JP2015172236A - Method of producing iron/copper composite powder for powder metallurgy - Google Patents

Method of producing iron/copper composite powder for powder metallurgy Download PDF

Info

Publication number
JP2015172236A
JP2015172236A JP2014241742A JP2014241742A JP2015172236A JP 2015172236 A JP2015172236 A JP 2015172236A JP 2014241742 A JP2014241742 A JP 2014241742A JP 2014241742 A JP2014241742 A JP 2014241742A JP 2015172236 A JP2015172236 A JP 2015172236A
Authority
JP
Japan
Prior art keywords
copper
iron
powder
oxide
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014241742A
Other languages
Japanese (ja)
Other versions
JP6327133B2 (en
Inventor
岡田 浩
Hiroshi Okada
浩 岡田
雄 山下
Takeshi Yamashita
雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014241742A priority Critical patent/JP6327133B2/en
Publication of JP2015172236A publication Critical patent/JP2015172236A/en
Application granted granted Critical
Publication of JP6327133B2 publication Critical patent/JP6327133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing an iron/copper composite powder for metallurgy suitable as a raw powder for powder metallurgy products used in powder metallurgy which enables production of the iron/copper composite powder, with copper diffusion-adhered with high adhesion to the surface of iron powder, by a simple method and effectively with respect to costs.SOLUTION: A method of producing an iron/copper composite powder for powder metallurgy comprises mixing iron powder with 5-60 wt.%, based on metallic copper, of copper oxide powder of an average particle size of 20 μm or smaller and a specific surface area of 0.5 m/g or greater, adding a copper salt and/or an iron salt of a melting point of 700°C or lower and heating the resultant mixture at 350-800°C in a reduction atmosphere so as to obtain a powder in which metallic copper is adhered to the surface of iron powder. The copper is e.g. copper chloride, and the iron salt is e.g. iron chloride.

Description

本発明は、粉末冶金用鉄銅複合粉末の製造方法に関する。より詳しくは、主として粉末冶金に用いられる粉末冶金製品の原料粉として好適であって、鉄粉の表面に銅を均一に、また密着性よく拡散付着させた鉄銅複合粉末の製造方法に関するものである。   The present invention relates to a method for producing iron-copper composite powder for powder metallurgy. More specifically, it is suitable as a raw material powder for powder metallurgy products mainly used in powder metallurgy, and relates to a method for producing an iron-copper composite powder in which copper is uniformly diffused and adhered to the surface of iron powder with good adhesion. is there.

近年、焼結含油軸受として、粉末冶金法により多孔質の金属体を形成し、潤滑油を含浸させることで、摺動特性を向上させた小型の軸受製造技術が求められている。これらは、特にベアリングが取り付けられないようなマイクロモーターの細い軸を保持するための軸受に使用されている。   In recent years, as a sintered oil-impregnated bearing, there has been a demand for a small-sized bearing manufacturing technique in which sliding characteristics are improved by forming a porous metal body by powder metallurgy and impregnating with a lubricating oil. These are used in particular for bearings for holding the thin shafts of micromotors where no bearings can be mounted.

これら多孔質の金属体の形成においては、鉄銅粉末冶金製品、中でも特に、鉄銅焼結軸受における銅の偏析防止あるいは摺動抵抗の低減を目的として、鉄粉の表面に銅を均一に付着させた鉄銅複合金属粉の需要が増大しつつある。この鉄銅複合金属粉の製造方法は、従来、湿式法と乾式法の2つが知られている。   In the formation of these porous metal bodies, copper is uniformly attached to the surface of iron powder for the purpose of preventing segregation of copper or reducing sliding resistance in iron-copper powder metallurgy products, especially iron-copper sintered bearings. There is an increasing demand for iron and copper composite metal powders. Conventionally, there are two known methods for producing this iron-copper composite metal powder: a wet method and a dry method.

湿式法としては、銅イオンを含む酸性溶液中に鉄粉を投入することで、鉄が酸によって溶解し、溶解に伴い発生した電子によって銅イオンが還元して、鉄粉表面に金属銅の被膜を形成させる、いわゆる置換法で作製するものである。   As a wet method, iron powder is poured into an acidic solution containing copper ions, so that iron is dissolved by an acid, and copper ions are reduced by electrons generated along with the dissolution, so that a metal copper film is formed on the iron powder surface. Is formed by a so-called substitution method.

しかしながら、この方法では、鉄表面に銅被膜が形成されると同時に金属被膜の形成が停止するため、鉄表面には非常に薄い金属銅の被膜しか形成できない。また、置換法では、密着性が極めて悪く、形成された銅被膜が容易に剥がれてしまうという問題がある。   However, in this method, since a copper film is formed on the iron surface and the formation of the metal film stops at the same time, only a very thin metal copper film can be formed on the iron surface. In addition, the replacement method has a problem that the adhesion is extremely poor and the formed copper film is easily peeled off.

これを解決するため、例えば特許文献1では、めっき法により銅被膜を厚く形成する方法が開示されている。この特許文献1に記載の方法は、ピロリン酸銅めっき浴にニッケル被膜があらかじめ形成された鉄粉を投入して、めっき法で鉄銅複合金属粉の製造する方法であり、事前に鉄表面に無電解めっきによってニッケル被膜を形成した上で行うとしている。このことは、直接、鉄粉をめっき液に投入すると、投入と同時に鉄表面に金属銅が形成されるため、めっきで形成された銅被膜も密着性が低くなって剥がれやすい銅被膜が形成されることを防止するためである。   In order to solve this, for example, Patent Document 1 discloses a method of forming a thick copper film by a plating method. The method described in Patent Document 1 is a method for producing an iron-copper composite metal powder by a plating method by introducing iron powder on which a nickel coating is formed in advance into a copper pyrophosphate plating bath. This is performed after a nickel coating is formed by electroless plating. This is because, when iron powder is directly put into the plating solution, metallic copper is formed on the iron surface at the same time, so the copper film formed by plating also has a low adhesion and forms a copper film that easily peels off. This is to prevent this.

ところが、上述した特許文献1の方法では、あらかじめ無電解でニッケル被膜を形成する必要があるため、工程が複雑となり、さらに無電解ニッケルめっき廃液や銅めっき廃液等の処理費用が必要となるため、コストが高くなるという問題がある。   However, in the method of Patent Document 1 described above, since it is necessary to form a nickel film in advance without electrolysis, the process becomes complicated, and further, processing costs such as electroless nickel plating waste liquid and copper plating waste liquid are required. There is a problem that the cost becomes high.

一方、乾式法は、鉄粉と銅微粉とを混合し、還元雰囲気中で熱処理して鉄粉表面に銅微粉を拡散付着させる方法である。しかしながら、固相拡散によって鉄粉表面に銅微粉を均一に付着させることは非常に難しく、これを改善する方法として、例えば特許文献2及び特許文献3に開示されている技術が提案されている。   On the other hand, the dry method is a method in which iron powder and copper fine powder are mixed and heat-treated in a reducing atmosphere to cause copper fine powder to diffusely adhere to the surface of the iron powder. However, it is very difficult to uniformly deposit copper fine powder on the surface of iron powder by solid phase diffusion, and techniques disclosed in, for example, Patent Document 2 and Patent Document 3 have been proposed as methods for improving this.

特許文献2には、鉄粉表面に銅微粉を均一に付着させるために、使用する酸化銅の粒子を非常に細かいものとする技術が示されている。より具体的には、一次粒子径が0.1μm以下の凝集した二次粒子を形成し、その二次粒子の平均粒子径が5μm以下で、比表面積が10m/g以上の非常に微細な酸化銅微粒子を使用することが示されている。このような非常に微細な酸化銅を得る手段としては、塩化銅溶液にアルカリを作用させ、生じた水酸化銅水和物のゲルを液と共に加熱して黒色の酸化銅を作製するとしている。また、この方法では、酸化銅を混合する際に、さらにカーボンを0.15〜5.0重量%添加して、温度700〜950℃の還元性雰囲気中で酸化物の還元と合金成分の拡散付着を同時に行っている。 Patent Document 2 discloses a technique for making the particles of copper oxide to be used very fine in order to uniformly deposit copper fine powder on the surface of iron powder. More specifically, agglomerated secondary particles having a primary particle size of 0.1 μm or less are formed, the secondary particles have an average particle size of 5 μm or less, and a very fine surface area of 10 m 2 / g or more. It has been shown to use copper oxide particulates. As a means for obtaining such a very fine copper oxide, an alkali is allowed to act on the copper chloride solution, and the resulting copper hydroxide hydrate gel is heated together with the liquid to produce black copper oxide. Further, in this method, when copper oxide is mixed, 0.15 to 5.0% by weight of carbon is further added to reduce oxide and diffuse alloy components in a reducing atmosphere at a temperature of 700 to 950 ° C. Attach at the same time.

ところが、この特許文献2においても示されているように、市販されている酸化銅は、一次粒子径で4μmであり比表面積が0.5m/gに過ぎないことから、一般的に市場に流通している酸化銅を利用することができず、上述のように塩化銅溶液にアルカリを作用させて加熱作成する酸化銅しか利用できないという制限がある。さらに、塩化銅溶液から酸化銅を作成する方法では、中和、ろ過、加熱等の工程が非常に複雑で、また製造時に発生する廃液を処分する必要がある等の環境負荷が大きく、高コストな方法であるという課題がある。 However, as also shown in Patent Document 2, commercially available copper oxide has a primary particle diameter of 4 μm and a specific surface area of only 0.5 m 2 / g. There is a limitation that the copper oxide in circulation cannot be used, and only copper oxide prepared by heating an alkali to a copper chloride solution as described above can be used. Furthermore, in the method of preparing copper oxide from a copper chloride solution, the steps of neutralization, filtration, heating, etc. are very complicated, and the environmental burden such as the need to dispose of the waste liquid generated during production is large, resulting in high costs. There is a problem that it is a simple method.

