JP2015166639A - heat accumulator - Google Patents

heat accumulator Download PDF

Info

Publication number
JP2015166639A
JP2015166639A JP2014040510A JP2014040510A JP2015166639A JP 2015166639 A JP2015166639 A JP 2015166639A JP 2014040510 A JP2014040510 A JP 2014040510A JP 2014040510 A JP2014040510 A JP 2014040510A JP 2015166639 A JP2015166639 A JP 2015166639A
Authority
JP
Japan
Prior art keywords
latent heat
heat storage
storage material
honeycomb body
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014040510A
Other languages
Japanese (ja)
Inventor
裕昭 桐木
Hiroaki Kiriki
裕昭 桐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2014040510A priority Critical patent/JP2015166639A/en
Priority to PCT/JP2015/055735 priority patent/WO2015133381A1/en
Publication of JP2015166639A publication Critical patent/JP2015166639A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a heat accumulator using a latent heat accumulating material and honeycomb bodies, where the sudden temperature rise of the latent heat accumulating material after melted is hardly caused, thereby hardly causing the deterioration of the latent heat accumulating material or the breakage of the honeycomb bodies.SOLUTION: A heat accumulator 10A includes a flow path pipe 21 in which heat medium can be distributed, a container 20 covering an outside face 212 of the flow path pipe 21 and having an internal space 201, and a heat accumulation body 30 stored in the internal space 201 and having contact with the outside face 212 of the flow path pipe 21, the heat accumulation body 30 including a latent heat accumulating material 31, and honeycomb bodies 32 immersed in the latent heat accumulating material 31 and each having linear communication paths densely arrayed in parallel, the honeycomb bodies 32 being arranged with their communication directions as mutually irregular directions. The plurality of honeycomb bodies 32 are separately immersed in the latent heat accumulating material 31 to prevent the deterioration of the latent heat accumulating materials 31 and the breakage of the honeycomb bodies 32.

Description

本発明は、例えば、自動車の暖機運転の短縮、太陽熱の蓄熱等、様々な分野で利用されている蓄熱器に関するものである。   The present invention relates to a heat accumulator that is used in various fields, such as shortening of warm-up operation of an automobile and heat storage of solar heat.

特許文献1には、優れた伝熱効率を有する蓄熱装置として、過冷却蓄熱材を備え、当該過冷却蓄熱材の相変化に伴って放出される潜熱により対象物を加熱する蓄熱装置であって、過冷却蓄熱材を収容する容器と、過冷却状態の過冷却蓄熱材を発核させて相変化させる発核装置と、を備え、容器内には、複数の細孔を有する隔壁と、当該隔壁により区分けされた複数のセルと、が設けられていることを特徴とする蓄熱装置が記載されている。なお、過冷却蓄熱材とは、液相状態から温度を下げて、その温度が凝固点以下になっても液相のままで固化しない性質を有する潜熱蓄熱材である。   Patent Document 1 is a heat storage device that includes a supercooling heat storage material as a heat storage device having excellent heat transfer efficiency, and heats an object by latent heat released with a phase change of the supercooling heat storage material, A container containing a supercooled heat storage material; and a nucleation device for nucleating the supercooled heat storage material in a supercooled state, and a partition having a plurality of pores in the container; and the partition There is described a heat storage device that is provided with a plurality of cells that are separated by the above. The supercooled heat storage material is a latent heat storage material that has the property that it remains in the liquid phase and does not solidify even when the temperature is lowered from the liquid phase state and the temperature falls below the freezing point.

さらに、略水平な第1の隔壁と、この第1の隔壁に交差する第2の隔壁とによって、過冷却蓄熱材を収容する容器内が格子状のセルに区分けされていること、第1の隔壁、第2の隔壁および外周壁は、アルミナやSiC(シリコンカーバイド)等の多孔質の熱伝導体を押出し成形することにより、一体成形されることが記載されている。
このような格子状のセルを用いることによってこれらの隔壁に対して略垂直に成長した針状結晶と各隔壁との接触面積を増大できる結果、これらの隔壁を通じて過冷却蓄熱材の潜熱をより効率良く伝熱できることが記載されている。
Furthermore, the container containing the supercooled heat storage material is divided into grid-like cells by the substantially horizontal first partition and the second partition intersecting with the first partition. It is described that the partition wall, the second partition wall, and the outer peripheral wall are integrally formed by extruding a porous heat conductor such as alumina or SiC (silicon carbide).
By using such a lattice-like cell, the contact area between the needle-like crystals grown substantially perpendicular to these partition walls and each partition wall can be increased, and as a result, the latent heat of the supercooled heat storage material can be made more efficient through these partition walls. It is described that heat can be transferred well.

特開2012−78030号公報JP 2012-78030 A

しかしながら、潜熱蓄熱材は、大きな融解潜熱を有している代わりに液体の比熱がそれほど大きくない。特許文献1に開示された複数のセル(ハニカム体)と潜熱蓄熱材とが設けられた蓄熱装置は、潜熱蓄熱材が一旦溶融してしまうと熱を蓄える能力が大きくなく、熱源に近い部分では急昇温する。このため、潜熱蓄熱材の熱膨張によるセル(ハニカム体)の破損あるいは、潜熱蓄熱材の使用上限温度を超え、潜熱蓄熱材を劣化させるなどの問題がある。   However, the latent heat storage material has a large latent heat of fusion, but the specific heat of the liquid is not so large. The heat storage device provided with a plurality of cells (honeycomb bodies) and the latent heat storage material disclosed in Patent Document 1 is not large in ability to store heat once the latent heat storage material has melted, and in a portion close to the heat source The temperature rises rapidly. For this reason, there is a problem that the cell (honeycomb body) is damaged due to thermal expansion of the latent heat storage material, or the use upper limit temperature of the latent heat storage material is exceeded and the latent heat storage material is deteriorated.

本発明は、従来の問題を解決するためになされたもので、潜熱蓄熱材と、ハニカム体とを用いた蓄熱器において、潜熱蓄熱材が溶融した後に急昇温しにくくすることにより、潜熱蓄熱材の劣化あるいはハニカム体の破損が起こりにくい蓄熱器を提供することを目的とする。   The present invention has been made in order to solve the conventional problems, and in a heat storage unit using a latent heat storage material and a honeycomb body, it is difficult to rapidly raise the temperature after the latent heat storage material is melted. An object of the present invention is to provide a heat accumulator that is less susceptible to material deterioration or honeycomb body damage.

前記課題を解決するための本発明の蓄熱器は、熱媒体が流通可能な流路配管と、前記流路配管の外側面を覆うとともに内部空間を有する容器と、前記内部空間に収容され、前記流路配管の外側面と接触する蓄熱体と、からなる蓄熱器において、前記蓄熱体は、潜熱蓄熱材と、前記潜熱蓄熱材に浸漬され、連通路が並行に密集配列されたハニカム体とからなり、前記各ハニカム体は、それぞれの前記各連通路の連通方向が互いに不規則な方向を向くように配置されているものである。   The heat accumulator of the present invention for solving the above problems is accommodated in a flow path pipe through which a heat medium can flow, a container that covers an outer surface of the flow path pipe and has an internal space, and the internal space, A heat accumulator comprising a heat accumulator in contact with an outer surface of the flow pipe, wherein the heat accumulator is a latent heat accumulator and a honeycomb body that is immersed in the latent heat accumulator and the communication passages are densely arranged in parallel. Thus, the honeycomb bodies are arranged such that the communication directions of the respective communication paths face irregular directions.

本発明の蓄熱器は、熱媒体が流通可能な流路配管と、流路配管の外側面を覆うとともに内部空間を有する容器と、内部空間に収容され流路配管の外側面と接触する蓄熱体を有する。
蓄熱体は、潜熱蓄熱材と、潜熱蓄熱材に浸漬され直線状の連通路が並行に密集配列されたハニカム体を有し、ハニカム体は、各連通路の連通方向が互いに不規則な方向を向くように配置されている。
The heat accumulator of the present invention includes a flow path pipe through which a heat medium can flow, a container that covers the outer surface of the flow path pipe and has an internal space, and a heat storage body that is accommodated in the internal space and contacts the outer surface of the flow path pipe. Have
The heat storage body has a latent heat storage material and a honeycomb body in which linear communication paths are immersed in the latent heat storage material and arranged closely in parallel, and the communication directions of the communication paths are irregular to each other. It is arranged to face.

このため、複数のハニカム体に分けて潜熱蓄熱材に浸漬することにより、ハニカム体の連通路が細かく分断されて潜熱蓄熱材に浸漬される。これにより、流路配管を流れる熱媒体によって加熱されると、各連通孔の長さが短く分断されているので、各連通路の内部の潜熱蓄熱材がほぼ同時に溶融することができるので、潜熱蓄熱材が溶融した後に急昇温しにくくして、潜熱蓄熱材の劣化あるいはハニカム体の破損を防止することができる。
ハニカム体の連通路は、太さが一定の孔であるので、くびれた部分がなく潜熱蓄熱材の対流の抵抗となりにくいので、潜熱蓄熱材を効率良く対流させることができる。
また、各ハニカム体は、連通路の連通方向が互いに不規則な方向を向くように配置され連通路は、潜熱蓄熱材が存在する空間に面しているので、開口を通して溶融した潜熱蓄熱材が容易に出入り対流することができる。
For this reason, by dividing into a plurality of honeycomb bodies and immersing in the latent heat storage material, the communication path of the honeycomb body is finely divided and immersed in the latent heat storage material. As a result, when heated by the heat medium flowing through the flow path pipe, the length of each communication hole is divided so that the latent heat storage material inside each communication path can be melted almost simultaneously. It is possible to prevent a rapid increase in temperature after the heat storage material has melted, thereby preventing the deterioration of the latent heat storage material or the breakage of the honeycomb body.
Since the communication path of the honeycomb body is a hole having a constant thickness, there is no constricted portion and it is difficult for convection resistance of the latent heat storage material, so that the latent heat storage material can be efficiently convected.
Further, each honeycomb body is arranged so that the communication directions of the communication passages are irregular directions, and the communication passage faces the space where the latent heat storage material exists, so that the latent heat storage material melted through the opening is formed. Easy convection in and out.

また、本発明の蓄熱器は、以下の態様であることが望ましい。
(1)前記ハニカム体は、セラミック製である。
潜熱蓄熱材は、使用する温度域に応じて様々なものが選択され、腐食性を有するものがあるが、化学的に安定なセラミックを用いることにより、腐食されることなく安定して使用することができる。また、セラミックは、耐熱性を有しているので、高温でも腐食することなく使用することができる。
Moreover, it is desirable that the heat accumulator of the present invention has the following mode.
(1) The honeycomb body is made of ceramic.
Various latent heat storage materials are selected according to the temperature range to be used, and some have corrosive properties. However, by using a chemically stable ceramic, it should be used stably without being corroded. Can do. Further, since ceramic has heat resistance, it can be used without being corroded even at high temperatures.

(2)前記ハニカム体は、炭化珪素製である。
炭化珪素は、セラミックの中でも耐熱性が高く、化学的に安定であるので、高温でも腐食することなく使用することができる。
(2) The honeycomb body is made of silicon carbide.
Since silicon carbide has high heat resistance and is chemically stable among ceramics, it can be used without corrosion even at high temperatures.

(3)前記複数のハニカム体は、互いに点接触している。
従って、複数のハニカム体が互いに点接触するように浸漬されていることによって、潜熱蓄熱材が溶融した際に、ハニカム体が自由に浮遊しないように拘束される。また、潜熱蓄熱材が溶融して対流を開始する前にも、ハニカム体間の熱伝導によって伝熱を促進することができる。さらに、点接触するように浸漬されていることによって、ハニカム体の間に空間を形成することができ、対流を促進することができる。
(3) The plurality of honeycomb bodies are in point contact with each other.
Therefore, when the plurality of honeycomb bodies are immersed so as to be in point contact with each other, when the latent heat storage material is melted, the honeycomb bodies are constrained not to float freely. Further, heat transfer can be promoted by heat conduction between the honeycomb bodies before the latent heat storage material is melted and convection is started. Furthermore, by being immersed so as to be in point contact, a space can be formed between the honeycomb bodies, and convection can be promoted.

(4)前記ハニカム体の少なくとも一方の開口面は、凸部を有する。
開口面に設けられた凸部が、他のハニカムの外表面と対向しても空間を形成するように機能することができるので、対流を促進することができる。
(4) At least one opening surface of the honeycomb body has a convex portion.
Since the convex portion provided on the opening surface can function to form a space even when facing the outer surface of another honeycomb, convection can be promoted.

(5)前記ハニカム体の少なくとも一方の開口面は、破断面を有する。
開口面は平坦な面ではない破断面であるので、破断面の凸部が他のハニカムの外表面と対向しても空間を形成することができ、対流を促進することができる。
(5) At least one opening surface of the honeycomb body has a fracture surface.
Since the opening surface is a fracture surface that is not a flat surface, a space can be formed even if the convex portion of the fracture surface faces the outer surface of another honeycomb, and convection can be promoted.

本発明では、蓄熱体は、潜熱蓄熱材と、潜熱蓄熱材に浸漬され直線状の連通路が並行に密集配列されたハニカム体を有するとともに、ハニカム体は、各連通路の連通方向が互いに不規則な方向を向くように配置されている。このため、複数のハニカム体に分けて潜熱蓄熱材に浸漬することにより、ハニカム体の連通路が細かく分断されて潜熱蓄熱材に浸漬されるので、流路配管を流れる熱媒体によって加熱されると、各連通路の内部の潜熱蓄熱材がほぼ同時に溶融することができ、ハニカムの連通路を通って潜熱蓄熱材が対流するようになるので、潜熱蓄熱材が溶融した後に急昇温しにくくして、潜熱蓄熱材の劣化あるいはハニカム体の破損を防止することができる。また、ハニカム体は、各連通路の連通方向が互いに不規則な方向を向くように配置されているので、潜熱蓄熱材の対流に要する空間を形成できるという効果を有する蓄熱器を提供できる。   In the present invention, the heat storage body has a latent heat storage material and a honeycomb body in which linear communication paths are densely arranged in parallel and immersed in the latent heat storage material. It is arranged to face a regular direction. For this reason, by dividing into a plurality of honeycomb bodies and immersing in the latent heat storage material, the communication path of the honeycomb body is finely divided and immersed in the latent heat storage material. The latent heat storage material inside each communication passage can be melted almost simultaneously, and the latent heat storage material convects through the honeycomb communication passage, so that it is difficult for the latent heat storage material to rise rapidly after the latent heat storage material is melted. Thus, deterioration of the latent heat storage material or damage to the honeycomb body can be prevented. Moreover, since the honeycomb body is disposed so that the communication directions of the respective communication passages are irregular directions, it is possible to provide a heat accumulator having an effect that a space required for convection of the latent heat storage material can be formed.

本発明に係る第1実施形態の蓄熱器の断面図Sectional drawing of the thermal accumulator of 1st Embodiment which concerns on this invention. 潜熱蓄熱材の例および性質を示す表Table showing examples and properties of latent heat storage materials ハニカム体の一例の斜視図Perspective view of an example of a honeycomb body (A)〜(C)はハニカム体の凸部を示す断面図(A)-(C) is sectional drawing which shows the convex part of a honeycomb body 本発明に係る第2実施形態の蓄熱器におけるハニカム体の開口面に設けられた破断面を示す断面の拡大図The enlarged view of the section which shows the fracture surface provided in the opening side of the honeycomb body in the regenerator of a 2nd embodiment concerning the present invention.

(第1実施形態)
以下、本発明に係る第1実施形態の蓄熱器について、図面を用いて説明する。
図1に示すように、第1実施形態の蓄熱器10Aは、内部空間201を有する例えば円柱や矩形等の箱状の容器20を有する。容器20は、例えばステンレスや鉄等の金属で形成することができる。あるいは、容器20は、アルミナや陶磁器等のセラミックで形成することもできる。
(First embodiment)
Hereinafter, the heat accumulator of 1st Embodiment which concerns on this invention is demonstrated using drawing.
As shown in FIG. 1, the regenerator 10 </ b> A of the first embodiment includes a box-shaped container 20 having an internal space 201, such as a cylinder or a rectangle. The container 20 can be formed, for example with metals, such as stainless steel and iron. Or the container 20 can also be formed with ceramics, such as an alumina and ceramics.

容器20には、内部空間201を貫通する流路配管21が設けられている。流路配管21は、例えば直管状、クランク状、U字状、L字状、サーペンタイン構造、並列構造、螺旋状等の形状を取ることができる。図1では、直管状の流路配管21を示しており、流路211を熱媒体が流通する。
また、流路配管21は、例えば、鉄、ステンレス、銅、アルミニウム等の金属で形成することができる。あるいは、流路配管21は、アルミナ、ジルコニア、マグネシア、炭化珪素、窒化アルミニウム、窒化珪素、黒鉛等のセラミックで形成することもできる。
The container 20 is provided with a flow channel pipe 21 that penetrates the internal space 201. The channel pipe 21 can take, for example, a straight tube shape, a crank shape, a U shape, an L shape, a serpentine structure, a parallel structure, a spiral shape, and the like. In FIG. 1, a straight tubular flow channel 21 is shown, and a heat medium flows through the flow channel 211.
Moreover, the flow path piping 21 can be formed with metals, such as iron, stainless steel, copper, and aluminum, for example. Alternatively, the channel pipe 21 can be formed of ceramic such as alumina, zirconia, magnesia, silicon carbide, aluminum nitride, silicon nitride, graphite.

容器20の内部空間201には、蓄熱体30が収容されており、流路配管21の外側面212と接触している。
蓄熱体30は、潜熱蓄熱材31と、潜熱蓄熱材31に浸漬された複数個のハニカム体32を有する。
潜熱蓄熱材31は、最初に加熱される前は例えば粉体であり、流路配管21内を高熱の熱媒体が通過することにより加熱されると液化する性質を有する。潜熱蓄熱材31としては、図2に示すように、例えば、硝酸ナトリウム+硝酸カリウム、塩化マグネシウム六水和物、塩化カルシウム六水和物、ナフタリン等が使用できる。なお、一旦溶融した潜熱蓄熱材31は、凝固すると粉体にはならず、塊状になる。このため2回目以降に使用される際は、溶融前の潜熱蓄熱材は塊状の固体である。
The heat storage body 30 is accommodated in the internal space 201 of the container 20 and is in contact with the outer side surface 212 of the flow path pipe 21.
The heat storage body 30 includes a latent heat storage material 31 and a plurality of honeycomb bodies 32 immersed in the latent heat storage material 31.
The latent heat storage material 31 is, for example, powder before being heated for the first time, and has a property of being liquefied when heated by passing a high-temperature heat medium through the flow path pipe 21. As the latent heat storage material 31, for example, sodium nitrate + potassium nitrate, magnesium chloride hexahydrate, calcium chloride hexahydrate, naphthalene, or the like can be used as shown in FIG. Note that once the latent heat storage material 31 is melted, it does not become a powder when solidified but becomes a lump. For this reason, when used after the second time, the latent heat storage material before melting is a massive solid.

図3に示すように、ハニカム体32は、例えば矩形箱状の筐体321を有し、筐体321の内部には、直線状の複数の連通路322が並行に密集配列されている。連通路322の両端は、筐体321の両開口面323に位置する。
また、ハニカム体の連通路は、直線状であっても、湾曲していてもよい。
ハニカム体32は、例えば、鉄、ステンレス、アルミニウム、銅等の金属で形成することができる。あるいは、炭化珪素、アルミナ、コージェライト、陶磁器等のセラミックで形成することができる。ここでは、ハニカム体32はセラミックで形成するのが望ましい。さらに、ハニカム体32を炭化珪素で形成するのが一層望ましい。炭化珪素は熱伝導率が高く、耐熱性があり、化学的に安定な物質であるので好適に利用できる。
As shown in FIG. 3, the honeycomb body 32 includes, for example, a rectangular box-shaped housing 321, and a plurality of linear communication paths 322 are densely arranged in parallel inside the housing 321. Both ends of the communication path 322 are located on both opening surfaces 323 of the housing 321.
Further, the communication path of the honeycomb body may be linear or curved.
The honeycomb body 32 can be formed of a metal such as iron, stainless steel, aluminum, or copper, for example. Or it can form with ceramics, such as silicon carbide, an alumina, a cordierite, and ceramics. Here, the honeycomb body 32 is preferably formed of ceramic. Furthermore, it is more desirable to form the honeycomb body 32 from silicon carbide. Silicon carbide can be suitably used because it has a high thermal conductivity, is heat resistant, and is a chemically stable substance.

また、図4(A)〜図4(C)に示すように、ハニカム体32は、少なくとも一方の開口面323に凸部33を有する。
図4(A)に示すハニカム体32では、一部の連通路322の長さが長く形成されており、開口面323から流通方向に突出して凸部331が形成されている。なお、ここでは、両開口面323に凸部331が設けられているが、一方の開口面323にのみ設けることもできる。また、2本の連通路322が突出する場合を例示したが、連通路322の本数は、これに限るものではない。
Further, as shown in FIGS. 4A to 4C, the honeycomb body 32 has a convex portion 33 on at least one opening surface 323.
In the honeycomb body 32 shown in FIG. 4A, the length of a part of the communication passages 322 is formed long, and a convex portion 331 is formed so as to protrude from the opening surface 323 in the flow direction. Here, the convex portions 331 are provided on both opening surfaces 323, but may be provided only on one opening surface 323. Moreover, although the case where the two communication paths 322 protrude was illustrated, the number of the communication paths 322 is not restricted to this.

図4(B)に示すハニカム体32は、全ての連通路322の長さが等しく、全体として平行四辺形に形成されている。このため、両開口面323において凸部332が形成される。
また、図4(C)に示すハニカム体32は、全ての連通路322の長さが等しく、幅方向の一端側において、連通路322が流通方向にずれている。このため、開口面323から突出する部分に凸部333が形成される。
In the honeycomb body 32 shown in FIG. 4B, all the communication passages 322 have the same length, and are formed in a parallelogram as a whole. For this reason, the convex part 332 is formed in both the opening surfaces 323.
In the honeycomb body 32 shown in FIG. 4C, all the communication passages 322 have the same length, and the communication passage 322 is shifted in the flow direction at one end side in the width direction. For this reason, the convex part 333 is formed in the part which protrudes from the opening surface 323. FIG.

図1に示すように、各ハニカム体32は、潜熱蓄熱材31の内部において、それぞれの各連通路322の連通方向が互いに不規則な方向を向くように配置されている。
このため、ハニカム体32は、近接する別のハニカム体32に一部が接触するので、両ハニカム体32の間に空間Sが生じる。特に、凸部33を設けた場合には、近接する別のハニカム体32に接触した際に点接触になりやすいため、大きな空間Sが形成されやすくなる。
As shown in FIG. 1, the honeycomb bodies 32 are arranged inside the latent heat storage material 31 so that the communication directions of the communication paths 322 are irregular.
For this reason, a part of the honeycomb body 32 comes into contact with another adjacent honeycomb body 32, so that a space S is generated between the two honeycomb bodies 32. In particular, when the convex portion 33 is provided, a large space S is likely to be formed because a point contact is liable to occur when contacting with another adjacent honeycomb body 32.

従って、流路配管21に熱媒体を流して蓄熱体30の潜熱蓄熱材31加熱すると、潜熱蓄熱材31は塊状の固体から溶融して液体に相変化する。このとき、複数のハニカム体32の間には空間Sが設けられているので、各ハニカム体32の各連通路322の内部の潜熱蓄熱材31が、ほぼ同時に加熱されて溶融し、液化した潜熱蓄熱材31がすぐに対流を開始し、各ハニカム体32を加熱する。   Accordingly, when the heat medium is passed through the flow path pipe 21 and the latent heat storage material 31 of the heat storage body 30 is heated, the latent heat storage material 31 is melted from the massive solid and changed into a liquid phase. At this time, since the space S is provided between the plurality of honeycomb bodies 32, the latent heat storage material 31 inside each communication passage 322 of each honeycomb body 32 is heated and melted almost simultaneously, and is liquefied latent heat. The heat storage material 31 immediately starts convection and heats each honeycomb body 32.

次に、蓄熱器10Aの作用効果について説明する。
蓄熱器10Aは、熱媒体が流通可能な流路配管21と、流路配管21の外側面212を覆うとともに内部空間201を有する容器20と、内部空間201に収容され流路配管21の外側面212と接触する蓄熱体30を有する。
蓄熱体30は、潜熱蓄熱材31と、潜熱蓄熱材31に浸漬され直線状の連通路322が並行に密集配列された複数のハニカム体32を有する。そして、ハニカム体32は、各連通路322の連通方向が互いに不規則な方向を向くように配置されている。
Next, the function and effect of the heat accumulator 10A will be described.
The heat accumulator 10A includes a flow path pipe 21 through which a heat medium can flow, a container 20 that covers the outer surface 212 of the flow path pipe 21 and has an internal space 201, and an outer surface of the flow path pipe 21 that is accommodated in the internal space 201. The heat storage body 30 is in contact with 212.
The heat storage body 30 includes a latent heat storage material 31 and a plurality of honeycomb bodies 32 that are immersed in the latent heat storage material 31 and linear communication paths 322 are densely arranged in parallel. And the honeycomb body 32 is arrange | positioned so that the communication direction of each communicating path 322 may face an irregular direction mutually.

このため、複数のハニカム体32に分けて潜熱蓄熱材31に浸漬することにより、ハニカム体32の連通路322が細かく分断されて潜熱蓄熱材31に浸漬される。これにより、流路配管21を流れる熱媒体によって加熱されると、各連通路322の内部の潜熱蓄熱材31がほぼ同時に溶融することができるので、潜熱蓄熱材31が溶融した後に急昇温しにくくして、潜熱蓄熱材31の劣化あるいはハニカム体32の破損を防止することができる。   For this reason, by dividing into a plurality of honeycomb bodies 32 and immersing in the latent heat storage material 31, the communication path 322 of the honeycomb body 32 is finely divided and immersed in the latent heat storage material 31. Thus, when heated by the heat medium flowing through the flow path pipe 21, the latent heat storage material 31 inside each communication passage 322 can be melted almost simultaneously, so that the temperature rises rapidly after the latent heat storage material 31 is melted. It is possible to prevent the latent heat storage material 31 from being deteriorated or the honeycomb body 32 from being damaged.

また、各ハニカム体32は、連通方向が互いに不規則な方向を向くように配置されているので、各ハニカム体32は不規則に当接して、各ハニカム体32の間には潜熱蓄熱材31の対流に要する空間Sを形成することができる。これにより、潜熱蓄熱材31は、効率良く対流することができる。
各連通路322の内部の潜熱蓄熱材31は、ほぼ同時に溶融することができるので、連通路322またはハニカム体32の間の空間Sを利用して対流し、潜熱蓄熱材31が加熱されることを防止することができる。
Further, since the honeycomb bodies 32 are arranged so that the communication directions thereof are irregular directions, the honeycomb bodies 32 abut on irregularly, and the latent heat storage material 31 is interposed between the honeycomb bodies 32. It is possible to form a space S required for the convection. Thereby, the latent heat storage material 31 can convect efficiently.
Since the latent heat storage material 31 inside each communication passage 322 can be melted almost simultaneously, the latent heat storage material 31 is heated by convection using the space S between the communication passage 322 or the honeycomb body 32. Can be prevented.

また、蓄熱器10Aでは、ハニカム体32は、セラミック製である。
潜熱蓄熱材31は、使用する温度域に応じて様々なものが選択され、腐食性を有するものがあるが、化学的に安定なセラミックを用いることにより、腐食されることなく安定して使用することができる。また、セラミックは、耐熱性を有しているので、高温でも腐食することなく使用することができる。
In the heat accumulator 10A, the honeycomb body 32 is made of ceramic.
Various latent heat storage materials 31 are selected depending on the temperature range to be used, and some have corrosive properties. However, by using a chemically stable ceramic, the latent heat storage material 31 can be used stably without being corroded. be able to. Further, since ceramic has heat resistance, it can be used without being corroded even at high temperatures.

蓄熱器10Aでは、ハニカム体32は、炭化珪素製である。
炭化珪素は、セラミックの中でも耐熱性が高く、化学的に安定であるので、高温でも腐食することなく使用することができる。
In the heat accumulator 10A, the honeycomb body 32 is made of silicon carbide.
Since silicon carbide has high heat resistance and is chemically stable among ceramics, it can be used without corrosion even at high temperatures.

蓄熱器10Aでは、複数のハニカム体32は、互いに点接触している。
複数のハニカム体32が互いに点接触するように浸漬されていることによって、潜熱蓄熱材31が溶融した際に、ハニカム体32が自由に浮遊しないよう拘束する。また、潜熱蓄熱材31が溶融して対流を開始する前にも、ハニカム体32間の熱伝導によって伝熱を促進することができる。さらに、点接触するように浸漬されていることによって、ハニカム体32の間に空間Sを形成することができ、対流を促進することができる。全面が接触していないので、対流に必要な充分な空間Sを形成することができる。なお、点接触が好ましいのは、ハニカム体32の開口面323に限定されず、ハニカム体の側面でも点接触することによって空間Sを確保でき、潜熱蓄熱材の対流を促進することができる。
In the heat accumulator 10A, the plurality of honeycomb bodies 32 are in point contact with each other.
By immersing the honeycomb bodies 32 so as to be in point contact with each other, the honeycomb bodies 32 are restrained from floating freely when the latent heat storage material 31 is melted. In addition, heat transfer can be promoted by heat conduction between the honeycomb bodies 32 before the latent heat storage material 31 is melted and convection is started. Furthermore, by being immersed so as to be in point contact, a space S can be formed between the honeycomb bodies 32, and convection can be promoted. Since the entire surface is not in contact, a sufficient space S necessary for convection can be formed. The point contact is preferably not limited to the opening surface 323 of the honeycomb body 32, and the space S can be secured by making point contact also on the side surface of the honeycomb body 32, and convection of the latent heat storage material can be promoted.

蓄熱器10Aでは、ハニカム体32の少なくとも一方の開口面323は、凸部を有する。
このため、ハニカムの開口面が他のハニカムの外表面と対向しても凸部が開口面323の間に空間Sを形成するように機能することができる。
In the heat accumulator 10A, at least one opening surface 323 of the honeycomb body 32 has a convex portion.
For this reason, even if the opening surface of the honeycomb faces the outer surface of another honeycomb, the convex portion can function to form a space S between the opening surfaces 323.

(第2実施形態)
次に、図5に示す第2実施形態の蓄熱器10Bについて説明する。
なお、前述した第1実施形態の蓄熱器10Aと共通する部位には同じ符号を付して、重複する説明を省略することとする。
第1実施形態の蓄熱器10Aでは、ハニカム体32の開口面323に凸部33を設けてハニカム体32の間に空間Sを設けた(図4参照)が、第2実施形態の蓄熱器10Bでは、図5に示すように、凸部33を設ける代わりに、開口面323に破断面34を設けた。
(Second Embodiment)
Next, the heat accumulator 10B of 2nd Embodiment shown in FIG. 5 is demonstrated.
In addition, suppose that the same code | symbol is attached | subjected to the site | part which is common in the heat storage device 10A of 1st Embodiment mentioned above, and the overlapping description is abbreviate | omitted.
In the heat accumulator 10A of the first embodiment, the convex portion 33 is provided on the opening surface 323 of the honeycomb body 32 and the space S is provided between the honeycomb bodies 32 (see FIG. 4), but the heat accumulator 10B of the second embodiment. Then, as shown in FIG. 5, the fracture surface 34 is provided on the opening surface 323 instead of providing the convex portion 33.

蓄熱器10Bでは、ハニカム体32の少なくとも一方の開口面323は、破断面34を有する。
このため、開口面323は平坦な面ではない破断面34となるので、ハニカム体32の開口面323が他のハニカム体32の外表面と対向しても破断面34の凸部341が接触することにより、開口面323の間に空間Sを形成することができ、対流を促進することができる。
In the heat accumulator 10 </ b> B, at least one opening surface 323 of the honeycomb body 32 has a fracture surface 34.
For this reason, since the opening surface 323 becomes the broken surface 34 which is not a flat surface, even if the opening surface 323 of the honeycomb body 32 opposes the outer surface of the other honeycomb body 32, the convex part 341 of the fracture surface 34 contacts. Thus, a space S can be formed between the opening surfaces 323, and convection can be promoted.

本発明の蓄熱器は、前述した各実施形態に限定されるものでなく、適宜な変形、改良等が可能である。   The heat accumulator of the present invention is not limited to the above-described embodiments, and appropriate modifications and improvements can be made.

本発明の蓄熱器は、例えば、自動車の暖機運転の短縮、太陽熱の蓄熱等、様々な分野で利用されている蓄熱器として利用することができる。   The heat accumulator of the present invention can be used as a heat accumulator utilized in various fields, for example, shortening of warm-up operation of an automobile and heat storage of solar heat.

10A、10B 蓄熱器
20 容器
201 内部空間
21 流路配管
212 外側面
30 蓄熱体
31 潜熱蓄熱材
32 ハニカム体
322 連通路
323 開口面
33 凸部
34 破断面
10A, 10B Regenerator 20 Container 201 Inner space 21 Channel piping 212 Outer surface 30 Heat storage body 31 Latent heat storage material 32 Honeycomb body 322 Communication path 323 Opening surface 33 Protruding part 34 Broken surface

Claims (6)

熱媒体が流通可能な流路配管と、
前記流路配管の外側面を覆うとともに内部空間を有する容器と、
前記内部空間に収容され、前記流路配管の外側面と接触する蓄熱体と、からなる蓄熱器において、
前記蓄熱体は、潜熱蓄熱材と、前記潜熱蓄熱材に浸漬され、直線状の連通路が並行に密集配列されたハニカム体とからなり、
前記各ハニカム体は、それぞれの前記各連通路の連通方向が互いに不規則な方向を向くように配置されていることを特徴とする蓄熱器。
A flow path pipe through which a heat medium can flow;
A container that covers the outer surface of the flow pipe and has an internal space;
In the heat accumulator comprising the heat accumulator housed in the internal space and in contact with the outer surface of the flow path pipe,
The heat storage body comprises a latent heat storage material, and a honeycomb body that is immersed in the latent heat storage material and linear communication paths are densely arranged in parallel,
Each said honeycomb body is arrange | positioned so that the communication direction of each said each communicating path may face an irregular direction mutually.
前記ハニカム体は、セラミック製であることを特徴とする請求項1に記載の蓄熱器。   The regenerator according to claim 1, wherein the honeycomb body is made of ceramic. 前記ハニカム体は、炭化珪素製であることを特徴とする請求項2に記載の蓄熱器。   The regenerator according to claim 2, wherein the honeycomb body is made of silicon carbide. 前記複数のハニカム体は、互いに点接触していることを特徴とする請求項1〜請求項3のうちのいずれか一項に記載の蓄熱器。   The regenerator according to any one of claims 1 to 3, wherein the plurality of honeycomb bodies are in point contact with each other. 前記ハニカム体の少なくとも一方の開口面は、凸部を有することを特徴とする請求項1〜請求項4のうちのいずれか一項に記載の蓄熱器。   The regenerator according to any one of claims 1 to 4, wherein at least one opening surface of the honeycomb body has a convex portion. 前記ハニカム体の少なくとも一方の開口面は、破断面を有することを特徴とする請求項1〜請求項4のうちのいずれか一項に記載の蓄熱器。   The regenerator according to any one of claims 1 to 4, wherein at least one opening surface of the honeycomb body has a fractured surface.
JP2014040510A 2014-03-03 2014-03-03 heat accumulator Pending JP2015166639A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014040510A JP2015166639A (en) 2014-03-03 2014-03-03 heat accumulator
PCT/JP2015/055735 WO2015133381A1 (en) 2014-03-03 2015-02-27 Heat regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040510A JP2015166639A (en) 2014-03-03 2014-03-03 heat accumulator

Publications (1)

Publication Number Publication Date
JP2015166639A true JP2015166639A (en) 2015-09-24

Family

ID=54055189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040510A Pending JP2015166639A (en) 2014-03-03 2014-03-03 heat accumulator

Country Status (2)

Country Link
JP (1) JP2015166639A (en)
WO (1) WO2015133381A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1024015B1 (en) * 2016-07-29 2017-10-27 Cesi Power Exchanger HEAT EXCHANGER FOR THERMAL SOLAR SENSOR
FR3069311A1 (en) * 2017-07-20 2019-01-25 Valeo Systemes Thermiques REFRIGERATOR STORAGE UNIT, IN PARTICULAR FOR A MOTOR VEHICLE AIR CONDITIONING SYSTEM

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866608A (en) * 1971-12-15 1973-09-12
JPS6162760A (en) * 1984-09-04 1986-03-31 株式会社日立製作所 Piston for cold accumulation type expansion machine and manufacture thereof
JPS61261388A (en) * 1985-05-15 1986-11-19 Nippon Denso Co Ltd Heat storing apparatus
JP2746943B2 (en) * 1988-10-03 1998-05-06 工業技術院長 Regenerator
JPH05306389A (en) * 1992-04-28 1993-11-19 Takashi Nishigori Thermal storage material
IL130545A0 (en) * 1999-06-18 2000-06-01 Yeda Res & Dev Safety system for storage of high temperature heat
JP2001012804A (en) * 1999-06-29 2001-01-19 Energy Support Corp Method for filling heat storage material
US7998367B2 (en) * 2006-06-21 2011-08-16 Stc.Unm Metal-carbon nanotube composites for enhanced thermal conductivity for demanding or critical applications
JP2010173906A (en) * 2009-01-30 2010-08-12 Pilot Corporation Ceramic structure
JP6144937B2 (en) * 2012-03-30 2017-06-07 日本碍子株式会社 Heat exchange member

Also Published As

Publication number Publication date
WO2015133381A1 (en) 2015-09-11

Similar Documents

Publication Publication Date Title
AU2010330335B2 (en) Heat transfer tube
JP5819838B2 (en) Heat exchange member
Fukai et al. Thermal conductivity enhancement of energy storage media using carbon fibers
US10436522B2 (en) Thermal storage heat exchanger structures employing phase change materials
Niyas et al. Performance investigation of a lab-scale latent heat storage prototype–experimental results
JP6324150B2 (en) Heat exchange member and ceramic structure
US4832118A (en) Heat exchanger
US11719489B2 (en) Heat exchanger
WO2015133381A1 (en) Heat regenerator
EP2543950A2 (en) Phase change material heat sink
JPWO2013111815A1 (en) Heat transport equipment
CN111578130A (en) Heat conduction fin and solid state hydrogen storage device with same
JP2018179403A (en) Heat pipe
WO2015133380A1 (en) Heat storing device
JP2018179487A (en) Heat pipe
JP2017036841A (en) Accumulator
WO2018235936A1 (en) Heat pipe
RU2457417C1 (en) Metal heat pipe of flat type
JP6026469B2 (en) Flat heat accumulator, heat accumulator unit with flat heat accumulator and heat accumulator with heat accumulator unit
CN110822969A (en) Heat exchange device and heat storage device
RU2603698C1 (en) Element of spacecraft low-potential energy release device
JP2007225219A (en) Heat storage device
TWM460506U (en) Multi-separation chamber low flow heat conduction device
JP2016138722A (en) Heat storage tank and heat exchange system including the same
JP2020165634A (en) Flow passage structure for heat exchanger and heat exchanger