などに用いられる管の内径は、200mmから1m程度であり、この管内の移動する超音波検査装置はできるだけコンパクトに構成しなければならない。そのようなコンパクトな構造を実現するための好適な実施形態の1つでは、前記アームベースは前記管軸方向に間隔をあけた第1アーム部と第2アーム部とからなり、前記第1アーム部に支持された可動台に前記送信探触子保持部が設けられ、前記第2アーム部に支持された可動台に前記受信探触子保持部が設けられている。この構成では、送信探触子保持部と受信探触子保持部とは、それぞれ別個の可動台とアーム部とを介して基材に支持されるので、各アーム部と各可動台との構造は、1つの探触子を固定する1つの探触子保持部を支持するだけでよいので、コンパクトになる。また、各アーム部と各可動台とにかかる荷重負担も少ないので、走行時の撓みや振動も容易に抑制することができる。
送信探触子から直接空間伝播してあるいは管壁内周面で反射して受信探触子に入り込む超音波は、検査時のノイズ信号となる。このような管壁内を伝播せずに空間伝播だけで送信探触子から受信探触子に入り込む超音波を遮断するために、本発明の好適な実施形態の1つでは、前記送信探触子と前記受信探触子との間に前記送信探触子から出て空間伝播で前記受信探触子に向かう超音波を遮断する音波遮蔽体が前記基台に支持されている。その際、前記音波遮蔽体の先端と前記内周面との間にわずかな隙間が形成され、走行時に音波遮蔽体と管の内周面との接触が生じないようにすれば、走行の安定性が得られる。さらに、音波遮蔽体と管の内周面とが接触しないことは、超音波が伝播している管壁の内周面の周面条件が一定状態に維持されることになるので、安定した超音波検査に寄与する。
超音波探触子をできるだけ安定状態で管内を移動させるためには、走行時の基台の安定も重要である。このため、本発明の好適な実施形態の1つでは、前記走行台車ユニットは、前記連結部材によって連結された前側走行台車と後側走行台車とからなり、前記基台は前側走行台車と後側走行台車との間に配置されている。管軸方向で前後に振り分け配置された走行台車同士を連結する連結部材に基台が設けられているので、走行時の基台の安定性が確保され、結果的に超音波探触子も安定が得られる。
配管内における、走行台車ユニット自体の安定した走行を実現するため、本発明による好適な実施形態の1つでは、前記駆動車輪は、前記管の周方向で間隔をあけて前記連結部材から管の径方向に放射状に延びた複数の支持アームの端部に取り付けられている。この構成により、駆動車輪は支持アームを介して管の径方向に踏ん張ることができるので、走行安定性が得られる。また、複数の放射状に延びた支持アームに駆動車輪が設けられていることから、管内を螺旋走行することが可能であり、これにより、配管の内周面の実質的な全面検査が可能となる。
本発明による超音波検査ユニットの基本的な構成を説明する模式図である。 本発明の具体的な実施形態の1つである管内走行超音波検査装置の斜視図である。 超音波検査ユニットの平面図である。 超音波検査ユニットの側面図である。 本発明で採用されている超音波斜角透過法を説明する模式図である。 図1による管内走行台車の斜視図である。 管内走行台車の正面図である。 球状駆動車輪の分解斜視図である。 管壁に設けられた人工孔に対する実験結果を示すCスキャン図である。
本発明による管内走行超音波検査装置の具体的な実施形態を説明する前に、図1を用いて本発明を特徴付けている基本的な構成を説明する。
この管内走行超音波検査装置は、配管内を走行する走行台車ユニット6と、走行台車ユニット6に取り付けられる超音波検査ユニット1と、超音波検査ユニット1から通信ケーブルを介して送られてくる検査結果に基づいて、管における減肉部を検知する検査評価部100とを備えている。
図1で例示された走行台車ユニット6は、管軸方向で間隔をあけて配置され、管軸芯に沿って延びている連結部材72によって連結されている前側走行台車6Aと後側走行台車6Bとからなる。前側走行台車6Aと後側走行台車6Bの構造は、実質的には同じである。前側走行台車6Aと後側走行台車6Bは、台車本体10と、台車本体10から管径方向に放射状に延びたアームユニット8と、アームの先端部に設けられた駆動車輪5とを備えている。図1から理解できるように、ここでは図示されていない付勢機構により、駆動車輪5は管の内周面に押し付けられており、台車本体10の中心軸はほぼ管軸芯に位置するように、アームユニット8と駆動車輪5とによる管の内周面への突っ張り作用によって支持されている。