また、特許文献3には、使用する酸化銅として比表面積が2m/g以上の酸化銅(I)又は酸化銅(II)の単体又は混合物を用い、還元雰囲気で700〜1000℃の温度で還元する方法が示されている。この特許文献3の技術は、上述した特許文献2の方法に比べて、使用する酸化銅の粒子径が大きくなったことから、コスト的には改善されているものの、還元温度が700〜1000℃と、非常に高温で処理する必要がある。 Moreover, in patent document 3, the single surface or mixture of copper oxide (I) or copper oxide (II) whose specific surface area is 2 m 2 / g or more is used as copper oxide to be used at a temperature of 700 to 1000 ° C. in a reducing atmosphere. A method of reduction is shown. Although the technique of this patent document 3 is improved in terms of cost because the particle diameter of the copper oxide used is larger than the method of patent document 2 described above, the reduction temperature is 700 to 1000 ° C. It is necessary to process at a very high temperature.

還元処理においては、鉄粉と酸化銅とを混合し、焼結炉に入れて還元雰囲気で加熱処理するが、このとき、加熱温度が高いほど得られる鉄銅複合金属粉は焼結した状態となる。そのため、焼結炉から取り出した焼結体はハンマーミル等の装置を用いて粉砕する必要がある。またそのとき、鉄表面に形成された金属銅被膜が剥がれてしまう危険性がある。これらのことから、還元温度としてはできるだけ低温で処理する方が望ましい。   In the reduction treatment, iron powder and copper oxide are mixed, put into a sintering furnace and heat-treated in a reducing atmosphere. At this time, the higher the heating temperature, the more the iron-copper composite metal powder obtained is in a sintered state. Become. Therefore, the sintered body taken out from the sintering furnace needs to be pulverized using an apparatus such as a hammer mill. At that time, there is a risk that the metal copper film formed on the iron surface may be peeled off. Therefore, it is desirable that the reduction temperature be as low as possible.

以上のように、主として粉末冶金に用いられる粉末冶金製品の原料粉の製造に際して、使用する酸化銅粉の製造方法が限定されることなく、鉄表面に拡散した銅の密着性を向上させ、また還元温度を低くすることによるコスト低減化と、高温による還元時の焼結防止の問題を解決することができる鉄銅複合金属粉の製造方法が望まれている。   As described above, when manufacturing raw material powder of powder metallurgy products mainly used in powder metallurgy, the method for producing copper oxide powder to be used is not limited, and the adhesion of copper diffused on the iron surface is improved. There is a demand for a method for producing an iron-copper composite metal powder that can solve the problem of cost reduction by lowering the reduction temperature and prevention of sintering during reduction at a high temperature.

特開平03−002393号公報Japanese Patent Laid-Open No. 03-002393 特開平8−92604号公報JP-A-8-92604 特開2001−3124号公報Japanese Patent Laid-Open No. 2001-3124

化学大辞典1 p1050,共立出版社 昭和35年3月30日発行Chemical Dictionary 1 p1050, published by Kyoritsu Publishing Co., Ltd. March 30, 1960

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、粉末冶金に用いられる粉末冶金製品の原料粉として好適となる粉末冶金用鉄銅複合粉末について、鉄粉の表面に銅を密着性よく拡散付着させた鉄銅複合粉末を、簡易な方法で、コストの面でもより効率的に製造することができる方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and the iron-copper composite powder for powder metallurgy that is suitable as a raw material powder for powder metallurgy products used in powder metallurgy, has copper on the surface of iron powder It is an object of the present invention to provide a method capable of producing an iron-copper composite powder with a good adhesion and diffusion adhesion in a simple manner and more efficiently in terms of cost.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、粉末冶金製品の原料粉である鉄銅複合金属粉の製造において、鉄粉と酸化銅とを混合し還元雰囲気で銅を拡散還元する際に、融点が700℃以下である銅塩及び/又は鉄塩を添加して、鉄粉と酸化銅と共に混合して還元加熱処理することで、比較的低温の還元温度で密着性のよい銅の被膜を形成した鉄銅複合粉末を製造できることを見出した。すなわち、本発明は、以下のものである。   The inventors of the present invention have made extensive studies in order to solve the above-described problems. As a result, in the production of iron-copper composite metal powder, which is a raw material powder of powder metallurgy products, when copper powder is mixed with iron powder and copper oxide and copper is diffused and reduced in a reducing atmosphere, a copper salt having a melting point of 700 ° C. or less and By adding iron salt, mixing with iron powder and copper oxide and reducing heat treatment, it is possible to produce iron-copper composite powder with a copper film having good adhesion at a relatively low reduction temperature. I found it. That is, the present invention is as follows.

(1)本発明は、鉄粉に、平均粒子径が20μm以下、比表面積0.5m/g以上の大きさの酸化銅粉を、金属銅換算量で5〜60重量%混合し、さらに融点が700℃以下である銅塩及び/又は鉄塩を添加して、この混合物を還元雰囲気中で350〜800℃の温度で加熱することにより、鉄粉表面に金属銅が付着した粉末を得ることを特徴とする粉末冶金用鉄銅複合粉末の製造方法である。 (1) In the present invention, copper oxide powder having an average particle diameter of 20 μm or less and a specific surface area of 0.5 m 2 / g or more is mixed with iron powder in an amount of 5 to 60% by weight in terms of metal copper, By adding a copper salt and / or an iron salt having a melting point of 700 ° C. or lower and heating the mixture at a temperature of 350 to 800 ° C. in a reducing atmosphere, a powder having metallic copper attached to the iron powder surface is obtained. It is the manufacturing method of the iron copper composite powder for powder metallurgy characterized by the above-mentioned.

(2)また本発明は、(1)の発明において、前記鉄粉と前記酸化銅粉とを混合するに際し、塩化銅を、該酸化銅粉に対して重量換算で0.01〜10重量%の量となるように添加することを特徴とする粉末冶金用鉄銅複合粉末の製造方法である。   (2) Moreover, in this invention, when mixing the said iron powder and the said copper oxide powder in this invention, copper chloride is 0.01-10 weight% in conversion of weight with respect to this copper oxide powder. The iron-copper composite powder for powder metallurgy is characterized in that it is added so that the amount becomes.

(3)また本発明は、(1)の発明において、前記鉄粉と前記酸化銅粉とを混合するに際し、塩化鉄を、該酸化銅粉に対して重量換算で0.01〜10重量%の量となるように添加することを特徴とする粉末冶金用鉄銅複合粉末の製造方法である。   (3) Moreover, this invention is the invention of (1). When mixing the said iron powder and the said copper oxide powder, iron chloride is 0.01-10 weight% in conversion of weight with respect to this copper oxide powder. The iron-copper composite powder for powder metallurgy is characterized in that it is added so that the amount becomes.

(4)また本発明は、(1)の発明において、前記鉄粉と前記酸化銅粉とを混合するに際し、塩化鉄と塩化銅との混合物を、該酸化銅粉に対して合計重量換算で0.01〜10重量%の量となるように添加することを特徴とする粉末冶金用鉄銅複合粉末の製造方法である。   (4) Moreover, this invention WHEREIN: When mixing the said iron powder and the said copper oxide powder in invention of (1), the mixture of iron chloride and a copper chloride is converted into a total weight conversion with respect to this copper oxide powder. A method for producing iron-copper composite powder for powder metallurgy, characterized in that it is added in an amount of 0.01 to 10% by weight.

(5)本発明は、(1)乃至(4)の何れかの粉末冶金用鉄銅複合粉末の製造方法により製造された粉末冶金用鉄銅複合粉末であって、銅と鉄との界面に、酸化鉄となる層を有することを特徴とする粉末冶金用鉄銅複合粉末である。   (5) The present invention is an iron-copper composite powder for powder metallurgy produced by the method for producing an iron-copper composite powder for powder metallurgy according to any one of (1) to (4), and is provided at the interface between copper and iron. An iron-copper composite powder for powder metallurgy, characterized by having a layer that becomes iron oxide.

(6)また本発明は、(5)の発明において、前記酸化鉄の層の厚さが、前記銅の層の厚さとの関係において、酸化鉄層の厚さ/(銅層の厚さ+酸化鉄層の厚さ)で示される値で0.05以上0.80以下の範囲となるように構成されていることを特徴とする粉末冶金用鉄銅複合粉末である。   (6) In the invention of (5), the present invention relates to the thickness of the iron oxide layer in relation to the thickness of the copper layer / (thickness of the copper layer + The iron-copper composite powder for powder metallurgy is characterized by being configured to have a value represented by (thickness of iron oxide layer) in a range of 0.05 to 0.80.

本発明によれば、鉄粉と酸化銅とを混合して還元雰囲気で銅を拡散還元する際に、融点が700℃以下である銅塩及び/又は鉄塩を添加して鉄粉と酸化銅と共に混合するようにしているので、還元温度が低温であっても還元拡散反応が進行し、鉄粉表面に均一に且つ密着性が良好な銅の被膜を形成した鉄銅複合粉末を製造でき、また還元時の焼結も防止することができる。さらに、複雑な工程が必要なく簡易に製造することができ、加熱に要するエネルギーも少なくて済む等、低コストで効率的に製造することができる。   According to the present invention, when iron powder and copper oxide are mixed and copper is diffused and reduced in a reducing atmosphere, a copper salt and / or an iron salt having a melting point of 700 ° C. or lower is added to the iron powder and copper oxide. Since the reduction diffusion reaction proceeds even when the reduction temperature is low, iron-copper composite powder with a uniform and good copper film formed on the iron powder surface can be produced. Also, sintering during reduction can be prevented. Furthermore, it can be easily manufactured without a complicated process, and can be efficiently manufactured at low cost, for example, less energy is required for heating.

実施例1にて製造した鉄銅複合粉末についてのSEM観察像である。2 is an SEM observation image of the iron-copper composite powder produced in Example 1. 比較例1にて製造した鉄銅複合粉末についてのSEM観察像である。3 is an SEM observation image of the iron-copper composite powder produced in Comparative Example 1. 実施例1にて製造した鉄銅複合粉末の断面についてのSEM観察像である。2 is an SEM observation image of a cross section of the iron-copper composite powder produced in Example 1. FIG. 実施例1にて製造した鉄銅複合粉末の断面についてのSEM観察像であり、図3の観察像を拡大した結果を示すSEM観察像である。It is a SEM observation image about the cross section of the iron copper composite powder manufactured in Example 1, and is the SEM observation image which shows the result of having expanded the observation image of FIG. (A)は実施例1にて製造した鉄銅複合粉末の断面についてのSEM観察像(図4をさらに拡大した観察像)であり、(B)は第3層の元素分析結果を示すピーク図である。(A) is the SEM observation image (observation image which expanded FIG. 4 further) about the cross section of the iron copper composite powder manufactured in Example 1, (B) is a peak figure which shows the elemental analysis result of a 3rd layer. It is. 比較例1にて製造した鉄銅複合粉末の断面についてのSEM観察像である。2 is an SEM observation image of a cross section of the iron-copper composite powder produced in Comparative Example 1. 比較例1にて製造した鉄銅複合粉末の断面についてのSEM観察像であり、図6の観察像を拡大した結果を示すSEM観察像である。It is a SEM observation image about the cross section of the iron copper composite powder manufactured in the comparative example 1, and is the SEM observation image which shows the result of having expanded the observation image of FIG. 酸化鉄層の厚さを測定した鉄銅複合粉末の断面についてのSEM観察像である。It is a SEM observation image about the cross section of the iron copper composite powder which measured the thickness of the iron oxide layer.

以下、本発明に係る粉末冶金用鉄銅複合粉末の製造方法の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。   Hereinafter, a specific embodiment (hereinafter referred to as “the present embodiment”) of a method for producing an iron-copper composite powder for powder metallurgy according to the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.

<粉末冶金用鉄銅複合粉末の製造方法>
本実施の形態に係る粉末冶金用鉄銅複合粉末の製造方法は、粉末冶金製品の原料粉として用いられる鉄銅複合粉末の製造方法であって、鉄粉と酸化銅とを混合し還元雰囲気で銅を拡散還元することによって鉄銅複合粉末を得る方法である。
<Method for producing iron-copper composite powder for powder metallurgy>
The method for producing an iron-copper composite powder for powder metallurgy according to the present embodiment is a method for producing an iron-copper composite powder used as a raw material powder of a powder metallurgy product, wherein iron powder and copper oxide are mixed in a reducing atmosphere. In this method, iron-copper composite powder is obtained by diffusion reduction of copper.

より具体的に、本実施の形態に係る粉末冶金用鉄銅複合粉末の製造方法では、鉄粉と酸化銅とを混合し還元雰囲気で銅を拡散還元するにあたり、その鉄粉に、平均粒子径が20μm以下、比表面積0.5m/g以上の大きさの酸化銅粉を、金属銅換算量で5〜60重量%混合し、さらに融点が700℃以下である銅塩及び/又は鉄塩を添加して混合する。そして、その混合物を還元雰囲気中で350〜800℃の温度で加熱することによって、鉄粉表面に金属銅を付着させた粉末を得ることを特徴としている。 More specifically, in the method for producing iron-copper composite powder for powder metallurgy according to the present embodiment, when iron powder and copper oxide are mixed and copper is diffused and reduced in a reducing atmosphere, the average particle diameter is reduced to the iron powder. Is a copper salt and / or iron salt having a melting point of 700 ° C. or less, in which copper oxide powder having a size of 20 μm or less and a specific surface area of 0.5 m 2 / g or more is mixed with 5 to 60% by weight in terms of metal copper. Add and mix. And the powder which made the metal copper adhere to the iron powder surface is obtained by heating the mixture at the temperature of 350-800 degreeC in reducing atmosphere, It is characterized by the above-mentioned.

この粉末冶金用鉄銅複合粉末の製造方法によれば、融点が700℃以下である銅塩及び/又は鉄塩を、鉄粉と酸化銅と共に混合し、その混合物を還元雰囲気で加熱させていることにより、還元温度が低温であっても、銅の還元拡散反応を効率的に且つ効果的に進行させることができ、そして、その鉄粉の表面に、均一に且つ密着性のよい銅の被膜を形成させることができる。   According to this method for producing iron-copper composite powder for powder metallurgy, a copper salt and / or iron salt having a melting point of 700 ° C. or less is mixed with iron powder and copper oxide, and the mixture is heated in a reducing atmosphere. Thus, even when the reduction temperature is low, the copper reduction diffusion reaction can be efficiently and effectively advanced, and the copper film has a uniform and good adhesion on the surface of the iron powder. Can be formed.

また、この方法によれば、特殊な方法で原料の酸化銅を作成する等の複雑な工程が必要なく、また還元温度を比較的低温にでき熱エネルギーも少なくて済み、非常に低コストで効率的に粉末冶金用鉄銅複合粉末を製造することができる。さらに、比較的低温度で反応させることから、還元時における粉末同士の焼結も防止することができる。   In addition, according to this method, there is no need for a complicated process such as making copper oxide as a raw material by a special method, and the reduction temperature can be made relatively low and less heat energy is required. In particular, iron-copper composite powder for powder metallurgy can be produced. Furthermore, since the reaction is performed at a relatively low temperature, sintering of the powders during reduction can be prevented.

<鉄粉について>
使用する鉄粉としては、特に限定されるものではなく、市販の鉄粉を用いることができる。また、その鉄粉の平均粒子径についても、特に限定されず、例えば30〜100μm程度のものを用いることができる。
<About iron powder>
It does not specifically limit as iron powder to be used, Commercially available iron powder can be used. Moreover, it does not specifically limit about the average particle diameter of the iron powder, For example, a thing about 30-100 micrometers can be used.

<酸化銅粉について>
使用する酸化銅粉としては、平均粒子径が20μm以下、比表面積0.5m/g以上のものであれば、特にその製造方法は限定されず、種々の方法により製造することができる。その中でも、電解銅粉やアトマイズ粉等の銅粉を、空気雰囲気で酸化焙焼して酸化銅にした後、ボールミル等の機械的な粉砕方法で粉砕する方法を用いることが、低コストで製造できるという点で好ましい。
<About copper oxide powder>
The copper oxide powder to be used is not particularly limited as long as it has an average particle diameter of 20 μm or less and a specific surface area of 0.5 m 2 / g or more, and can be produced by various methods. Among them, copper powder such as electrolytic copper powder or atomized powder is oxidized and roasted in an air atmosphere to make copper oxide, and then it is manufactured at a low cost by using a method of pulverizing with a mechanical pulverization method such as a ball mill. It is preferable in that it can be performed.

具体的には、例えば、硫酸銅5水和物(CuSO・5HO)が銅濃度で5〜50g/Lであり、遊離硫酸濃度が50〜250g/Lとなる浴組成の電解液を用い、通電電流密度5〜30A/dm、浴温度が20〜60℃の条件で所定時間電解し、陰極上に粉状の電解銅粉を電析させる。次に、得られた電解銅粉を、空気又は純酸素等の酸素を含有する雰囲気下において、400〜900℃の温度条件で所定時間加熱して酸化焙焼を行って酸化銅とする。そして、得られた酸化銅を、例えば機械的な粉砕方法により平均粒径が20μm以下となるように粉砕する。酸化銅粉は、例えばこのような方法により製造することができる。 Specifically, for example, an electrolytic solution having a bath composition in which copper sulfate pentahydrate (CuSO 4 .5H 2 O) has a copper concentration of 5 to 50 g / L and a free sulfuric acid concentration of 50 to 250 g / L. Used, electrolysis is performed for a predetermined time under conditions of an energization current density of 5 to 30 A / dm 2 and a bath temperature of 20 to 60 ° C., and powdered electrolytic copper powder is electrodeposited on the cathode. Next, the obtained electrolytic copper powder is heated for a predetermined time under a temperature condition of 400 to 900 ° C. in an atmosphere containing oxygen such as air or pure oxygen to be oxidized and roasted to obtain copper oxide. And the obtained copper oxide is grind | pulverized so that an average particle diameter may be set to 20 micrometers or less by the mechanical grinding | pulverization method, for example. Copper oxide powder can be manufactured by such a method, for example.

酸化銅粉の量としては、鉄粉に対して、金属銅換算で5〜60重量%となる量を添加し、より好ましくは10〜50重量%となる量を添加して混合する。酸化銅粉の混合量が5重量%未満であると、銅が不足して鉄粉表面を完全に被覆することができなくなる。一方で、混合量が60重量%を超えると、銅が必要以上に鉄粉表面に付着してしまい、容易に剥がれて遊離してしまうことがある等、好ましくない。   As an amount of copper oxide powder, an amount of 5 to 60% by weight in terms of metallic copper is added to iron powder, and an amount of 10 to 50% by weight is more preferably added and mixed. If the mixed amount of copper oxide powder is less than 5% by weight, copper is insufficient and the iron powder surface cannot be completely covered. On the other hand, when the mixing amount exceeds 60% by weight, copper adheres to the surface of the iron powder more than necessary, and may be easily peeled off and released.

<銅塩、鉄塩について>
本実施の形態に係る粉末冶金用鉄銅複合粉末の製造方法は、上述したように、鉄粉と酸化銅粉とを混合するとともに、さらに融点が700℃以下である銅塩又は鉄塩、あるいはその銅塩と鉄塩との混合物を添加して混合することを特徴としている。
<About copper salt and iron salt>
The manufacturing method of the iron-copper composite powder for powder metallurgy according to the present embodiment, as described above, mixes iron powder and copper oxide powder, and further has a copper salt or iron salt having a melting point of 700 ° C. or lower, or It is characterized by adding and mixing a mixture of the copper salt and iron salt.

銅塩としては、融点が700℃以下のものであれば特に限定されないが、例えば、塩化銅(I)、塩化銅(II)、硝酸銅、炭酸銅等を挙げることができる。また、鉄塩についても、融点が700℃以下のものであれば特に限定されないが、例えば、塩化鉄(II)、塩化鉄(III)、硫酸鉄、硝酸鉄等を挙げることができる。   Although it will not specifically limit as long as melting | fusing point is 700 degrees C or less as a copper salt, For example, copper chloride (I), copper chloride (II), copper nitrate, copper carbonate etc. can be mentioned. The iron salt is not particularly limited as long as it has a melting point of 700 ° C. or lower, and examples thereof include iron (II) chloride, iron (III) chloride, iron sulfate, and iron nitrate.

ここで、非特許文献4に示されるように、上述した塩化銅等の銅塩、塩化鉄等の鉄塩は、その融点が、例えば塩化銅(I)では422℃、塩化銅(II)では498℃であり、また塩化鉄(II)では672℃、塩化鉄(III)では300℃である。このように、塩化銅や塩化鉄等の融点はいずれも700℃以下と低く、このように融点の低い銅塩又は鉄塩、あるいは銅塩と鉄塩との混合物を、鉄粉と酸化銅粉との混合物に対してさらに添加して混合することによって、還元加熱処理の段階で、これらの塩化銅等の銅塩や塩化鉄等の鉄塩がまず溶融するようになる。すると、それが鉄粉表面に濡れることで、酸化銅が鉄粉表面に効率的に付着するように作用し、これにより、鉄粉表面に均一に且つ密着性よく銅の被膜が形成されることになると考えられる。そして、このようなことから、還元加熱を行っても、互いの粉末同士が焼結して取り扱いが難しくなったり、規格外となるような事態の発生を効果的に防止することができる。   Here, as shown in Non-Patent Document 4, the above-described copper salts such as copper chloride and iron salts such as iron chloride have melting points of, for example, 422 ° C. for copper (I) chloride and copper (II) chloride. It is 498 ° C., 672 ° C. for iron (II) chloride, and 300 ° C. for iron (III) chloride. As described above, the melting points of copper chloride, iron chloride, etc. are all as low as 700 ° C. or less, and thus a low melting point copper salt or iron salt, or a mixture of copper salt and iron salt is converted into iron powder and copper oxide powder. In addition, the copper salt such as copper chloride and the iron salt such as iron chloride are first melted at the stage of the reduction heat treatment. Then, when it wets the surface of the iron powder, it acts so that the copper oxide adheres efficiently to the surface of the iron powder, thereby forming a copper film uniformly and with good adhesion on the surface of the iron powder. It is thought that it becomes. And even if it carries out reduction heating from such a thing, generation | occurrence | production of the situation where powders mutually sinter and it becomes difficult to handle or becomes out of specification can be prevented effectively.

また、このようにして製造された鉄銅複合粉末では、その銅と鉄との界面に酸化鉄となる層を有するようになる。すなわち、上述したように、添加した銅塩や鉄塩が溶融して鉄粉表面に濡れるとき、鉄粉表面に存在する酸化層が、溶融した塩によって覆われた状態になる。そして、還元反応によって、水素が、溶融したその銅塩や鉄塩と反応して金属層を形成するようになるため、溶融した塩により覆われた酸化層まで水素が到達できずに酸化鉄のままで存在することになり、第3層としての酸化鉄の層(酸化鉄層)を構成するようになる。このように、本実施の形態に係る鉄銅複合粉末では、第3層である酸化鉄層が銅と鉄の界面に存在することによって、鉄と銅とが密着性がより強固になる。   In addition, the iron-copper composite powder produced in this way has a layer that becomes iron oxide at the interface between the copper and iron. That is, as described above, when the added copper salt or iron salt melts and wets the surface of the iron powder, the oxide layer present on the surface of the iron powder is covered with the molten salt. The reduction reaction causes hydrogen to react with the molten copper salt or iron salt to form a metal layer, so that the hydrogen cannot reach the oxide layer covered with the molten salt and the iron oxide As a third layer, an iron oxide layer (iron oxide layer) is formed. Thus, in the iron-copper composite powder according to the present embodiment, the iron oxide layer, which is the third layer, is present at the interface between copper and iron, whereby the adhesion between iron and copper becomes stronger.

酸化鉄層(酸化層)の厚さについては、特に限定されないが、銅層の厚さとの関係において、「酸化鉄層の厚さ/(銅層の厚さ+酸化鉄層の厚さ)」で示される値で0.05以上0.80以下の範囲となるように構成することが好ましい。酸化鉄層の厚さが、このような関係を満たすことにより、鉄と銅との密着性をより一層に強固にすることができる。   The thickness of the iron oxide layer (oxide layer) is not particularly limited, but in relation to the thickness of the copper layer, “the thickness of the iron oxide layer / (the thickness of the copper layer + the thickness of the iron oxide layer)” It is preferable to constitute so that it is in the range of 0.05 or more and 0.80 or less with the value indicated by. When the thickness of the iron oxide layer satisfies such a relationship, the adhesion between iron and copper can be further strengthened.

なお、添加した塩化銅等の銅塩、塩化鉄等の鉄塩は、溶融後に徐々に還元反応が進行して、銅又は鉄の被膜となっていき、銅と鉄との均一な成分の鉄銅複合粉末を製造することができる。単純に、融点を下げることだけを目的とすると、亜鉛(Zn)やスズ(Sn)等の低融点金属を使用することも考えられるが、それら金属の溶融物が最終的には鉄銅複合粉末中に合金成分として含まれることになるため、鉄銅複合粉末の硬度等の物理特性を変化させる原因となってしまうため好ましくない。   The added copper salt such as copper chloride, and iron salt such as iron chloride gradually undergoes a reduction reaction after melting to form a copper or iron coating, which is a uniform component of copper and iron. Copper composite powder can be produced. For the purpose of simply lowering the melting point, it is conceivable to use a low melting point metal such as zinc (Zn) or tin (Sn). Since it is contained as an alloy component, it causes a change in physical properties such as hardness of the iron-copper composite powder, which is not preferable.

銅塩又は鉄塩の添加量としては、特に限定されないが、使用する酸化銅粉の重量に対して0.01〜10重量%となる量とすることが好ましく、0.05〜5重量%となる量とすることがより好ましい。添加量が酸化銅粉に対して0.01重量%未満の割合となると、鉄粉表面の濡れ性の効果が十分に得られなくなる。一方で、添加量が酸化銅粉に対して10重量%を超えると、濡れ性等の効果そのものには影響はほとんど見られないが、添加量が多くなるとそれだけコストアップの要因になる。   Although it does not specifically limit as addition amount of a copper salt or an iron salt, It is preferable to set it as the quantity used as 0.01-10 weight% with respect to the weight of the copper oxide powder to be used, and 0.05-5 weight%. It is more preferable to set it as an amount. When the amount added is less than 0.01% by weight based on the copper oxide powder, the effect of wettability on the surface of the iron powder cannot be obtained sufficiently. On the other hand, if the addition amount exceeds 10% by weight with respect to the copper oxide powder, the effect itself such as wettability is hardly affected, but if the addition amount is increased, the cost increases accordingly.

なお、銅塩及び鉄塩の混合物を添加する場合には、その添加量として、銅塩及び鉄塩の合計重量が、使用する酸化銅粉の重量に対して0.01〜10重量%となる量とすることが好ましく、0.05〜5重量%となる量とすることがより好ましい。   In addition, when adding the mixture of copper salt and iron salt, as the addition amount, the total weight of copper salt and iron salt will be 0.01 to 10 weight% with respect to the weight of the copper oxide powder to be used. Preferably, the amount is 0.05 to 5% by weight.

<還元加熱処理について>
上述したように、この粉末冶金用鉄銅複合粉末の製造方法では、鉄粉と酸化銅粉とを混合させた混合物に、さらに融点が700℃以下である銅塩又は鉄塩、あるいはその銅塩と鉄塩との混合物を添加して混合する。そして、この製造方法では、その混合物を還元雰囲気中で350〜800℃の温度条件で加熱する。
<About reduction heat treatment>
As described above, in the method for producing iron-copper composite powder for powder metallurgy, a copper salt or iron salt having a melting point of 700 ° C. or lower, or a copper salt thereof, in a mixture obtained by mixing iron powder and copper oxide powder. Add and mix the mixture of iron and iron salt. And in this manufacturing method, the mixture is heated on the temperature conditions of 350-800 degreeC in reducing environment.

このように、還元雰囲気にて加熱処理を施すことによって、鉄粉の表面に酸化銅粉に由来する銅を拡散させて銅被膜を形成させる。特に、本実施の形態においては、融点が700℃以下である銅塩又は鉄塩、あるいはその銅塩と鉄塩との混合物を添加していることから、還元加熱処理の段階で、これらの銅塩や鉄塩がまず溶融して鉄粉表面に濡れるようになる。これにより、拡散した銅が鉄粉表面に効率的に付着する効果が得られ、均一に且つ密着性よく銅の被膜を形成することができる。また、互いの粉末同士が焼結してしまうことも防止することができる。   Thus, by performing heat treatment in a reducing atmosphere, copper derived from the copper oxide powder is diffused on the surface of the iron powder to form a copper film. In particular, in the present embodiment, since a copper salt or iron salt having a melting point of 700 ° C. or less, or a mixture of the copper salt and iron salt is added, at the stage of reduction heat treatment, these coppers are added. The salt and iron salt first melt and become wet on the iron powder surface. Thereby, the effect that the diffused copper adheres efficiently to the iron powder surface is obtained, and a copper film can be formed uniformly and with good adhesion. Moreover, it can also prevent that powders mutually sinter.

また、本実施の形態においては、融点が700℃以下である銅塩又は鉄塩、あるいはその銅塩と鉄塩との混合物を添加していることから、銅の還元拡散反応を効率的に且つ効果的に進行させることができ、加熱温度を比較的低温とすることができる。具体的には、還元雰囲気中で、350〜800℃の温度条件で加熱する。このように、比較的に低温度での加熱処理により銅の還元拡散を行うことができることから、加熱のための熱エネルギーを抑えることができ、低コストで効率的に製造することができる。さらに、粉末同士が焼結してしまうことをより一層に抑制することができる。   In the present embodiment, since a copper salt or iron salt having a melting point of 700 ° C. or less, or a mixture of the copper salt and iron salt is added, the copper reduction diffusion reaction is efficiently performed. It can be effectively advanced and the heating temperature can be relatively low. Specifically, heating is performed under a temperature condition of 350 to 800 ° C. in a reducing atmosphere. In this manner, since copper can be reduced and diffused by heat treatment at a relatively low temperature, the heat energy for heating can be suppressed, and production can be efficiently performed at low cost. Furthermore, it is possible to further suppress the sintering of the powders.

還元加熱処理における温度条件として、熱処理温度が350℃未満では、銅の還元拡散が十分に進行せず被膜形成が不十分となり、また遊離銅粉の生成比率が増大する。一方、熱処理温度が800℃を超えると、粉末同士の焼結が生じてしまい取り扱いが困難になり、また加熱処理後に粉砕等の処理が必要となり、形成した銅被膜の剥離の原因となる。さらに、加熱に要する熱エネルギーが大きくなり、コストアップにつながり効率的な製造が困難となる。   As a temperature condition in the reduction heat treatment, if the heat treatment temperature is less than 350 ° C., the reduction diffusion of copper does not proceed sufficiently, the film formation becomes insufficient, and the production ratio of free copper powder increases. On the other hand, when the heat treatment temperature exceeds 800 ° C., the powders are sintered and difficult to handle, and after the heat treatment, a treatment such as pulverization is required, which causes peeling of the formed copper film. Furthermore, the heat energy required for heating increases, leading to an increase in cost and making efficient production difficult.

以下に、本発明の実施例を比較例と共に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.

≪鉄銅複合粉末の製造(実施例1〜14、比較例1)≫
[実施例1]
粒度分布が平均粒径約85μmの市販の鉄粉(東邦亜鉛株式会社製、商品名:マイロンPM−250)100gに対して、粒度分布が平均粒径約10μmである酸化銅粉を金属銅量換算で20重量%の量となるように添加した。
<< Manufacture of iron-copper composite powder (Examples 1-14, Comparative Example 1) >>
[Example 1]
For 100 g of commercially available iron powder (product name: Mylon PM-250, manufactured by Toho Zinc Co., Ltd.) having an average particle size of about 85 μm, the copper oxide powder having an average particle size of about 10 μm is added to the amount of metallic copper. It added so that it might become the quantity of 20 weight% in conversion.

なお、酸化銅粉は、以下のようにして製造した。すなわち、CuSO・5HOを用いて調製した、銅濃度が8g/L、遊離HSO濃度が55g/Lとなる浴組成の電解液を用い、カソードに面積が500×300mmの大きさのチタン板、アノードには同サイズの市販の銅板を1枚ずつ、間隔が100mmになるように電解槽に装入し、通電電流密度10A/dm、浴温25℃の条件で8時間かけて通電し、電解銅粉を作製した。得られた電解銅粉を、空気雰囲気下で800℃に維持して3時間かけて酸化焙焼を行うことにより酸化銅に変化させ、得られた酸化銅を小型粉砕機(協立理工株式会社製、商品名:サンプルミルSK−M10)を用いて粉砕して製造した。 The copper oxide powder was manufactured as follows. That is, an electrolytic solution prepared using CuSO 4 · 5H 2 O and having a bath composition with a copper concentration of 8 g / L and a free H 2 SO 4 concentration of 55 g / L is used, and the cathode has a large area of 500 × 300 mm. Each of the titanium plates and anodes is loaded with a commercially available copper plate of the same size one by one into the electrolytic cell so that the distance is 100 mm, and the current is 8 A for 8 hours under conditions of current density of 10 A / dm 2 and bath temperature of 25 ° C. Then, electricity was applied to produce electrolytic copper powder. The obtained electrolytic copper powder is changed to copper oxide by performing oxidation roasting over 3 hours while maintaining at 800 ° C. in an air atmosphere, and the obtained copper oxide is converted into a small pulverizer (Kyoritsu Riko Co., Ltd.). Manufactured, trade name: sample mill SK-M10).

次に、鉄粉と酸化銅との混合物に、塩化銅(I)(CuCl)を、酸化銅粉に対する重量換算で0.05重量%の量となるように添加し、均一に混合するために小型粉砕機(協立理工株式会社製、商品名:サンプルミルSK−M10)で5分間撹拌した。   Next, in order to add copper chloride (I) (CuCl) to the mixture of iron powder and copper oxide so as to have an amount of 0.05% by weight in terms of weight with respect to the copper oxide powder, and to mix uniformly The mixture was stirred for 5 minutes with a small pulverizer (manufactured by Kyoritsu Riko Co., Ltd., trade name: sample mill SK-M10).

そして、その混合物を、還元雰囲気中で500℃の温度条件で加熱して、鉄粉の表面に銅被膜が形成された鉄銅複合粉末を製造した。   And the mixture was heated on 500 degreeC temperature conditions in reducing atmosphere, and the iron copper composite powder by which the copper film was formed in the surface of iron powder was manufactured.

[実施例2〜実施例4]
実施例2〜4では、鉄粉と酸化銅との混合物に、塩化銅(I)(CuCl)を、それぞれ酸化銅粉に対する重量換算で1重量%(実施例2)、5重量%(実施例3)、10重量%(実施例4)の量となるように添加したこと以外は、実施例1と同様にして鉄銅複合粉末を製造した。
[Examples 2 to 4]
In Examples 2 to 4, copper chloride (I) (CuCl) was added to a mixture of iron powder and copper oxide in an amount of 1% by weight (Example 2) and 5% by weight (Examples), respectively, based on the weight of the copper oxide powder. 3) An iron-copper composite powder was produced in the same manner as in Example 1 except that it was added in an amount of 10% by weight (Example 4).

[実施例5]
実施例5では、鉄粉と酸化銅との混合物に、塩化銅(II)(CuCl)を、酸化銅粉に対する重量換算で0.05重量%の量となるように添加し、その混合物を、還元雰囲気中で600℃の温度条件で加熱したこと以外は、実施例1と同様にして鉄銅複合粉末を製造した。
[Example 5]
In Example 5, copper (II) chloride (CuCl 2 ) was added to a mixture of iron powder and copper oxide so that the amount was 0.05% by weight in terms of weight with respect to the copper oxide powder, and the mixture was added. An iron-copper composite powder was produced in the same manner as in Example 1 except that heating was performed at 600 ° C. in a reducing atmosphere.

[実施例6]
実施例6では、鉄粉と酸化銅との混合物に、塩化銅(II)(CuCl)を、酸化銅粉に対する重量換算で5重量%の量となるように添加したこと以外は、実施例5と同様にして鉄銅複合粉末を製造した。
[Example 6]
In Example 6, except that copper (II) chloride (CuCl 2 ) was added to a mixture of iron powder and copper oxide so as to have an amount of 5% by weight in terms of weight with respect to the copper oxide powder. In the same manner as in Example 5, an iron-copper composite powder was produced.

