JP2015169106A - 流体噴射弁およびこれを備えた噴霧生成装置並びに直接噴射式エンジン - Google Patents

流体噴射弁およびこれを備えた噴霧生成装置並びに直接噴射式エンジン Download PDF

Info

Publication number
JP2015169106A
JP2015169106A JP2014043418A JP2014043418A JP2015169106A JP 2015169106 A JP2015169106 A JP 2015169106A JP 2014043418 A JP2014043418 A JP 2014043418A JP 2014043418 A JP2014043418 A JP 2014043418A JP 2015169106 A JP2015169106 A JP 2015169106A
Authority
JP
Japan
Prior art keywords
switching
spray
nozzle hole
nozzle
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014043418A
Other languages
English (en)
Other versions
JP6000296B2 (ja
Inventor
住田 守
Mamoru Sumida
守 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014043418A priority Critical patent/JP6000296B2/ja
Publication of JP2015169106A publication Critical patent/JP2015169106A/ja
Application granted granted Critical
Publication of JP6000296B2 publication Critical patent/JP6000296B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】アクシス−スイッチング現象を利用して複数の噴霧を含む全体噴霧の形状を制御し、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させた流体噴射弁およびこれを備えた噴霧生成装置並びに直接噴射式エンジンを得る。
【解決手段】噴孔群393に属するスイッチング噴孔392により生成されるスイッチング噴霧5Aは、アクシス−スイッチング現象を生じた後、該スイッチング噴孔392と同じ噴孔群393に属する別の噴孔39により生成される噴霧との間で、コアンダ効果による近接化または集合化を生じるように制御される。これにより、各噴孔群393により生成される各噴霧群の噴霧形状および全体噴霧形状を制御する。
【選択図】図3

Description

本発明は、複数の噴孔から流体を噴射し噴霧を生成する流体噴射弁およびこれを備えた噴霧生成装置、並びに燃焼室に燃料を噴射する燃料噴射弁を備えた直接噴射式エンジン(以下、直噴エンジン)に関する。
近年、車両用エンジンにおいては、燃料噴霧の微粒化によるエンジン冷機時の排出ガス低減や、燃焼性改善による燃費向上の研究開発が積極的に進められている。特に、燃焼室内に燃料を直接噴射するマルチホールインジェクタを搭載した火花点火式直噴エンジンにおける成層燃焼コンセプトの研究開発が知られている。
このようなエンジンにおける燃料噴霧は、点火プラグ近傍を指向する噴霧と、点火プラグ近傍を指向しない噴霧とで構成されており、前者は特に点火プラグ付近での成層燃焼を実現し、後者は成層燃焼や均質燃焼での燃焼室内全体の混合気形成を実現する役割をもっている。
燃焼室中心部に点火プラグが装着され、吸気弁を跨いだ位置に燃料噴射弁としてのマルチホールインジェクタが装着される場合、点火プラグとマルチホールインジェクタは対向していない。このため、点火プラグ近傍を指向する噴霧と、点火プラグ近傍を指向しない噴霧とに要求される噴霧仕様は異なってくる。つまり、エンジンの低速低負荷で成層燃焼を行う場合と、高速高負荷で均質燃焼を行う場合とでは、要求される噴霧仕様は異なる。また、燃焼室の形状、筒内空気流動やインジェクタ取り付け位置や方向が異なれば、マルチホールインジェクタの噴霧数を含め各々の噴霧への要求仕様は異なるものとなる。
一方、噴霧の微粒化のプロセスにおいて、液滴を小さくするためには、その***の前段階である液糸を細くすることが有効である。液糸を細くするためには、液糸の***の前段階である液膜を薄くしたり液柱を細くしたりすることが有効であり、液膜の方がより液柱よりも有利であることが分かっている。また、液膜流形成手法として、噴孔に流入する前の燃料流に旋回流を与えて噴孔内に液膜流を形成する方法が知られている。
本願発明者は、これらの液膜流形成手法や微粒化プロセス、さらに、それらをベースとして複数の単噴霧が集合した集合噴霧の噴霧形状、貫徹力、噴射量分布の出来映えの関係を調査検討した結果、単噴霧が集合した集合噴霧において、次の二つの形態に分けられることを見出している。
一つは、各単噴霧が識別可能であり、かつ各単噴霧の特徴がほぼ識別不可能な集合噴霧になる場合である。これは、比較的均質に近い中実構造の集合噴霧であり、各単噴霧を識別可能ではあるが、集合噴霧と共通的な特徴を示す噴霧となっており、中途半端でコントロールし難い噴霧である。
もう一つは、各単噴霧の識別さえも不可能となる集合噴霧になる場合である。これは、噴射量分布が中心ピークの円錐形状となるものを代表例とする集合噴霧であり、複数の単噴霧が集合してほぼ元の形態とは異なる新しい一つの集合噴霧に置き換わっており、非常に特徴的で安定した現象である。
これらのどちらの形態になるかは、噴霧挙動がある閾値のどちらにあるかによるところが大きい。単噴霧の集合化が進んだ集合噴霧になるほど噴射量分布は軸対称に近づき、また鋭角な円錐形状となり、全体噴霧としての貫徹力が増大する。上記二つの形態のどちらの場合であっても、複数の単噴霧が集合し、噴霧方向に直角な面内の噴霧形状と噴射量分布がほぼ軸対称になった集合噴霧において、その断面形状を非対象な異形とし、噴霧の一部分を所望の方向に指向させることは難しい。
また、前述したような微粒化手法が燃料噴射弁に適用されつつあるが、微粒化の技術の主流は小噴孔径と多噴孔化であり、隣り合う噴孔からの噴流が互いに干渉して微粒化状態が悪化しないように設計されている。すなわち、噴孔中心軸線あるいは噴流方向が下流になるほど離れていくように、噴孔配置と噴孔径、傾き、および長さ等の噴孔仕様が設定されており、噴霧の微粒化とコンパクトな噴霧は両立しにくい。
噴霧全体の広がりを抑制する手法としては、噴孔中心軸線あるいは噴流方向が噴孔直下で互いに交差するような噴孔配置と噴孔仕様にすることが知られている。しかし、この手法では、噴孔出口から液膜流の破断や***を経て実質的に噴霧流と見なせるようになる位置までの長さ(液膜流のブレーク長さ)との関係や微粒化の要件が考慮されていなかった。
一方、噴霧全体の広がりを抑制するために、流体噴射弁の動作中心軸線に直角な面に対する噴孔中心軸線の角度を相対的に小さくすると、薄い液膜流を形成するのに不利である。つまり、微粒化プロセスが遅くなり噴流同士が干渉し易く、微粒化レベルを期待値通りに実現できない。また、前述のように、噴流同士の干渉により複数の単噴霧の集合噴霧が生じた場合、単噴霧の時より貫徹力が大きくなる。
さらに、シリンダライナーへの噴霧衝突軽減や空気との混合促進のために、噴霧の貫徹力を所定距離のところで急速に減衰させる手法が望まれるが、噴霧形態を大きく変えずに実現する手法がなかった。このため、各噴霧が貫徹力を急速に減衰するためには、噴孔出口からの噴流を偏平にする等の方法で噴霧の運動量の減衰を早める必要があるが、その場合、各噴霧出口での噴流の干渉を避けるために、各噴流方向をさらに離す必要があった。
例えば、火花点火式直噴エンジンにおいて噴霧貫徹力の確保と噴霧密度の適度な分散を両立させることを目的とした先行技術として、特許文献1では、主噴孔と、噴射中心が主噴孔の噴射中心と異なる方向を指向する副噴孔とを備え、主噴孔の入口と出口の断面積が異なるように設定することで、噴射量を一定にしたままで噴霧角を広げ、噴霧の燃料密度を分散させたマルチホールインジェクタが提示されている。
また、特許文献2では、噴孔内の燃料の流れる方向に縮小する第1テーパ部においてキャビテーション気泡を発生させ、発生したキャビテーション気泡が崩壊することにより燃料を微粒化させると共に、微粒化された燃料を流れ方向に拡大する第2テーパ部により拡散して貫徹力を低下させるようにした燃料噴射弁が提示されている。
一方、流体工学において、噴孔から噴射された断面形状が長円状のスイッチング噴霧の長軸と短軸との方向が、下流において変化するアクシス−スイッチング(axis−switching)現象が知られている(非特許文献1−6)。このアクシス−スイッチング現象は、噴霧の断面形状が長円形状でなくてもよく、少なくとも短軸に対して長軸がほぼ線対称である形状のものであれば成立する。
特開2007−315276号公報 特開2012−145048号公報
日本機械学会論文集(B編)55巻514号、pp1542−1545、「非円形噴流中の渦構造に関する研究」(豊田他) ILASS−Europe2010、"An experimental investigation of discharge coefficient and cavitation length in the elliptical nozzles"(Sung Ryoul Kim) 生産研究50巻1号、pp69−72、"Numerical Simulation of Complex Turbulent Jets:Origin of Axis-Switching"(Ayodeji O.DEMUREN) 噴流工学、森北出版、pp41−42 日本機械学会論文集(第2部)25巻156号、pp820−826、「ディーゼル機関燃料噴霧の到達距離に関する研究」(和栗ら) 日本機械学会論文集(B編)62巻599号、pp2867−2873「ディーゼル噴霧構造に与える雰囲気粘性の影響」(段ら)
上記のように、従来技術では、マルチホールインジェクタを搭載した火花点火式直噴エンジンにおいて、点火プラグ近傍を指向する噴霧と点火プラグ近傍を指向せずに全体に拡散する噴霧のそれぞれに要求される噴霧仕様を実現するための設計の自由度が低く、十分に実現することができていなかった。特に、噴霧の微粒化、噴霧形状、および貫徹力は、互いに相関を持つ特性であるが、特許文献1および特許文献2では、それらの影響を考慮していないため、最適な噴霧仕様を実現することはできない。
特許文献1のようなノズルでは、実際には噴孔上流のサック(キャビティ)内部の流れ方によって各噴孔への燃料の流入の仕方が変わることが知られている。すなわち、噴孔入口と出口の断面積を異ならせた場合に、必ずしも噴射量を一定にしたままで噴霧角を広げられるとは限らない。特に、複数の噴孔がインジェクタ中心軸を対称にして配置されていない場合は、各噴孔内の流れパターンは同じとならないことが多いが、特許文献1ではこれらのことが考慮されていない。
特許文献2では、燃料圧力や剥離状況等によるキャビテーションへの影響が示されていないため、微粒化のレベルが不明である。微粒化のレベルが異なれば噴霧全体が保有する運動量も異なり貫徹力にも影響する。特に点火プラグ近傍を指向する噴霧としては、噴霧形状や貫徹力等の設計自由度をより確実に向上させる手法が望まれる。
上記特許文献1および特許文献2の課題を解決するものとして、本願発明者による先願(特願2013−214336)では、流体噴射弁の噴孔体に配置される複数の噴孔の少なくとも一つを、スイッチング噴霧を生成するスイッチング噴孔とすることを提案している。これによれば、火花点火式直噴エンジンの燃焼室内において、アクシス−スイッチング現象を利用して噴霧の噴射方向に直角な面内の断面形状を変化させ、点火プラグ近傍を指向する噴霧を生成することができる。
しかし、この先願では、アクシス−スイッチング現象を利用して全体噴霧の一部分の噴霧の噴霧方向を制御しているだけであり、様々な燃焼室の形状や筒内空気流動、インジェクタ取り付け位置等に応じて混合気形成または燃焼に適した全体噴霧を形成するためには、さらなる改善の余地があった。
本発明は、上記のような問題点を解決するためになされたものであり、スイッチング噴孔により生成されるスイッチング噴霧を利用して複数の噴霧を含む全体噴霧の形状を制御し、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させた流体噴射弁およびこれを備えた噴霧生成装置を得ることを目的とする。
また、スイッチング噴孔により生成されるスイッチング噴霧を利用して混合気形成または燃焼に適した噴霧形状を実現し、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させた直接噴射式エンジンを得ることを目的とする。
本発明に係る流体噴射弁は、流体が流れる通路の途中に設けられた弁座と、弁座と当接および離間可能に設けられ通路の開閉を制御する弁体と、弁座の下流に設けられた噴孔体とを備え、噴孔体に配置された複数の噴孔群から流体を噴射し複数の噴霧群を生成する流体噴射弁であって、複数の噴孔群の各々は、互いに近接して配置された複数の噴孔を有し、複数の噴孔群の少なくとも一つは、流体噴射方向に直角な面内の断面形状において長軸と短軸の長さが異なるスイッチング噴霧を生成するスイッチング噴孔を少なくとも一つ含み、スイッチング噴孔により生成されるスイッチング噴霧は、該スイッチング噴孔から所定の距離で長軸と短軸の方向を変化させ、該変化を生じた後は、該スイッチング噴孔と同じ噴孔群に属する別の噴孔により生成される噴霧との間で、コアンダ効果による近接化または集合化が生じるように制御されるものである。
また、本発明に係る噴霧生成装置は、上記の流体噴射弁と、流体噴射弁に流体を供給する流体供給手段と、流体噴射弁の動作を制御する制御手段とを備えたものである。
また、本発明に係る直接噴射式エンジンは、燃焼室に燃料を噴射する燃料噴射弁を備えた直接噴射式エンジンであって、燃料噴射弁は、燃料が流れる通路の途中に設けられた弁座と、弁座と当接および離間可能に設けられ通路の開閉を制御する弁体と、弁座の下流に設けられた噴孔体とを有し、噴孔体に配置された複数の噴孔群から燃料を噴射し複数の噴霧群を生成するものであり、複数の噴孔群の各々は、互いに近接して配置された複数の噴孔を有し、複数の噴孔群の少なくとも一つは、燃料噴射方向に直角な面内の断面形状において長軸と短軸の長さが異なるスイッチング噴霧を生成するスイッチング噴孔を少なくとも一つ含み、スイッチング噴孔により生成されるスイッチング噴霧は、該スイッチング噴孔から所定の距離で長軸と短軸の方向を変化させ、該変化を生じた後は、該スイッチング噴孔と同じ噴孔群に属する別の噴孔により生成される噴霧との間でコアンダ効果による近接化または集合化が生じるように制御されるものである。
本発明に係る流体噴射弁およびこれを備えた噴霧生成装置によれば、噴孔群に属するスイッチング噴孔により生成されるスイッチング噴霧は、長軸と短軸の方向の変化を生じた後、該スイッチング噴孔と同じ噴孔群に属する別の噴孔により生成される噴霧との間でコアンダ効果による近接化または集合化を生じるように制御されることにより、各噴孔群により生成される各噴霧群の噴霧形状および全体噴霧形状を制御することが可能となり、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させることが可能となる。
また、本発明に係る直接噴射式エンジンによれば、噴孔群に属するスイッチング噴孔により生成されるスイッチング噴霧は、長軸と短軸の方向の変化を生じた後、該スイッチング噴孔と同じ噴孔群に属する別の噴孔により生成される噴霧との間でコアンダ効果による近接化または集合化を生じるように制御されることにより、各噴孔群により生成される各噴霧群の噴霧形状および全体噴霧形状を、燃焼室内での混合気形成または燃焼に適した形状に制御することが可能となり、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させることが可能となる。
本発明の実施の形態1に係る燃料噴射弁を示す断面図である。 本発明の実施の形態1に係る燃料噴射弁の先端部を示す拡大断面図である。 本発明の実施の形態1に係る燃料噴射弁の噴孔プレートにおける噴孔の配置例を示す平面図である。 本発明の実施の形態1に係る燃料噴射弁の先端部の構造を説明する詳細断面図である。 本発明の実施の形態1に係る燃料噴射弁の先端部の構造を説明する詳細断面図である。 参考例として二つの非スイッチング噴霧がコアンダ効果により集合噴霧を形成するまでの挙動を説明する図である。 参考例として二つの非スイッチング噴霧がコアンダ効果により集合噴霧を形成するまでの挙動を説明する図である。 参考例として二つの非スイッチング噴霧にコアンダ効果が作用しない場合の挙動を説明する図である。 本発明の実施の形態1に係る燃料噴射弁において同じ噴孔群に属し互いに隣接する二つの噴孔により生成される非スイッチング噴霧とスイッチング噴霧の挙動を説明する図である。 本発明の実施の形態1に係る燃料噴射弁の噴孔プレートにおける噴孔の他の配置例を示す平面図である。 本発明の実施の形態1に係る燃料噴射弁において、別の噴孔群に属し互いに隣接する二つの噴孔により生成される非スイッチング噴霧とスイッチング噴霧の挙動を説明する図である。 本発明の実施の形態1に係る燃料噴射弁において、別の噴孔群に属し互いに隣接する二つの噴孔により生成される非スイッチング噴霧とスイッチング噴霧の挙動を説明する図である。 本発明の実施の形態1に係る燃料噴射弁において形成される全体噴霧の例を説明する図である。 本発明の実施の形態1に係る燃料噴射弁において各噴霧群が全体噴霧に至るまでを時系列で示す図である。 本発明の実施の形態2に係る火花点火式直噴エンジンを説明する図である。 本発明の実施の形態3に係る圧縮着火式直噴エンジンを説明する図である。
実施の形態1.
以下に、本発明の実施の形態1に係る流体噴射弁および噴霧生成装置について、図面に基づいて説明する。図1は、本実施の形態1に係る燃料噴射弁を示す断面図、図2は、本実施の形態1に係る燃料噴射弁の先端部を示す拡大断面図である。なお、図中、同一、相当部分には同一符号を付している。
本実施の形態1に係る噴霧生成装置は、流体噴射弁である燃料噴射弁1と、燃料噴射弁1に燃料を供給する燃料供給手段(図示省略)、および燃料噴射弁1の動作を制御する制御手段である制御装置(図示省略)とを備えている。以下の説明では、エンジンのシリンダヘッドに取り付けられ、燃料を噴射する先端部がエンジンの筒内に臨むよう配置された燃料噴射弁1を例に挙げて説明する。
燃料噴射弁1は、電磁力を発生するソレノイド装置2と、ソレノイド装置2への通電により作動する弁装置3を備えている。ソレノイド装置2は、磁気回路のヨーク部分をなすハウジング21と、このハウジング21の内側に設けられた固定鉄心であるコア22と、コア22を囲うように設けられたコイル23と、コイル23の内側に設けられ往復移動する可動鉄心であるアマチュア24を備えている。
弁装置3は、円筒形状であってコア22の先端部の外径部に圧入、溶接された弁本体31と、弁本体31の内部の燃料が流れる通路の途中に設けられた弁座32を備えている。弁座32の下流には、燃料を噴射する複数の噴孔39を有する噴孔体である噴孔プレート33と、弁座32の内部で噴孔プレート33の上流に設けられたカバープレート34と、弁本体31の内側に弁座32と当接および離間可能に設けられ通路の開閉を制御する弁体35と、弁体35の上流に設けられた圧縮バネ36を備えている。
弁体35は、アマチュア24の内面に圧入、溶接された中空のロッド37と、ロッド37の先端部に溶接で固定されたボール38を有している。図2に示すように、ボール38は、燃料噴射弁1のZ軸(図1中、矢印で示す)に平行な面取部38aと、カバープレート34と対向する平面部38bと、弁座32と線接触する曲面部38cとを有している。
噴孔プレート33は、周縁部が下側に折曲されており、弁座32の先端面および弁本体31の内周側面に溶接されている。噴孔プレート33には、板厚方向に貫通する噴孔39が形成されている。なお、噴孔39とは、以下に説明する非スイッチング噴孔391とスイッチング噴孔392の総称であり、それらを特に区別する必要のない場合に用いるものである。
図3は、本実施の形態1に係る燃料噴射弁1の噴孔プレート33における噴孔39の配置例を示す平面図である。噴孔39には、噴孔プレート33の板厚方向すなわち噴孔軸に直角な断面形状が略円形の非スイッチング噴孔391と、噴孔軸に直角な断面形状が長軸と短軸を有する例えば長円形のスイッチング噴孔392との二種類がある。なお、噴孔プレート33は、弁座32と一体的に形成されていても良く、その場合も、スイッチング噴孔392は、流体噴射方向に相当する噴孔軸に直角な断面形状が長軸と短軸を有する形状である。
また、図3に示すように、噴孔プレート33には、4つの噴孔群393a、393b、393c、393d(総称して噴孔群393)と、単独で設けられた一つのスイッチング噴孔392eが配置されている。複数の噴孔群393の各々は、互いに近接して配置された複数の噴孔39を有し、複数の噴孔群393の少なくとも一つは、スイッチング噴孔392を少なくとも一つ含んでいる。
図3に示す例では、噴孔群393aは、非スイッチング噴孔391aとスイッチング噴孔392aを有し、噴孔群393bは、非スイッチング噴孔391bとスイッチング噴孔392bを有している。同様に、噴孔群393cは、非スイッチング噴孔391cとスイッチング噴孔392cを有し、噴孔群393dは、非スイッチング噴孔391dとスイッチング噴孔392dを有している。各噴孔群393において、スイッチング噴孔392の長軸は、同じ噴孔群393に含まれる非スイッチング噴孔391に対向するように配置されている。
非スイッチング噴孔391から噴射された燃料の噴流は、所定の距離(ブレーク長さ)下流に進むと、噴射方向に直角な面内の断面形状が略円形の非スイッチング噴霧を生成する。また、スイッチング噴孔392から噴射された噴流は、所定の距離(ブレーク長さ)下流に進むと、噴射方向に直角な面内の断面形状において長軸と短軸の長さが異なるスイッチング噴霧を生成する。
スイッチング噴孔392により生成されるスイッチング噴霧は、該スイッチング噴孔392から所定の距離でアクシス−スイッチング現象を生じるように制御され、長軸と短軸の方向を変化させる。なお、各噴霧の挙動については後に詳細に説明する。
次に、燃料噴射弁1の動作について説明する。エンジンの制御装置より燃料噴射弁1の駆動回路に動作信号が送られると、燃料噴射弁1のコイル23に電流が通電され、アマチュア24はコア22側へ吸引される。この結果、アマチュア24と一体構造であるロッド37およびボール38は、圧縮バネ36の弾性力に逆らって上方向に移動し、ボール38の曲面部38cが弁座面32aから離間し、両者に間隙が形成されて通路が形成され、吸気ポートに指向した燃料噴射が開始される。
一方、エンジンの制御装置より燃料噴射弁1の駆動回路に動作の停止信号が送られると、コイル23への通電が停止し、アマチュア24がコア22側に吸引される力は消失し、ロッド37は、圧縮バネ36の弾性力によって弁座32側に押され、ボール38の曲面部38cと弁座面32aとは閉状態となり、燃料噴射はこの時点で終了する。
ここで、例えば縮流によって噴孔39内の流れを液膜流とする噴孔プレート33とカバープレート34、および弁座32、ボール38の詳細な構造と位置について、図2、図4および図5の各詳細断面図を用いて説明する。ここで説明する噴孔39は、非スイッチング噴孔391とスイッチング噴孔392のどちらであってもよい。なお、図4において、Xは噴孔39の径、Yは噴孔39の長さを示している。
燃料は、弁体35の開弁時においてボール38の面取部38aと弁座32の内面との間のZ軸に平行な通路から、ボール38の曲面部38cと弁座面32aとの間を下流へ向かい、弁座シート部R1に至る。弁座シート部R1の上流では燃料がZ軸に平行に流れるため、燃料は、弁座シート部R1を通過した後においては慣性により弁座面32aに沿う流れが主流となり、弁座面32aの下流端の点P1に達する。
点P1は弁座面32aの終端であり、弁座32は、点P1から下流側は垂直方向に延びた面を有している。従って、燃料の主流は、点P1から剥離する。弁座面32aの延長線は、カバープレート34の周側面と点P2で交わっており、点P1から剥離した燃料は、点P2に向かい環状通路C(弁座32の内周壁面とカバープレート34の大径部34dの周側面との間)を通過して、径方向に大幅な進路変更を伴わずに径方向通路B(弁座32の内周壁面とカバープレート34の小径部34cの周側面との間)に流入する。
なお、弁座シート部R1を通過する燃料の主流は、環状通路Cに流入するため、隙間通路A(ボール38の底面とカバープレート34の天面34aとの間)への流入は抑制される。シート部R1と噴孔39の入口の点P3とを直線で結んだ線は、カバープレート34の大径部である薄肉部34bで交叉している。すなわち薄肉部34bは、弁座シート部R1から噴孔39の入口への燃料の直線的な流入を遮っている。
このため、噴孔39に流入する燃料の少なくとも一部は、径方向通路Bに沿う流れとなる。カバープレート34は、その小径部34cが噴孔39よりも内径側で噴孔39に近接して配置されている。従って、径方向通路Bに沿って内径側に向かう燃料の正面流れF1は、燃料噴射弁1のZ軸から噴孔39に流入する戻り流れF2の流路を閉塞させ、戻り流れF2の速度を低下させる。戻り流れF2が抑制されることで、弁座シート部R1側から噴孔39に流入する正面流れF1の速度が相対的に強められる。
正面流れF1の少なくとも一部が、径方向通路Bに沿って進行した後に噴孔39内で大幅な方向変化を強制されること、および正面流れF1が高速であることから、燃料は、噴孔39の断面において、燃料噴射弁1のZ軸側の噴孔39の壁面に強く押し付けられる。その後、図5に示すように、噴孔39の入口では、低速な戻り流れF2は、噴孔39の壁面に沿って流れF3を形成し、高速な正面流れF1は、燃料を壁面に押し付ける燃料流F4を形成する。
また、噴孔39の出口から導入される空気の流れF5が燃料流F4に作用し、点P4(噴孔39の燃料入口の外側の縁部)を起点とした燃料流F4の剥離を生じさせる。燃料流F4は、噴孔39内を進行するに伴い壁面に押し付けられ、液膜の方向は、噴孔39の壁面の円周方向に広がりつつ噴孔39の壁面に沿う方向に変化していく。
前述のように、液膜が薄いほど液糸が細くなり液滴の微粒化に有効であるため、本実施の形態1では、隙間通路Aの高さh(図4参照)に対する噴孔39の長さYを最適化し、燃料流F4が噴孔39内で薄い液膜流30の状態まで押し付けられるようにしている。これにより、噴射された燃料の液膜流30は、所定の距離を経て***を開始し、液糸の状態を経て微粒化された液滴が生成される。
次に、本実施の形態1に係る燃料噴射弁1において、アクシス−スイッチング現象を利用し、噴霧形状、貫徹力、噴射量分布および噴霧方向を制御する手法について説明する。まず、参考例として、基本的な噴霧挙動について図6から図8を用いて説明する。図6は、二つの非スイッチング噴霧にコアンダ効果が作用し集合噴霧を形成するまでの挙動を説明する図である。なお、コアンダ効果とは、隣接する噴霧との近接化を誘起する効果である。
図6において、(a)は二つの非スイッチング噴孔から噴射された非スイッチング噴霧を示す側面図、(b)は(a)中、E−E、F−F、G−G、H−Hで示す部分における断面図である。図6(a)に示すように、間隔L1で配置された二つの非スイッチング噴孔391から噴射された噴流4a、4bは、それぞれ非スイッチング噴霧4A、4Bとなる。噴流4a、4bは、液膜流の破断や***を経て実質的に噴霧流と見なせるようになる状態のブレークが生じたとき、断面E−Eに示す噴流断面形状である。