図1で例示された超音波検査ユニット1は、前側走行台車6Aと後側走行台車6Bとの間で、連結部材72に支持されている。超音波検査ユニット1は、連結部材72に固定されている基台2と、管の内周面に常時接触するように付勢された案内部4と、送信探触子1Aを所定の姿勢で固定している送信探触子保持部11と、受信探触子1Bを所定の姿勢で固定している受信探触子保持部12とを備えている。
基台2は、径方向で両側に延びるアームベース20と、当該アームベースの両側に径方向変位可能に支持された可動台30とから構成されている。ここでは、アームベース20は、ベースブラケット23と当該ベースブラケット23から管径方向両側で管の内周面に向かってフォーク状に延びる第1アーム部21と第2アーム部22を有する。言い換えると、管径方向に延びた第1アーム部21及び第2アーム部22の中間領域のベースブラケット23が形成されている。第1アーム部21及び第2アーム部22の各端部領域には径方向変位可能に可動台30が設けられている。可動台30が図示されていない付勢機構によって内周面に向かって付勢されていることで、案内部4の接触体が管の内周面に接触するように、各可動台30には案内部4が設けられている。さらに、第1アーム部21の各可動台30には送信探触子保持部11が設けられ、第2アーム部22の各可動台30には、受信探触子保持部12が設けられている。送信探触子保持部11及び受信探触子保持部12あるいは送信探触子1A及び受信探触子1Bは、送信探触子1Aで励起された超音波が空間伝播し、内周面に入射し、管壁を管軸方向に伝播して再び内周面から出て、空間伝播を経て受信探触子1Bに達するように、位置決めされている。なお、送信探触子保持部11と受信探触子保持部12との位置関係、つまり送信探触子1Aと受信探触子1Bとの位置関係は、送信探触子1Aからの超音波が管壁を周方向に伝播して受信探触子1Bに達するようにしてもよい。
案内部4と、対で使用される送信探触子1A又は受信探触子1Bとは、同じ可動台30に固定されているので、案内部4の径方向変位と連動する。つまり、管に変形が生じ、その内周面が歪んでいても、案内部4が内周面に対する倣い作用により、送信探触子1A及び受信探触子1Bと内周面との距離は実質的に一定に維持することができる。
送信探触子1Aと受信探触子1Bとの間には、送信探触子1Aから出て空間伝播で受信探触子1Bに向かう超音波を遮断する音波遮蔽体28が、アームベース20を構成するベースブラケット23から径方向に延びている。この音波遮蔽体28の先端と内周面との間には、走行の障害にならないように、隙間が形成されている。
次に、図面を用いて、本発明による管内走行超音波検査装置の具体的な実施形態の1つを説明する。この管内走行超音波検査装置も、図1で説明された基本的な構造を備えている。図2は、管内走行超音波検査装置の管内走行アッセンブリの斜視図である。この管内走行アッセンブリは、管内を自走する走行台車ユニット6と超音波検査ユニット1とから構成される。走行台車ユニット6は、先頭を走行する前側走行台車6Aと後尾を走行する後側走行台車6Bとからなり、互いにロッド状の連結部材72によって連結されている。超音波検査ユニット1は、前側走行台車6Aと後側走行台車6Bとの間に中間部で連結部材72に支持されている。前側走行台車6Aと後側走行台車6Bとは、台車本体7から放射状に延びたアームユニット8の先端設けられた駆動車輪5が管の内周面を転動することで管内を走行する。直線走行時には、台車本体7と、この台車本体7と連結している連結部材72とは、ほぼ管軸中心に位置することになる。
この管内走行超音波検査装置では、送信探触子1Aと受信探触子1Bとを用いた片面斜角透過法(タンデム透過法)で管壁の減肉状態を管内走行しながら検査するため、超音波検査ユニット1は、図2、図3、図4に示すように、管軸芯に対して対向配置される2組の送信探触子1Aと受信探触子1Bとを支持するために、管軸芯から管径方向両側に二股状に延びたアームベース20として構成されている基台2を備えている。アームベース20は、連結部材72に固定されているベースブラケット23と、このベースブラケット23から管径方向両側に直線状に延びる第1アーム部21及び第2アーム部22とからなる。さらに、第1アーム部21及び第2アーム部22の両端部には、スライド機構24によって管径方向に変位可能に可動台30が取り付けられている。
図3と図4から理解できるように、スライド機構24は、第1アーム部21及び第2アーム部22の下面に設けられたレール241と、可動台30の上面に設けられた摺動体242と含み、摺動体242がレール241に係合して摺動することで可動台30は管径方向に移動する。さらに、可動台30の管径方向の両側面に接当するようにスプリングプランジャ243が第1アーム部21及び第2アーム部22に設けられている。つまり、可動台30は、摺動方向の両側に配置されたスプリングプランジャ243によって押し引き付勢されているので、可動台30に管径方向の力(変位)が加わった際にスプリングプランジャ243のストローク範囲で、可動台30はベースブラケット23に対して変位可能である。なお、両スプリングプランジャ243の付勢力の関係は、常時、可動台30が管の内周面に向かうように、設定されている。また、スプリングプランジャ243は螺合調整によって管径方向の位置が設定されるように取り付けられているので、スプリングプランジャ243は所定の調整範囲内において任意の位置に設定される。
さらに、この可動台30は、ケース体31と旋回体32とから構成されている。スライド機構24の摺動体242はケース体31の上面に固定されており、この上面に対して垂直に延びている旋回軸P1周りに旋回体32が旋回する。旋回体32の先端側(管の内周面を向いた側)には、案内部4と送信探触子保持部11または受信探触子保持部12が設けられている。送信探触子保持部11は、第1アーム部21に支持されている旋回体32に設けられ、受信探触子保持部12は第2アーム部22に支持されている旋回体32に設けられている。片面斜角透過法で用いられる1組の送信探触子1Aと送信探触子保持部11は、管の内周面に対して正確に斜め姿勢をとる必要がある。このため、旋回体32には、旋回軸P1の径方向に突き出した突起33が形成されており、ケース体31には、この突起33を接当して旋回体32を旋回させる調整ねじ34が突起33の両側に設けられている。この調整ねじ34による旋回体32の微旋回で、送信探触子1A及び受信探触子1Bが管の内周面に対する所望の傾斜角度に設定される。
案内部4は、この実施形態では、回転ボール41を管の内周面に向かって露出させるように保持しているボール保持体42として形成されている。このボール保持体42はアームベース20に取り付けられた可動台30に支持固定されているので、中心軸P0に対して対称配置された回転ボール41が管の内周面に接触することによってアームベース20は、管の内周面に対して突っ張り状態を保持する。より詳しくは、ベースブラケット23は、一方では第1アーム部21からケース体31と旋回体32とボール保持体42とを介して回転ボール41によって管の内周面に対して突っ張り支持され、他方では第1アーム部21からケース体31と旋回体32とボール保持体42とを介して回転ボール41によって管の内周面に対して突っ張り支持される。これにより、ベースブラケット23は管軸方向前と後とで突っ張り支持されることになり、結果的に超音波検査ユニット1の走行安定性が確保される。
片面斜角透過法として一対の使用される送信探触子1Aと受信探触子1Bとは、超音波を空間伝播させるので、送信探触子1Aから出た超音波が空間伝播だけで直接受信探触子1Bに入る可能性がある。これを避けるために、第1アーム部21と第2アーム部22との間、及び送信探触子1Aと受信探触子1Bとの間を通って管の内周面の手前まで達する薄板状の音波遮蔽体28がベースブラケット23に取り付けられている。
図5では、この超音波検査ユニット1で採用されている超音波検査方法が模式的に示されている。この超音波検査方法は、送信探触子1Aから送信され、空間伝播を経て管壁に入射し、管壁を伝播して再び管壁から出て、空間伝播を経て受信探触子1Bに達する超音波の透過波を評価して、管壁の状態、特に管外周面に生じる減肉の存在を検出するものである。例えば、管外周面に腐食凹みが生じていた場合、その腐食凹みによって超音波の伝播が妨害されることで透過波の振幅が低下するので、透過波の振幅低下に基づいて減肉を判定する。その際、空中伝播を用いているので、送信探触子1Aの斜め姿勢、つまり入射角θiの設定に注意が必要である。超音波の管壁における入射角と屈折角との関係は、その境界を作り出す2つの媒体、ここでは気体(空気や都市ガスなどのガス)と管壁(一般に鉄、鋼、ポリエステルなど)における音速に基づくことから、大きな音速差がある空気やガスと管壁との境界では、入射角が1°異なると屈折角が10°単位で異なるからである。なお、管壁では縦波と横波が伝播するので、例えば、縦波音速が約5920m/sである鋼製の管の場合、タンデム透過法(片面斜角透過法)のために入射角を傾ける必要があるが、わずかに傾けても縦波は実質的に全反射するので、実質的に管壁に入るのは横波(空気中横波音速:約3240m/s)となる。しかも、計算上では、縦波入射角θiが6°で、横波の屈折角θは85°となり、縦波入射角θiが7°で、横波も全反射する。しかしながら、超音波は拡散し、ビーム幅を有するので、縦波入射角θiが7°でも、それなりの超音波成分は横波として管壁を伝播する。また、鋼管も品種によって音速が異なり、ポリエチレン管などの合成樹脂管ではその音速は鋼管の半分程度となる。このことから、ここでは、送信探触子1Aの傾斜姿勢の設定条件は、入射角θiではなく横波屈折角θに基づいて決めることにし、良好な斜角透過法での結果が得られる横波屈折角θとして、基本的には60度以上で90度未満となる範囲としている。したがって、検査対象が鋼管の場合、入射角θiは計算上では、約5°〜6°となるが、鋼種による音速の違いや超音波のビーム幅を考慮すれば、入射角θiは約5°〜7°が好適である。
本発明の超音波検査では、図5で示すような、内周面に入射させた超音波が同じ内周面の異なる箇所から出てくる透過超音波を評価する片面斜角透過法を採用しているので、受信探触子1Bは、送信探触子1Aの傾き(入射角θi)と同じ傾き(受信角θr)で向き合うように配置するのが基本である。しかしながら、その傾きを調整するキャリブレーション作業で、最大振幅が得られる配置(姿勢)を採用してもよい。
超音波探傷の場合、適切な超音波周波数の選択であるが、これは検査対象管の材質及び肉厚に依存する。本発明では、材質が鋼で肉厚が5mm〜7mmの場合、実験上かつ計算上から、送信探触子1A及び受信探触子1Bの定格周波数(中心周波数)が400kHzから700kHzが好適であることが判明している。また、同様に、実験上かつ計算上から、送信探触子1Aとして、検査対象管の管壁を伝播する横波の波長が検査対象管肉厚(mm)の0.5倍〜1.5倍となる定格周波数を有する探触子を選択することが適切であることも判明している。
図2及び、図6、図7、図8に示されているように、前側走行台車6Aと後側走行台車6Bとは、実質的に同じ構造であるので、以下、走行台車ユニット6として共通的に説明する。走行方向に延びた台車本体7と、この台車本体7に走行方向に間隔をあけて配置された前側アームユニット8Aと後側アームユニット8Bを備えている。前側アームユニット8Aと後側アームユニット8Bとは実質的には同じように構成されているので、特別に区別する必要がない場合には、単にアームユニット8と称する。アームユニット8は、走行すべき配管の周方向において120°間隔で分布するように台車本体7に配置された3つのアームモジュール80を備えている。アームモジュール80は、走行台車ユニット6の中心軸P0の方向である走行方向(配管の管軸方向)に対する横断方向(配管の断面方向である管径方向)に延びた揺動軸心Pa周りで揺動変位するように、取り付けられている(図7参照)。
アームモジュール80の先端部には、走行すべき管の内周面の段差より大きな半径を有する球状駆動車輪5が取り付けられている。駆動車輪5の駆動構造は、後で詳しく説明する。アームモジュール80が揺動することにより、球状駆動車輪5は、配管の内周面に対して遠近変位する。3つのアームモジュール80の揺動変位が一致するように、ギヤ式の揺動同期機構9が備えられている。この揺動同期機構9は、アームモジュール80の揺動変位と相互連動して回転するベベルギヤ90を相互にかみ合わせることで3つのアームモジュール80の揺動変位を同期させている。
前側アームユニット8Aのアームモジュール80と後側アームユニット8Bのアームモジュール80とを相互連動させるために付勢手段として、前側アームユニット8Aのアームモジュール80と後側アームユニット8Bのアームモジュール80とを接続するコイルばね91が備えられている。このコイルばね91が、前側アームユニット8Aのアームモジュール80に取り付けられた球状駆動車輪5と後側アームユニット8Bのアームモジュール80に取り付けられた球状駆動車輪5とが配管の内周面に近づくように互いのアームモジュール80を近接させる。これにより、球状駆動車輪5は配管の内周面に接当し、その駆動回転により走行台車ユニット6が管内走行する。