[実施例7]
実施例7では、鉄粉と酸化銅との混合物に、塩化鉄(II)(FeCl)を、酸化銅粉に対する重量換算で0.05重量%の量となるように添加し、その混合物を、還元雰囲気中で800℃の温度条件で加熱したこと以外は、実施例1と同様にして鉄銅複合粉末を製造した。
[Example 7]
In Example 7, iron (II) chloride (FeCl 2 ) was added to a mixture of iron powder and copper oxide so that the amount was 0.05% by weight in terms of weight with respect to the copper oxide powder, and the mixture was added. An iron-copper composite powder was produced in the same manner as in Example 1 except that heating was performed at a temperature of 800 ° C. in a reducing atmosphere.

[実施例8〜実施例10]
実施例8〜10では、鉄粉と酸化銅との混合物に、塩化鉄(II)(FeCl)を、それぞれ酸化銅粉に対する重量換算で1重量%(実施例8)、5重量%(実施例9)、10重量%(実施例10)の量となるように添加したこと以外は、実施例7と同様にして鉄銅複合粉末を製造した。
[Examples 8 to 10]
In Examples 8 to 10, iron (II) chloride (FeCl 2 ) was added to a mixture of iron powder and copper oxide in an amount of 1% by weight (Example 8) and 5% by weight (implemented). Example 9) An iron-copper composite powder was produced in the same manner as in Example 7 except that it was added so as to have an amount of 10% by weight (Example 10).

[実施例11]
実施例11では、鉄粉と酸化銅との混合物に、塩化鉄(III)(FeCl)を、酸化銅粉に対する重量換算で0.05重量%の量となるように添加し、その混合物を、還元雰囲気中で400℃の温度条件で加熱したこと以外は、実施例1と同様にして鉄銅複合粉末を製造した。
[Example 11]
In Example 11, iron (III) chloride (FeCl 3 ) was added to a mixture of iron powder and copper oxide so that the amount was 0.05% by weight in terms of weight with respect to the copper oxide powder, and the mixture was added. An iron-copper composite powder was produced in the same manner as in Example 1 except that heating was performed at 400 ° C. in a reducing atmosphere.

[実施例12]
実施例12では、鉄粉と酸化銅との混合物に、塩化鉄(III)(FeCl)を、酸化銅粉に対する重量換算で5重量%の量となるように添加したこと以外は、実施例11と同様にして鉄銅複合粉末を製造した。
[Example 12]
In Example 12, except that iron chloride (III) (FeCl 3 ) was added to a mixture of iron powder and copper oxide so that the amount was 5% by weight in terms of weight with respect to the copper oxide powder. In the same manner as in Example 11, an iron-copper composite powder was produced.

[実施例13]
実施例13では、鉄粉と酸化銅との混合物に、塩化銅(I)(CuCl)と塩化鉄(II)(FeCl)との混合物を、酸化銅粉に対する合計重量換算で0.1重量%(CuCl:0.05重量%、FeCl:0.05重量%)の量となるように添加し、その混合物を、還元雰囲気中で800℃の温度条件で加熱したこと以外は、実施例1と同様にして鉄銅複合粉末を製造した。
[Example 13]
In Example 13, a mixture of copper chloride (I) (CuCl) and iron chloride (II) (FeCl 2 ) was added to a mixture of iron powder and copper oxide in an amount of 0.1 weight in terms of the total weight with respect to the copper oxide powder. % (CuCl: 0.05% by weight, FeCl 2 : 0.05% by weight), and the mixture was heated at a temperature of 800 ° C. in a reducing atmosphere. In the same manner as in Example 1, an iron-copper composite powder was produced.

[実施例14]
実施例14では、鉄粉と酸化銅との混合物に、塩化銅(I)(CuCl)と塩化鉄(II)(FeCl)との混合物を、酸化銅粉に対する合計重量換算で5重量%(CuCl:2.5重量%、FeCl:2.5重量%)の量となるように添加したこと以外は、実施例13と同様にして鉄銅複合粉末を製造した。
[Example 14]
In Example 14, to a mixture of iron powder and copper oxide, a mixture of copper chloride (I) (CuCl) and iron chloride (II) (FeCl 2 ) was added in an amount of 5% by weight in terms of the total weight with respect to the copper oxide powder ( CuCl: 2.5 wt%, FeCl 2: 2.5, except that the addition so that an amount by weight%) was prepared iron copper composite powder in the same manner as in example 13.

[比較例1]
上記の実施例に対する比較として、塩化銅又は塩化鉄を添加しないで、鉄粉と酸化銅粉とを混合し、その混合粉を還元雰囲気中で800℃の温度条件で加熱して鉄銅複合粉末を製造した。
[Comparative Example 1]
As a comparison with the above embodiment, without adding copper chloride or iron chloride, iron powder and copper oxide powder are mixed, and the mixed powder is heated in a reducing atmosphere at a temperature condition of 800 ° C. Manufactured.

≪評価≫
上述のようにして得られた実施例1〜14、比較例1における鉄銅複合粉末について、その金属粉に形成された銅被膜の密着性を評価した。銅被膜の密着性の評価は、下記の方法で行って銅被膜の剥がれ性を比較した。また、実施例1、比較例1の鉄銅複合粉末について走査電子顕微鏡(SEM)により観察した。さらに、その実施例1、比較例1の鉄銅複合粉末の断面についてもSEMを用いて観察し、鉄と銅との界面の状態を確認した。
≪Evaluation≫
About the iron-copper composite powder in Examples 1-14 obtained as mentioned above and the comparative example 1, the adhesiveness of the copper film formed in the metal powder was evaluated. The copper film adhesion was evaluated by the following method to compare the peelability of the copper film. Further, the iron-copper composite powders of Example 1 and Comparative Example 1 were observed with a scanning electron microscope (SEM). Furthermore, the cross section of the iron-copper composite powder of Example 1 and Comparative Example 1 was also observed using SEM, and the state of the interface between iron and copper was confirmed.

(銅被膜の剥がれ性の評価)
銅被膜の剥がれ性は、作製した鉄銅複合粉末50gに対して、1mmのZrOビーズ50gをSUS製容器に入れて、小型ボールミル(株式会社アサヒ理化製作所製、製品名:AV−1型)を用いて回転数300rpmで1時間回転し、それを篩分けした後、剥がれた銅を回収して化学分析で銅量を測定し、添加した銅量に対する剥がれた銅量の割合を求めることで密着性を評価した。下記表1に、各実施例及び比較例の鉄銅複合粉末における、銅被膜の剥がれ性についての結果をまとめて示す。
(Evaluation of peelability of copper coating)
The peelability of the copper coating is as follows: 50 g of the produced iron-copper composite powder, 50 g of 1 mm ZrO 2 beads are placed in a SUS container, and a small ball mill (product name: AV-1 type, manufactured by Asahi Rika Seisakusho Co., Ltd.) Rotate at 300 rpm for 1 hour, sieve it, collect the peeled copper, measure the amount of copper by chemical analysis, and determine the ratio of the amount of peeled copper to the amount of added copper Adhesion was evaluated. Table 1 below collectively shows the results of the peelability of the copper coating in the iron-copper composite powders of the examples and comparative examples.

表1の結果から明らかなように、鉄粉と酸化銅粉との混合物に対してさらに塩化銅及び/又は塩化鉄を添加して混合し、還元雰囲気で加熱することによって、実施例1〜14の全てにおいて剥がれ性が約9%以下となり、極めて密着性のよい鉄銅複合粉末を製造できることが分かった。また、これら実施例では、還元加熱処理中に合金粉同士が焼結してしまう例は見られなかった。   As is clear from the results in Table 1, Examples 1 to 14 were obtained by adding and mixing copper chloride and / or iron chloride to the mixture of iron powder and copper oxide powder and heating in a reducing atmosphere. In all cases, the peelability was about 9% or less, and it was found that an iron-copper composite powder with extremely good adhesion could be produced. Moreover, in these Examples, the example which alloy powders sinter during reduction heat processing was not seen.

それに対して、塩化銅及び/又は塩化鉄を添加せずに行った比較例1では、剥がれ性が38.8%と非常に高くなり、鉄粉の表面に形成された銅被膜の多くが剥がれてしまった。   On the other hand, in Comparative Example 1 performed without adding copper chloride and / or iron chloride, the peelability was very high at 38.8%, and most of the copper coating formed on the surface of the iron powder was peeled off. I have.

(鉄銅複合粉末のSEM観察)
ここで、図1は、実施例1にて製造した鉄銅複合粉末についてのSEMによる観察像であり、鉄粉表面に被覆された銅の観察結果を示す。また同様に、図2は、比較例1にて製造した鉄銅複合粉末についてのSEMによる観察像であり、鉄粉表面に被覆された銅の観察結果を示す。
(SEM observation of iron-copper composite powder)
Here, FIG. 1 is an observation image by SEM of the iron-copper composite powder produced in Example 1, and shows the observation result of copper coated on the iron powder surface. Similarly, FIG. 2 is an SEM observation image of the iron-copper composite powder produced in Comparative Example 1, and shows the observation result of copper coated on the iron powder surface.

図2のSEM観察像に示されるように、比較例1にて製造した鉄銅複合粉末は、鉄粉表面に銅が被覆されてはいるものの、単に覆いかぶさっているだけのような状態であって、簡単に剥がれるような状態となっていることがわかる。また、還元加熱に際して、互いの合金粉同士が焼結してしまっている様子が観察された。   As shown in the SEM observation image of FIG. 2, the iron-copper composite powder produced in Comparative Example 1 was in a state where the iron powder surface was covered but was simply covered. It can be seen that it is in a state where it can be easily peeled off. Further, it was observed that the alloy powders were sintered during the reduction heating.

一方で、図1のSEM観察像に示されるように、実施例1にて製造した鉄銅複合粉末では、鉄粉の表面に銅が均一に付着しており、付着状態も鉄表面に直接銅が付着していることから、密着性が向上していることがこのSEM観察結果からも確認することができる。   On the other hand, as shown in the SEM observation image of FIG. 1, in the iron-copper composite powder produced in Example 1, copper was uniformly attached to the surface of the iron powder, and the adhesion state was also directly on the iron surface. From this SEM observation result, it can be confirmed that the adhesion is improved.

(鉄銅複合粉末の断面のSEM観察)
また、図3及び図4に、実施例1にて製造した鉄銅複合粉末の断面をSEMで観察し、鉄粉表面に被覆された銅とその鉄との界面について観察した結果を示す。
(SEM observation of cross section of iron-copper composite powder)
Moreover, in FIG.3 and FIG.4, the cross section of the iron copper composite powder manufactured in Example 1 was observed by SEM, and the result of having observed about the interface of the copper coat | covered on the iron powder surface and the iron is shown.

図3は、実施例1の鉄銅複合粉末の全体の断面観察像であるが、鉄表面の全体に銅が被覆されていることを観察することができる。さらに、図4は、図3に示した断面観察像を拡大した結果であるが、鉄粉表面に被覆された銅(図4中の(2))と鉄粉(図4中の(1))との界面に、第3層(図4中の(3))が観察された。この第3層は、銅と鉄との界面のほとんどの箇所に存在することが見出された。   FIG. 3 is a cross-sectional observation image of the entire iron-copper composite powder of Example 1, and it can be observed that the entire iron surface is coated with copper. Furthermore, FIG. 4 is a result of enlarging the cross-sectional observation image shown in FIG. 3, and copper ((2) in FIG. 4) and iron powder ((1) in FIG. 4) coated on the surface of the iron powder. ) Was observed at the interface with the third layer ((3) in FIG. 4). This third layer was found to be present in most places at the copper-iron interface.

また、図5に、この第3層を構成する元素についてEPMA分析した結果を示す。なお、図5(A)は図4の断面観察像をさらに拡大したものであって、元素分析の対象箇所(図5中の『021』として示す箇所)を明示するものであり、図5(B)はその第3層の元素分析結果を示すピーク図である。この図5の元素分析結果に示されるように、第3層では、鉄と酸素が観察されることから、酸化鉄が存在していることが確認された。   FIG. 5 shows the result of EPMA analysis of the elements constituting the third layer. Note that FIG. 5A is an enlarged view of the cross-sectional observation image of FIG. 4, and clearly shows a target location for elemental analysis (a location indicated as “021” in FIG. 5). B) is a peak diagram showing the results of elemental analysis of the third layer. As shown in the elemental analysis results in FIG. 5, iron and oxygen were observed in the third layer, and it was confirmed that iron oxide was present.

一方、図6に、比較例1にて製造した鉄銅複合粉末の断面についてのSEM観察像を示す。また、図7は、図6に示した断面観察像を拡大した観察像である。図6及び図7に示されるように、銅塩又は鉄塩を添加しないで製造した比較例1の鉄銅複合粉末では,鉄粉(図6及び図7中の(1))と、その鉄粉表面に単に覆いかぶさっているだけのような状態の銅(図6及び図7中の(2))は観察されるものの、銅と鉄の界面においては、実施例1の鉄銅複合粉末において観察されたような酸化鉄からなる第3層は確認できなかった。このことから、塩化銅等の銅塩や塩化鉄等の鉄塩を添加する場合においてのみ、上述した第3層が存在するようになることが分かった。   On the other hand, in FIG. 6, the SEM observation image about the cross section of the iron copper composite powder manufactured in the comparative example 1 is shown. FIG. 7 is an enlarged observation image of the cross-sectional observation image shown in FIG. As shown in FIG. 6 and FIG. 7, in the iron-copper composite powder of Comparative Example 1 manufactured without adding copper salt or iron salt, iron powder ((1) in FIG. 6 and FIG. 7) and its iron Although copper ((2) in FIGS. 6 and 7) in a state where it is simply covered with the powder surface is observed, at the interface between copper and iron, in the iron-copper composite powder of Example 1. The third layer made of iron oxide as observed was not confirmed. From this, it was found that the above-described third layer is present only when a copper salt such as copper chloride or an iron salt such as iron chloride is added.

このような第3層が形成される原理としては正確には判明していないが、おそらく以下のように考えられる。すなわち、上述したように、融点の低い塩化銅等の銅塩や塩化鉄等の鉄塩を添加することで、これら銅塩や鉄塩がまず溶融して鉄粉表面に濡れることになるが、このとき、鉄粉表面に存在する酸化層(酸化被膜)が、溶融した塩によって覆われた状態になる。そして、還元反応によって、水素が、溶融したその銅塩や鉄塩と反応して金属層を形成するようになるため、覆われた酸化層まで水素が到達できずに酸化鉄のままで存在することになると考えられる。一方、塩化銅等の銅塩や塩化鉄等の鉄塩を添加しない状態では、鉄粉表面の酸化被膜は水素によって還元可能であるため、酸化鉄が全て還元されることにより酸化被膜が存在しなくなると考えられる。   The principle of forming such a third layer is not precisely known, but is probably as follows. That is, as described above, by adding a copper salt such as copper chloride having a low melting point and an iron salt such as iron chloride, these copper salts and iron salts first melt and get wet on the iron powder surface, At this time, the oxide layer (oxide film) existing on the surface of the iron powder is covered with the molten salt. Then, due to the reduction reaction, hydrogen reacts with the molten copper salt or iron salt to form a metal layer, so that the hydrogen cannot reach the covered oxide layer and remains as iron oxide. It is thought that it will be. On the other hand, in the state where no copper salt such as copper chloride or iron salt such as iron chloride is added, the oxide film on the surface of the iron powder can be reduced by hydrogen, so that the oxide film is present when all the iron oxide is reduced. It is thought that it will disappear.

実施例1等にて製造した鉄銅複合粉末では、上述した第3層が銅と鉄の界面に存在することによって、鉄と銅とが密着性がより強固になると考えられる。すなわち、実施例に示した方法で製造した粉末冶金用鉄銅複合粉末においては、銅と鉄の間に酸化鉄で構成された第3層を持たせることによって、銅被膜の密着性を向上させることができる。   In the iron-copper composite powder produced in Example 1 or the like, it is considered that the adhesion between iron and copper becomes stronger due to the presence of the third layer described above at the interface between copper and iron. That is, in the iron-copper composite powder for powder metallurgy manufactured by the method shown in the examples, the adhesion of the copper coating is improved by providing a third layer composed of iron oxide between copper and iron. be able to.

≪第3層(酸化層)の厚さ測定(実施例15)≫
[実施例15]
実施例15では、実施例1の条件により鉄銅複合粉末を製造し、次いで、得られた粉末を埋め込み、研磨して断面を磨き出した。そして、断面を走査型電子顕微鏡(SEM)で観察し、表面の銅層の厚さと中間にある酸化層(酸化鉄層)の厚さを測定した。
<< Thickness Measurement of Third Layer (Oxide Layer) (Example 15) >>
[Example 15]
In Example 15, an iron-copper composite powder was produced under the conditions of Example 1, and then the obtained powder was embedded and polished to polish the cross section. And the cross section was observed with the scanning electron microscope (SEM), and the thickness of the surface copper layer and the thickness of the oxide layer (iron oxide layer) in the middle were measured.

酸化層の厚さを銅層の厚さと酸化層の厚さの合計値で除した値、すなわち、「酸化層(酸化鉄層)の厚さ/(銅層の厚さ+酸化層(酸化鉄層)の厚さ)」を指標として評価した。下記表2に、製造した鉄銅複合粉末6サンプルの合計37カ所の酸化層の厚さと銅層の厚さの測定結果に基づいて評価した、「酸化層の厚さ/(銅層の厚さ+酸化層の厚さ)」で示される値の結果を示す。   The value obtained by dividing the thickness of the oxide layer by the total thickness of the copper layer and the oxide layer, ie, “thickness of oxide layer (iron oxide layer) / (thickness of copper layer + oxide layer (iron oxide) Layer) thickness) ”was evaluated as an index. In Table 2 below, evaluation was made based on the measurement results of the thickness of the oxidized layer and the thickness of the copper layer in a total of 37 places of the 6 samples of the produced iron-copper composite powder, and “the thickness of the oxidized layer / (the thickness of the copper layer). The result of the value indicated by “+ oxide layer thickness)” is shown.

なお、比較として、比較例1の条件により製造した鉄銅複合粉末についても同様にして評価したが、比較例1の条件で得られた粉末では酸化層が形成されず、したがって上述の指標はすべて0となった。   As a comparison, the iron-copper composite powder produced under the conditions of Comparative Example 1 was evaluated in the same manner. However, the powder obtained under the conditions of Comparative Example 1 did not form an oxide layer, and thus all the above indices were used. 0.

表2に示すように、酸化層の厚さ/(銅層の厚さ+酸化層の厚さ)で示される値は、最大が0.76、最小が0.06となり、これらの粉末の剥がれ性は、上述したように酸化層が形成されないものに比べると遥かに小さいものとなった。   As shown in Table 2, the value indicated by the thickness of the oxide layer / (thickness of the copper layer + thickness of the oxide layer) is 0.76 at the maximum and 0.06 at the minimum. As described above, the property was much smaller than that in which no oxide layer was formed.

すなわち、酸化層を有し、且つ、酸化層の厚さ/(銅層の厚さ+酸化層の厚さ)で示される値が少なくとも0.07以上0.80以下の値の範囲を取るように構成されることで、剥がれ性が著しく向上することが確認された。   That is, it has an oxide layer, and the value represented by the thickness of the oxide layer / (thickness of the copper layer + thickness of the oxide layer) takes a range of at least 0.07 or more and 0.80 or less. It was confirmed that the peelability is remarkably improved by being configured as described above.

Claims (6)

鉄粉に、平均粒子径が20μm以下、比表面積0.5m/g以上の大きさの酸化銅粉を、金属銅換算量で5〜60重量%混合し、さらに融点が700℃以下である銅塩及び/又は鉄塩を添加して、この混合物を還元雰囲気中で350〜800℃の温度で加熱することにより、鉄粉表面に金属銅が付着した粉末を得ることを特徴とする粉末冶金用鉄銅複合粉末の製造方法。 A copper oxide powder having an average particle size of 20 μm or less and a specific surface area of 0.5 m 2 / g or more is mixed with iron powder in an amount of 5 to 60% by weight in terms of metallic copper, and the melting point is 700 ° C. or less. Powder metallurgy characterized in that a copper salt and / or iron salt is added and the mixture is heated at a temperature of 350 to 800 ° C. in a reducing atmosphere to obtain a powder having metallic copper adhered to the iron powder surface. Method for producing iron-copper composite powder. 前記鉄粉と前記酸化銅粉とを混合するに際し、塩化銅を、該酸化銅粉に対して重量換算で0.01〜10重量%の量となるように添加することを特徴とする請求項1に記載の粉末冶金用鉄銅複合粉末の製造方法。   When mixing the iron powder and the copper oxide powder, copper chloride is added in an amount of 0.01 to 10 wt% in terms of weight with respect to the copper oxide powder. 2. A method for producing an iron-copper composite powder for powder metallurgy according to 1. 前記鉄粉と前記酸化銅粉とを混合するに際し、塩化鉄を、該酸化銅粉に対して重量換算で0.01〜10重量%の量となるように添加することを特徴とする請求項1に記載の粉末冶金用鉄銅複合粉末の製造方法。   When mixing the iron powder and the copper oxide powder, iron chloride is added so as to have an amount of 0.01 to 10% by weight with respect to the copper oxide powder. 2. A method for producing an iron-copper composite powder for powder metallurgy according to 1. 前記鉄粉と前記酸化銅粉とを混合するに際し、塩化鉄と塩化銅との混合物を、該酸化銅粉に対して合計重量換算で0.01〜10重量%の量となるように添加することを特徴とする請求項1に記載の粉末冶金用鉄銅複合粉末の製造方法。   When mixing the iron powder and the copper oxide powder, a mixture of iron chloride and copper chloride is added to the copper oxide powder in an amount of 0.01 to 10% by weight in terms of the total weight. The manufacturing method of the iron copper composite powder for powder metallurgy of Claim 1 characterized by the above-mentioned. 請求項1乃至4の何れかの粉末冶金用鉄銅複合粉末の製造方法により製造された粉末冶金用鉄銅複合粉末であって、
銅と鉄との界面に、酸化鉄となる層を有することを特徴とする粉末冶金用鉄銅複合粉末。
An iron-copper composite powder for powder metallurgy produced by the method for producing an iron-copper composite powder for powder metallurgy according to any one of claims 1 to 4,
An iron-copper composite powder for powder metallurgy, comprising a layer to be iron oxide at an interface between copper and iron.
前記酸化鉄の層の厚さが、前記銅の層の厚さとの関係において、酸化鉄層の厚さ/(銅層の厚さ+酸化鉄層の厚さ)で示される値で0.05以上0.80以下の範囲となるように構成されていることを特徴とする請求項5に記載の粉末冶金用鉄銅複合粉末。
The thickness of the iron oxide layer is 0.05 in terms of the thickness of the iron oxide layer / (thickness of the copper layer + thickness of the iron oxide layer) in relation to the thickness of the copper layer. The iron-copper composite powder for powder metallurgy according to claim 5, wherein the powder-metallurgy iron-powder composite powder is configured to be in a range of 0.80 or less.
JP2014241742A 2014-02-18 2014-11-28 Method for producing iron-copper composite powder for powder metallurgy Expired - Fee Related JP6327133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241742A JP6327133B2 (en) 2014-02-18 2014-11-28 Method for producing iron-copper composite powder for powder metallurgy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014028909 2014-02-18
JP2014028909 2014-02-18
JP2014241742A JP6327133B2 (en) 2014-02-18 2014-11-28 Method for producing iron-copper composite powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2015172236A true JP2015172236A (en) 2015-10-01
JP6327133B2 JP6327133B2 (en) 2018-05-23

Family

ID=54259716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241742A Expired - Fee Related JP6327133B2 (en) 2014-02-18 2014-11-28 Method for producing iron-copper composite powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP6327133B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995389B1 (en) * 2016-01-04 2016-09-21 平和産業株式会社 Method for producing copper composite iron powder and method for producing sintered metal
CN106735230A (en) * 2016-12-22 2017-05-31 东睦新材料集团股份有限公司 A kind of processing method of powder metallurgy compressor cylinder body cross-drilled hole
JP2017122245A (en) * 2016-01-04 2017-07-13 平和産業株式会社 Method for producing bronze composite iron powder and method for producing sintered metal
JP2018041649A (en) * 2016-09-08 2018-03-15 住友金属鉱山株式会社 Production method of copper-coated powder
CN111570784A (en) * 2020-04-27 2020-08-25 江苏萌达新材料科技有限公司 Preparation method of iron-copper alloy diffusion powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534679A (en) * 1978-09-05 1980-03-11 Nippon Teppun Kk Iron powder containing copper and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534679A (en) * 1978-09-05 1980-03-11 Nippon Teppun Kk Iron powder containing copper and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995389B1 (en) * 2016-01-04 2016-09-21 平和産業株式会社 Method for producing copper composite iron powder and method for producing sintered metal
JP2017122245A (en) * 2016-01-04 2017-07-13 平和産業株式会社 Method for producing bronze composite iron powder and method for producing sintered metal
JP2018041649A (en) * 2016-09-08 2018-03-15 住友金属鉱山株式会社 Production method of copper-coated powder
CN106735230A (en) * 2016-12-22 2017-05-31 东睦新材料集团股份有限公司 A kind of processing method of powder metallurgy compressor cylinder body cross-drilled hole
CN111570784A (en) * 2020-04-27 2020-08-25 江苏萌达新材料科技有限公司 Preparation method of iron-copper alloy diffusion powder

Also Published As

Publication number Publication date
JP6327133B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6327133B2 (en) Method for producing iron-copper composite powder for powder metallurgy
Li et al. Corrosion and wear resistance of micro‐arc oxidation composite coatings on magnesium alloy AZ31—the influence of inclusions of carbon spheres
JP5059022B2 (en) Iron-copper composite powder for powder metallurgy and method for producing the same
WO2015133296A1 (en) Porous metal body and method for producing porous metal body
JP5740052B2 (en) Electrolytic copper foil and method for producing the same
TW201144467A (en) Method for producing cu-ga alloy powder, cu-ga alloy powder, method for producing cu-ga alloy sputtering target, and cu-ga alloy sputtering target
Aldana-González et al. Electrochemical nucleation and growth of Mn and Mn-Zn alloy from leached liquors of spent alkaline batteries using a deep eutectic solvent
CN106756376A (en) tungsten-copper alloy and its processing method and application
Liu et al. Understanding corrosion mechanism of Sn–Zn alloys in NaCl solution via corrosion products characterization
Lv et al. Microstructure and corrosion resistance of plasma electrolytic oxidized recycled Mg alloy
CN104493184A (en) Manufacturing method of spherical bronze alloy powder
JP5995389B1 (en) Method for producing copper composite iron powder and method for producing sintered metal
CN107236972B (en) A method of graphene/copper composite powder is prepared using electrodeposition process
Frangini et al. Effect of additive particle size on the CuO-accelerated formation of LaFeO3 perovskite conversion coatings in molten carbonate baths
TW201033380A (en) Process for producing sintered bronze alloy powder
Chen et al. Microstructures and properties of sol-enhanced nanostructured metal-oxide composite coatings
JP6330581B2 (en) Copper coated iron powder
JP5740891B2 (en) Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
Xu et al. Preparation and properties of silver-coated copper powder with Sn transition layer
JP6176804B2 (en) Method for producing bronze composite iron powder and method for producing sintered metal
Zhou et al. The feasibility of electrolytic preparation of Fe-Ni-Cr alloy in molten oxides system
JP6708067B2 (en) Method for producing copper-coated powder
CN103484895B (en) A kind of electrolgtic aluminium inert alloy anode and preparation method thereof
JP2012214864A (en) Sn PLATING MATERIAL
JP2013133518A (en) Cu-BASED POWDER FOR INFILTRATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees