JP2015172469A - gas-liquid separator - Google Patents

gas-liquid separator Download PDF

Info

Publication number
JP2015172469A
JP2015172469A JP2014049126A JP2014049126A JP2015172469A JP 2015172469 A JP2015172469 A JP 2015172469A JP 2014049126 A JP2014049126 A JP 2014049126A JP 2014049126 A JP2014049126 A JP 2014049126A JP 2015172469 A JP2015172469 A JP 2015172469A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
phase refrigerant
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014049126A
Other languages
Japanese (ja)
Inventor
允煥 李
Inkan Ri
允煥 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2014049126A priority Critical patent/JP2015172469A/en
Publication of JP2015172469A publication Critical patent/JP2015172469A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid separator which prevents entering of a liquid phase refrigerant into a gas phase refrigerant outflow pipe due to roll-up of the stagnant liquid phase refrigerant and scattering droplets, and which can suppress occurrence of liquid back in a compressor.SOLUTION: A gas-liquid separator 40 includes: a first plate 44 for partitioning a lower part inside the gas-liquid separator 40 as a liquid phase refrigerant stagnation chamber 41; a second plate 45 for partitioning an upper part inside the gas-liquid separator 40 as a gas phase refrigerant collection chamber 42; a liquid phase refrigerant outflow pipe 46 for communicating with the liquid phase refrigerant stagnation chamber 41; a gas phase refrigerant outflow pipe 47 for communicating with the gas phase refrigerant collection chamber 42; and a refrigerant inflow pipe 48 for communicating with a refrigerant inflow chamber 43. The first plate 44 has a first refrigerant circulation port 44A in which a refrigerant can circulate between the liquid phase refrigerant stagnation chamber 41 and the refrigerant inflow chamber 43. The second plate 45 has a second refrigerant circulation port 45A in which the refrigerant can circulate between the gas phase refrigerant collection chamber 42 and the refrigerant inflow chamber 43.

Description

本発明は、気液分離器に関する。   The present invention relates to a gas-liquid separator.

冷凍サイクル内に配置され液相冷媒と気相冷媒とを分離する気液分離器は、吸熱効率を高めるために液相冷媒を吸熱器へ導くとともに、分離した気相冷媒を再利用するために圧縮機で圧縮する必要がある。ここで、圧縮機へと導かれる気相冷媒中に液滴が含まれてしまう液戻り状態(液バック)が発生すると、圧縮機内で液圧縮現象が生じるので圧縮機が故障する原因となる。   The gas-liquid separator that is arranged in the refrigeration cycle and separates the liquid-phase refrigerant and the gas-phase refrigerant leads the liquid-phase refrigerant to the heat-absorber in order to increase the endothermic efficiency, and reuses the separated gas-phase refrigerant. It is necessary to compress with a compressor. Here, when a liquid return state (liquid back) in which droplets are contained in the gas-phase refrigerant guided to the compressor occurs, a liquid compression phenomenon occurs in the compressor, which causes the compressor to break down.

特許文献1には、気液混合流路と気相冷媒流路との間に、気相冷媒中に存在する液滴を取り除くデフューザ(プレート)の配置された気液分離器が、開示されている。   Patent Document 1 discloses a gas-liquid separator in which a diffuser (plate) that removes droplets present in a gas-phase refrigerant is disposed between a gas-liquid mixing channel and a gas-phase refrigerant channel. Yes.

特開2007−162988号公報JP 2007-162988 A

しかしながら、特許文献1に記載の気液分離器によると、勢いよく気液分離器内に流入する冷媒によって、気液分離器内の下部に層として滞留する液相冷媒が巻き上げられて、気液分離器内の上部にまで到達することがある。また、流入する冷媒の勢いによって、飛散する液滴として液相冷媒が大量に発生して気液分離器内の上部に到達することがある。その結果、気相冷媒流出管を区画する一枚のプレートのみでは気相冷媒中に存在する液滴を十分に取り除けなくなり、液相冷媒が気相冷媒流出管を通じて圧縮機へ導かれ、液バックが発生する懸念がある。   However, according to the gas-liquid separator described in Patent Document 1, the liquid-phase refrigerant that stays as a layer in the lower part of the gas-liquid separator is wound up by the refrigerant that vigorously flows into the gas-liquid separator. May reach the top in the separator. In addition, a large amount of liquid-phase refrigerant may be generated as splashed droplets and reach the upper part in the gas-liquid separator due to the momentum of the refrigerant flowing in. As a result, only one plate that partitions the gas-phase refrigerant outflow pipe cannot sufficiently remove droplets present in the gas-phase refrigerant, and the liquid-phase refrigerant is guided to the compressor through the gas-phase refrigerant outflow pipe, and the liquid back There is a concern that will occur.

このように、液バックの発生を十分に抑制できる気液分離器は検討されていない。   Thus, a gas-liquid separator that can sufficiently suppress the occurrence of liquid back has not been studied.

そこで、本発明は、上記の問題点に鑑みてなされたものであり、液相冷媒と気相冷媒とを分離する気液分離器において、滞留した液相冷媒の巻き上がりや飛散する液滴による気相冷媒流出管内への液相冷媒の侵入を防ぎ、圧縮機での液バックの発生を抑制することを目的とする。   Therefore, the present invention has been made in view of the above problems, and in a gas-liquid separator that separates a liquid-phase refrigerant and a gas-phase refrigerant, the accumulated liquid-phase refrigerant is rolled up or scattered. An object is to prevent the liquid-phase refrigerant from entering the gas-phase refrigerant outflow pipe and to suppress the occurrence of liquid back in the compressor.

本発明のある態様によれば、冷凍サイクル内に配置され、冷媒を液相冷媒と気相冷媒とに分離する気液分離器であって、液相冷媒が滞留する液相冷媒滞留室として気液分離器内の下部を区画する第一プレートと、気相冷媒が集合する気相冷媒集合室として気液分離器内の上部を区画する第二プレートと、液相冷媒滞留室に連通し、液相冷媒を気液分離器外へ流出させる液相冷媒流出管と、気相冷媒集合室に連通し、気相冷媒を気液分離器外へ流出させる気相冷媒流出管と、気液分離器内の第一プレートと第二プレートとの間に形成される冷媒流入室に連通し、冷媒流入室内へ冷媒を流入させる冷媒流入管と、を備える。また、第一プレートは、液相冷媒滞留室と冷媒流入室との間で冷媒が流通可能な第一冷媒流通口を有し、第二プレートは、気相冷媒集合室と冷媒流入室との間で冷媒が流通可能な第二冷媒流通口を有するものが提供される。   According to an aspect of the present invention, a gas-liquid separator that is disposed in a refrigeration cycle and separates a refrigerant into a liquid-phase refrigerant and a gas-phase refrigerant, and serves as a liquid-phase refrigerant retention chamber in which the liquid-phase refrigerant stays. A first plate that defines a lower part in the liquid separator, a second plate that defines an upper part in the gas-liquid separator as a gas-phase refrigerant collecting chamber in which gas-phase refrigerant collects, and communicates with the liquid-phase refrigerant residence chamber, A liquid-phase refrigerant outflow pipe that allows liquid-phase refrigerant to flow out of the gas-liquid separator, a gas-phase refrigerant outflow pipe that communicates with the gas-phase refrigerant collecting chamber and outflows out of the gas-liquid separator, and gas-liquid separation. A refrigerant inflow pipe that communicates with the refrigerant inflow chamber formed between the first plate and the second plate in the container and allows the refrigerant to flow into the refrigerant inflow chamber. The first plate has a first refrigerant flow port through which the refrigerant can flow between the liquid phase refrigerant retention chamber and the refrigerant inflow chamber, and the second plate includes a gas phase refrigerant collecting chamber and a refrigerant inflow chamber. What has a 2nd refrigerant | coolant distribution port which can distribute | circulate a refrigerant | coolant between is provided.

上記態様によれば、第一プレートが冷媒流入室と液相冷媒滞留室とを区画しているので、滞留した液相冷媒が巻き上がって冷媒流入室に入ることを抑制できる。また、第二プレートが冷媒流入室と気相冷媒集合室とを区画しているので、冷媒流入室に流入した冷媒が液滴となって気相冷媒集合室に入ることを抑制できる。この結果、気相冷媒流出管内への液相冷媒の侵入を防ぎ、圧縮機での液バックの発生を抑制することができる。   According to the said aspect, since the 1st plate has divided the refrigerant | coolant inflow chamber and the liquid phase refrigerant | coolant retention chamber, it can suppress that the retained liquid phase refrigerant rolls up and enters into a refrigerant | coolant inflow chamber. Further, since the second plate partitions the refrigerant inflow chamber and the gas phase refrigerant collecting chamber, it is possible to suppress the refrigerant flowing into the refrigerant inflow chamber from entering the gas phase refrigerant collecting chamber as droplets. As a result, the liquid-phase refrigerant can be prevented from entering the gas-phase refrigerant outflow pipe, and the occurrence of liquid back in the compressor can be suppressed.

図1は、本発明の第1実施形態の気液分離器を備えた冷凍サイクルシステムの概略構成図である。FIG. 1 is a schematic configuration diagram of a refrigeration cycle system including a gas-liquid separator according to a first embodiment of the present invention. 図2は、本発明の第1実施形態の気液分離器の内部を側方から見たときの構造図である。FIG. 2 is a structural diagram when the inside of the gas-liquid separator according to the first embodiment of the present invention is viewed from the side. 図3Aは、図2のIIIa−IIIa線に沿う横断面図である。3A is a cross-sectional view taken along line IIIa-IIIa in FIG. 図3Bは、図2のIIIb−IIIb線に沿う横断面図である。3B is a cross-sectional view taken along line IIIb-IIIb in FIG. 図4は、本発明の第2実施形態の気液分離器の内部を側方から見たときの構造図である。FIG. 4 is a structural diagram when the inside of the gas-liquid separator according to the second embodiment of the present invention is viewed from the side. 図5Aは、図4のVa−Va線に沿う横断面図である。5A is a cross-sectional view taken along the line Va-Va in FIG. 図5Bは、図4のVb−Vb線に沿う横断面図である。5B is a cross-sectional view taken along the line Vb-Vb of FIG. 図6は、本発明の第1実施形態の例による冷凍サイクルシステムの概略構成図である。FIG. 6 is a schematic configuration diagram of a refrigeration cycle system according to an example of the first embodiment of the present invention.

以下、図面を参照して、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態の気液分離器40を備えた冷凍サイクルシステム100の概略構成図であり、図2は冷凍サイクルシステム100内にある気液分離器40の内部を側方から見たときの構造図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle system 100 including a gas-liquid separator 40 according to the first embodiment of the present invention, and FIG. FIG.

図1に示す冷凍サイクルシステム100は、室内の冷房や冷凍機に用いられる冷凍システムであり、例えば車両に搭載され車室内の冷房を行う車両用の冷凍システムである。冷凍サイクルシステム100は、冷媒の流れる冷媒流路60と、冷媒流路60上に設けられ冷媒を圧縮する圧縮機10と、圧縮機10によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる放熱器20と、を備える。また、冷凍サイクルシステム100は、放熱器20によって冷やされた液相冷媒を減圧膨張させる減圧膨張弁30と、減圧膨張弁30により減圧膨張した冷媒を気液分離する気液分離器40と、気液分離器40により分離された液相冷媒を蒸発させることで周囲の熱を吸収する吸熱器50と、を備える。   A refrigeration cycle system 100 shown in FIG. 1 is a refrigeration system used for indoor cooling and refrigerators. For example, the refrigeration cycle system 100 is a vehicle refrigeration system that is mounted in a vehicle and cools the vehicle interior. The refrigeration cycle system 100 includes a refrigerant flow path 60 through which a refrigerant flows, a compressor 10 provided on the refrigerant flow path 60 for compressing the refrigerant, and releases the heat of the refrigerant that has become high pressure by the compressor 10 to generate a gas phase refrigerant. And a heat radiator 20 to be condensed. The refrigeration cycle system 100 includes a decompression expansion valve 30 that decompresses and expands the liquid-phase refrigerant cooled by the radiator 20, a gas-liquid separator 40 that separates the refrigerant decompressed and expanded by the decompression expansion valve 30, and a gas A heat absorber 50 that absorbs ambient heat by evaporating the liquid-phase refrigerant separated by the liquid separator 40.

冷媒流路60は、冷媒が循環する閉回路として構成されている。冷媒には、例えば液化しやすいHFC−134a等が用いられる。冷媒流路60上には、圧縮機10、放熱器20、減圧膨張弁30、気液分離器40及び吸熱器50が配置されている。冷媒流路60は、気相冷媒バイパス62と、気液分離器上流側流路63と、気液分離器下流側流路61と、を有する。気相冷媒バイパス62は、気液分離器40と圧縮機10との間に接続される流路である。気液分離器上流側流路63は、減圧膨張弁30と気液分離器40との間に接続される流路である。気液分離器下流側流路61は、気液分離器40と吸熱器50との間に接続される流路である。   The refrigerant flow path 60 is configured as a closed circuit in which the refrigerant circulates. As the refrigerant, for example, HFC-134a which is easy to be liquefied is used. On the refrigerant flow path 60, the compressor 10, the heat radiator 20, the pressure reduction expansion valve 30, the gas-liquid separator 40, and the heat absorber 50 are arrange | positioned. The refrigerant channel 60 includes a gas-phase refrigerant bypass 62, a gas / liquid separator upstream channel 63, and a gas / liquid separator downstream channel 61. The gas-phase refrigerant bypass 62 is a flow path connected between the gas-liquid separator 40 and the compressor 10. The gas-liquid separator upstream channel 63 is a channel connected between the decompression expansion valve 30 and the gas-liquid separator 40. The gas-liquid separator downstream-side channel 61 is a channel connected between the gas-liquid separator 40 and the heat absorber 50.

圧縮機10は、吸熱器50の下流側に配置され、吸熱器50を通過してきた気相冷媒を吸引し圧縮する。圧縮機10は、気液分離器40により分離された気相冷媒も気相冷媒バイパス62を通じて吸引し圧縮する。   The compressor 10 is disposed on the downstream side of the heat absorber 50 and sucks and compresses the gas-phase refrigerant that has passed through the heat absorber 50. The compressor 10 sucks and compresses the gas-phase refrigerant separated by the gas-liquid separator 40 through the gas-phase refrigerant bypass 62.

放熱器20は、圧縮機10の下流側に配置される。放熱器20は、気相冷媒の熱を周囲の空気中へ放出し、気相冷媒を凝縮(液化)させて液相冷媒にする。放熱器20に供給される気相冷媒は、圧縮機10により高圧となっているので、周囲の空気温度程度に冷やされるだけでも容易に液化する。   The radiator 20 is disposed on the downstream side of the compressor 10. The radiator 20 releases the heat of the gas-phase refrigerant into the surrounding air, and condenses (liquefies) the gas-phase refrigerant into a liquid-phase refrigerant. Since the gas-phase refrigerant supplied to the radiator 20 is at a high pressure by the compressor 10, it is easily liquefied even if it is cooled to about the ambient air temperature.

減圧膨張弁30は、放熱器20の下流側に配置され、放熱器20から供給される液相冷媒を減圧膨張する。低温高圧の液相冷媒は、減圧膨張弁30中の小さな孔から噴射されることによって低温の減圧膨張した霧状の冷媒となり、蒸発(気化)しやすい状態となる。なお、減圧膨張弁30に代えて、固定絞り(キャピラリーチューブ)を用いても良い。   The decompression expansion valve 30 is disposed on the downstream side of the radiator 20 and decompresses and expands the liquid-phase refrigerant supplied from the radiator 20. The low-temperature and high-pressure liquid-phase refrigerant is sprayed from a small hole in the decompression / expansion valve 30 to become a low-temperature / expanded mist-like refrigerant and is easily evaporated (vaporized). A fixed throttle (capillary tube) may be used instead of the decompression expansion valve 30.

気液分離器40は、減圧膨張弁30の下流側に配置され、減圧膨張弁30により減圧膨張して霧状となった冷媒を気液分離する。減圧膨張弁30により減圧膨張した冷媒は、気液分離器40の上流側に接続された気液分離器上流側流路63を通じて、気液分離器40へと流される。気液分離器40は、気液分離器上流側流路63中で一部蒸発した気相冷媒や放熱器20で液化しきれなかった気相冷媒を、液相冷媒から分離する。分離した気相冷媒は、気相冷媒バイパス62を通じて圧縮機10に流される。他方で、分離した液相冷媒は、気液分離器40の下流側に接続された気液分離器下流側流路61を通じて、吸熱器50へと流される。   The gas-liquid separator 40 is disposed on the downstream side of the decompression expansion valve 30 and gas-liquid separates the refrigerant that has been decompressed and expanded by the decompression expansion valve 30 into a mist. The refrigerant decompressed and expanded by the decompression expansion valve 30 flows to the gas-liquid separator 40 through the gas-liquid separator upstream channel 63 connected to the upstream side of the gas-liquid separator 40. The gas-liquid separator 40 separates, from the liquid-phase refrigerant, the gas-phase refrigerant partially evaporated in the gas-liquid separator upstream channel 63 and the gas-phase refrigerant that has not been liquefied by the radiator 20. The separated gas phase refrigerant is flowed to the compressor 10 through the gas phase refrigerant bypass 62. On the other hand, the separated liquid-phase refrigerant is caused to flow to the heat absorber 50 through the gas-liquid separator downstream channel 61 connected to the downstream side of the gas-liquid separator 40.

吸熱器50は、気液分離器40の下流側に配置され、分離した低温の液相冷媒を用いて吸熱対象物の熱を吸収する。熱の吸収により蒸発した冷媒は、再度圧縮して利用するために圧縮機10へと流される。冷媒と吸熱対象物との熱交換に液相冷媒の蒸発潜熱も利用できるようになるので、吸熱器50には液相冷媒を供給することが望ましい。したがって、気液分離器40は、吸熱器50の吸熱効率を向上させるために、分離した液相冷媒を吸熱器50へと供給する。   The heat absorber 50 is disposed on the downstream side of the gas-liquid separator 40 and absorbs heat of the endothermic object using the separated low-temperature liquid phase refrigerant. The refrigerant evaporated by the absorption of heat is sent to the compressor 10 to be compressed again and used. Since the latent heat of vaporization of the liquid phase refrigerant can also be used for heat exchange between the refrigerant and the heat absorption object, it is desirable to supply the liquid absorber to the heat absorber 50. Therefore, the gas-liquid separator 40 supplies the separated liquid-phase refrigerant to the heat absorber 50 in order to improve the heat absorption efficiency of the heat absorber 50.

次に、図2を参照して、気液分離器40の内部形状について説明する。図2は、気液分離器40の内部を側方から見たときの構造図である。図2に示すように、気液分離器40は、内部に第一プレート44と第二プレート45とを備える。   Next, the internal shape of the gas-liquid separator 40 will be described with reference to FIG. FIG. 2 is a structural diagram when the inside of the gas-liquid separator 40 is viewed from the side. As shown in FIG. 2, the gas-liquid separator 40 includes a first plate 44 and a second plate 45 inside.

第一プレート44は、気液分離器40の内壁40Aと第一プレート44の外縁とが接触するように配置される。第一プレート44をこのように配置することで、液相冷媒の滞留する液相冷媒滞留室41が、気液分離器40内の下部に区画される。第一プレート44は、冷媒の流通可能な第一冷媒流通口44Aを複数個有する。   The first plate 44 is arranged so that the inner wall 40A of the gas-liquid separator 40 and the outer edge of the first plate 44 are in contact with each other. By disposing the first plate 44 in this way, the liquid-phase refrigerant retention chamber 41 in which the liquid-phase refrigerant stays is partitioned at the lower part in the gas-liquid separator 40. The first plate 44 has a plurality of first refrigerant flow ports 44A through which refrigerant can flow.

第二プレート45は、第一プレート44よりも上方に、気液分離器40の内壁40Aと第二プレート45の外縁とが接触するように配置される。第二プレート45をこのように配置することで、気相冷媒が集合する気相冷媒集合室42が、気液分離器40内の上部に区画される。第二プレート45は、冷媒の流通可能な第二冷媒流通口45Aを複数個有する。   The second plate 45 is disposed above the first plate 44 so that the inner wall 40 </ b> A of the gas-liquid separator 40 and the outer edge of the second plate 45 are in contact with each other. By disposing the second plate 45 in this manner, the gas-phase refrigerant collecting chamber 42 in which the gas-phase refrigerant collects is partitioned in the upper part in the gas-liquid separator 40. The second plate 45 has a plurality of second refrigerant flow ports 45A through which refrigerant can flow.

第一プレート44と第二プレート45との間には、冷媒流入室43が区画される。第一プレート44及び第二プレート45をこのように配置することで、気液分離器40内は中央部に冷媒流入室43が区画される。   A coolant inflow chamber 43 is defined between the first plate 44 and the second plate 45. By disposing the first plate 44 and the second plate 45 in this manner, the refrigerant inflow chamber 43 is partitioned in the center of the gas-liquid separator 40.

液相冷媒滞留室41には、滞留した液相冷媒を効率的に流せるように、液相冷媒滞留室41の下方に液相冷媒流出管46の一端が接続される。また、液相冷媒流出管46の他端は気液分離器下流側流路61に接続されており、液相冷媒滞留室41に滞留した液相冷媒は、液相冷媒流出管46及び気液分離器下流側流路61を通って吸熱器50へと流れる。   One end of a liquid phase refrigerant outflow pipe 46 is connected to the liquid phase refrigerant retention chamber 41 below the liquid phase refrigerant retention chamber 41 so that the retained liquid phase refrigerant can flow efficiently. The other end of the liquid-phase refrigerant outflow pipe 46 is connected to the gas-liquid separator downstream-side flow path 61, and the liquid-phase refrigerant accumulated in the liquid-phase refrigerant retention chamber 41 is separated from the liquid-phase refrigerant outflow pipe 46 and the gas-liquid. It flows to the heat absorber 50 through the separator downstream channel 61.

気相冷媒集合室42には、重力の作用によって液相冷媒が到達しにくいように、気相冷媒集合室42の上方に気相冷媒流出管47の一端が接続される。また、気相冷媒流出管47の他端は気相冷媒バイパス62に接続されており、気相冷媒集合室42に集合した気相冷媒は、気相冷媒流出管47及び気相冷媒バイパス62を通って圧縮機10へと流れる。   One end of a gas-phase refrigerant outflow pipe 47 is connected to the gas-phase refrigerant collecting chamber 42 above the gas-phase refrigerant collecting chamber 42 so that the liquid-phase refrigerant does not easily reach due to the action of gravity. The other end of the gas-phase refrigerant outlet pipe 47 is connected to the gas-phase refrigerant bypass 62, and the gas-phase refrigerant gathered in the gas-phase refrigerant collecting chamber 42 passes through the gas-phase refrigerant outlet pipe 47 and the gas-phase refrigerant bypass 62. And flows to the compressor 10.

冷媒流入室43には、冷媒流入管48の一端が接続される。冷媒流入管48の他端は気液分離器上流側流路63に接続されており、減圧膨張弁30により減圧膨張された冷媒は、気液分離器上流側流路63及び冷媒流入管48を通って冷媒流入室43へと流れる。冷媒流入管48は、気相冷媒集合室42及び第二プレート45を縦方向に通り抜けるように挿通され、冷媒流入管48の出口孔48Aが冷媒流入室43内に位置するよう配置される。したがって、第二プレート45には、冷媒流入管48を挿通するための挿通口45Bが設けられている。また、第一プレート44には、冷媒流入管48の出口孔48Aと対向しないようにずらして第一冷媒流通口44Aが配置されている。   One end of a refrigerant inflow pipe 48 is connected to the refrigerant inflow chamber 43. The other end of the refrigerant inflow pipe 48 is connected to the gas-liquid separator upstream flow path 63, and the refrigerant decompressed and expanded by the pressure reducing expansion valve 30 passes through the gas-liquid separator upstream flow path 63 and the refrigerant inflow pipe 48. Then, the refrigerant flows into the refrigerant inflow chamber 43. The refrigerant inflow pipe 48 is inserted so as to pass through the gas-phase refrigerant collecting chamber 42 and the second plate 45 in the vertical direction, and the outlet hole 48 </ b> A of the refrigerant inflow pipe 48 is disposed in the refrigerant inflow chamber 43. Therefore, the second plate 45 is provided with an insertion port 45 </ b> B for inserting the refrigerant inflow pipe 48. Further, the first refrigerant circulation port 44 </ b> A is arranged on the first plate 44 so as not to face the outlet hole 48 </ b> A of the refrigerant inflow pipe 48.

冷媒流入管48の出口孔48Aから冷媒流入室43へ流入する冷媒は、出口孔48Aと対向する第一プレート44の対向部44Bに衝突することで、液相冷媒と気相冷媒とに分離(衝突分離)される。   The refrigerant flowing into the refrigerant inflow chamber 43 from the outlet hole 48A of the refrigerant inflow pipe 48 collides with the facing portion 44B of the first plate 44 facing the outlet hole 48A, thereby separating into a liquid phase refrigerant and a gas phase refrigerant ( Collision separation).

衝突分離した液相冷媒は、流入時の勢いが減衰するとともに重力によって冷媒流入室43の下方へ移動し、第一プレート44の第一冷媒流通口44Aを通って液相冷媒滞留室41へと流れ込み滞留する。液相冷媒滞留室41に滞留した液相冷媒は、その後、液相冷媒流出管46を通じて気液分離器40外へと流れ出る。気液分離器40外へ流出した液相冷媒は、液相冷媒流出管46と接続されている気液分離器下流側流路61へと流れ、その後、液相冷媒は吸熱器50で吸熱対象物の熱を吸収するために使われる。   The collision-separated liquid-phase refrigerant attenuates the momentum at the time of inflow, moves to the lower side of the refrigerant inflow chamber 43 due to gravity, passes through the first refrigerant flow port 44A of the first plate 44, and enters the liquid-phase refrigerant retention chamber 41. Flowing and staying. Thereafter, the liquid phase refrigerant staying in the liquid phase refrigerant retention chamber 41 flows out of the gas-liquid separator 40 through the liquid phase refrigerant outflow pipe 46. The liquid-phase refrigerant that has flowed out of the gas-liquid separator 40 flows to the gas-liquid separator downstream channel 61 connected to the liquid-phase refrigerant outflow pipe 46, and then the liquid-phase refrigerant is subject to heat absorption by the heat absorber 50. Used to absorb the heat of things.

他方で、衝突分離した気相冷媒は、第二プレート45の第二冷媒流通口45Aを通って、気相冷媒集合室42へと流れる。気相冷媒集合室42に集合した気相冷媒は、その後、気相冷媒流出管47を通じて気液分離器40外へと流れ出る。気液分離器40外へ流出した気相冷媒は、気相冷媒流出管47と接続されている気相冷媒バイパス62を通って圧縮機10へと直接流れ、その後、気相冷媒は圧縮機10によって再圧縮される。   On the other hand, the vapor-phase refrigerant separated by collision flows through the second refrigerant flow port 45 </ b> A of the second plate 45 to the vapor-phase refrigerant collecting chamber 42. The gas-phase refrigerant collected in the gas-phase refrigerant collecting chamber 42 then flows out of the gas-liquid separator 40 through the gas-phase refrigerant outflow pipe 47. The gas-phase refrigerant that has flowed out of the gas-liquid separator 40 flows directly to the compressor 10 through the gas-phase refrigerant bypass 62 connected to the gas-phase refrigerant outflow pipe 47, and then the gas-phase refrigerant is compressed into the compressor 10. Will be recompressed.

図3A及び図3Bに示すように、第一プレート44の第一冷媒流通口44A及び第二プレート45の第二冷媒流通口45Aは、気液分離器40の内壁40Aから所定の距離d1又は距離d2となる範囲には形成されていない。図3Aは図2のIIIa−IIIa線に沿う横断面図であり、図3Bは図2のIIIb−IIIb線に沿う横断面図である。第一冷媒流通口44A及び第二冷媒流通口45Aは、同じ開口面積となるよう形成される。距離d1は、内壁40Aを伝ってせり上がってきた液相冷媒が第一冷媒流通口44Aまで到達できず、第一プレート44を乗り越えて移動できなくなる距離である。距離d2は、内壁40Aを伝ってせり上がってきた液相冷媒が第二冷媒流通口45Aまで到達できず、第二プレート45を乗り越えて移動できなくなる距離である。   As shown in FIGS. 3A and 3B, the first refrigerant flow port 44A of the first plate 44 and the second refrigerant flow port 45A of the second plate 45 are separated from the inner wall 40A of the gas-liquid separator 40 by a predetermined distance d1 or distance. It is not formed in the range of d2. 3A is a cross-sectional view taken along line IIIa-IIIa in FIG. 2, and FIG. 3B is a cross-sectional view taken along line IIIb-IIIb in FIG. The first refrigerant circulation port 44A and the second refrigerant circulation port 45A are formed to have the same opening area. The distance d1 is a distance at which the liquid refrigerant that has risen along the inner wall 40A cannot reach the first refrigerant circulation port 44A and cannot move over the first plate 44. The distance d2 is a distance at which the liquid refrigerant that has risen along the inner wall 40A cannot reach the second refrigerant circulation port 45A and cannot move over the second plate 45.

上記した第1実施形態による気液分離器40によれば、以下の効果を得ることができる。   According to the gas-liquid separator 40 according to the first embodiment described above, the following effects can be obtained.

本実施形態による気液分離器40は、冷凍サイクルシステム100内に配置され、冷媒を液相冷媒と気相冷媒とに分離する気液分離器40であって、液相冷媒が滞留する液相冷媒滞留室41として気液分離器40内の下部を区画する第一プレート44と、気相冷媒が集合する気相冷媒集合室42として気液分離器40内の上部を区画する第二プレート45と、を備える。また、気液分離器40は、液相冷媒滞留室41に設けられ、液相冷媒を気液分離器40外へ流出させる液相冷媒流出管46と、気相冷媒集合室42に設けられ、気相冷媒を気液分離器40外へ流出させる気相冷媒流出管47と、気液分離器40内の第一プレート44と第二プレート45との間に形成される冷媒流入室43に設けられ、気液分離器40内へ冷媒を流入させる冷媒流入管48と、を備える。そして、第一プレート44は、液相冷媒滞留室41と冷媒流入室43との間で冷媒が流通可能な第一冷媒流通口44Aを有する。第二プレート45は、気相冷媒集合室42と冷媒流入室43との間で冷媒が流通可能な第二冷媒流通口45Aを有する。   The gas-liquid separator 40 according to this embodiment is a gas-liquid separator 40 that is disposed in the refrigeration cycle system 100 and separates the refrigerant into a liquid phase refrigerant and a gas phase refrigerant, and the liquid phase in which the liquid phase refrigerant stays. A first plate 44 that defines the lower part in the gas-liquid separator 40 as the refrigerant retention chamber 41 and a second plate 45 that defines the upper part in the gas-liquid separator 40 as the gas-phase refrigerant collecting chamber 42 in which the gas-phase refrigerant collects. And comprising. Further, the gas-liquid separator 40 is provided in the liquid-phase refrigerant retention chamber 41, provided in the liquid-phase refrigerant outflow pipe 46 for allowing the liquid-phase refrigerant to flow out of the gas-liquid separator 40, and the gas-phase refrigerant collecting chamber 42. Provided in the refrigerant inflow chamber 43 formed between the gas-phase refrigerant outflow pipe 47 for allowing the gas-phase refrigerant to flow out of the gas-liquid separator 40 and the first plate 44 and the second plate 45 in the gas-liquid separator 40. And a refrigerant inflow pipe 48 for allowing the refrigerant to flow into the gas-liquid separator 40. The first plate 44 has a first refrigerant circulation port 44 </ b> A through which refrigerant can flow between the liquid-phase refrigerant retention chamber 41 and the refrigerant inflow chamber 43. The second plate 45 has a second refrigerant flow port 45 </ b> A through which the refrigerant can flow between the gas-phase refrigerant collecting chamber 42 and the refrigerant inflow chamber 43.

本実施形態の気液分離器40内には、下部を区画する第一プレート44と、上部を区画する第二プレート45と、を設けている。このような構成とすることで、液相冷媒滞留室41に滞留した冷媒が巻き上がっても、冷媒流入室43に入ることを第一プレート44によって抑制できる。また、冷媒流入室43に流入した冷媒が液滴となって気相冷媒集合室42に入ることを第二プレート45によって抑えることができる。したがって、第一プレート44及び第二プレート45によって、巻き上がった液相冷媒及び飛散する液滴の上方への移動が抑制されるので、気相冷媒流出管47内への液相冷媒の侵入を防ぎ、圧縮機10での液バックの発生を抑制することができる。   In the gas-liquid separator 40 of this embodiment, the 1st plate 44 which divides a lower part and the 2nd plate 45 which divides an upper part are provided. With such a configuration, the first plate 44 can suppress the refrigerant inflow chamber 43 from entering even if the refrigerant accumulated in the liquid-phase refrigerant retention chamber 41 is rolled up. Further, the second plate 45 can prevent the refrigerant flowing into the refrigerant inflow chamber 43 from entering the gas-phase refrigerant collecting chamber 42 as droplets. Therefore, the first plate 44 and the second plate 45 suppress the upward movement of the rolled up liquid phase refrigerant and the scattered liquid droplets, so that the liquid phase refrigerant enters the gas phase refrigerant outlet pipe 47. And the occurrence of liquid back in the compressor 10 can be suppressed.

また、本実施形態による気液分離器40では、第一プレート44の第一冷媒流通口44Aは、冷媒流入管48の出口孔48Aと対向しないようにずらして配置される。このような構成とすることで、出口孔48Aより冷媒流入室43へ流入した冷媒は、第一プレート44の対向部44Bと衝突することになるので、流入の勢いが減衰されることとなる。この結果、冷媒流入室43へ流入する冷媒が、勢いよく第一冷媒流通口44Aを通らなくなるので、液相冷媒滞留室41に滞留する液相冷媒の巻き上げをより効果的に抑えることができ、気相冷媒流出管47内への液相冷媒の侵入懸念をより少なくできる。さらに、液相冷媒滞留室41に滞留する液相冷媒の液面が安定するので、滞留する液相冷媒をより安定して吸熱器50のために取り出すことができる。   In the gas-liquid separator 40 according to the present embodiment, the first refrigerant circulation port 44A of the first plate 44 is arranged so as not to face the outlet hole 48A of the refrigerant inflow tube 48. With such a configuration, the refrigerant that has flowed into the refrigerant inflow chamber 43 from the outlet hole 48A collides with the facing portion 44B of the first plate 44, so that the momentum of the inflow is attenuated. As a result, since the refrigerant flowing into the refrigerant inflow chamber 43 does not pass through the first refrigerant circulation port 44A vigorously, it is possible to more effectively suppress the winding of the liquid phase refrigerant staying in the liquid phase refrigerant retention chamber 41, There is less concern about the intrusion of the liquid-phase refrigerant into the gas-phase refrigerant outflow pipe 47. Further, since the liquid level of the liquid phase refrigerant staying in the liquid phase refrigerant retention chamber 41 is stabilized, the staying liquid phase refrigerant can be taken out for the heat absorber 50 more stably.

さらに、本実施形態による気液分離器40では、第一プレート44の第一冷媒流通口44A及び第二プレート45の第二冷媒流通口45Aは、気液分離器40の内壁40Aから離されて形成される。このような構成とすることで、液相冷媒滞留室41に滞留する液相冷媒は、内壁40Aを伝ってせり上がるものの、第一プレート44や第二プレート45を乗り越えて移動できなくなる。この結果、せり上がりにより液相冷媒が気相冷媒集合室42に入ることを抑えられるので、気相冷媒流出管47内への液相冷媒の侵入を防ぎ、圧縮機10での液バックの発生を抑制することができる。   Furthermore, in the gas-liquid separator 40 according to the present embodiment, the first refrigerant circulation port 44A of the first plate 44 and the second refrigerant circulation port 45A of the second plate 45 are separated from the inner wall 40A of the gas-liquid separator 40. It is formed. With such a configuration, the liquid-phase refrigerant that stays in the liquid-phase refrigerant retention chamber 41 rises along the inner wall 40A, but cannot move over the first plate 44 and the second plate 45. As a result, the liquid refrigerant can be prevented from entering the gas-phase refrigerant collecting chamber 42 due to the rising, so that the liquid-phase refrigerant can be prevented from entering the gas-phase refrigerant outflow pipe 47 and the liquid back can be generated in the compressor 10. Can be suppressed.

なお、第一プレート44の第一冷媒流通口44A又は第二プレートの第二冷媒流通口45Aのどちらか一方のみを、気液分離器40の内壁40Aから離間した位置に設けることとしてもよい。このような構成とすることでも、液相冷媒は、第一プレート44又は第二プレート45を乗り越えて移動できなくなるので、液相冷媒のせり上がりによる気相冷媒集合室42への侵入を抑制できる。   Only one of the first refrigerant circulation port 44A of the first plate 44 or the second refrigerant circulation port 45A of the second plate may be provided at a position separated from the inner wall 40A of the gas-liquid separator 40. Even with such a configuration, the liquid-phase refrigerant cannot move over the first plate 44 or the second plate 45, so that it is possible to suppress intrusion into the gas-phase refrigerant collecting chamber 42 due to the rise of the liquid-phase refrigerant. .

また、本実施形態の気液分離器40を車両に搭載した場合においても、車体の傾斜等により滞留する液相冷媒の液面が乱れても、第一プレート44及び第二プレート45によって液相冷媒が気相冷媒集合室42に入ることを抑えられるので、圧縮機10での液バックの発生を抑制することができる。   Even when the gas-liquid separator 40 of the present embodiment is mounted on a vehicle, even if the liquid level of the liquid-phase refrigerant that stays due to inclination of the vehicle body is disturbed, the first plate 44 and the second plate 45 cause a liquid phase. Since the refrigerant can be prevented from entering the gas-phase refrigerant collecting chamber 42, the occurrence of liquid back in the compressor 10 can be suppressed.

(第2実施形態)
図4は、第2実施形態による気液分離器40の内部を側方から見たときの構造図である。図5Aは図4のVa−Va線に沿う横断面図であり、図5Bは図4のVb−Vb線に沿う横断面図である。
(Second Embodiment)
FIG. 4 is a structural diagram when the inside of the gas-liquid separator 40 according to the second embodiment is viewed from the side. 5A is a cross-sectional view taken along the line Va-Va in FIG. 4, and FIG. 5B is a cross-sectional view taken along the line Vb-Vb in FIG.

第2実施形態による気液分離器40は、冷媒流入管48の設置の態様が第1実施形態とは相違する。なお、以下の実施形態では第1実施形態と同じ機能を果たす構成には同一の符号を用い、重複する記載を適宜省略して説明する。   The gas-liquid separator 40 according to the second embodiment is different from the first embodiment in the manner of installing the refrigerant inflow pipe 48. In the following embodiments, the same functions as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.

図4に示すように、第2実施形態による気液分離器40は、冷媒流入管48が気液分離器40の側方から挿通され、冷媒流入室43に冷媒流入管48の出口孔48Aが側方を向いて位置するように設置される。また、図5Bに示すように、冷媒流入管48は、気液分離器40の軸中心を外して挿通される。   As shown in FIG. 4, in the gas-liquid separator 40 according to the second embodiment, the refrigerant inflow pipe 48 is inserted from the side of the gas-liquid separator 40, and the outlet hole 48 </ b> A of the refrigerant inflow pipe 48 is formed in the refrigerant inflow chamber 43. It is installed so that it is located facing sideways. Further, as shown in FIG. 5B, the refrigerant inflow pipe 48 is inserted with the axial center of the gas-liquid separator 40 removed.

冷媒流入管48を気液分離器40の側方から挿通することによって、冷媒流入室43に流入した冷媒は、第一プレート44及び第二プレート45に沿う方向に流れる。また、気液分離器40の軸中心を外して冷媒流入管48が挿通されているので、冷媒流入室43に流入した冷媒は、冷媒流入管48の出口孔48Aの先にある気液分離器40の内壁40Aへと向かい、その後、内壁40Aに沿うようにして円周方向に回転する。この時の遠心力によって、冷媒流入室43に流入した冷媒は、液相冷媒と気相冷媒とに分離(遠心分離)される。   By inserting the refrigerant inflow pipe 48 from the side of the gas-liquid separator 40, the refrigerant flowing into the refrigerant inflow chamber 43 flows in a direction along the first plate 44 and the second plate 45. In addition, since the refrigerant inflow pipe 48 is inserted with the axial center of the gas-liquid separator 40 removed, the refrigerant that has flowed into the refrigerant inflow chamber 43 passes through the outlet hole 48A of the refrigerant inflow pipe 48. It goes to the inner wall 40A of 40, and then rotates in the circumferential direction along the inner wall 40A. Due to the centrifugal force at this time, the refrigerant flowing into the refrigerant inflow chamber 43 is separated (centrifugated) into a liquid phase refrigerant and a gas phase refrigerant.

また、図5A及び図5Bに示すように、第一プレート44は冷媒が流通可能な第一冷媒流通口44Aを複数個有し、第二プレート45は冷媒が流通可能な第二冷媒流通口45Aを複数個有する。第一プレート44の第一冷媒流通口44Aは、第二プレート45の第二冷媒流通口45Aよりも、開口面積が大きく形成されている。このため、液相冷媒は、開口面積が大きく形成された第一冷媒流通口44Aをより容易に通過することができる。また、気相冷媒は、気体なので、開口面積が小さく形成された第二冷媒流通口45Aを容易に通過することができる。   As shown in FIGS. 5A and 5B, the first plate 44 has a plurality of first refrigerant flow ports 44A through which the refrigerant can flow, and the second plate 45 has a second refrigerant flow port 45A through which the refrigerant can flow. Have a plurality. The first refrigerant circulation port 44 </ b> A of the first plate 44 has a larger opening area than the second refrigerant circulation port 45 </ b> A of the second plate 45. For this reason, the liquid phase refrigerant can pass through the first refrigerant circulation port 44A having a large opening area more easily. Further, since the gas-phase refrigerant is a gas, it can easily pass through the second refrigerant circulation port 45A formed with a small opening area.

上記した第2実施形態による気液分離器40によれば、以下の効果を得ることができる。   According to the gas-liquid separator 40 by 2nd Embodiment mentioned above, the following effects can be acquired.

本実施形態による気液分離器40では、第一冷媒流通口44Aは、第二冷媒流通口45Aよりも開口面積が大きく形成される。また、冷媒流入管48は、冷媒流入室43内に側方から冷媒を流入させるように挿通される。   In the gas-liquid separator 40 according to the present embodiment, the first refrigerant circulation port 44A is formed to have a larger opening area than the second refrigerant circulation port 45A. The refrigerant inflow pipe 48 is inserted into the refrigerant inflow chamber 43 so that the refrigerant flows from the side.

このような構成とすることで、分離された液相冷媒は、開口面積の大きな第一冷媒流通口44Aを通って速やかに液相冷媒滞留室41へと流される。このため、冷媒流入室43に液相冷媒が滞留しなくなるので、冷媒流入室43での液相冷媒の巻き上がりも抑制できる。また、勢いよく流入する冷媒によって飛散する液滴は、開口面積の小さな第二冷媒流通口45Aを通過しにくく、第二プレート45に衝突することよって冷媒流入室43中に留まる。したがって、滞留した液相冷媒の巻き上げや、飛散する液滴の気相冷媒集合室42への移動を効率的に防止することができるので、気相冷媒流出管47への液相冷媒の侵入を防ぐことができ、液バックをより抑制することができる。   With such a configuration, the separated liquid phase refrigerant is quickly flowed to the liquid phase refrigerant retention chamber 41 through the first refrigerant circulation port 44A having a large opening area. For this reason, since the liquid phase refrigerant does not stay in the refrigerant inflow chamber 43, the liquid phase refrigerant can be prevented from rolling up in the refrigerant inflow chamber 43. Further, the droplets scattered by the refrigerant that flows in vigorously do not easily pass through the second refrigerant circulation port 45 </ b> A having a small opening area, and remain in the refrigerant inflow chamber 43 by colliding with the second plate 45. Therefore, it is possible to efficiently prevent the staying liquid phase refrigerant from winding up and the droplets that scatter to move to the gas phase refrigerant collecting chamber 42, so that the liquid phase refrigerant enters the gas phase refrigerant outlet pipe 47. It is possible to prevent the liquid back.

また、冷媒流入室43に側方から冷媒を流入させることで、冷媒が第一プレート44及び第二プレート45に沿う方向に流れるので、第二冷媒流通口45Aに向かって飛散する液滴は、流入する冷媒により飛散方向を曲げられることとなる。このため、液滴は、第二冷媒流通口45Aに向かって垂直に飛散しにくくなるので、第二冷媒流通口45Aをより通り抜けにくくなる。また、流入する冷媒は、第一プレート44に沿って流れることで勢いを減衰してから第一冷媒流通口44Aより液相冷媒滞留室41へと流れるので、滞留した液相冷媒の巻き上げをより抑制できる。したがって、第一プレート44及び第二プレート45に沿う方向から冷媒を流入させることで、滞留した液相冷媒の巻き上がりを抑制でき、飛散する液滴が気相冷媒集合室42に入ることを抑えられるので、気相冷媒流出管47への液相冷媒の侵入を防ぎ、圧縮機10での液バックの発生を抑制することができる。   Moreover, since the refrigerant flows in the direction along the first plate 44 and the second plate 45 by allowing the refrigerant to flow into the refrigerant inflow chamber 43 from the side, the droplets scattered toward the second refrigerant circulation port 45A are The scattering direction is bent by the flowing refrigerant. For this reason, since it becomes difficult for droplets to scatter vertically toward the second refrigerant circulation port 45A, it becomes more difficult to pass through the second refrigerant circulation port 45A. Moreover, since the flowing refrigerant flows along the first plate 44 to attenuate the momentum and then flows from the first refrigerant circulation port 44A to the liquid-phase refrigerant retention chamber 41, the accumulated liquid-phase refrigerant is further wound up. Can be suppressed. Therefore, by letting the refrigerant flow in from the direction along the first plate 44 and the second plate 45, it is possible to suppress the stagnation of the staying liquid-phase refrigerant and to prevent the scattered droplets from entering the gas-phase refrigerant collecting chamber 42. Therefore, the liquid-phase refrigerant can be prevented from entering the gas-phase refrigerant outflow pipe 47, and the occurrence of liquid back in the compressor 10 can be suppressed.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

例えば、第一プレート44及び第二プレート45は平板だけに限らず、凹凸状であってもよい。このような構成とすることで、巻き上がった液相冷媒や飛散する液滴が、第一プレート44及び第二プレート45に沿って移動する際に、凹凸によって抵抗を受けることとなるので、気相冷媒集合室42への移動をより効率的に防止することができる。   For example, the first plate 44 and the second plate 45 are not limited to flat plates but may be uneven. With such a configuration, the rolled liquid phase refrigerant and the scattered droplets receive resistance due to the unevenness when moving along the first plate 44 and the second plate 45. The movement to the phase refrigerant collecting chamber 42 can be more efficiently prevented.

第一冷媒流通口44Aや第二冷媒流通口45Aは、メッシュ状や金属等の細い線をウール状に固めたものを使用してもよい。このような構成とすることで、流入する冷媒の勢いをより減衰しやすくなるとともに、巻き上がった液相冷媒や飛散した液滴が第一プレート44及び第二プレート45と衝突しやすくなるので、気相冷媒流出管47への液相冷媒の侵入を防ぐことができる。   As the first refrigerant circulation port 44A and the second refrigerant circulation port 45A, a thin line made of a mesh or a metal or the like may be used to form a wool. By adopting such a configuration, it becomes easier to attenuate the momentum of the refrigerant that flows in, and the liquid phase refrigerant that has rolled up and the scattered liquid droplets easily collide with the first plate 44 and the second plate 45. Intrusion of the liquid phase refrigerant into the gas phase refrigerant outflow pipe 47 can be prevented.

第一冷媒流通口44Aは、一つの大きな開口として第一プレート44の中央部に形成されることとしてもよい。このような構成とすることで、気液分離器40の内壁40Aを伝ってせり上がる液相冷媒を第一プレート44で遮断するとともに、冷媒流入室43内で分離された液相冷媒を大きな開口として形成された第一冷媒流通口44Aから効率よく液相冷媒滞留室41に流すことができる。   44 A of 1st refrigerant | coolant circulation openings are good also as being formed in the center part of the 1st plate 44 as one big opening. With such a configuration, the liquid refrigerant rising along the inner wall 40A of the gas-liquid separator 40 is blocked by the first plate 44, and the liquid refrigerant separated in the refrigerant inflow chamber 43 is opened large. From the first refrigerant circulation port 44 </ b> A formed as described above, the liquid-phase refrigerant retention chamber 41 can be efficiently flowed.

さらに、上記実施形態の気液分離器40を備える冷凍サイクルシステム100は、圧縮機10と減圧膨張弁30を一つずつ備えることとしたが、二つずつ備える構成であってもよい。このような冷凍サイクルシステム100は、特に吸熱器50における冷媒の温度を極端に下げたいヒートポンプシステムとして利用する場合等に用いられる。例えば、図6に示すように、冷凍サイクルシステム100は、気液分離器40の上流側に配置される上流側減圧膨張弁30Aと、気液分離器40の下流側に配置される下流側減圧膨張弁30Bと、を備える。また、冷凍サイクルシステム100は、放熱器20の上流側に圧縮機10を二台備える。圧縮機10は、吸熱器50の直後に配置される上流側圧縮機10Aと、上流側圧縮機10Aにより圧縮された冷媒と気相冷媒バイパス62を通過した冷媒との混合冷媒が流れ込む下流側圧縮機10Bと、からなる。また、上記実施形態の気液分離器40では、第一プレート44の第一冷媒流通口44Aは、冷媒流入管48の出口孔48Aと対向しないようにずらして配置される(図2及び図4参照)。   Furthermore, although the refrigerating cycle system 100 provided with the gas-liquid separator 40 of the said embodiment was provided with the compressor 10 and the pressure reduction expansion valve 30 one each, the structure provided with two may be sufficient. Such a refrigeration cycle system 100 is used particularly when used as a heat pump system in which the temperature of the refrigerant in the heat absorber 50 is to be extremely lowered. For example, as shown in FIG. 6, the refrigeration cycle system 100 includes an upstream decompression expansion valve 30 </ b> A disposed on the upstream side of the gas-liquid separator 40 and a downstream decompression disposed on the downstream side of the gas-liquid separator 40. Expansion valve 30B. The refrigeration cycle system 100 includes two compressors 10 on the upstream side of the radiator 20. The compressor 10 is a downstream compressor into which a mixed refrigerant of an upstream compressor 10A disposed immediately after the heat absorber 50 and a refrigerant compressed by the upstream compressor 10A and a refrigerant that has passed through the gas-phase refrigerant bypass 62 flows. Machine 10B. Moreover, in the gas-liquid separator 40 of the said embodiment, 44 A of 1st refrigerant | coolant circulation ports of the 1st plate 44 are shifted and arrange | positioned so that it may not oppose the outlet hole 48A of the refrigerant | coolant inflow pipe 48 (FIG.2 and FIG.4). reference).

図6に示す冷凍サイクルシステム100では、冷媒は、上流側圧縮機10A及び下流側圧縮機10Bによって、比較的高い圧力に圧縮される。このため、高圧の冷媒は、上流側減圧膨張弁30Aによって減圧膨張されることで、圧力解放に伴い強い勢いで気液分離器40内へと流入することとなる。   In the refrigeration cycle system 100 shown in FIG. 6, the refrigerant is compressed to a relatively high pressure by the upstream compressor 10A and the downstream compressor 10B. For this reason, the high-pressure refrigerant is decompressed and expanded by the upstream decompression / expansion valve 30 </ b> A, and flows into the gas-liquid separator 40 with a strong force as the pressure is released.

このような多段圧縮多段膨張型の冷凍サイクルシステム100に上記実施形態の気液分離器40を用いることで、強い勢いで冷媒流入室43に冷媒が流入しても、第一プレート44及び第二プレート45によって、滞留した液相冷媒及び飛散する液相冷媒の上方への移動を抑制できる。この結果、気相冷媒流出管47内に液相冷媒が入り込みにくくなり、圧縮機10への液バックを抑制することができる。また、冷媒流入室43に流入する冷媒は、液相冷媒滞留室41に直接到達せずに第一プレート44や気液分離器40の内壁40Aに衝突することによって、勢いが減衰されることとなる。この結果、液相冷媒滞留室41に滞留する液相冷媒の液面が安定するので、滞留する液相冷媒をより安定して取り出すことができ、気相冷媒が混入することによる下流側減圧膨張弁30Bでのハンチングの発生も抑制することができる。   By using the gas-liquid separator 40 of the above embodiment in such a multistage compression multistage expansion type refrigeration cycle system 100, even if the refrigerant flows into the refrigerant inflow chamber 43 with a strong force, the first plate 44 and the second plate 44 The plate 45 can suppress upward movement of the staying liquid phase refrigerant and the scattered liquid phase refrigerant. As a result, it becomes difficult for the liquid-phase refrigerant to enter the gas-phase refrigerant outflow pipe 47, and the liquid back to the compressor 10 can be suppressed. Further, the refrigerant flowing into the refrigerant inflow chamber 43 does not reach the liquid-phase refrigerant retention chamber 41 directly and collides with the first plate 44 or the inner wall 40A of the gas-liquid separator 40, whereby the momentum is attenuated. Become. As a result, since the liquid level of the liquid phase refrigerant staying in the liquid phase refrigerant staying chamber 41 is stabilized, the staying liquid phase refrigerant can be taken out more stably, and the downstream decompression expansion due to mixing of the gas phase refrigerant. Generation of hunting in the valve 30B can also be suppressed.

なお、上記実施形態は、適宜組み合わせ可能である。   In addition, the said embodiment can be combined suitably.

100 冷凍サイクルシステム
10 圧縮機
20 放熱器
30 減圧膨張弁
40 気液分離器
40A 内壁
41 液相冷媒滞留室
42 気相冷媒集合室
43 冷媒流入室
44 第一プレート
44A 第一冷媒流通口
45 第二プレート
45A 第二冷媒流通口
46 液相冷媒流出管
47 気相冷媒流出管
48 冷媒流入管
48A 出口孔
50 吸熱器
60 冷媒流路
62 気相冷媒バイパス
DESCRIPTION OF SYMBOLS 100 Refrigeration cycle system 10 Compressor 20 Radiator 30 Decompression expansion valve 40 Gas-liquid separator 40A Inner wall 41 Liquid phase refrigerant residence chamber 42 Gas phase refrigerant collection chamber 43 Refrigerant inflow chamber 44 First plate 44A First refrigerant circulation port 45 Second Plate 45A Second refrigerant flow port 46 Liquid phase refrigerant outflow pipe 47 Gas phase refrigerant outflow pipe 48 Refrigerant inflow pipe 48A Outlet hole 50 Heat absorber 60 Refrigerant flow path 62 Gas phase refrigerant bypass

Claims (5)

冷凍サイクル内に配置され、冷媒を液相冷媒と気相冷媒とに分離する気液分離器であって、
液相冷媒が滞留する液相冷媒滞留室として前記気液分離器内の下部を区画する第一プレートと、
気相冷媒が集合する気相冷媒集合室として前記気液分離器内の上部を区画する第二プレートと、
前記液相冷媒滞留室に連通し、液相冷媒を前記気液分離器外へ流出させる液相冷媒流出管と、
前記気相冷媒集合室に連通し、気相冷媒を前記気液分離器外へ流出させる気相冷媒流出管と、
前記気液分離器内の前記第一プレートと前記第二プレートとの間に形成される冷媒流入室に連通し、前記冷媒流入室内へ冷媒を流入させる冷媒流入管と、を備え、
前記第一プレートは、前記液相冷媒滞留室と前記冷媒流入室との間で冷媒が流通可能な第一冷媒流通口を有し、
前記第二プレートは、前記気相冷媒集合室と前記冷媒流入室との間で冷媒が流通可能な第二冷媒流通口を有する、
ことを特徴とする気液分離器。
A gas-liquid separator that is arranged in a refrigeration cycle and separates a refrigerant into a liquid-phase refrigerant and a gas-phase refrigerant,
A first plate that defines a lower part in the gas-liquid separator as a liquid-phase refrigerant retention chamber in which the liquid-phase refrigerant stays;
A second plate that defines an upper portion in the gas-liquid separator as a gas-phase refrigerant collecting chamber in which gas-phase refrigerant collects;
A liquid-phase refrigerant outflow pipe that communicates with the liquid-phase refrigerant retention chamber and allows the liquid-phase refrigerant to flow out of the gas-liquid separator;
A gas-phase refrigerant outflow pipe communicating with the gas-phase refrigerant collecting chamber and allowing the gas-phase refrigerant to flow out of the gas-liquid separator;
A refrigerant inflow pipe communicating with the refrigerant inflow chamber formed between the first plate and the second plate in the gas-liquid separator and allowing the refrigerant to flow into the refrigerant inflow chamber,
The first plate has a first refrigerant flow port through which a refrigerant can flow between the liquid-phase refrigerant retention chamber and the refrigerant inflow chamber,
The second plate has a second refrigerant flow port through which a refrigerant can flow between the gas-phase refrigerant collecting chamber and the refrigerant inflow chamber.
A gas-liquid separator characterized by that.
請求項1に記載の気液分離器であって、
前記第一冷媒流通口及び前記第二冷媒流通口の少なくとも一方は、前記気液分離器の内壁から離間した位置に設けられる、
ことを特徴とする気液分離器。
The gas-liquid separator according to claim 1,
At least one of the first refrigerant circulation port and the second refrigerant circulation port is provided at a position separated from the inner wall of the gas-liquid separator,
A gas-liquid separator characterized by that.
請求項1又は請求項2に記載の気液分離器であって、
前記第一冷媒流通口は、前記冷媒流入管の出口部と対向しないようにずらして配置される、
ことを特徴とする気液分離器。
The gas-liquid separator according to claim 1 or 2,
The first refrigerant circulation port is arranged so as not to face the outlet portion of the refrigerant inflow pipe.
A gas-liquid separator characterized by that.
請求項1から請求項3のいずれか一つに記載の気液分離器であって、
前記冷媒流入管は、前記冷媒流入室内に側方から冷媒を流入させる、
ことを特徴とする気液分離器。
The gas-liquid separator according to any one of claims 1 to 3,
The refrigerant inflow pipe flows the refrigerant from the side into the refrigerant inflow chamber.
A gas-liquid separator characterized by that.
請求項1から請求項4のいずれか一つに記載の気液分離器であって、
前記第一冷媒流通口の開口面積は、前記第二冷媒流通口の開口面積より大きい、
ことを特徴とする気液分離器。
The gas-liquid separator according to any one of claims 1 to 4,
The opening area of the first refrigerant circulation port is larger than the opening area of the second refrigerant circulation port,
A gas-liquid separator characterized by that.
JP2014049126A 2014-03-12 2014-03-12 gas-liquid separator Pending JP2015172469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049126A JP2015172469A (en) 2014-03-12 2014-03-12 gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049126A JP2015172469A (en) 2014-03-12 2014-03-12 gas-liquid separator

Publications (1)

Publication Number Publication Date
JP2015172469A true JP2015172469A (en) 2015-10-01

Family

ID=54259900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049126A Pending JP2015172469A (en) 2014-03-12 2014-03-12 gas-liquid separator

Country Status (1)

Country Link
JP (1) JP2015172469A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655242A (en) * 2016-07-25 2018-02-02 荏原冷热***株式会社 The gas-liquid separator of compression refrigerating machine
KR20190006626A (en) * 2017-07-10 2019-01-21 주식회사 두원공조 Flash tank
CN109751798A (en) * 2017-11-02 2019-05-14 开利公司 gas-liquid separator
JP2019167130A (en) * 2018-03-23 2019-10-03 株式会社タツノ Suspended type fueling device
CN111520940A (en) * 2019-02-05 2020-08-11 开利公司 Separator and method for separating lubricant from lubricant-filled gaseous refrigerant
WO2020195711A1 (en) 2019-03-22 2020-10-01 日本電気株式会社 Liquid separator, cooling system, and gas-liquid separation method
CN112097426A (en) * 2020-09-07 2020-12-18 珠海格力电器股份有限公司 Gas-liquid separator, air conditioning system and control method thereof
WO2022004158A1 (en) * 2020-06-30 2022-01-06 株式会社デンソー Refrigeration cycle device
CN114838534A (en) * 2022-05-23 2022-08-02 上海诺通新能源科技有限公司 Gas-liquid separator with heating function and water source heat pump steam system comprising gas-liquid separator
WO2022239211A1 (en) 2021-05-14 2022-11-17 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2023007620A1 (en) 2021-07-28 2023-02-02 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2023042906A1 (en) * 2021-09-17 2023-03-23 日本電気株式会社 Cooling device and cavitation prevention method
WO2024146360A1 (en) * 2023-01-04 2024-07-11 安徽美芝制冷设备有限公司 Gas-liquid separator and refrigerating system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655242A (en) * 2016-07-25 2018-02-02 荏原冷热***株式会社 The gas-liquid separator of compression refrigerating machine
CN107655242B (en) * 2016-07-25 2021-01-08 荏原冷热***株式会社 Gas-liquid separator of compression type refrigerator
KR20190006626A (en) * 2017-07-10 2019-01-21 주식회사 두원공조 Flash tank
KR102359883B1 (en) * 2017-07-10 2022-02-10 주식회사 두원공조 Flash tank
CN109751798A (en) * 2017-11-02 2019-05-14 开利公司 gas-liquid separator
JP2019167130A (en) * 2018-03-23 2019-10-03 株式会社タツノ Suspended type fueling device
CN111520940A (en) * 2019-02-05 2020-08-11 开利公司 Separator and method for separating lubricant from lubricant-filled gaseous refrigerant
WO2020195711A1 (en) 2019-03-22 2020-10-01 日本電気株式会社 Liquid separator, cooling system, and gas-liquid separation method
WO2022004158A1 (en) * 2020-06-30 2022-01-06 株式会社デンソー Refrigeration cycle device
JP7439658B2 (en) 2020-06-30 2024-02-28 株式会社デンソー Refrigeration cycle equipment
CN112097426A (en) * 2020-09-07 2020-12-18 珠海格力电器股份有限公司 Gas-liquid separator, air conditioning system and control method thereof
CN112097426B (en) * 2020-09-07 2024-04-19 珠海格力电器股份有限公司 Gas-liquid separator, air conditioning system and control method thereof
WO2022239211A1 (en) 2021-05-14 2022-11-17 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
JP7433522B2 (en) 2021-05-14 2024-02-19 三菱電機株式会社 Refrigerant storage container and refrigeration cycle device equipped with the refrigerant storage container
EP4339536A4 (en) * 2021-05-14 2024-05-29 Mitsubishi Electric Corporation Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2023007620A1 (en) 2021-07-28 2023-02-02 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2023042906A1 (en) * 2021-09-17 2023-03-23 日本電気株式会社 Cooling device and cavitation prevention method
CN114838534A (en) * 2022-05-23 2022-08-02 上海诺通新能源科技有限公司 Gas-liquid separator with heating function and water source heat pump steam system comprising gas-liquid separator
WO2024146360A1 (en) * 2023-01-04 2024-07-11 安徽美芝制冷设备有限公司 Gas-liquid separator and refrigerating system

Similar Documents

Publication Publication Date Title
JP2015172469A (en) gas-liquid separator
CN107677016B (en) Economizer
US11137183B2 (en) Phobic/philic structures in refrigeration systems and liquid vapor separation in refrigeration systems
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
JP6716227B2 (en) Evaporator, turbo refrigerator equipped with the same
JP2006052938A (en) Receiver drier for refrigerating cycle and integrated heat exchanger
CA2666392C (en) Apparatus and method for separating droplets from vaporized refrigerant
JP2013160417A (en) Economizer and refrigerator
JP5601764B2 (en) Gas-liquid separator and air compressor and air conditioner equipped with the same
JPH04187957A (en) Freezing cycle device
JPH09250848A (en) Transversely long accumulator for freezer
KR102183547B1 (en) Oil separator
JP4577291B2 (en) Refrigerant evaporator
KR20120124710A (en) Condenser having oil separator and Refrigerating cycle apparatus having the same
WO2021060433A1 (en) Liquid refrigerant sprayer and falling liquid film type evaporator
JPH1054627A (en) Oil separator for evaporator
WO2019053879A1 (en) Refrigerator and evaporation tray for refrigerator
KR20070013409A (en) Appratus to separate uapor and liquid in the cooling system
US11448435B2 (en) Evaporator and refrigeration system
JP5941297B2 (en) refrigerator
JP2017198408A (en) accumulator
WO2018088127A1 (en) Accumulator
KR100624025B1 (en) Accumulator for air conditioner
KR20170065792A (en) Gas-liquid separator
JP2001099525A (en) Liquid receiver and freezing cycle device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161221