走行台車ユニット6の台車本体7の中核部材である基台70は、長方形の板材からなる、断面三角形上の中空体である。図7から理解できるように、基台70の放射状に延びた板状のアームブラケット710を挟むように、左側と右側のハーフモジュール80aを背中合わせで連結することで、アームモジュール80が作り出されている。その際、3つのアームモジュール80の対応するベベルギヤ90が互いにかみ合うことになる。これにより、前側アームユニット8Aのアームモジュール80同士、及び後側アームユニット8Bのアームモジュール80同士は確実に連動して、揺動する。
アームモジュール80の取付座84に固定される球状駆動車輪5は、図8で示されているように、車輪本体50と駆動ユニット56とからなる。図8の上側には、組み付けられた状態の球状駆動車輪5が示されており、図8の下側には、車輪本体50と駆動ユニット56とが分解された状態の球状駆動車輪5が示されている。車輪本体50は、中空状の左半球状車輪51と中空状の右半球状車輪52とに分割されている。左半球状車輪51と右半球状車輪52の中心部には、それぞれの車軸54aと54bを固定するボスが形成されている。左半球状車輪51と右半球状車輪52の周縁領域には、配管の内周面との間の摩擦を高めるラバーリング53が外嵌している。左半球状車輪51と右半球状車輪52とによって境界づけられる空間内に車輪本体50を駆動する駆動ユニット56が収納される。図8から明らかなように、ラバーリング53の外径は、左半球状車輪51及び右半球状車輪52の外径より大きい。このように構成することで曲面走行に良好に対応できる。
駆動ユニット56は、共通のユニットケース55に取り付けられた第1駆動部56aと第2駆動部56bとを備えている。第1駆動部56aと第2駆動部56bは、それぞれモータとギヤ式の減速機構58とを有し、第1駆動部56aは左半球状車輪51の車軸54aを駆動し、第2駆動部56bは右半球状車輪52の車軸54bを駆動する。ユニットケース55は、それぞれの車軸54aと54bを介して左半球状車輪51と右半球状車輪52とを支持している。ユニットケース55は、対応するアームモジュール80の取付座84に着脱可能に装着される。その際、球状駆動車輪5、つまりラバーリング53を含む左半球状車輪51と右半球状車輪52の半径は、管の内周面の段差を乗り越えるために、管の内周面の段差の高さより大きくする必要があるので、走行すべき配管によって、特にその段差に応じて選択される。
〔実験結果〕
上述した構成からなる超音波検査ユニット1を走行台車ユニット6ではなく、定置型の移動機構を用いて管内に挿入して得られた実験結果を示すCスキャン画像が図8に示されている。この実験結果は、肉厚が5.8mm、内径(外径)が204.7(216.3)mmの鋼管に設けられた、深さ肉厚の30%、50%、70%、100%(貫通孔)である4つの10mm径の孔、及び深さ肉厚の30%、50%、70%、100%(貫通孔)である4つの5mm径の孔を人工欠陥として行われたものである。このことから、かなり局所的な減肉部の検出が本発明による、空間伝播超音波を用いた管検査装置によって可能であることが理解できる。
〔別実施の形態〕
(1)上述した実施形態では、1つの超音波検査ユニット1に、送信探触子1Aと受信探触子1Bと音波遮蔽体28とからなる検査ヘッドを2組、管壁周方向に180°ピッチで配置されていたが、3組の検査ヘッドを管壁周方向に120°ピッチで配置してもよい。また、それ4組以上の検査ヘッドを配置してもよいし、必ずしも等ピッチで配置しなくてもよい。
(2)上述した実施形態では、2つの走行台車ユニット6の間に1台の超音波検査ユニット1が連結されていたが、複数の超音波検査ユニット1が連結されてもよし、走行台車ユニット6が1台であってもよい。
(3)また、走行台車ユニット6においても、上述した実施形態では、前側アームユニット8Aと後側アームユニット8Bのそれぞれに、120°間隔で3つのアームモジュール80が配置されていたが、2つのアームモジュール80または4つ以上のアームモジュール80の配置を採用してもよい。
本発明は、空間伝播する超音波を用いた片面斜角透過法によって、配管内部を走行しながら管壁を検査する管内走行超音波検査装置に適用される。
1 :超音波検査ユニット
1A :送信探触子
1B :受信探触子
10 :台車本体
11 :送信探触子保持部
12 :受信探触子保持部
2 :基台
20 :アームベース(基台)
21 :第1アーム部(基台)
22 :第2アーム部(基台)
23 :ベースブラケット(基台)
24 :スライド機構
241 :摺動レール
242 :摺動体
243 :プランジャバネ
244 :バネストッパ
28 :音波遮蔽体
30 :可動台(基台)
31 :ケース体
32 :旋回体
33 :突起
34 :調整ねじ
4 :案内部
5 :駆動車輪
6 :走行台車ユニット
6A :前側走行台車
6B :後側走行台車
72 :連結部材
8 :アームユニット
100 :検査評価部

Claims (7)

  1. 管の内部を走行しながら管を検査する管内走行超音波検査装置であって、
    前記管の内周面を複数の駆動車輪を用いて走行する走行台車ユニットと、
    前記走行台車ユニットに連結されるとともに前記管の管軸方向に延びる連結部材と、
    前記連結部材に設けられた基台と、
    前記管の軸芯に対して対称となるように前記基台に支持されるとともに、前記管の径方向に変位可能で前記管の内周面に常時接触するように付勢された案内部と、
    前記案内部の径方向変位と連動するように前記基台に支持された送信探触子保持部と、
    前記案内部の径方向変位と連動するように前記基台に支持された受信探触子保持部と、
    前記内周面に入射される超音波が空間伝播する間隔を前記内周面との間であけるように前記送信探触子保持部に固定された送信探触子と、
    前記内周面から出てくる超音波が空間伝播する間隔を前記内周面との間であけるように前記受信探触子保持部に固定された受信探触子と、
    を備えた管内走行超音波検査装置。
  2. 前記基台は、前記連結部材から管径方向で両側に延びるアームベースと当該アームベースの両側に径方向変位可能に支持された可動台とからなり、前記可動台に前記案内部が設けられている請求項1に記載の管内走行超音波検査装置。
  3. 前記アームベースは前記管軸方向に間隔をあけた第1アーム部と第2アーム部とからなり、前記第1アーム部に支持された可動台に前記送信探触子保持部が設けられ、前記第2アーム部に支持された可動台に前記受信探触子保持部が設けられている請求項2に記載の管内走行超音波検査装置。
  4. 前記送信探触子と前記受信探触子との間に前記送信探触子から出て空間伝播で前記受信探触子に向かう超音波を遮断する音波遮蔽体が前記基台に支持されている請求項1から3のいずれか一項に記載の管内走行超音波検査装置。
  5. 前記音波遮蔽体の先端と前記内周面との間に隙間が形成されている請求項4に記載の管内走行超音波検査装置。
  6. 前記走行台車ユニットは、前記連結部材によって連結された前側走行台車と後側走行台車とからなり、前記基台は前側走行台車と後側走行台車との間に配置されている請求項1から5のいずれか一項に記載の管内走行超音波検査装置。
  7. 前記駆動車輪は、前記管の周方向で間隔をあけて前記連結部材から管の径方向に放射状に延びた複数の支持アームの端部に取り付けられている請求項1から6のいずれか一項に記載の管内走行超音波検査装置。
JP2014047837A 2014-03-11 2014-03-11 管内走行超音波検査装置 Pending JP2015172496A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014047837A JP2015172496A (ja) 2014-03-11 2014-03-11 管内走行超音波検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014047837A JP2015172496A (ja) 2014-03-11 2014-03-11 管内走行超音波検査装置

Publications (1)

Publication Number Publication Date
JP2015172496A true JP2015172496A (ja) 2015-10-01

Family

ID=54259922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014047837A Pending JP2015172496A (ja) 2014-03-11 2014-03-11 管内走行超音波検査装置

Country Status (1)

Country Link
JP (1) JP2015172496A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101908598B1 (ko) * 2017-04-13 2018-10-16 주식회사 지스콥 자력 탈부착 구조가 구비된 비파괴 내부 회전 검사 시스템용 보조 장치
TWI642898B (zh) * 2017-02-24 2018-12-01 日商三菱重工環境 化學工程股份有限公司 管厚度測定裝置
CN110220972A (zh) * 2019-05-25 2019-09-10 中海油能源发展股份有限公司 一种长输管道压电超声波探伤内检测器
CN110568066A (zh) * 2019-08-02 2019-12-13 江苏方建质量鉴定检测有限公司 相控阵超声波混凝土钢筋锈蚀检测装置
CN114104840A (zh) * 2021-12-29 2022-03-01 上海华光悦达电力工具有限公司 一种大截面电缆高效输运专用设备及使用方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642898B (zh) * 2017-02-24 2018-12-01 日商三菱重工環境 化學工程股份有限公司 管厚度測定裝置
KR101908598B1 (ko) * 2017-04-13 2018-10-16 주식회사 지스콥 자력 탈부착 구조가 구비된 비파괴 내부 회전 검사 시스템용 보조 장치
CN110220972A (zh) * 2019-05-25 2019-09-10 中海油能源发展股份有限公司 一种长输管道压电超声波探伤内检测器
CN110568066A (zh) * 2019-08-02 2019-12-13 江苏方建质量鉴定检测有限公司 相控阵超声波混凝土钢筋锈蚀检测装置
CN110568066B (zh) * 2019-08-02 2022-10-25 江苏方建质量鉴定检测有限公司 相控阵超声波混凝土钢筋锈蚀检测装置
CN114104840A (zh) * 2021-12-29 2022-03-01 上海华光悦达电力工具有限公司 一种大截面电缆高效输运专用设备及使用方法

Similar Documents

Publication Publication Date Title
USRE40515E1 (en) Method and apparatus for inspecting pipelines from an in-line inspection vehicle using magnetostrictive probes
JP2015172496A (ja) 管内走行超音波検査装置
JP4614150B2 (ja) 溶接部の超音波探傷方法及び装置
US20090314089A1 (en) Ultrasonic inspection probe carrier system for performing non-destructive testing
CN102016564A (zh) 用于超声检测管壁中的缺陷的***
CN110651174B (zh) 管道深部裂纹检测
JP5420525B2 (ja) 小径管の超音波探傷装置及び方法
JP2007285772A (ja) 配管検査方法及びこれに用いる配管検査装置
JP2013174531A (ja) 超音波検査装置及びその検査方法
JP5198112B2 (ja) 配管の検査装置及びその検査方法
RU2629687C1 (ru) Автоматизированная установка ультразвукового контроля
JP5585867B2 (ja) 管端部の超音波探傷装置及び探触子ホルダーの初期位置設定方法
JP2015169547A (ja) 管の超音波検査装置
JP2008089344A (ja) 超音波探傷装置
JP2008051557A (ja) 超音波探触子及び超音波探傷装置
JP2010025817A (ja) 非接触空中超音波による管体超音波探傷装置及びその方法
JP2015172495A (ja) 空間伝播超音波を用いた管検査装置
KR102203609B1 (ko) 전자기음향 트랜스듀서 및 이를 포함하는 배관 검사 장치
WO2013051107A1 (ja) 中ぐり車軸用超音波探傷装置
JP7458075B2 (ja) 配管内面測定装置
JP2001056318A (ja) 超音波による管の探傷方法及び超音波探傷器
JPH07333201A (ja) 配管の超音波探傷方法
RU160809U1 (ru) Установка ультразвукового контроля кольцевых сварных швов и угловых сварных соединений
JP2003302217A (ja) 自走式鋼管検査装置及び鋼管内を走行するモータ台車、駆動台車及びセンサ台車
JP2007132713A (ja) 超音波厚さ測定装置