この時の非スイッチング噴孔391と断面E−Eとの距離をブレーク長さaとする。このブレーク長さaの位置ではすでに、両噴流4a、4bの隙間c1はコアンダ効果が作用する閾値よりも小さくなっている。続いて、断面F−Fでは、噴流4a、4bは、分散して単一の非スイッチング噴霧4A、4Bとなり、非スイッチング噴孔391から距離bの位置で、二つの非スイッチング噴霧4A、4Bは、その外径が接し始める。
さらに、断面F−Fから、圧力分布に起因して二つの単一の非スイッチング噴霧4A、4Bの間にコアンダ効果が作用し、単一の非スイッチング噴霧4A、4Bは接近して断面G−Gのように集合化が進む。それと同時に、非スイッチング噴霧4A、4Bの周囲空気の巻き込みと、それによる非スイッチング噴霧4A、4B内の略中心部分の下流への流れ方向に沿った空気流の誘起を生じさせる。
なお、仮に噴流4aと噴流4b、あるいは非スイッチング噴霧4Aと非スイッチング噴霧4Bとが、各々アクシス−スイッチング現象を生じる素性を保有していた場合でも、アクシス−スイッチング現象が生じる前に、断面E−Eの位置において両噴流4a、4bの隙間c1はコアンダ効果が作用する閾値よりも小さくなっているため、コアンダ効果が作用して接近し始める。
ここで、周囲空気の巻き込みレベルは、単一の非スイッチング噴霧4A、4Bを集合した集合噴霧40全体の形状を大きく変化させるレベルではない。さらに、条件が整えば、断面G−Gの集合噴霧40の状態からさらに集合化が進み、断面H−Hのように実質的にほぼ一つの中実の集合噴霧40とみなされるようになる。
図7は、二つの非スイッチング噴霧がコアンダ効果により集合噴霧を形成するまでの挙動を、周囲空気の巻き込み状況を示す矢印で説明した図であり、(a)は二つの非スイッチング噴孔から噴射された非スイッチング噴霧を示す側面図、(b)は(a)中、F−F、G1−G1、G2−G2、H−Hで示す部分における断面図である。
図7(a)に示すように、周囲空気の巻き込みにより、噴霧内に下流への流れ方向に沿った空気流Vが誘起されている。その結果、図7(b)に示すように、F−F、G1−G1、G2−G2、H−Hにおける各噴霧の噴射量分布は、集合噴霧40の略中心にピークができる。
このように、複数の非スイッチング噴霧4A、4Bがコアンダ効果の作用により集合噴霧40を形成した場合、周囲空気の巻き込みによって噴霧内に下流への流れ方向に沿った空気流が誘起され、貫徹力の抑制が困難となり、噴霧の微粒化や噴霧形状に関しても設計自由度は低くなる。
また、図8は、二つの非スイッチング噴霧にコアンダ効果が作用せず、独立した噴霧を形成するまでの挙動を説明する図である。図8において、(a)は二つの非スイッチング噴孔から噴射された非スイッチング噴霧の側面図、(b)は(a)中、E−E、F−F、G−Gで示す部分における断面図である。図8(a)に示すように、間隔L2(L2>L1)で配置された二つの非スイッチング噴孔391から噴射された噴流4a、4cは、それぞれ非スイッチング噴霧4A、4Cとなる。
噴流4a、4cは、液膜流の破断や***を経て実質的に噴霧流と見なせるようになる状態のブレークが生じたとき、断面E−Eにおける噴流断面形状である。この時のブレーク長さaの位置では、両噴流4a、4cの隙間はコアンダ効果が作用する閾値よりも大きい。さらに、断面G−Gにおける両噴霧4A、4Cの隙間c2も、コアンダ効果が作用する閾値より大きく、両噴霧4A、4Cにはコアンダ効果は作用しない。その結果、両噴霧4A、4Cは独立したままでほぼ初期の進行方向に進んでいく。
なお、図8では、二つの非スイッチング噴孔391を例に挙げて説明したが、非スイッチング噴孔391とスイッチング噴孔392の組み合わせであっても、両噴霧の間にコアンダ効果が作用せず、それぞれが独立した噴霧を形成するように設計することは可能である。
本実施の形態1において、一つの噴孔群393に含まれる複数の噴孔39は、少なくともスイッチング噴孔392により生成されるスイッチング噴霧がアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない間隔で配置されると共に、それらの噴孔径、長さ、および傾きを含む噴孔仕様が設定される。
さらに、一つの噴孔群393に含まれる複数の噴孔39により生成される各噴霧は、少なくともスイッチング噴孔392により生成されるスイッチング噴霧がアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない流速、粒径、および粒子数密度に設定される。
また、スイッチング噴孔392は、噴射方向に直角な面内の断面形状において、短軸に対して長軸が略線対称なスイッチング噴霧を生成するように、その噴孔径、長さ、および傾きを含む噴孔仕様が設定される。さらに、本実施の形態1では、スイッチング噴孔392は、アクシス−スイッチング現象により長軸と短軸の方向を略90度変化させるスイッチング噴霧を生成するように噴孔仕様が設定される。
すなわち、本実施の形態1に係る燃料噴射弁1において、隣接する噴霧がコアンダ効果の作用により近接して変形するのは、少なくとも一方がスイッチング噴霧で、且つ、アクシス−スイッチング現象を生じた後のみである。この場合、二つ以上の噴霧の近接化により、噴射方向に直角な面内の断面形状が非対称な非円形形状の集合噴霧を形成する。
次に、本実施の形態1に係る燃料噴射弁1の噴孔プレート33(図3参照)において、同じ噴孔群393aに属し互いに隣接する非スイッチング噴孔391aとスイッチング噴孔392aにより生成される非スイッチング噴霧4Aとスイッチング噴霧5Aが、コアンダ効果により集合噴霧50を形成するまでの挙動について、図9を用いて説明する。図9において、(a)は各噴霧の側面図、(b)は(a)中、E−E、F−F、・・、M−Mで示す部分における断面図である。
図9(a)に示すように、非スイッチング噴孔391aとスイッチング噴孔392aは、間隔L3で配置されている。非スイッチング噴孔391aから噴射された噴流4aは、非スイッチング噴霧4Aとなり、スイッチング噴孔392aから噴射された噴流5aは、スイッチング噴霧5Aとなる。図9において、噴流4aと噴流5aのブレーク長さaがほぼ等しいとすると、この時の噴流断面形状は断面E−Eに示すようになる。
断面形状が長円形のスイッチング噴霧5Aは、アクシス−スイッチング現象が生じる前は、その長軸方向が非スイッチング噴霧4Aと対向している。スイッチング噴霧5Aは、非スイッチング噴霧4Aと対向しつつ、その断面形状が長軸および短軸の両方向に若干拡大しながら、ほぼスイッチング噴孔392直下での初期の流れ方向を維持して下流に流れる。
その後、スイッチング噴孔392から所定の距離においてアクシス−スイッチング現象が生じ、断面J−Jに示すように、スイッチング噴霧5Aの長軸と短軸の方向が変化し始める。なお、この位置では、スイッチング噴霧5Aと非スイッチング噴霧4Aとの隙間c3は、コアンダ効果が作用する閾値よりも大きく、コアンダ効果は生じていない。
断面J−Jから断面K−Kへと下流になるにつれて、スイッチング噴霧5Aの長軸と短軸の方向が変化する変形が進み、スイッチング噴霧5Aと非スイッチング噴霧4Aが近接してくる。これは、スイッチング噴霧5Aにアクシス−スイッチング現象が生じたことにより、スイッチング噴霧5Aと非スイッチング噴霧4Aの隙間が小さくなり、それに伴いスイッチング噴霧5Aと非スイッチング噴霧4Aとの間にコアンダ効果が作用したことによる。
断面K−Kにおいて、スイッチング噴霧5Aと非スイッチング噴霧4Aの隙間c4は、コアンダ効果が作用する閾値よりも小さくなっている。断面L−Lでは、スイッチング噴霧5Aと非スイッチング噴霧4Aの向かい合う端部が変形、移動して干渉し始める。その結果、断面M−Mにおいて、燃料噴射後の所定時間経過後に、非スイッチング噴孔391およびスイッチング噴孔392から所定の距離において、スイッチング噴霧5Aと非スイッチング噴霧4Aが集合した集合噴霧50が形成される。
この集合噴霧50の形状、大きさ、方向、貫徹力、および噴射量分布や、各集合噴霧50の配置などは、スイッチング噴霧5Aおよび非スイッチング噴霧4Aの各特性や各配置を変更することにより、変更することができる。
また、スイッチング噴霧5Aは、長軸と短軸の方向が変化して変形することによって周囲空気との運動量交換が大きく進み、貫徹力が小さくなる。そのため、非スイッチング噴霧4Aと干渉することで、非スイッチング噴霧4Aの各粒子や各粒子に引きずられている空気流の動きに抑制がかかり、非スイッチング噴霧4Aの貫徹力も抑制される。
図9(a)の一点鎖線dは、非スイッチング噴霧4Aが単独の場合の噴霧形状を示している。このように、非スイッチング噴霧4Aは、スイッチング噴霧5Aとの干渉によって貫徹力が低下し、その先端の伸びが単独の場合よりも短縮される。
さらに、スイッチング噴霧5Aは、貫徹力が低下し周囲空気との混合が大幅に進むことにより微粒化が向上し、非スイッチング噴霧4Aの微粒化レベルとの差が小さくなる。すなわち、非スイッチング噴孔391およびスイッチング噴孔392から下流の所定距離において微粒化され、断面が非対称な非円形形状の集合噴霧50を形成することができる。
図9において、スイッチング噴孔392を利用しなかった場合、隣り合う噴霧の近接化はさらに下流にならないと始まらず、場合によっては集合化には至らない。従って、各噴霧は拡がり続けるとともに、貫徹力は低下しない。その結果、噴霧が保有する運動量は空気流に移動しにくく微粒化も不十分となる。
このように、同じ噴孔群393に属する噴孔39により生成される噴霧群(非スイッチング噴霧4Aとスイッチング噴霧5A)は、所定距離においてスイッチング噴霧5Aの変形によりコアンダ効果が作用し近接化または集合化することにより、貫徹力を急速に減衰させることが可能である。また、貫徹力が低下することにより周囲空気との混合が進み、微粒化が向上する。さらに、噴射量分布および噴霧方向は、各噴孔仕様によって設定することができる。
なお、図9では、非スイッチング噴霧4Aとスイッチング噴霧5Aを各一つ組み合わせで断面が非対象な集合噴霧50を形成しているが、集合噴霧が形成されるのはこの組み合わせに限定されるものではなく、噴霧の数および配置も限定されるものではない。例えば、二つの非スイッチング噴霧4Aと一つのスイッチング噴霧5Aとの組み合わせでもよいし、二つのスイッチング噴霧5Aであってもよい。すなわち、各噴孔群393の中に、スイッチング噴孔392が少なくとも一つ含まれていればよい。
図10は、本実施の形態1に係る噴孔プレート33における噴孔39および噴孔群393の他の配置例を示している。図10(a)に示す例では、噴孔群393f(393g)は、二つのスイッチング噴孔392f(392g)を含んでいる。この例のように、二つのスイッチング噴孔392を、それらの長軸が略平行に対向するように配置することにより、アクシス−スイッチング現象によって長軸同士が繋がった集合噴霧が形成される。
また、図10(b)に示す例では、噴孔群393h(393m)は、一つの非スイッチング噴孔391h(391m)と、二つのスイッチング噴孔392h(392m)を含んでいる。噴孔群393hは、長軸が略平行に対向する二つのスイッチング噴孔392hと、それらの間に配置された非スイッチング噴孔391hからなる。また、噴孔群393jは、長軸が略平行に対向する二つのスイッチング噴孔3921jと、それらの間に長軸が直交するように配置されたスイッチング噴孔3922jからなる。
噴孔群393h、393jにより形成される集合噴霧は、図10(a)に示す噴孔群393fにより形成される集合噴霧よりもさらに長手方向に細長く、中央部が膨らんだ断面形状となる。このように、各噴孔群393に含まれる噴孔39の数を増やすことで、より複雑な形状の集合噴霧を形成することができる。
次に、本実施の形態1において、別の噴霧群393に属し、互いに隣接する非スイッチング噴孔391とスイッチング噴孔392により生成される非スイッチング噴霧4Aとスイッチング噴霧5Aの挙動について、図11および図12を用いて説明する。
図11は、図3に示す非スイッチング噴孔391cとスイッチング噴孔392dにより生成される非スイッチング噴霧4Aとスイッチング噴霧5Aの挙動を示している。図11において、(a)は各噴霧の側面図、(b)は(a)中、E−E、F−F、・・、L−Lで示す部分における断面図である。
非スイッチング噴孔391cとスイッチング噴孔392dは、スイッチング噴孔392dの長軸が非スイッチング噴孔391cに対向するように、間隔L4(L4>L3)で配置されている。非スイッチング噴孔391cから噴射された噴流4aは、非スイッチング噴霧4Aとなり、スイッチング噴孔392dから噴射された噴流5bは、スイッチング噴霧5Bとなる。
図11において、スイッチング噴霧5Bは、アクシス−スイッチング現象が生じる前は、その長軸方向が非スイッチング噴霧4Aと対向しているが、スイッチング噴孔392dから所定距離において、断面J−Jに示すようにその長軸と短軸の方向が変化し始める。
しかし、非スイッチング噴霧4Aとスイッチング噴霧5Aが最も接近する断面L−Lにおいても、それらの隙間c5はコアンダ効果が作用する閾値よりも大きい。このため、両噴霧4A、5Bにはコアンダ効果は作用せず、独立したままで、ほぼ初期の進行方向に進んでいく。この時、スイッチング噴霧5Bが非スイッチング噴霧4Aに干渉しないため、非スイッチング噴霧4Aの貫徹力は抑制されない。
また、複数のスイッチング噴霧5Aを含む場合、複数のスイッチング噴霧5Aにアクシス−スイッチング現象が生じた後も、非スイッチング噴霧4Aから近接化や変形等の影響を受けないようにすることで、複数のスイッチング噴霧5Aの変形後の形状を安定に保つことができる。
図12は、図3に示す非スイッチング噴孔391aとスイッチング噴孔392eにより生成される非スイッチング噴霧4Aとスイッチング噴霧5Cの挙動を示している。図12において、(a)は各噴霧の側面図、(b)は(a)中、E−E、F−F、・・、L−Lで示す部分における断面図である。
非スイッチング噴孔391aとスイッチング噴孔392eは、スイッチング噴孔392eの短軸が非スイッチング噴孔391aに対向するように、間隔L5で配置されている。非スイッチング噴孔391aから噴射された噴流4aは、非スイッチング噴霧4Aとなり、スイッチング噴孔392eから噴射された噴流5cは、スイッチング噴霧5Cとなる。
図12において、スイッチング噴霧5Cは、アクシス−スイッチング現象が生じる前は、その短軸方向が非スイッチング噴霧4Aと対向しているが、スイッチング噴孔392eから所定距離において、断面J−Jに示すようにその長軸と短軸の方向が変化し始める。
しかし、非スイッチング噴霧4Aとスイッチング噴霧5Cが最も接近する断面H−Hにおいても、それらの隙間はコアンダ効果が作用する閾値よりも大きく、コアンダ効果は生じていない。さらに、断面J−Jから断面K−Kへと下流になるにつれて、スイッチング噴霧5Cの長軸と短軸の方向が変化する変形が進み、スイッチング噴霧5Cと非スイッチング噴霧4Aの隙間はさらに大きくなる。
このため、両噴霧4A、5Cにはコアンダ効果は作用せず、両噴霧4A、5Cは独立したまま、ほぼ初期の進行方向に進んでいく。この時、スイッチング噴霧5Cが非スイッチング噴霧4Aに干渉しないため、非スイッチング噴霧4Aの貫徹力は抑制されない。
以上のように、本実施の形態1では、噴孔プレート33に設けられる噴孔39および噴孔群393の配置は様々な変形が可能であるが、いずれの場合においても、スイッチング噴霧5Aがアクシス−スイッチング現象により変形する前に、隣接する非スイッチング噴霧4Aまたはスイッチング噴霧5Aとの間でコアンダ効果が作用することを確実に抑制している。
隣接する非スイッチング噴霧4Aとスイッチング噴霧5Aとの間でコアンダ効果が作用することを抑制する方法として、スイッチング噴霧5Aと非スイッチング噴霧4Aの特性に差を設けて、コアンダ効果が生じるタイミングを遅らせる方法がある。
具体的には、非スイッチング噴孔391およびスイッチング噴孔392から同じ距離におけるスイッチング噴霧5Aの平均粒径を非スイッチング噴霧4Aの平均粒径よりも大きくする方法、あるいはスイッチング噴霧5Aのブレーク長さを非スイッチング噴霧4Aのブレーク長さよりも長くする方法、さらにはスイッチング噴霧5Aの貫徹力を非スイッチング噴霧4Aの貫徹力よりも大きく設定する方法等がある。
これらの方法を実現するにあたっては、非スイッチング噴孔391とスイッチング噴孔392との噴孔形状の違いによって、縮流のレベルや方向が変わることを利用することができる。例えば縮流のレベルや方向を異ならせた場合、噴孔39内での圧力損失(噴流速度)、噴流の断面積、断面形状、配置、および方向等を異ならせることができ、コアンダ効果が作用する隙間の閾値を変更することが可能となる。
また、コアンダ効果が作用する隙間の閾値は、各噴霧の流速、微粒化レベル、粒子数密度、雰囲気圧力等によっても変わるため、これらを調整することにより所望の閾値に設定することができる。
さらに、本実施の形態1では、スイッチング噴霧5Aは、アクシス−スイッチング現象により変形した後、同じ噴孔群393に属する別の噴孔39により生成された噴霧(非スイッチング噴霧4Aまたはスイッチング噴霧5A)との間で、コアンダ効果の作用により近接化または集合化するように設計される。噴霧同士の近接化により要求される噴霧形状や大きさが達成可能な場合には、必ずしも集合化させなくても良い。
なお、図11および図12では、スイッチング噴孔392により生成されるスイッチング噴霧5A(5C)は、アクシス−スイッチング現象により変形した後も、別の噴霧群393に属する非スイッチング噴孔391により生成される非スイッチング噴霧4Aとの間でコアンダ効果が作用せず、近接化または集合化しない例について説明した。ただし、スイッチング噴霧5A、5Cがアクシス−スイッチング現象により変形した後、別の噴霧群393に属する噴孔39により生成される噴霧との間で近接化または集合化することにより、所望の全体噴霧仕様が実現される場合には、コアンダ効果が作用するようにしても良い。
次に、本実施の形態1に係る燃料噴射弁1により形成される全体噴霧の形状例について、図13および図14を用いて説明する。図13は、図3に示す噴孔プレート33のスイッチング噴孔392eおよび各噴孔群393a、393b、393c、393dから噴射された噴霧および噴霧群により形成された全体噴霧を示している。図13において、(a)はスイッチング噴霧がアクシス−スイッチング現象を生じる前、(b)はスイッチング噴霧がアクシス−スイッチング現象を生じた後、の噴射方向に直角な面内の断面形状をそれぞれ示している。
また、図14は、図13に示す全体噴霧を、図13中、矢印xで示す方向から見た場合、すなわち燃料噴射弁1のZ軸に対して直角な方向から見た場合を示している。図14において、(a)から(d)は、全体噴霧に至るまでの各噴霧群の時系列変化を示している。なお、矢印xの方向から見た場合、非スイッチング噴霧4A、スイッチング噴霧5A、および集合噴霧50は前後に重なっているため、図14では前方に位置する各噴霧のみを示している。
図13及び図14に示すように、噴孔プレート33に設けられた5つのスイッチング噴孔392から噴射されたスイッチング噴霧5Aは、各噴孔392から所定の距離でアクシス−スイッチング現象が生じ、噴射方向に直角な面内の断面形状における長軸と短軸の方向が変化する。この時、スイッチング噴霧5Aは、運動量のかなりの割合が空気に移動し、貫徹力が大きく低下する。
また、噴孔群393に属するスイッチング噴孔392(図14ではスイッチング噴孔392c、392d)から噴射されたスイッチング噴霧5Aは、アクシス−スイッチング現象が生じた後、同じ噴孔群393に属する非スイッチング噴孔391(図14では非スイッチング噴孔391c、391d)から噴射された非スイッチング噴霧4Aとの間でコアンダ効果が作用し、それぞれ集合噴霧50を形成する。
すなわち、図3に示す噴孔プレート33により形成される全体噴霧60は、単独で設けられたスイッチング噴孔392eにより生成される一つのスイッチング噴霧5Aと、非スイッチング噴孔391とスイッチング噴孔392を各一つ含む4つの噴孔群393a、393b、393c、393dにより生成される4つの集合噴霧50を含んでいる。
なお、本実施の形態1では、スイッチング噴霧の長軸と短軸の方向が90度変化する場合について説明したが、これに限定されるものではなく、任意の角度に設定することができる。さらに、スイッチング噴霧5Aの形状は、断面形状がより偏平であってもよい。長軸と短軸の比が大きい噴霧を生成しようとする場合、長軸方向が分断しない範囲で長軸と短軸の方向が変化するように噴孔仕様を設定すればよい。また、全体噴霧60の形状は、集合噴霧50の配置によって、中空円錐形状のみならず、中実円錐形状、三角形状等、種々のバリエーションを実現することが可能である。
以上のことから、本実施の形態1に係る燃料噴射弁1およびこれを備えた噴霧生成装置によれば、複数の噴孔群393により生成される各噴霧群の中に、少なくとも一つのスイッチング噴霧5Aを含むことにより、アクシス−スイッチング現象を利用して噴霧の噴射方向に直角な面内の断面形状を制御することが可能である。
また、噴孔群393に属するスイッチング噴孔392により生成されるスイッチング噴霧5Aは、アクシス−スイッチング現象を生じた後、該スイッチング噴孔392と同じ噴孔群393に属する別の噴孔39により生成される噴霧との間で、コアンダ効果による近接化または集合化を生じるように制御される。これにより、各噴孔群393により生成される各噴霧群の噴霧形状および全体噴霧形状を制御することが可能となり、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させることが可能となる。
なお、本実施の形態1では、燃料噴射弁1として電磁式の燃料噴射弁を例に挙げて説明したが、駆動源は他の方式でもよく、ピエゾ式、機械式等であっても良い。また、間欠噴射弁、連続噴射弁どちらにも適用することが可能である。
また、本実施の形態1では、燃料噴射弁1を例に挙げて説明したが、本発明に係る流体噴射弁の用途はこれに限定されるものではない。その他の用途として、塗装、コーティング、農薬散布、洗浄、加湿、スプリンクラー、殺菌用スプレー、冷却等の一般産業用、あるいは農業用、設備用、家庭用、個人用としての各種スプレー等、多岐にわたる。本発明に係る流体噴射弁は、駆動源やノズル形態、噴霧する流体の種類に関わらず、様々な用途の噴霧生成装置に組み入れることが可能である。
実施の形態2.
図15は、本発明の実施の形態2に係る火花点火式直噴エンジンを模式的に示す図であり、(a)は成層燃焼時(ピストン上昇中)、(b)は均質燃焼時(ピストン下降中)の状態を示している。本実施の形態2に係る火花点火式直噴エンジン6は、燃焼室7に燃料を噴射する燃料噴射弁として、上記実施の形態1に係る燃料噴射弁1を備えたものである。
図15に示すように、火花点火式直噴エンジン6の燃焼室7には、吸気ポート8と排気ポート9が連通しており、各々の燃焼室7側の開口部には、ピストン10と連動して開閉する吸気弁11と排気弁12が設けられている。また、燃焼室7の天井の略中央部には燃料噴射弁1が配置され、その側方には点火プラグ13が配置される。なお、燃料噴射弁1および点火プラグ13の配置は、これに限定されるものではない。
本実施の形態2に係る火花点火式直噴エンジン6の燃料噴射弁1の構成は、上記実施の形態1と同様であるので詳細な説明は省略するが(図1、図3参照)、燃料が流れる通路の途中に設けられた弁座32と、弁座32と当接および離間可能に設けられ通路の開閉を制御する弁体35と、弁座32の下流に設けられ複数の噴孔39を有する噴孔プレート33を備えている。
また、噴孔プレート33に配置された複数の噴孔群393は、少なくとも一つのスイッチング噴孔392を含み、スイッチング噴孔392により生成されるスイッチング噴霧5Aは、該噴孔392から所定の距離でアクシス−スイッチング現象を生じ、噴射方向に直角な面内の断面形状において長軸と短軸の方向を変化させる。これにより、スイッチング噴霧5Aの噴射方向に直角な面内の断面形状を変化させることができる。
さらに、アクシス−スイッチング現象を生じた後、該スイッチング噴孔392と同じ噴孔群393に属する別の噴孔39により生成される噴霧との間で、コアンダ効果による近接化または集合化を生じさせることにより、各噴孔群393により生成される各噴霧群および全体噴霧60の形状を、燃焼室7内での混合気形成または燃焼に適した形状に制御する。
また、スイッチング噴霧5Aは、変形によって周囲空気との運動量交換が進み、貫徹力が低下することを利用し、所定距離において噴霧の貫徹力を急速に減衰させることが可能である。また、貫徹力が低下することにより周囲空気との混合が進み、微粒化が向上する。さらに、噴射量分布および噴霧方向は、各噴孔仕様によって設定することができる。
なお、スイッチング噴霧5Aは、燃料噴射弁1の燃料噴射圧力、または燃焼室7内の圧力、または燃焼室7内の空気流動の少なくとも一つの要因により、アクシス−スイッチング現象を生じるか否かを制御される。
また、スイッチング噴孔392は、短軸に対して長軸が線対称なスイッチング噴霧5Aを生成するように、その噴孔径、長さ、および傾きを含む噴孔仕様が設定される。これにより、アクシス−スイッチング現象を生じた後も線対称な形状となり、点火プラグ13近傍に安定して噴霧を停滞させるのに好都合である。
また、各噴孔群393においては、スイッチング噴孔392により生成されるスイッチング噴霧5Aがアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない間隔で各噴孔39が配置されると共に、それらの噴孔径、長さ、および傾きを含む噴孔仕様と、流速、粒径、および粒子数密度が設定される。なお、本実施の形態2では、各噴霧群は、スイッチング噴霧5Aがアクシス−スイッチング現象を生じた後も、隣接する噴霧群との間でコアンダ効果が作用しないように設定されている。
本実施の形態2に係る火花点火式直噴エンジンには、例えば図3に示す噴孔プレート33を用いることができる。図3に示すように、噴孔群393に属さず単独で設けられたスイッチング噴孔392eは、アクシス−スイッチング現象により点火プラグ13近傍を指向するスイッチング噴霧5Aを生成する。
本実施の形態2に係る火花点火式直噴エンジン6における成層燃焼時と均質燃焼時の全体噴霧の状態について、図15を用いて説明する。図15(a)に示す成層燃焼時においては、ピストン10の上昇により燃焼室7の空気が圧縮され、燃焼室7内の圧力が上昇する。このため、非スイッチング噴霧4Aおよびスイッチング噴霧5Aを含む各噴霧群の貫徹力は均質燃焼時よりも小さくなる。
噴霧群393に属するスイッチング噴孔392により生成されるスイッチング噴霧5Aは、筒内を通過する過程でアクシス−スイッチング現象が生じ、該スイッチング噴孔392と同じ噴孔群393に属する別の噴孔39により生成される噴霧との間でコアンダ効果による近接化または集合化を生じる。
また、単独で設けられたスイッチング噴孔392eにより生成されるスイッチング噴霧5Aは、点火プラグ13近傍を通過する過程でアクシス−スイッチング現象を生じ、点火プラグ13近傍を指向する。同時に貫徹力が大幅に低下し、点火プラグ13近傍を通過した時点で貫徹力を失い、点火プラグ13近傍で滞留する。
すなわち、噴射位置から点火プラグ13近傍までの所望の距離で、スイッチング噴霧5Aの貫徹力を急減衰させ、点火プラグ13近傍において所望の断面形状の濃い混合気を形成することができる。このことは、成層燃焼を成立させるのに好都合である。
また、各噴霧群は、成層燃焼に適した混合燃焼状態となるように指向させると共に、シリンダライナー14やピストン10表面への衝突が抑制されるように貫徹力を設定される。これにより、全体噴霧60は、シリンダライナー14やピストン10表面への衝突を抑制され、且つ、点火プラグ13近傍に成層燃焼に適した濃い混合気を形成する。
一方、図15(b)に示す均質燃焼時においては、ピストン10の下降と共に吸気弁11が開となるため、タンブル流等の強い空気流動が燃焼室7内に生じる。このため、各噴霧群のスイッチング噴霧5Aは、点火プラグ13近傍を通過する過程で燃焼室7内の空気流動に追随し、アクシス−スイッチング現象を生じず、燃焼室7内全体に拡散する。また、同じ噴孔群393に属する噴孔39により生成された非スイッチング噴霧4Aとスイッチング噴霧5Aは、コアンダ効果による近接化または集合化を生じない。
このように、本実施の形態2に係る火花点火式直噴エンジン6は、成層燃焼時において、点火プラグ13近傍を指向する噴霧と指向しない噴霧との間に大きな特性差を設けることができる。点火プラグ13近傍を指向する噴霧としてスイッチング噴霧5Aを適用することにより、点火プラグ13との衝突を避けつつ、点火プラグ13近傍で成層燃焼に適した混合気を形成することが可能である。また、均質燃焼時においては、点火プラグ13近傍を通過する過程で空気流動に追随させ、アクシス−スイッチング現象を生じず、燃焼室7全体に拡散させることが可能である。
本実施の形態2によれば、複数の噴孔群393により生成される噴霧群において、各噴霧群に含まれる噴霧の少なくとも一つをスイッチング噴霧5Aとすることにより、アクシス−スイッチング現象を利用して噴霧の噴射方向に直角な面内の断面形状を制御することが可能となり、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させることが可能な火花点火式直噴エンジン6が得られる。
実施の形態3.
図16は、本発明の実施の形態3に係る圧縮着火式直噴エンジンを模式的に示す図であり、(a)はピストン上昇時、(b)はピストン下降時の状態を示している。本実施の形態3に係る圧縮着火式直噴エンジン6Aは、燃焼室7に燃料を噴射する燃料噴射弁として、上記実施の形態1に係る燃料噴射弁1を備えたものである。
図16に示すように、圧縮着火式直噴エンジン6Aの燃焼室7には、吸気ポート8と排気ポート9が連通しており、各々の燃焼室7側の開口部には、ピストン10と連動して開閉する吸気弁11と排気弁12が設けられている。また、燃焼室7の天井の略中央部には燃料噴射弁1が配置される。なお、燃料噴射弁1の配置は、これに限定されるものではない。
本実施の形態3に係る圧縮着火式直噴エンジン6Aの燃料噴射弁1の構成は、上記実施の形態1と同様であるので詳細な説明は省略するが(図1、図3参照)、燃料が流れる通路の途中に設けられた弁座32と、弁座32と当接および離間可能に設けられ通路の開閉を制御する弁体35と、弁座32の下流に設けられ複数の噴孔39を有する噴孔プレート33を備えている。
また、噴孔プレート33に配置された複数の噴孔群393は、少なくとも一つのスイッチング噴孔392を含み、スイッチング噴孔392により生成されるスイッチング噴霧5Aは、該噴孔392から所定の距離でアクシス−スイッチング現象を生じ、噴射方向に直角な面内の断面形状において長軸と短軸の方向を変化させる。これにより、スイッチング噴霧5Aの噴射方向に直角な面内の断面形状を変化させることができる。
さらに、アクシス−スイッチング現象を生じた後、該スイッチング噴孔392と同じ噴孔群393に属する別の噴孔39により生成される噴霧との間で、コアンダ効果による近接化または集合化を生じさせることにより、各噴孔群393により生成される各噴霧群および全体噴霧60の形状を、燃焼室7内での混合気形成または燃焼に適した形状に制御する。
また、スイッチング噴霧5Aは、変形によって周囲空気との運動量交換が進み、貫徹力が低下することを利用し、所定距離において噴霧の貫徹力を急速に減衰させることが可能である。また、貫徹力が低下することにより周囲空気との混合が進み、微粒化が向上する。さらに、噴射量分布および噴霧方向は、各噴孔仕様によって設定することができる
なお、スイッチング噴霧5Aは、燃料噴射弁1の燃料噴射圧力、または燃焼室7内の圧力、または燃焼室7内の空気流動の少なくとも一つの要因により、アクシス−スイッチング現象を生じるか否かを制御される。また、スイッチング噴孔392は、短軸に対して長軸が線対称なスイッチング噴霧5Aを生成するように、その噴孔径、長さ、および傾きを含む噴孔仕様が設定される。
各噴孔群393においては、スイッチング噴孔392により生成されるスイッチング噴霧5Aがアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない間隔で各噴孔39が配置されると共に、それらの噴孔径、長さ、および傾きを含む噴孔仕様と、流速、粒径、および粒子数密度が設定される。なお、本実施の形態3では、各噴霧群は、スイッチング噴霧5Aがアクシス−スイッチング現象を生じた後も、隣接する噴霧群との間でコアンダ効果が作用しないように設定されている。
本発明の実施の形態3に係る圧縮着火式直噴エンジン6Aにおけるピストン上昇時とピストン下降時の全体噴霧の状態について、図16を用いて説明する。図16(a)に示すピストン上昇時において燃料噴射を行う場合、ピストン10の上昇により燃焼室7の空気が圧縮され、燃焼室7内の圧力が上昇する。このため、各非スイッチング噴霧4Aおよびスイッチング噴霧5Aの貫徹力は大気圧下よりも小さくなる。
スイッチング噴孔392により生成されるスイッチング噴霧5Aは、筒内を通過する過程でアクシス−スイッチング現象が生じ、該スイッチング噴孔392と同じ噴孔群393に属する別の噴孔39により生成される噴霧との間でコアンダ効果による近接化または集合化を生じる。これにより、各噴霧群の貫徹力は大幅に低下し、圧縮上死点付近の燃焼室7内において、コンパクトな全体噴霧60を形成する。
なお、圧縮着火式直噴エンジンは、圧縮上死点付近における圧縮温度及び圧力が非常に高くなり、この状態で燃料が噴射された場合、適切な混合気が形成される前に着火し、局所的で不均一な燃焼が起こることがある。これに対し、本実施の形態3に係る圧縮着火式直噴エンジン6Aは、噴射位置からシリンダ内面までの所望の距離でスイッチング噴霧5Aの貫徹力を急減衰させ、所望の断面形状の濃い混合気を形成することができ、筒内に噴霧を拡げて圧縮着火燃焼を成立させるのに好都合である。
また、各噴霧群は、圧縮着火燃焼に適した混合状態となるように指向されると共に、シリンダライナー14やピストン10表面への衝突が抑制されるように貫徹力を設定される。これにより、全体噴霧60は、シリンダライナー14やピストン10表面への衝突を抑制され、且つ、圧縮着火燃焼に適した混合気を形成する。
一方、図16(b)に示すピストン下降時においては、ピストン10の下降と共に吸気弁11が開となるため、タンブル流等の強い空気流動が燃焼室7内に生じる。スイッチング噴霧5Aは、燃焼室7内を通過する過程で空気流動に追随し、アクシス−スイッチング現象を生じず、燃焼室7内全体に拡散する。また、同じ噴孔群393に属する噴孔39により生成された非スイッチング噴霧4Aとスイッチング噴霧5Aは、コアンダ効果による近接化または集合化を生じない。
このように、本実施の形態3に係る圧縮着火式直噴エンジン6Aは、ピストン上昇時においてはスイッチング噴霧5Aのアクシス−スイッチング現象を利用して、圧縮着火燃焼に適した混合気を形成することが可能である。また、ピストン下降時においては、燃焼室7内を通過する過程で空気流動に追随させ、アクシス−スイッチング現象を生じず、燃焼室7全体に拡散させることが可能である。
本実施の形態3によれば、複数の噴孔群393により生成される噴霧群において、各噴霧群に含まれる噴霧の少なくとも一つをスイッチング噴霧5Aとすることにより、アクシス−スイッチング現象を利用して噴霧の噴射方向に直角な面内の断面形状を制御することが可能となり、噴霧の微粒化と、噴霧方向、貫徹力、および噴射量分布の設計自由度の向上とを両立させることが可能な圧縮着火式直噴エンジン6Aが得られる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。また、本発明に係る燃料噴射弁1の適用は、火花点火式直噴エンジン6および圧縮着火式直噴エンジン6Aに限定されるものではなく、他方式のエンジンにも適用することができる。
例えば、本発明に係る燃料噴射弁1は、予混合圧縮着火(HCCI)エンジンに適用することができる。HCCIエンジンは、ガソリンを用いてディーゼルエンジンのような圧縮着火を実現し、PMやNOを低減しながら超低燃費を実現することを目標としている。このHCCIエンジンにおいて運転領域を拡大するためには、着火の制御が必要であり、燃焼室内での燃料噴霧の拡散状態、混合気形成状態が非常に重要な要因である。本発明による噴霧コントロールは、この燃焼コンセプトの成立に非常に効果的な役割を果たすことができる。
さらに、本発明に係る燃料噴射弁1は、火花点火式ポート噴射エンジンに適用することができる。その場合、吸気一弁、二弁および三弁に対応する一スプレー、二スプレーおよび三スプレーについて、断面形状や貫徹力あるいは微粒化の程度の異なる噴霧群を組み合わせることにより、所望の噴霧仕様を実現可能である。
本発明は、流体噴射弁、特にエンジンに搭載される燃料噴射弁、およびこれを備えた噴霧生成装置、並びに直接噴射式エンジンとして利用することができる。
1 燃料噴射弁、2 ソレノイド装置、3 弁装置、
4a、4b、4c、5a、5b、5c 噴流、
4A、4B、4C 非スイッチング噴霧、5A、5B、5C スイッチング噴霧、
6 火花点火式直噴エンジン、6A 圧縮着火式直噴エンジン、7 燃焼室、
8 吸気ポート、9 排気ポート、10 ピストン、11 吸気弁、12 排気弁、
13 点火プラグ、14 シリンダライナー、21 ハウジング、22 コア、
23 コイル、24 アマチュア、30 液膜流、31 弁本体、32 弁座、
32a 弁座面、33 噴孔プレート、34 カバープレート、34a 天面、
34b 薄肉部、34c 小径部、34d 大径部、35 弁体、36 圧縮バネ、
37 ロッド、38 ボール、38a 面取部、38b 平面部、38c 曲面部、
39 噴孔、40、50 集合噴霧、60全体噴霧、
391 非スイッチング噴孔、392 スイッチング噴孔、393 噴孔群。

Claims (22)

  1. 流体が流れる通路の途中に設けられた弁座と、前記弁座と当接および離間可能に設けられ前記通路の開閉を制御する弁体と、前記弁座の下流に設けられた噴孔体とを備え、前記噴孔体に配置された複数の噴孔群から流体を噴射し複数の噴霧群を生成する流体噴射弁であって、
    前記複数の噴孔群の各々は、互いに近接して配置された複数の噴孔を有し、前記複数の噴孔群の少なくとも一つは、流体噴射方向に直角な面内の断面形状において長軸と短軸の長さが異なるスイッチング噴霧を生成するスイッチング噴孔を少なくとも一つ含み、
    前記スイッチング噴孔により生成されるスイッチング噴霧は、該スイッチング噴孔から所定の距離で前記長軸と前記短軸の方向を変化させ、該変化を生じた後は、該スイッチング噴孔と同じ前記噴孔群に属する別の前記噴孔により生成される噴霧との間でコアンダ効果による近接化または集合化が生じるように制御されることを特徴とする流体噴射弁。
  2. 前記スイッチング噴孔により生成されるスイッチング噴霧は、該スイッチング噴孔から所定の距離でアクシス−スイッチング現象を生じるように制御され、前記長軸と前記短軸の方向を変化させることを特徴とする請求項1記載の流体噴射弁。
  3. 前記噴孔体は、前記弁座と一体的に形成されており、前記スイッチング噴孔は、流体噴射方向に相当する噴孔軸に直角な断面形状が長軸と短軸を有する形状であることを特徴とする請求項1または請求項2に記載の流体噴射弁。
  4. 前記スイッチング噴孔は、前記噴孔体の板厚方向に直角な断面形状が長軸と短軸を有する形状であることを特徴とする請求項1から請求項3のいずれか一項に記載の流体噴射弁。
  5. 前記スイッチング噴孔は、前記短軸に対して前記長軸が略線対称なスイッチング噴霧を生成するように、その噴孔径、長さ、および傾きを含む噴孔仕様が設定されることを特徴とする請求項1から請求項4のいずれか一項に記載の流体噴射弁。
  6. 前記スイッチング噴孔を含む前記噴孔群において、該噴孔群に属する前記複数の噴孔は、少なくとも前記スイッチング噴孔により生成されるスイッチング噴霧がアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない間隔で配置されると共に、それらの噴孔径、長さ、および傾きを含む噴孔仕様が設定されることを特徴とする請求項2記載の流体噴射弁。
  7. 前記スイッチング噴孔を含む前記噴孔群において、該噴孔群に属する前記複数の噴孔により生成される各噴霧は、少なくとも前記スイッチング噴孔により生成されるスイッチング噴霧がアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない流速、粒径、および粒子数密度に設定されることを特徴とする請求項2または請求項6に記載の流体噴射弁。
  8. 前記スイッチング噴孔を含む前記噴孔群とこの噴孔群に隣接する別の前記噴孔群は、少なくとも前記スイッチング噴孔により生成されるスイッチング噴霧がアクシス−スイッチング現象を生じるまでは、隣接する噴霧との近接化を誘起するコアンダ効果が互いに作用しない間隔で配置されると共に、それらの噴孔径、長さ、および傾きを含む噴孔仕様が設定されることを特徴とする請求項6または請求項7に記載の流体噴射弁。
  9. 前記スイッチング噴孔により生成されるスイッチング噴霧は、同じ前記噴孔群に属する別の前記噴孔により生成される噴霧との近接化または集合化により、複数の噴霧群からなる全体噴霧の噴霧方向に直角な断面形状、または全体噴霧の貫徹力分布、または全体噴霧の噴霧方向に直角な噴射量分布を制御されることを特徴とする請求項1から請求項8のいずれか一項に記載の流体噴射弁。
  10. 請求項1から請求項9のいずれか一項に記載の流体噴射弁と、前記流体噴射弁に流体を供給する流体供給手段と、前記流体噴射弁の動作を制御する制御手段とを備えたことを特徴とする噴霧生成装置。
  11. 燃焼室に燃料を噴射する燃料噴射弁を備えた直接噴射式エンジンであって、前記燃料噴射弁は、燃料が流れる通路の途中に設けられた弁座と、前記弁座と当接および離間可能に設けられ前記通路の開閉を制御する弁体と、前記弁座の下流に設けられた噴孔体とを有し、前記噴孔体に配置された複数の噴孔群から燃料を噴射し複数の噴霧群を生成するものであり、
    前記複数の噴孔群の各々は、互いに近接して配置された複数の噴孔を有し、前記複数の噴孔群の少なくとも一つは、燃料噴射方向に直角な面内の断面形状において長軸と短軸の長さが異なるスイッチング噴霧を生成するスイッチング噴孔を少なくとも一つ含み、
    前記スイッチング噴孔により生成されるスイッチング噴霧は、該スイッチング噴孔から所定の距離で前記長軸と前記短軸の方向を変化させ、該変化を生じた後は、該スイッチング噴孔と同じ前記噴孔群に属する別の前記噴孔により生成される噴霧との間でコアンダ効果による近接化または集合化が生じるように制御されることを特徴とする直接噴射式エンジン。
  12. 前記スイッチング噴孔により生成されるスイッチング噴霧は、該スイッチング噴孔から所定の距離でアクシス−スイッチング現象を生じるように制御され、前記長軸と前記短軸の方向を変化させることを特徴とする請求項11記載の直接噴射式エンジン。
  13. 前記噴孔体は、前記弁座と一体的に形成されており、前記スイッチング噴孔は、燃料噴射方向に相当する噴孔軸に直角な断面形状が長軸と短軸を有する形状であることを特徴とする請求項11または請求項12に記載の直接噴射式エンジン。
  14. 前記スイッチング噴孔は、前記噴孔体の板厚方向に直角な断面形状が長軸と短軸を有する形状であることを特徴とする請求項11から請求項13のいずれか一項に記載の直接噴射式エンジン。
  15. 前記スイッチング噴孔により生成されるスイッチング噴霧は、前記燃料噴射弁の燃料噴射圧力、または前記燃焼室内の圧力、または前記燃焼室内の空気流動の少なくとも一つの要因により、アクシス−スイッチング現象を生じるか否かを制御されることを特徴とする請求項12記載の直接噴射式エンジン。
  16. 前記スイッチング噴孔により生成されるスイッチング噴霧は、同じ前記噴孔群に属する別の前記噴孔により生成される噴霧との近接化または集合化により、複数の噴霧群からなる全体噴霧の噴霧方向に直角な断面形状、または全体噴霧の貫徹力分布、または全体噴霧の噴霧方向に直角な噴射量分布を制御されることを特徴とする請求項11から請求項15のいずれか一項に記載の直接噴射式エンジン。
  17. 着火方式として、前記燃焼室内に備えられた点火プラグにより火花を発生させ、前記燃焼室内の混合気に着火する火花点火式を採用したことを特徴とする請求項12記載の直接噴射式エンジン。
  18. 前記燃焼室において成層燃焼を行う場合、前記スイッチング噴孔により生成されるスイッチング噴霧は、前記点火プラグの近傍を通過する過程でアクシス−スイッチング現象を生じて前記点火プラグの近傍を指向すると共に貫徹力が低下し、前記点火プラグの近傍を通過した時点で貫徹力を失い前記点火プラグの近傍で滞留するように制御されることを特徴とする請求項17記載の直接噴射式エンジン。
  19. 前記燃焼室において均質燃焼を行う場合、前記スイッチング噴孔により生成されるスイッチング噴霧は、前記点火プラグの近傍を通過する過程で前記燃焼室内の空気流動に追随し、アクシス−スイッチング現象を生じず前記燃焼室内の全体に拡散するように制御されることを特徴とする請求項17または請求項18に記載の直接噴射式エンジン。
  20. 着火方式として、前記燃焼室内の混合気をピストンで圧縮し自着火を行わせる圧縮着火式を採用したことを特徴とする請求項12記載の直接噴射式エンジン。
  21. 前記燃焼室において前記ピストンの上昇時に燃料噴射を行う場合、前記スイッチング噴孔により生成されるスイッチング噴霧は、アクシス−スイッチング現象を生じて貫徹力が低下し、圧縮上死点付近の前記燃焼室内においてコンパクトな全体噴霧を形成するように制御されることを特徴とする請求項20記載の直接噴射式エンジン。
  22. 前記燃焼室において前記ピストンの下降時に燃料噴射を行う場合、前記スイッチング噴孔により生成されるスイッチング噴霧は、前記燃焼室内の空気流動に追随し、アクシス−スイッチング現象を生じず前記燃焼室内の全体に拡散するように制御されることを特徴とする請求項20または請求項21に記載の直接噴射式エンジン。
JP2014043418A 2014-03-06 2014-03-06 流体噴射弁およびこれを備えた噴霧生成装置 Expired - Fee Related JP6000296B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043418A JP6000296B2 (ja) 2014-03-06 2014-03-06 流体噴射弁およびこれを備えた噴霧生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043418A JP6000296B2 (ja) 2014-03-06 2014-03-06 流体噴射弁およびこれを備えた噴霧生成装置

Publications (2)

Publication Number Publication Date
JP2015169106A true JP2015169106A (ja) 2015-09-28
JP6000296B2 JP6000296B2 (ja) 2016-09-28

Family

ID=54202085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043418A Expired - Fee Related JP6000296B2 (ja) 2014-03-06 2014-03-06 流体噴射弁およびこれを備えた噴霧生成装置

Country Status (1)

Country Link
JP (1) JP6000296B2 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138779A (ja) * 2005-11-16 2007-06-07 Nissan Motor Co Ltd 筒内噴射内燃機関
JP2007315276A (ja) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd マルチホール型インジェクタ
JP2007321711A (ja) * 2006-06-02 2007-12-13 Nissan Motor Co Ltd 燃料噴射弁
JP4085877B2 (ja) * 2003-04-25 2008-05-14 日産自動車株式会社 内燃機関の燃料噴射弁
JP4221726B2 (ja) * 2005-04-01 2009-02-12 株式会社デンソー 噴孔プレート及び燃料噴射弁
JP4230503B2 (ja) * 2006-11-30 2009-02-25 三菱電機株式会社 燃料噴射弁
JP4657187B2 (ja) * 2005-11-24 2011-03-23 本田技研工業株式会社 内燃機関
JP2011190801A (ja) * 2010-02-16 2011-09-29 Mitsubishi Electric Corp 燃料噴射弁
JP2013501185A (ja) * 2009-07-30 2013-01-10 スリーエム イノベイティブ プロパティズ カンパニー ノズル及びノズルを作製する方法
JP5295337B2 (ja) * 2011-10-19 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
JP5295316B2 (ja) * 2011-06-22 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP2014005774A (ja) * 2012-06-25 2014-01-16 Mitsubishi Electric Corp 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP2015078604A (ja) * 2013-10-15 2015-04-23 三菱電機株式会社 流体噴射弁並びに火花点火式エンジン

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085877B2 (ja) * 2003-04-25 2008-05-14 日産自動車株式会社 内燃機関の燃料噴射弁
JP4221726B2 (ja) * 2005-04-01 2009-02-12 株式会社デンソー 噴孔プレート及び燃料噴射弁
JP2007138779A (ja) * 2005-11-16 2007-06-07 Nissan Motor Co Ltd 筒内噴射内燃機関
JP4657187B2 (ja) * 2005-11-24 2011-03-23 本田技研工業株式会社 内燃機関
JP2007315276A (ja) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd マルチホール型インジェクタ
JP2007321711A (ja) * 2006-06-02 2007-12-13 Nissan Motor Co Ltd 燃料噴射弁
JP4230503B2 (ja) * 2006-11-30 2009-02-25 三菱電機株式会社 燃料噴射弁
JP2013501185A (ja) * 2009-07-30 2013-01-10 スリーエム イノベイティブ プロパティズ カンパニー ノズル及びノズルを作製する方法
JP2011190801A (ja) * 2010-02-16 2011-09-29 Mitsubishi Electric Corp 燃料噴射弁
JP5295316B2 (ja) * 2011-06-22 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP5295337B2 (ja) * 2011-10-19 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
JP2014005774A (ja) * 2012-06-25 2014-01-16 Mitsubishi Electric Corp 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP2015078604A (ja) * 2013-10-15 2015-04-23 三菱電機株式会社 流体噴射弁並びに火花点火式エンジン

Also Published As

Publication number Publication date
JP6000296B2 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
KR100482712B1 (ko) 직접 분사 연료 분사기 및 이 분사기를 장착한 내연 기관
JP5491612B1 (ja) 流体噴射弁及び噴霧生成装置
JP5295316B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP5295337B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
JP4300197B2 (ja) 燃料噴射弁とこれを用いた内燃機関
JP2008280981A (ja) 燃料噴射装置およびそれを搭載した内燃機関
JP6292188B2 (ja) 燃料噴射装置
JP5537049B2 (ja) 筒内噴射式火花点火機関
JP2004100500A (ja) 燃料噴射弁およびそれを搭載した内燃機関
JP4783439B2 (ja) 燃料噴射弁
JP2011220132A (ja) 燃料噴射弁
JP6029706B1 (ja) 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン
JP2015209772A (ja) 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン
JP2015014245A (ja) 流体噴射弁及び噴霧生成装置
JP5627742B1 (ja) 流体噴射弁及び噴霧生成装置
JP2015078604A (ja) 流体噴射弁並びに火花点火式エンジン
JP6000296B2 (ja) 流体噴射弁およびこれを備えた噴霧生成装置
JP2010084755A (ja) 燃料噴射ノズル
JP4332437B2 (ja) 燃料噴射弁および燃料噴射方法
JP2002332935A (ja) 燃料噴射弁および内燃機関
JP6012693B2 (ja) 流体噴射弁およびこれを備えた噴霧生成装置
JP4276958B2 (ja) 燃料噴射弁及び燃料噴射方法
JP5478671B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
WO2016163086A1 (ja) 燃料噴射装置
JP5520631B2 (ja) 燃料噴射装置及び燃料噴射方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R151 Written notification of patent or utility model registration

Ref document number: 6000296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees