JP2015163423A - Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work - Google Patents

Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work Download PDF

Info

Publication number
JP2015163423A
JP2015163423A JP2015009264A JP2015009264A JP2015163423A JP 2015163423 A JP2015163423 A JP 2015163423A JP 2015009264 A JP2015009264 A JP 2015009264A JP 2015009264 A JP2015009264 A JP 2015009264A JP 2015163423 A JP2015163423 A JP 2015163423A
Authority
JP
Japan
Prior art keywords
layer
composite
nitride
crystal
composite nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015009264A
Other languages
Japanese (ja)
Other versions
JP6394898B2 (en
Inventor
翔 龍岡
Sho Tatsuoka
翔 龍岡
佐藤 賢一
Kenichi Sato
佐藤  賢一
健志 山口
Kenji Yamaguchi
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015009264A priority Critical patent/JP6394898B2/en
Priority to CN201510031601.3A priority patent/CN104816141B/en
Publication of JP2015163423A publication Critical patent/JP2015163423A/en
Application granted granted Critical
Publication of JP6394898B2 publication Critical patent/JP6394898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work of stainless steel or the like.SOLUTION: A surface coating cutting tool includes a base element surface coated with a hard coating layer formed of a composite carbonitride layer or a composite nitride layer of a (TiAl)(CN) layer deposited by a chemical vapor deposition method. Crystal grains constituting the layer include ones having a cubic structure. In a frequency distribution of measured inclination angles of the normal line of a plane (111) of the crystal grains with respect to a normal line direction of the base element surface in the hard coating layer, a frequency ratio of the inclination angles within a range of 0 to 12 degrees in the whole inclination angle frequency distribution is 45% or more. It is observed, in a structure of the composite carbonitride layer or the composite nitride layer, from a surface side by a scanning type electronic microscope, that each of the crystal grains having the cubic structure has a triangular shape in a plane vertical to the layer thickness direction, and that a facet formed of an equivalent crystal plane represented as the plane {111} accounts for an area ratio of 35% or more on the plane vertical to the layer thickness direction.

Description

本発明は、ステンレス鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工等で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits high chipping resistance with a hard coating layer, such as high-speed intermittent cutting with high heat generation such as stainless steel and an impact load acting on the cutting edge. Hereinafter, this is referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られている。このような被覆工具は、すぐれた耐摩耗性を発揮することが知られており、マシニングセンタや複合加工機など、さまざまな用途への利用が進んでいる。
しかしながら、従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body 2. Description of the Related Art A coated tool is known in which a Ti—Al-based composite nitride layer is formed as a hard coating layer on a surface of a substrate (hereinafter collectively referred to as a substrate) by physical vapor deposition. Such a coated tool is known to exhibit excellent wear resistance, and is being used for various purposes such as a machining center and a multi-task machine.
However, the conventional coated tool formed by coating a Ti-Al based composite nitride layer has relatively high wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed interrupted cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体表面に、組成式(Al1−X Ti )N(ただし、原子比で、Xは0.40〜0.60)を満足するAlとTiの複合窒化物層からなり、かつ、前記複合窒化物層について電子線後方散乱回折装置による結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位{111}を有する結晶粒の面積割合が50%以上、また、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0<θ≦15゜)の割合が50%以上であるような、結晶配列を示す改質(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、高速重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する被覆工具が得られることが開示されている。 For example, Patent Document 1 discloses a composite nitride of Al and Ti that satisfies the composition formula (Al 1-X Ti X ) N (wherein X is 0.40 to 0.60 in atomic ratio) on the substrate surface. When the crystal orientation analysis is performed on the composite nitride layer using an electron beam backscattering diffractometer, the crystal orientation {111} is within a range of 0 to 15 degrees from the normal direction of the surface polished surface. A crystal arrangement in which the area ratio of crystal grains is 50% or more, and the ratio of small-angle grain boundaries (0 <θ ≦ 15 °) is 50% or more when the angle between adjacent crystal grains is measured It is disclosed that a coated tool exhibiting excellent fracture resistance can be obtained by high-speed heavy cutting by depositing a hard coating layer composed of a modified (Al, Ti) N layer showing Yes.

また、特許文献2には、TiとAlの複合窒化物、炭窒化物、炭化物を被覆したエンドミルにおいて、硬質被覆層のX線回折における{111}面の回折強度をI(111)、{200}面の回折強度をI(200)とした時にI(200)/I(111)の値が2.0以下とすることにより、ロックウェル硬度50(Cスケール)を越える高硬度スチールの切削加工において、硬質被覆層の密着性ならびに耐摩耗性を改善した被覆工具が開示されている。   Further, in Patent Document 2, in an end mill coated with a composite nitride, carbonitride, and carbide of Ti and Al, the diffraction intensity of the {111} plane in the X-ray diffraction of the hard coating layer is I (111), {200 } When the diffraction intensity of the surface is I (200), the value of I (200) / I (111) is 2.0 or less, so that cutting of high hardness steel exceeding Rockwell hardness 50 (C scale) Discloses a coated tool with improved adhesion and wear resistance of a hard coating layer.

しかしながら、前述した特許文献1、2に開示された被覆工具は、物理蒸着法により硬質被覆層を成膜しているため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合Xを、0.9程度にまで高める技術も提案されている。
However, since the coated tools disclosed in Patent Documents 1 and 2 described above have a hard coating layer formed by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and cutting is further performed. It is desired to improve performance.
From such a viewpoint, a technique for increasing the Al content ratio X to about 0.9 by forming a hard coating layer by chemical vapor deposition has also been proposed.

例えば、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層を成膜できることが記載されているが、この文献では、この(Ti1−XAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層の形成によって、切削性能へ如何なる影響があるかという点については解明されていない。 For example, Patent Document 3 discloses that the value of the Al content ratio X is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-X Al X ) N layer having a thickness of 0.95 can be formed, this document further describes an Al 2 O 3 layer on the (Ti 1-X Al X ) N layer. Therefore, the cutting performance is improved by forming the (Ti 1-X Al X ) N layer in which the value of X is increased from 0.65 to 0.95. It has not been elucidated what kind of influence it has.

さらに、特許文献4には、上部層としてTi1−xAlN、Ti1−xAlC、および/またはTi1−xAlCNでできており、0.65≦x≦0.9、好ましくは0.7≦x≦0.9であり該上部層は100〜1100MPaの間、好ましくは400〜800MPaの間の圧縮応力を有し、TiCN層またはAl層が前記上部層の下に配置された硬質被覆層が化学蒸着法で形成された被覆工具が、すぐれた耐熱性およびサイクル疲労強度を有することが開示されている。 Further, in Patent Document 4, the upper layer is made of Ti 1-x Al x N, Ti 1-x Al x C, and / or Ti 1-x Al x CN, and 0.65 ≦ x ≦ 0. 9, preferably 0.7 ≦ x ≦ 0.9, and the upper layer has a compressive stress between 100 and 1100 MPa, preferably between 400 and 800 MPa, and the TiCN layer or Al 2 O 3 layer is the upper layer It is disclosed that a coated tool in which a hard coating layer disposed under the layer is formed by chemical vapor deposition has excellent heat resistance and cycle fatigue strength.

特開2008−264890号公報JP 2008-264890 A 特開平9−291353号公報Japanese Patent Laid-Open No. 9-291353 特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってすぐれた耐摩耗性が求められている。
しかし、前述した特許文献1,2に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐チッピング性が十分でないという課題があった。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance is required over a long period of use.
However, in the coating tools described in Patent Documents 1 and 2 described above, a hard coating layer made of a (Ti 1-X Al X ) N layer is formed by physical vapor deposition, and the Al content X in the film is increased. Therefore, for example, when the alloy steel is subjected to high-speed intermittent cutting, there is a problem that the chipping resistance is not sufficient.

一方、前述した特許文献3,4に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼の高速断続切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。 On the other hand, with respect to the (Ti 1-X Al X ) N layer formed by the chemical vapor deposition method described in Patent Documents 3 and 4 described above, the Al content X can be increased and a cubic structure is formed. Although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient and the toughness is inferior. When used as a coated tool for intermittent cutting, abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.

そこで、本発明は、ステンレス鋼の高速断続切削等に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。   Therefore, the present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use even when subjected to high-speed intermittent cutting of stainless steel, etc. It is intended to do.

本発明者らは、前述の観点から、TiとAlの複合炭窒化物(以下、「(Ti1−XAl)(C1−Y)」で示すことがある)からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoints, the present inventors have made a hard coating made of a composite carbonitride of Ti and Al (hereinafter sometimes referred to as “(Ti 1-X Al X ) (C Y N 1-Y )”). As a result of intensive studies to improve the chipping resistance and wear resistance of the coated tool formed by chemical vapor deposition, the following knowledge was obtained.

WC基超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された基体の表面に、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中にNaCl型の面心立方構造を有するものが存在し、蒸着時の成膜条件を調整することにより、硬質被覆層が、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測されるNaCl型の面心立方結晶相が存在し、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、かつ、複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で三角形状を有し該結晶粒の三角形状のファセットが結晶粒の結晶面である{111}で表される等価な結晶面のうちの一つの面に形成され、前記結晶粒が層厚方向に垂直な面内において全体の35%以上の面積割合を占めるという新規な構成を有する場合に、硬質被覆層と基体との密着性が向上するとともに、すぐれた耐チッピング性を示すようになることを見出した。 Thermal CVD containing, for example, trimethylaluminum (Al (CH 3 ) 3 ) as a reactive gas component on the surface of a substrate composed of either a WC-based cemented carbide, a TiCN-based cermet or a cBN-based ultrahigh pressure sintered body It includes at least a composite nitride or composite carbonitride layer of Ti and Al formed by a chemical vapor deposition method such as the method, and is represented by a composition formula: (Ti 1-X Al X ) (C Y N 1-Y ) The average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are atomic ratios), Each satisfies 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, and has a NaCl-type face-centered cubic structure in crystal grains constituting the composite nitride or composite carbonitride layer. Exist and adjust film deposition conditions during deposition When the hard coating layer is analyzed from the longitudinal cross-sectional direction of the composite nitride or composite carbonitride layer of Ti and Al using the electron backscattering diffraction device, the crystal orientation of the individual crystal grains, There is a NaCl-type face-centered cubic crystal phase in which an electron backscatter diffraction image of the cubic crystal lattice is observed, and the normal of the {111} plane that is the crystal plane of the crystal grain with respect to the normal direction of the tool substrate surface is Measure the tilt angle, and divide the tilt angles within the range of 0 to 45 degrees with respect to the normal direction among the tilt angles by pitch of 0.25 degrees, and add up the frequencies existing in each section. When the inclination angle frequency distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is the inclination angle number distribution. Indicates a ratio of 45% or more of the total frequency in When the structure of the nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer are in the layer thickness direction. The triangular facets of the crystal grains are formed on one of the equivalent crystal planes represented by {111} which is the crystal plane of the crystal grains, and the crystal In the case where the grains occupy 35% or more of the total area in the plane perpendicular to the layer thickness direction, the adhesion between the hard coating layer and the substrate is improved, and excellent chipping resistance is achieved. I found out to be shown.

したがって、前述のような硬質被覆層を備えた被覆工具を、例えば、合金鋼の高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。   Therefore, when a coated tool having a hard coating layer as described above is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling, etc. can be suppressed, and over a long period of use. Excellent wear resistance can be demonstrated.

本発明は、前述したような研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、上記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測されるNaCl型の面心立方構造を有する結晶相が存在し、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し該傾斜角のうち、工具基体表面の法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、
(d)また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒が層厚方向に垂直な面内で三角形状を有し該結晶粒の{111}で表される等価な結晶面で形成されたファセットが、前記層厚方向に垂直な面内において全体の35%以上の面積割合を占めることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層は、2種以上の複数の相が共存する混合相からなり、該混合相は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、混合相に共存するその他の各相はTiとAlから選ばれる少なくとも1種の元素と、C,Nから選ばれる少なくとも一種からなる化合物であることを特徴とする(1)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層について該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2μm、平均アスペクト比Aが2〜10である柱状組織を有することを特徴とする(1)または(3)に記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層について該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする(1)または(3)、(4)のいずれかに記載の表面被覆切削工具。
(6) 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具。
(7) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)乃至(6)のいずれかに記載の表面被覆切削工具。
(8) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)乃至(7)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the research results as described above,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body ,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-X Al X ) (C Y N 1-Y ), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are both atomic ratios) satisfying 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
(B) The composite nitride or composite carbonitride layer includes at least a phase of a composite nitride or composite carbonitride of Ti and Al having a NaCl-type face-centered cubic structure,
(C) For the composite nitride or composite carbonitride layer, using an electron beam backscatter diffraction apparatus, each crystal grain having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is used. When the crystal orientation is analyzed from the longitudinal cross-sectional direction of the Ti and Al composite nitride or composite carbonitride layer, it has a NaCl-type face-centered cubic structure in which an electron backscatter diffraction image of a cubic crystal lattice is observed. A crystal phase is present and an inclination angle formed by a normal line of the {111} plane which is a crystal plane of the crystal grain with respect to a normal direction of the tool base surface is measured. On the other hand, when the inclination angle in the range of 0 to 45 degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the range of 0 to 12 degrees is obtained. And the highest peak exists in the tilt angle section in the Frequency total of existing in a range of 12 degrees, indicates the percentage of 45% or more of the total power at the inclination angle frequency distribution,
(D) When the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, the NaCl-type face center in the composite nitride or composite carbonitride layer is used. Each crystal grain having a cubic structure has a triangular shape in a plane perpendicular to the layer thickness direction, and facets formed of equivalent crystal planes represented by {111} of the crystal grains are formed in the layer thickness direction. A surface-coated cutting tool characterized by occupying an area ratio of 35% or more of the whole in a vertical plane.
(2) The composite nitride or composite carbonitride layer is composed of a single phase of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. The surface-coated cutting tool described.
(3) The composite nitride or composite carbonitride layer is composed of a mixed phase in which two or more kinds of phases coexist, and the mixed phase is a composite nitriding of Ti and Al having a NaCl type face centered cubic structure. The other phases coexisting in the mixed phase, at least one element selected from Ti and Al, and at least one compound selected from C and N are included. The surface-coated cutting tool according to (1), which is characterized.
(4) When the composite nitride or composite carbonitride layer is observed from the longitudinal sectional direction of the layer, individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer The surface-coated cutting tool according to (1) or (3), which has a columnar structure having an average particle width W of 0.1 to 2 μm and an average aspect ratio A of 2 to 10.
(5) When the composite nitride or composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer (1) or (3), wherein there are fine crystal grains having a hexagonal crystal structure in the grain boundary portion of the columnar structure, and the average grain size R of the fine crystal grains is 0.01 to 0.3 μm. The surface-coated cutting tool according to any one of (4) and (4).
(6) A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body, and a composite nitride or composite carbonitride of Ti and Al. Between the layers, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and a total average of 0.1 to 20 μm The surface-coated cutting tool according to any one of (1) to (5), wherein a lower layer including a Ti compound layer having a layer thickness exists.
(7) The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm is present on the upper part of the composite nitride or composite carbonitride layer. (1) to (6) The surface coating cutting tool in any one.
(8) The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. (1) to (7) The surface coating cutting tool in any one. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

TiとAlの複合窒化物または複合炭窒化物層の平均層厚:
本発明の硬質被覆層におけるTiとAlの複合窒化物または複合炭窒化物層は、その平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となる。したがって、その平均層厚は1〜20μmとすることが好ましく、より好ましくは1〜10μmとする。
また、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体とTiとAlの複合窒化物または複合炭窒化物層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上を設けることで逃げ面の耐摩耗性を向上させ、切削寿命を上げる効果がある。前記の平均合計層厚に関しては、0.1μm未満では層厚が薄いため、長期の使用に亘って耐摩耗性が確保されず、一方、平均層厚が20μmより大きくなると、工具基体およびTiとAlの複合窒化物または複合炭窒化物層との付着強度が低下し、耐剥離性が低下するため、その平均層厚は0.1〜20μmとするのが望ましい。
TiとAlの複合窒化物または複合炭窒化物層の上部に、上部層としての酸化アルミニウム層を含む場合、酸化アルミニウム層の合計平均層厚が1μm未満であると、層厚が薄いため長期の使用に亘って耐摩耗性が確保されず、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなることから、酸化アルミニウム層の平均層厚は1〜25μmとすることが望ましい。
Average layer thickness of composite nitride or composite carbonitride layer of Ti and Al:
In the hard coating layer of the present invention, the composite nitride or composite carbonitride layer of Ti and Al, if the average layer thickness is less than 1 μm, it is not possible to ensure sufficient wear resistance over a long period of use, On the other hand, when the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation by high-speed intermittent cutting with high heat generation, which causes uneven wear. Therefore, the average layer thickness is preferably 1 to 20 μm, more preferably 1 to 10 μm.
In addition, between a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body and Ti and Al composite nitride or composite carbonitride layer Further, by providing at least one of a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, there is an effect of improving the wear resistance of the flank and increasing the cutting life. Regarding the average total layer thickness, since the layer thickness is less than 0.1 μm, the wear resistance is not ensured over a long period of use. On the other hand, when the average layer thickness exceeds 20 μm, the tool base and Ti Since the adhesion strength of the Al composite nitride or composite carbonitride layer decreases and the peel resistance decreases, the average layer thickness is preferably 0.1 to 20 μm.
When an aluminum oxide layer as an upper layer is included in the upper part of the composite nitride or composite carbonitride layer of Ti and Al, if the total average layer thickness of the aluminum oxide layer is less than 1 μm, the layer thickness is thin, so Abrasion resistance is not ensured over use, and if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the average layer thickness of the aluminum oxide layer is preferably 1 to 25 μm.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)の組成:
本発明の硬質被覆層を構成する(Ti1−XAl)(C1−Y)層は、Alの平均含有割合Xavg(原子比)の値が0.60未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、Xavg(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、(Ti1−XAl)(C1−Y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなる。したがって、Alの平均含有割合Xavg(原子比)の値は、0.60以上0.95以下とすることが必要である。
また、前記(Ti1−XAl)(C1−Y)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の平均含有割合Yavg(原子比)が0.005を超えると、高温強度が低下する。したがって、C成分の平均含有割合Yavg(原子比)は、0≦Yavg≦0.005と定めた。
Composition of Ti and Al composite nitride or composite carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y ) layer):
The (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the hard coating layer of the present invention has a high temperature when the average content ratio X avg (atomic ratio) of Al is less than 0.60. On the other hand, when the value of X avg (atomic ratio) exceeds 0.95, due to the decrease in the relative Ti content, (Ti 1-X Al X ) The high temperature strength of the (C Y N 1-Y ) layer itself is lowered, and chipping and defects are likely to occur. Therefore, the value of the average content ratio X avg (atomic ratio) of Al needs to be 0.60 or more and 0.95 or less.
Further, in the (Ti 1-X Al X ) (C Y N 1-Y ) layer, the C component improves the hardness, while the N component has the effect of improving the high temperature strength. When the average content ratio Y avg (atomic ratio) of exceeds 0.005, the high-temperature strength decreases. Therefore, the average content ratio Y avg (atomic ratio) of the C component was determined as 0 ≦ Y avg ≦ 0.005.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)の結晶構造:
本発明の硬質被膜層を構成する(Ti1−XAl)(C1−Y)層はNaCl型の面心立方構造(以下、単に「立方晶構造」という場合もある。)をとることによって硬さを向上させることができ、さらに立方晶構造単相が望ましい。なお、通常、物理蒸着法によって前記組成、即ち、Alの平均含有割合Xavg(原子比)が0.60以上0.95以下の(Ti1−XAl)(C1−Y)層を成膜した場合は、結晶構造は六方晶構造となるが、本発明では、後述する化学蒸着法によって成膜していることから、NaCl型の面心立方構造を維持したままで前述したような組成の(Ti1−XAl)(C1−Y)層を得ることができる。それにより、硬質被覆層の硬さの低下を回避している。
Crystal structure of Ti and Al composite nitride or composite carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y ) layer):
The (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the hard coating layer of the present invention has a NaCl-type face-centered cubic structure (hereinafter sometimes simply referred to as “cubic structure”). By taking it, the hardness can be improved, and a cubic structure single phase is desirable. In general, the above composition, that is, the average Al content ratio X avg (atomic ratio) is 0.60 or more and 0.95 or less (Ti 1-X Al X ) (C Y N 1-Y ) by physical vapor deposition. When the layer is formed, the crystal structure becomes a hexagonal structure. However, in the present invention, since the film is formed by the chemical vapor deposition method described later, the above-described structure is maintained while maintaining the NaCl type face centered cubic structure. A (Ti 1-X Al X ) (C Y N 1-Y ) layer having such a composition can be obtained. Thereby, the fall of the hardness of a hard coating layer is avoided.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶構造を有する個々の結晶粒結晶面である{111}面についての傾斜角度数分布:
本発明の前記(Ti1−XAl)(C1−Y)層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角(図1(a)、(b)参照)を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の45%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層は、立方晶構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によって硬質被覆層と基体との密着性が飛躍的に向上する。
したがって、このような被覆工具は、例えば、ステンレス鋼の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析する際に、基体表面の法線に対する傾斜角が12度より大きい結晶面は{111}配向しているとみなすことができず、硬度が低下するため、{111}配向が強く、かつ硬度が低下しない範囲が0〜12度までであることから、測定によって度数を求める傾斜角区分の範囲を0〜12度と定めた。
Composite nitride of Ti and Al or composite carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y) layer) is an individual crystal grains the crystal surface having a cubic structure in the {111} Inclination angle number distribution on the surface:
For the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention, when the crystal orientation of each crystal grain is analyzed from the longitudinal sectional direction using an electron beam backscattering diffractometer, An inclination angle (see FIGS. 1A and 1B) formed by a normal line of the {111} plane which is a crystal plane of the crystal grain with respect to a normal line of the substrate surface (a direction perpendicular to the substrate surface in the cross-section polished surface). Measured, and when the tilt angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, The highest peak exists in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is a ratio of 45% or more of the entire frequencies in the inclination angle frequency distribution. In the case of showing an inclination angle number distribution form, the Ti and Al composite nitride or The hard coating layer made of a synthetic carbonitride layer has a high hardness while maintaining a cubic structure, and the adhesion between the hard coating layer and the substrate is dramatically improved by the above-described gradient angle number distribution form. To improve.
Therefore, even when such a coated tool is used for, for example, high-speed intermittent cutting of stainless steel, the occurrence of chipping, chipping, peeling and the like is suppressed, and excellent wear resistance is exhibited.
When analyzing the crystal orientation of individual crystal grains using an electron beam backscattering diffractometer, crystal planes with an inclination angle with respect to the normal of the substrate surface greater than 12 degrees can be regarded as {111} oriented. Since the hardness decreases, the {111} orientation is strong, and the range in which the hardness does not decrease is 0 to 12 degrees, so the range of the inclination angle section for determining the frequency by measurement is set to 0 to 12 degrees. .

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶構造を有する個々の結晶粒の層厚方向に垂直な面内で観察される三角形状で、かつ、結晶粒の{111}で表される等価な結晶面で構成されたファセットの前記面全体に対する面積割合:
複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で三角形状を有し該結晶粒の三角形状のファセットが結晶粒の結晶面である{111}で表される等価な結晶面のうちの一つの面に形成されている場合に、硬質被覆層表面と被削材との摩耗抵抗が軽減し、切削における初期なじみ性が向上し、耐チッピング性が向上するという知見を得た。
しかしながら、層厚方向に垂直な面内において該面全体を100%とした時の前記ファセットの面積割合が35%未満であると、前述した本発明に特有の効果が十分に奏されないため好ましくない。したがって、前記ファセットの層厚方向に垂直な面内における面積割合を35%以上と定めた。
Perpendicular to the layer thickness direction of the individual grains having a cubic structure in the composite nitride or composite carbonitride layer of Ti and Al ((Ti 1-X Al X ) (C Y N 1-Y ) layer) The area ratio of the facet composed of an equivalent crystal plane represented by {111} in a triangular shape observed in the plane and relative to the entire plane:
When the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer are layers. A triangular facet having a triangular shape in a plane perpendicular to the thickness direction is formed on one of the equivalent crystal planes represented by {111} which is a crystal plane of the crystal grain. In this case, the wear resistance between the surface of the hard coating layer and the work material is reduced, the initial conformability in cutting is improved, and the chipping resistance is improved.
However, if the area ratio of the facet is less than 35% when the entire surface is 100% in a plane perpendicular to the layer thickness direction, the above-described effects specific to the present invention cannot be sufficiently achieved. . Therefore, the area ratio in the plane perpendicular to the layer thickness direction of the facet is set to 35% or more.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶構造を有する個々の結晶粒の平均粒子幅、平均アスペクト比:
本発明の硬質被覆層は、前述したような構成を有することにより、本発明に特有のすぐれた切削性能を発揮するものであるが、さらに、TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶構造を有する個々の結晶粒の平均粒子幅が0.1〜2μm、平均アスペクト比が2〜10となる柱状組織となるように構成することにより、一層、その効果を発揮させることができる。
すなわち、平均粒子幅を0.1〜2μmとしたのは、0.1μm未満では、被覆層全体におけるTiAlCN結晶粒の占める割合が相対的に大きくなることにより、被削材との反応性が増し、その結果、耐摩耗性を十分に発揮することができず、また、2μmを超えるとTiAlCN結晶粒の占める割合が相対的に小さくなることにより、粒子間強度が低下し、耐チッピング性を十分に発揮することができなくなる。したがって、平均粒子幅を0.1〜2μmとすることが好ましい。
なお、本発明でいう平均粒子幅とは、走査電子顕微鏡を用い被覆層の縦断面観察を行った際に硬質被覆層の層厚の半分の箇所において基体表面と平行な線を少なくとも100μm描き、該平行線の線分長を該平行線と交差する結晶粒界の数で除した数として定義される。
また、平均アスペクト比が2未満の場合、十分な柱状組織となっていないため、アスペクト比の小さな等軸結晶の脱落を招き、その結果、十分な耐摩耗性を発揮することができない。一方、平均アスペクト比が10を超えると粗大化しすぎているため、かえって、耐チッピング性が低下するため好ましくない。したがって、平均アスペクト比を2〜10とすることが好ましい。
なお、本発明では、平均アスペクト比とは、走査電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で被覆層の縦断面観察を行った際に、各結晶粒について粒子径の最も長い長さを長軸とし該長軸の長さおよび前記長軸と直交する方向の最大長さを求め、長軸の長さを長軸と直交する方向の最大長さで除することにより、各結晶粒のアスペクト比を算出し、更に各結晶粒の面積を重みとしアスペクト比の加重平均として算出した値として定義される。
Composite nitride of Ti and Al or composite carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y) layer) in cubic individual crystal grains having an average grain width having a structure, average aspect ratio:
The hard coating layer of the present invention exhibits the excellent cutting performance peculiar to the present invention by having the configuration as described above. Further, the composite nitride or composite carbonitride layer of Ti and Al is used. The average grain width of the individual crystal grains having a cubic structure in the ((Ti 1-X Al X ) (C Y N 1-Y ) layer) is 0.1 to 2 μm, and the average aspect ratio is 2 to 10. By configuring it to have a columnar structure, the effect can be further exhibited.
That is, the reason why the average particle width is set to 0.1 to 2 μm is that, when the average particle width is less than 0.1 μm, the ratio of the TiAlCN crystal grains in the entire coating layer becomes relatively large, thereby increasing the reactivity with the work material. As a result, the wear resistance cannot be sufficiently exhibited, and when it exceeds 2 μm, the proportion of the TiAlCN crystal grains becomes relatively small, so that the strength between particles is lowered and the chipping resistance is sufficient. Can no longer be demonstrated. Accordingly, the average particle width is preferably 0.1 to 2 μm.
The average particle width as used in the present invention refers to a line parallel to the substrate surface at least 100 μm at a half of the thickness of the hard coating layer when the longitudinal cross section of the coating layer is observed using a scanning electron microscope, It is defined as the number obtained by dividing the line length of the parallel lines by the number of grain boundaries intersecting the parallel lines.
In addition, when the average aspect ratio is less than 2, since the columnar structure is not sufficient, the equiaxed crystal having a small aspect ratio is dropped, and as a result, sufficient wear resistance cannot be exhibited. On the other hand, when the average aspect ratio exceeds 10, since it is too coarse, the chipping resistance is deteriorated. Therefore, the average aspect ratio is preferably 2 to 10.
In the present invention, the average aspect ratio is the particle diameter of each crystal grain when a longitudinal cross-sectional observation of the coating layer is performed using a scanning electron microscope in a range where the width is 100 μm and the height includes the entire hard coating layer. The longest length of the long axis is taken as the long axis, the length of the long axis and the maximum length in the direction orthogonal to the long axis are obtained, and the length of the long axis is divided by the maximum length in the direction orthogonal to the long axis. Thus, the aspect ratio of each crystal grain is calculated and further defined as a value calculated as a weighted average of the aspect ratio with the area of each crystal grain as a weight.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶粒界に存在する微粒六方晶の平均粒径R:
本発明の硬質被膜層(Ti1−XAl)(C1−Y)層では、柱状立方晶の粒界中に微粒六方晶を形成することができるが、柱状立方晶粒界に靱性に優れた微粒六方晶が存在することで粒界における摩擦が低減し、靱性が向上する。このときの六方晶の平均粒径が0.01μm未満であると靱性向上の効果が見られず、0.3μmを超えると、硬さが低下し、耐摩耗性が損なわれるため、平均粒径Rは0.01〜0.3μmとすることが好ましい。
なお、本発明でいう粒界中に存在する微粒六方晶の同定は透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定した。微粒六方晶の平均粒子径は粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、それらの平均値を算出した。
Average grain size R of fine hexagonal crystals existing at cubic grain boundaries in Ti / Al composite nitride or composite carbonitride layer ((Ti 1-X Al X ) ( CY N 1-Y ) layer):
In the hard coating layer (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention, fine hexagonal crystals can be formed in the columnar cubic grain boundaries. The presence of fine hexagonal crystals with excellent toughness reduces friction at grain boundaries and improves toughness. If the average particle size of the hexagonal crystal is less than 0.01 μm at this time, the effect of improving toughness is not seen, and if it exceeds 0.3 μm, the hardness decreases and the wear resistance is impaired. R is preferably 0.01 to 0.3 μm.
In addition, the identification of the fine-grained hexagonal crystal which exists in the grain boundary as used in the field of this invention was identified by analyzing an electron beam diffraction pattern using a transmission electron microscope. The average particle size of the fine hexagonal crystals was determined by measuring the particle size of particles existing within a measurement range of 1 μm × 1 μm including the grain boundary, and calculating the average value thereof.

本発明の(Ti1−XAl)(C1−Y)層の成膜は、例えば、工具基体もしくはTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上の上に、例えば、≪第1段階≫として、柱状立方晶TiAlCNもしくは立方晶結晶粒界部に微粒六方晶が存在する柱状立方晶のTiAlCNを成膜した後に、≪第2段階≫として、表面部のみガス組成を変化させるという、下記に示すような二段階の蒸着法によって行うことができる。 Film formation of the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention includes, for example, a tool base or a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride. After forming a columnar cubic TiAlCN or a columnar cubic TiAlCN in which fine hexagonal crystals are present in the cubic crystal grain boundary as a first step, on at least one oxide layer, for example, << The second stage >> can be performed by a two-stage vapor deposition method as described below, in which the gas composition is changed only at the surface portion.

本発明の(Ti1−XAl)(C1−Y)層の成膜は、通常の化学蒸着装置を用い、例えば、以下の条件で成膜を行う。
≪第1段階≫
反応ガス組成(容量%):
NH 6〜10%、TiCl 0.5〜1.5%、 AlCl 3〜5%、N 6〜11%、 Al(CH0〜0.5%、 残りH
反応雰囲気温度: 700〜900℃、
反応雰囲気圧力: 2〜5kPa、
という条件下で柱状立方晶の(Ti1−XAl)(C1−Y)層を蒸着形成する。
なお、前記所定の平均粒子幅および平均アスペクト比を有する立方晶柱状組織の(Ti1−XAl)(C1−Y)層の成膜は、
反応ガス組成(容量%):
NH 6〜8%、TiCl 0.5〜1.5%、 AlCl 3〜5%、N 8〜11%、 Al(CH0〜0.5%、 残りH
反応雰囲気温度: 700〜900℃、
反応雰囲気圧力: 2〜5kPa、
という条件下で行うことができる。
また、前記立方晶結晶粒の粒界に所定の平均粒径の六方晶微粒結晶が存在する組織を有する立方晶柱状組織の(Ti1−XAl)(C1−Y)層の成膜は
反応ガス組成(容量%):
NH 6〜8%、TiCl 0.5〜1.0%、 AlCl 4〜5%、N 8〜11%、 Al(CH0〜0.5%、 残りH
反応雰囲気温度: 750〜900℃、
反応雰囲気圧力: 2〜5kPa、
という条件下で行うことができる。
≪第2段階≫
反応ガス組成(容量%):
NH 3〜6%、TiCl 0.1〜0.5%、 AlCl 1〜2.5%、N 8〜14%、 残り:H
反応雰囲気温度: 650〜750℃、
反応雰囲気圧力: 2〜5kPa、
という条件下でガス組成および反応雰囲気温度を変化させて表面形状が三角形のファセットを有する(Ti1−XAl)(C1−Y)層の蒸着形成を行う。
The (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention is formed using a normal chemical vapor deposition apparatus, for example, under the following conditions.
≪First stage≫
Reaction gas composition (volume%):
NH 3 6~10%, TiCl 4 0.5~1.5 %, AlCl 3 3~5%, N 2 6~11%, Al (CH 3) 3 0~0.5%, remainder H 2,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,
Under these conditions, a columnar cubic (Ti 1-X Al X ) (C Y N 1-Y ) layer is formed by vapor deposition.
The formation of the (Ti 1-X Al X ) (C Y N 1-Y ) layer having a cubic columnar structure having the predetermined average particle width and average aspect ratio is as follows.
Reaction gas composition (volume%):
NH 3 6~8%, TiCl 4 0.5~1.5 %, AlCl 3 3~5%, N 2 8~11%, Al (CH 3) 3 0~0.5%, remainder H 2,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,
It can be performed under the conditions.
In addition, the (Ti 1-X Al X ) (C Y N 1-Y ) layer having a cubic columnar structure having a structure in which hexagonal fine grains having a predetermined average grain size are present at grain boundaries of the cubic crystal grains. Film formation is reactive gas composition (volume%):
NH 3 6~8%, TiCl 4 0.5~1.0 %, AlCl 3 4~5%, N 2 8~11%, Al (CH 3) 3 0~0.5%, remainder H 2,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,
It can be performed under the conditions.
≪Second stage≫
Reaction gas composition (volume%):
NH 3 3-6%, TiCl 4 0.1-0.5%, AlCl 3 1-2.5%, N 2 8-14%, rest: H 2
Reaction atmosphere temperature: 650-750 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,
Performing vapor deposition formation of surface shape by changing the gas composition and reaction atmosphere temperature has facets triangle (Ti 1-X Al X) (C Y N 1-Y) layer under the condition that.

本発明の被覆工具は、熱CVD法等の化学蒸着法により、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、立方晶構造の複合窒化物または複合炭窒化物層を少なくとも含む硬質被覆層が成膜され、該硬質被覆層は、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に該0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で三角形状を有し該結晶粒の{111}で表される等価な結晶面で形成されたファセットが、前記層厚方向に垂直な面内において全体の35%以上の面積割合を占めるという本発明に特有の構成により、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用するステンレス鋼などの高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。 When the coated tool of the present invention is represented by a composition formula: (Ti 1-X Al X ) ( CY N 1-Y ) by a chemical vapor deposition method such as a thermal CVD method, The average content ratio X avg and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are atomic ratios) are 0.60 ≦ X avg ≦ 0.95, respectively. , 0 ≦ Y avg ≦ 0.005, and a hard coating layer including at least a composite nitride or composite carbonitride layer having a cubic structure is formed. When the crystal orientation of the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer is analyzed from the longitudinal section direction of the Ti and Al composite nitride or composite carbonitride layer {111} which is the crystal plane of the crystal grain with respect to the normal direction of the tool base surface The inclination angle formed by the normal line is measured, and the inclination angle within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles is divided for each pitch of 0.25 degrees and exists in each division. When the frequency is aggregated to obtain the tilt angle frequency distribution, the highest peak is present in the tilt angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is the tilt angle. 45% or more of the total frequency in the number distribution, and when the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, the composite nitride or composite Each crystal grain having a cubic structure in the carbonitride layer has a triangular shape in a plane perpendicular to the layer thickness direction, and is formed with an equivalent crystal plane represented by {111} of the crystal grain. However, in the plane perpendicular to the layer thickness direction, the area ratio is 35% or more of the whole. Even when it is used for high-speed intermittent cutting such as stainless steel with high heat generation and intermittent / impact load acting on the cutting edge due to the configuration unique to the present invention that occupies Exhibits excellent wear resistance over long-term use without causing damage.

(a)、(b)は、硬質被覆層を構成する(Ti1−XAl)(C1−Y)層における結晶粒の結晶面である{111}面の法線が、基体表面の法線に対してなす傾斜角の測定範囲を示す概略説明図である。(A), (b) constitutes the hard coating layer (Ti 1-X Al X) normal to the (C Y N 1-Y) is a crystal plane of the crystal grains in the layer {111} plane, the substrate It is a schematic explanatory drawing which shows the measurement range of the inclination angle made with respect to the normal line of a surface. 本発明被覆工具のTiとAlの複合炭窒化物について作成した{111}面の傾斜角度数分布グラフの一例である。It is an example of the inclination angle number distribution graph of the {111} plane created about the composite carbonitride of Ti and Al of this invention coated tool. 本発明被覆工具の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の層厚方向に垂直な面内における表面を模式的に表した表面組織模式図である。It is the surface structure | tissue schematic diagram which represented typically the surface in the surface perpendicular | vertical to the layer thickness direction of the composite nitride of Ti and Al, or the composite carbonitride layer which comprises the hard coating layer of this invention coated tool.

本発明は、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体などの超硬質工具材料で構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具であって、硬質被覆層が、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で三角形状を有し該結晶粒の{111}で表される等価な結晶面で形成されたファセットが、前記層厚方向に垂直な面内において全体の35%以上の面積割合を占めているという本発明に特有の構成により、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用するステンレス鋼の高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮するという効果を奏するものであれば、その具体的な実施の形態は、いかなるものであっても構わない。
つぎに、本発明の被覆工具を、実施例に基づき具体的に説明する。
The present invention provides a surface coating in which a hard coating layer is provided on the surface of a tool base made of an ultra-hard tool material such as a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, or a cubic boron nitride-based ultra-high pressure sintered body. A cutting tool, wherein the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1− X Al X) (when expressed in C Y N 1-Y), the average content of Y avg occupying the total amount of the average content ratio X avg and C of C and N occupying the total amount of Ti and Al Al (although , X avg , and Y avg are both atomic ratios) satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively, and constitute a composite nitride or composite carbonitride layer There are those having a cubic structure in the crystal grains, For the compound nitride or the composite carbonitride layer, the crystal orientation of the individual crystal grains having a cubic structure in the composite nitride or the composite carbonitride layer is determined by using an electron beam backscatter diffractometer. When analyzing from the longitudinal cross-sectional direction of the composite nitride or composite carbonitride layer, the inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the surface of the tool substrate is measured. Of the inclination angles, the inclination angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees, and the frequencies existing in each division are totaled to obtain the inclination angle number distribution. When the highest peak exists in the inclination angle section within the range of 0 to 12 degrees, the total of the frequencies existing within the range of 0 to 12 degrees is 45% or more of the entire frequencies in the inclination angle frequency distribution. The composite nitride or composite carbonitride When the structure of the layer is observed with a scanning electron microscope from the surface side of the nitride layer, the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer are in a plane perpendicular to the layer thickness direction. And the facets formed by the equivalent crystal planes represented by {111} of the crystal grains occupy an area ratio of 35% or more in the plane perpendicular to the layer thickness direction. Due to the configuration unique to the present invention, high heat generation is generated, and even when used for high-speed intermittent cutting of stainless steel in which intermittent and impact loads are applied to the cutting edge, abnormal damage such as chipping, chipping and peeling occurs. As long as it has an effect of exhibiting excellent wear resistance over a long period of use, any specific embodiment may be used.
Next, the coated tool of the present invention will be specifically described based on examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, and after sintering, manufacture tool bases A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを製造した。 In addition, as raw material powders, all TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN was manufactured.

つぎに、これらの工具基体A〜Dの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−XAl)(C1−Y)層を目標層厚になるまで蒸着形成した後、同じく表4に示される条件で表面部の(Ti1−XAl)(C1−Y)層を形成することにより、表7に示される本発明被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
Then, these tool substrate surface to D, using conventional chemical vapor deposition apparatus, firstly, under the conditions shown in Table 4, having a predetermined composition (Ti 1-X Al X) (C Y N 1 after depositing form -Y) layer to a target layer thickness, also by forming a (Ti 1-X Al X) (C Y N 1-Y) layer of the surface portion under the conditions shown in Table 4, Invention coated tools 1 to 15 shown in Table 7 were produced.
In addition, about this invention coated tools 6-13, the lower layer and / or the upper layer which were shown in Table 6 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体A〜Dの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表8に示される比較例被覆工具1〜13を製造した。 For the purpose of comparison, also the surface of the tool substrate to D, using conventional chemical vapor deposition apparatus under the conditions shown in Table 5, (Ti 1-X Al X) of Comparative Example (C Y N 1- The comparative example-coated tools 1 to 13 shown in Table 8 were manufactured by forming the Y ) layer by vapor deposition with the target layer thickness.

参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表8に示される参考例被覆工具14、15を製造した。
なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Ti,Al)N層を蒸着形成し、参考例被覆工具14、15を製造した。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is applied to the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 14 and 15 shown in Table 8.
The arc ion plating conditions used for the vapor deposition in the reference example are as follows.
(A) The tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate arc discharge, and the target composition and target layer shown in Table 8 are formed on the surface of the tool base. Thick (Ti, Al) N layers were formed by vapor deposition to produce reference example coated tools 14 and 15.

また、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14、15の各構成層の縦断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前述した本発明被覆工具1〜15の硬質被覆層について、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、基体表面の法線方向に対する{111}面の法線がなす傾斜角についての傾斜角度数分布における0〜12度の範囲内に存在する度数の割合(α)を測定した。
また、硬質被覆層表面を、走査電子顕微鏡を用いて観察し、その観察画像を画像解析することにより、{111}面配向している結晶粒の{111}で表される等価な結晶面で形成された三角形状を有するファセットの前記観察画像全体を100%とした時の面積割合(β)を測定した。
なお、図2に本発明被覆工具について測定した{111}面の傾斜角度数分布グラフの一例を示す。
また、図3に本発明被覆工具の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の表面を模式的に表した膜組織模式図を示す。
Moreover, the longitudinal cross-section of each component layer of this invention coated tool 1-15, comparative example coated tool 1-13, and reference example coated tool 14,15 was measured using a scanning electron microscope, and five points within an observation visual field were measured. When the layer thickness was measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Tables 7 and 8.
Next, with respect to the hard coating layers of the inventive coated tools 1 to 15 described above, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer, and the normal line of the {111} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing in the range of 0 to 12 degrees in the tilt angle number distribution with respect to the tilt angle formed was measured.
In addition, by observing the surface of the hard coating layer using a scanning electron microscope and analyzing the observed image, an equivalent crystal plane represented by {111} of {111} -oriented crystal grains is obtained. The area ratio (β) of the formed facet having a triangular shape when the entire observation image was 100% was measured.
FIG. 2 shows an example of a {111} plane inclination angle number distribution graph measured for the coated tool of the present invention.
FIG. 3 is a schematic diagram of a film structure schematically showing the surface of a composite nitride or composite carbonitride layer of Ti and Al constituting the hard coating layer of the coated tool of the present invention.

なお、前記それぞれの具体的な測定法は次のとおりである。
硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavgについては、二次イオン質量分析(Secondary‐Ion‐Mass‐Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均Al含有割合Xavg、平均C含有割合Yavgは深さ方向の平均値を示す。
The specific measuring methods for each of the above are as follows.
The average Al content ratio X avg and the average C content ratio Y avg of the hard coating layer were determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average Al content ratio X avg and the average C content ratio Y avg indicate average values in the depth direction.

また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体と水平方向に長さ100μmに亘り硬質被覆層について0.1μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜12度の範囲内に存在する度数の割合(α)を求めた。   In addition, regarding the inclination angle number distribution of the hard coating layer, field emission scanning electrons are obtained with the cross section of the hard coating layer made of a composite nitride or composite carbonitride layer of Ti and Al having a cubic structure as a polished surface. A cubic crystal lattice that is set in a lens barrel of a microscope and has an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface is present in the measurement range of the polished surface of the cross section. Irradiate each individual crystal grain, and use a backscatter diffraction imaging device, the normal surface of the substrate surface (cross-section polished surface) at a spacing of 0.1 μm / step with respect to the hard substrate over a length of 100 μm in the horizontal direction from the tool substrate. The tilt angle formed by the normal line of the {111} plane which is the crystal plane of the crystal grain is measured with respect to the direction perpendicular to the surface of the substrate in FIG. Measurements in the range of ~ 45 degrees The inclination angle was divided for each pitch of 0.25 degrees, and the frequencies (α) existing in the range of 0 to 12 degrees were obtained by counting the frequencies existing in each section.

また、硬質被覆層の表面における{111}面配向している結晶粒の{111}で表される等価な結晶面で形成された三角形状を有するファセットの面積割合は、走査電子顕微鏡とそれに付随する画像解析ソフトを用いて行う。具体的には、次のように測定した。まず、硬質被覆層の表面を走査電子顕微鏡で縦50μm×横50μmの範囲にて観察する。そして、観察画像をモニターで観察しながら、三角形状を有するファセット、すなわち、画像面内に観察される結晶面をマーキングし、すべての三角形状を有するファセットについてのマーキングが終わった時点で、観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。   In addition, the area ratio of facets having a triangular shape formed by an equivalent crystal plane represented by {111} of {111} plane-oriented crystal grains on the surface of the hard coating layer is the same as that of the scanning electron microscope. Use image analysis software. Specifically, the measurement was performed as follows. First, the surface of the hard coating layer is observed with a scanning electron microscope in a range of 50 μm in length × 50 μm in width. Then, while observing the observation image on the monitor, marking the facets having a triangular shape, that is, the crystal plane observed in the image plane, and when the marking for all the facets having a triangular shape is finished, the observation image The area ratio (β) of the entire area of the marked facet relative to the entire surface was determined.

なお、硬質被覆層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。   As for the crystal structure of the hard coating layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.

ついで、比較例被覆工具1〜13および参考例被覆工具14、15のそれぞれについても、本発明被覆工具1〜15と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、基体表面の法線方向に対する{111}面の法線がなす傾斜角についての傾斜角度数分布における0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。
表8に、その結果を示す。
また、硬質被覆層の結晶構造についても、本発明被覆工具1〜15と同様にして、調査した。
Then, the average Al content ratio X avg and the average C content ratio Y of the hard coating layer were also obtained for each of the comparative example coated tools 1 to 13 and the reference example coated tools 14 and 15 in the same manner as the present coated tools 1 to 15. avg , the ratio (α) of the frequency existing in the range of 0 to 12 degrees in the tilt angle number distribution with respect to the tilt angle formed by the normal of the {111} plane with respect to the normal direction of the substrate surface, and the marking on the entire observation image plane The area ratio (β) of the entire area of the facets thus obtained was determined.
Table 8 shows the results.
Further, the crystal structure of the hard coating layer was also investigated in the same manner as the coated tools 1 to 15 of the present invention.


つぎに、前記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14,15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 943 min−1
切削速度: 370 m/min、
切り込み: 1.2 mm、
一刃送り量: 0.15 mm/刃、
切削時間: 8分、
表9に、前記切削試験の結果を示す。

Next, in the state where each of the above various coated tools is clamped to a tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig, the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference Example The coated tools 14 and 15 were subjected to the following dry high-speed face milling, which is a kind of high-speed intermittent cutting of alloy steel, and a center-cut cutting test, and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 943 min −1 ,
Cutting speed: 370 m / min,
Cutting depth: 1.2 mm,
Single-blade feed amount: 0.15 mm / tooth,
Cutting time: 8 minutes,
Table 9 shows the results of the cutting test.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases α to γ made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−XAl)(C1−Y)層を目標層厚になるまで蒸着形成した後、同じく表4に示される条件で表面部の(Ti1−XAl)(C1−Y)層を形成することにより、表13に示される本発明被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層および/または上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool base α to γ and the tool base δ, and first, under the conditions shown in Table 4, (Ti 1-X Al X ) ( After the C Y N 1-Y ) layer is formed by vapor deposition until the target layer thickness is reached, the (Ti 1-X Al X ) (C Y N 1-Y ) layer is formed under the same conditions as shown in Table 4 By doing this, this invention coated tool 16-30 shown by Table 13 was manufactured.
In addition, about this invention coated tools 19-28, the lower layer and / or upper layer which were shown in Table 12 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表14に示される比較例被覆工具16〜28を製造した。
なお、本発明被覆工具19〜28と同様に、比較例被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層および/または上部層を形成した。
Further, for the purpose of comparison, (Ti 1-X Al X ) (C) of the comparative example was similarly used on the surfaces of the tool bases α to γ and the tool base δ using the usual chemical vapor deposition apparatus under the conditions shown in Table 5. YN 1-Y ) layers were deposited at the target layer thickness to produce comparative example coated tools 16-28 shown in Table 14.
In addition, similarly to this invention coated tool 19-28, about the comparative example coated tool 19-28, the lower layer and / or upper layer which were shown in Table 12 were formed on the formation conditions shown in Table 3.

参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表14に示される参考例被覆工具29,30を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed on the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 29 and 30 shown in Table 14.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.

また、本発明被覆工具16〜30、比較例被覆工具16〜28および参考例被覆工具29、30の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前記の本発明被覆工具16〜30の硬質被覆層について、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、基体表面の法線方向に対する{111}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表13に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 16-30, comparative example coated tool 16-28, and reference example coated tool 29,30 is measured using a scanning electron microscope, and five layers in an observation visual field When the thickness was measured and averaged to determine the average layer thickness, both showed the same average layer thickness as the target average layer thickness shown in Table 13 and Table 14.
Next, with respect to the hard coating layers of the inventive coated tools 16 to 30, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer, and the normal line of the {111} plane with respect to the normal direction of the substrate surface are The ratio (α) of the frequency existing within the range of the inclination angle 0 to 12 degrees formed and the area ratio (β) of the entire area of the marked facet with respect to the entire observation image plane were obtained. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 13 shows the results.

ついで、比較例被覆工具16〜28および参考例被覆工具29、30のそれぞれについても、本発明被覆工具16〜30と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、基体表面の法線方向に対する{111}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表14に、その結果を示す。
Then, the average Al content ratio X avg and the average C content ratio Y of the hard coating layer were also applied to each of the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 in the same manner as the coated tools 16 to 30 of the present invention. avg , the ratio (α) of the power existing in the range of inclination angle 0-12 degrees formed by the normal of the {111} plane relative to the normal direction of the substrate surface, and the total area of the marked facet relative to the entire observation image plane The area ratio (β) was determined. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 14 shows the results.

つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較例被覆工具16〜28および参考例被覆工具29、30について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:1.0mm、
送り:0.1mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:310m/min、
切り込み:1.0mm、
送り:0.1mm/rev、
切削時間:5分、
(通常の切削速度は、180m/min)、
表15に、前記切削試験の結果を示す。
Next, the coated tools 16 to 30 of the present invention, the comparative coated tools 16 to 28, and the reference coated tools are used in the state where all of the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. About 29 and 30, the dry high-speed intermittent cutting test of carbon steel and the wet high-speed intermittent cutting test of cast iron which were shown below were implemented, and all measured the flank wear width of the cutting edge.
Cutting condition 1:
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 380 m / min,
Cutting depth: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 310 m / min,
Cutting depth: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 180 m / min),
Table 15 shows the results of the cutting test.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations CNGA120412 tool substrate b having the insert shape, were manufactured, respectively b.

つぎに、これらの工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表4に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31〜40を製造した。
なお、本発明被覆工具34〜38については、表3に示される形成条件で、表17に示される下部層および/または上部層を形成した。
Next, these tool substrate b, the surface of the filtration, using conventional chemical vapor deposition apparatus under the conditions shown in Table 4, (Ti 1-X Al X) of the present invention (C Y N 1-Y) layer The present invention coated tools 31 to 40 shown in Table 18 were manufactured by vapor deposition with a target layer thickness.
In addition, about this invention coated tools 34-38, the lower layer and / or upper layer which were shown in Table 17 on the formation conditions shown in Table 3 were formed.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表19に示される比較例被覆工具31〜39を製造した。 For comparison purposes, a conventional chemical vapor deposition apparatus was similarly used on the surfaces of the tool bases i and b, and under the conditions shown in Table 5, (Ti 1-X Al X ) ( CY N 1 1- The comparative example coated tools 31 to 39 shown in Table 19 were manufactured by vapor-depositing the Y ) layer with a target layer thickness.

参考のため、工具基体イ、ロの表面に、従来の物理蒸着装置を用いて、実施例1に示される条件と同様の条件を用いたアークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表19に示される参考例被覆工具40を製造した。 For reference, (Ti 1-X of the reference example) was prepared by arc ion plating using the same conditions as those shown in Example 1 on the surfaces of the tool bases (a) and (b) using a conventional physical vapor deposition apparatus. A reference example-coated tool 40 shown in Table 19 was manufactured by vapor-depositing an Al X ) (C Y N 1-Y ) layer with a target layer thickness.

また、本発明被覆工具31〜40、比較例被覆工具31〜39および参考例被覆工具40の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18および表19に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前記の本発明被覆工具31〜40の硬質被覆層について、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、基体表面の法線方向に対する{111}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表18に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 31-40, comparative example coated tool 31-39, and reference example coated tool 40 is measured using a scanning electron microscope, and the layer thickness of five points in an observation visual field is measured. When measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Table 18 and Table 19.
Next, for the hard coating layers of the inventive coated tools 31 to 40, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer, and the normal line of the {111} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing within the range of the inclination angle 0 to 12 degrees formed and the area ratio (β) of the entire area of the marked facet with respect to the entire observation image plane were obtained. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 18 shows the results.

ついで、比較例被覆工具31〜39および参考例被覆工具40のそれぞれについても、本発明被覆工具31〜40と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、基体表面の法線方向に対する{111}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表19に、その結果を示す。
Next, for each of the comparative example coated tools 31 to 39 and the reference example coated tool 40, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer is the same as in the present invention coated tools 31 to 40. The ratio (α) of the frequency existing in the range of the inclination angle of 0 to 12 degrees formed by the normal of the {111} plane with respect to the normal direction of the substrate surface, and the area ratio of the entire area of the marked facet to the entire observation image plane (Β) was determined. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 19 shows the results.

つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31〜40、比較例被覆工具31〜39および参考例被覆工具40について、以下に示す、炭素鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 235 m/min、
切り込み: 1.1mm、
送り: 0.1mm/rev、
切削時間: 4分、
表20に、前記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 31 to 40, the comparative coated tools 31 to 39, and the reference coated samples About the tool 40, the dry high-speed intermittent cutting test of the carbon steel shown below was implemented, and the flank wear width of the cutting edge was measured.
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 235 m / min,
Incision: 1.1mm,
Feed: 0.1mm / rev,
Cutting time: 4 minutes
Table 20 shows the results of the cutting test.

表9、11および20に示される結果から、本発明被覆工具1〜40は、立方晶構造の(Ti1−XAl)(C1−Y)層が成膜され、傾斜角度数分布全体に占めるαの値が45%以上、{111}面配向している結晶粒の{111}で表される等価な結晶面で形成された三角形状を有するファセットの表面全体を100%とした時の面積割合が35%以上であることから、ステンレス鋼などの高速断続切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜13、16〜28、31〜39、参考例被覆工具14、15、29、30、40については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 9, 11 and 20, according to the present invention coated tools 1 to 40, a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a cubic structure is formed, and the number of inclination angles The value of α in the entire distribution is 45% or more, and the entire surface of a facet having a triangular shape formed by an equivalent crystal plane represented by {111} of {111} -oriented crystal grains is 100%. Since the area ratio is 35% or more, it exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting of stainless steel or the like.
On the other hand, all of the comparative example coated tools 1 to 13, 16 to 28, 31 to 39 and the reference example coated tools 14, 15, 29, 30, and 40 are chipped, chipped, peeled, etc. on the hard coating layer. It is clear that not only abnormal damage occurs, but also the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、ステンレス鋼、炭素鋼、鋳鉄などの高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of stainless steel, carbon steel, cast iron, etc., but also as a coated tool for various work materials. Since it exhibits excellent chipping resistance and wear resistance, it can satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (8)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合Xavgおよび複合窒化物または複合炭窒化物層のCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測されるNaCl型の面心立方構造を有する結晶相が存在し、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、
(d)また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒が層厚方向に垂直な面内で三角形状を有し該結晶粒の{111}で表される等価な結晶面で形成されたファセットが、前記層厚方向に垂直な面内において全体の35%以上の面積割合を占めることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition, and has a composition formula: (Ti 1-X Al X ) When expressed by (C Y N 1-Y ), the average content ratio X avg in the total amount of Ti and Al in the composite nitride or composite carbonitride layer and the composite nitride or composite carbonitride layer The average content ratio Y avg (where X avg and Y avg are atomic ratios) in the total amount of C and N in C are 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦, respectively. 0.005 is satisfied,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) For the composite nitride or composite carbonitride layer, using an electron beam backscatter diffraction apparatus, each crystal grain having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is used. When the crystal orientation is analyzed from the longitudinal section direction of the Ti and Al composite nitride or composite carbonitride layer, it has a NaCl-type face-centered cubic structure in which an electron backscatter diffraction image of a cubic crystal lattice is observed. A crystal phase is present, and an inclination angle formed by a normal line of the {111} plane, which is a crystal plane of the crystal grain, with respect to a normal direction of the tool base surface is measured. When the inclination angle within the range of degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the inclination angle classification within the range of 0 to 12 degrees In the range of 0-12 degrees The total of the frequencies present in the, shows the percentage of 45% or more of the total power at the inclination angle frequency distribution,
(D) When the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, the NaCl-type face center in the composite nitride or composite carbonitride layer is used. Each crystal grain having a cubic structure has a triangular shape in a plane perpendicular to the layer thickness direction, and facets formed of equivalent crystal planes represented by {111} of the crystal grains are formed in the layer thickness direction. A surface-coated cutting tool characterized by occupying an area ratio of 35% or more of the whole in a vertical plane.
前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする請求項1に記載の表面被覆切削工具。   2. The surface according to claim 1, wherein the composite nitride or composite carbonitride layer is composed of a single phase of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. Coated cutting tool. 前記複合窒化物または複合炭窒化物層は、2種以上の複数の相が共存する混合相からなり、該混合相は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、混合相に共存するその他の各相はTiとAlから選ばれる少なくとも1種の元素と、C,Nから選ばれる少なくとも一種からなる化合物であることを特徴とする請求項1に記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is composed of a mixed phase in which two or more kinds of phases coexist, and the mixed phase is a composite nitride or composite of Ti and Al having an NaCl type face-centered cubic structure. Each of the other phases including at least the carbonitride phase and coexisting in the mixed phase is a compound composed of at least one element selected from Ti and Al and at least one selected from C and N. The surface-coated cutting tool according to claim 1. 前記複合窒化物または複合炭窒化物層について、工具基体表面と垂直な皮膜断面側から観察・測定した場合に、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有することを特徴とする請求項1または請求項3に記載の表面被覆切削工具。   When the composite nitride or composite carbonitride layer is observed and measured from the side of the cross section of the coating film perpendicular to the surface of the tool substrate, the crystal grains of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure are observed. The surface-coated cutting tool according to claim 1 or 3, wherein the surface-coated cutting tool has a columnar structure with an average particle width W of 0.1 to 2.0 µm and an average aspect ratio A of 2 to 10. 前記複合窒化物または複合炭窒化物層について該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し該微粒結晶粒の平均粒径Rが0.01〜0.30μmであることを特徴とする請求項1または請求項3、請求項4のいずれか一項に記載の表面被覆切削工具。 When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, a columnar shape composed of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or the composite carbonitride layer. The fine grain having a hexagonal crystal structure is present in the grain boundary portion of the structure, and the mean grain size R of the fine grain is 0.01 to 0.30 μm. Item 5. The surface-coated cutting tool according to any one of items 4 to 4. 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1乃至5のいずれか一項に記載の表面被覆切削工具。   Between a tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, and the Ti / Al composite nitride or composite carbonitride layer. 1 or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and has a total average layer thickness of 0.1 to 20 μm. The surface-coated cutting tool according to any one of claims 1 to 5, wherein a lower layer including a Ti compound layer is present. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1乃至6のいずれか一項に記載の表面被覆切削工具。   7. The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. The surface-coated cutting tool described. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至7のいずれか一項に記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of claims 1 to 7. The surface-coated cutting tool described.
JP2015009264A 2014-01-31 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Active JP6394898B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015009264A JP6394898B2 (en) 2014-01-31 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN201510031601.3A CN104816141B (en) 2014-01-31 2015-01-22 Surface-coated cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014016356 2014-01-31
JP2014016356 2014-01-31
JP2015009264A JP6394898B2 (en) 2014-01-31 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2015163423A true JP2015163423A (en) 2015-09-10
JP6394898B2 JP6394898B2 (en) 2018-09-26

Family

ID=54186596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009264A Active JP6394898B2 (en) 2014-01-31 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP6394898B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047581A1 (en) * 2014-09-25 2016-03-31 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6037256B1 (en) * 2016-04-14 2016-12-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP2017080883A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2017113835A (en) * 2015-12-24 2017-06-29 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
WO2017179221A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
WO2018135513A1 (en) 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
US10259048B2 (en) * 2016-04-14 2019-04-16 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
JPWO2018047734A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same
JP2019119045A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2019520992A (en) * 2016-07-01 2019-07-25 ヴァルター アーゲー Cutting tool with textured alumina layer
JP2020055041A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2020055097A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2020104209A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
WO2020213263A1 (en) * 2019-04-19 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
WO2020213257A1 (en) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
WO2020213264A1 (en) * 2019-04-19 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
WO2020213258A1 (en) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
CN111910172A (en) * 2020-07-24 2020-11-10 株洲钻石切削刀具股份有限公司 Composite coating PCBN cutting tool and preparation method thereof
US11040402B2 (en) 2017-01-18 2021-06-22 Mitsubishi Materials Corporation Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
US20210402486A1 (en) * 2018-09-28 2021-12-30 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
US11220760B2 (en) 2016-04-14 2022-01-11 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
US11998992B2 (en) 2018-09-28 2024-06-04 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315011A (en) * 1997-05-15 1998-12-02 Hitachi Metals Ltd Hard film-covered tool and hard film-covered roller and hard film-covered metal mold
JP2001341008A (en) * 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd Titanium nitride-aluminum film coated tool and manufacturing method therefor
JP2006335637A (en) * 2005-03-28 2006-12-14 Sumitomo Electric Ind Ltd Diamond substrate and manufacturing method thereof
JP2007119810A (en) * 2005-10-26 2007-05-17 Hitachi Tool Engineering Ltd Coated member
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool
JP2008264890A (en) * 2007-04-16 2008-11-06 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2008545063A (en) * 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Hard film-coated object and method for manufacturing the same
JP2013116509A (en) * 2011-12-01 2013-06-13 Mitsubishi Materials Corp Surface-coated cutting tool
JP2013240866A (en) * 2012-05-22 2013-12-05 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315011A (en) * 1997-05-15 1998-12-02 Hitachi Metals Ltd Hard film-covered tool and hard film-covered roller and hard film-covered metal mold
JP2001341008A (en) * 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd Titanium nitride-aluminum film coated tool and manufacturing method therefor
JP2006335637A (en) * 2005-03-28 2006-12-14 Sumitomo Electric Ind Ltd Diamond substrate and manufacturing method thereof
JP2008545063A (en) * 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Hard film-coated object and method for manufacturing the same
JP2007119810A (en) * 2005-10-26 2007-05-17 Hitachi Tool Engineering Ltd Coated member
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool
JP2008264890A (en) * 2007-04-16 2008-11-06 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2013116509A (en) * 2011-12-01 2013-06-13 Mitsubishi Materials Corp Surface-coated cutting tool
JP2013240866A (en) * 2012-05-22 2013-12-05 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047581A1 (en) * 2014-09-25 2016-03-31 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
US10456842B2 (en) 2014-09-25 2019-10-29 Mitsubishi Materials Corporation Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP2017080883A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2017113835A (en) * 2015-12-24 2017-06-29 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP2017189847A (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
JP2017189848A (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
WO2017179221A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
US11220760B2 (en) 2016-04-14 2022-01-11 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
CN107438490A (en) * 2016-04-14 2017-12-05 住友电工硬质合金株式会社 Surface-coated cutting tool and its manufacture method
US10252343B2 (en) 2016-04-14 2019-04-09 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
US10259048B2 (en) * 2016-04-14 2019-04-16 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
WO2017179218A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
JP6037256B1 (en) * 2016-04-14 2016-12-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP2019520992A (en) * 2016-07-01 2019-07-25 ヴァルター アーゲー Cutting tool with textured alumina layer
JPWO2018047734A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same
WO2018135513A1 (en) 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
US11040402B2 (en) 2017-01-18 2021-06-22 Mitsubishi Materials Corporation Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2019119045A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7183522B2 (en) 2018-01-04 2022-12-06 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
US11998992B2 (en) 2018-09-28 2024-06-04 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
CN112770858B (en) * 2018-09-28 2023-05-16 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP7231885B2 (en) 2018-09-28 2023-03-02 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7183519B2 (en) 2018-09-28 2022-12-06 三菱マテリアル株式会社 A surface cutting tool with a hard coating that exhibits excellent chipping resistance
EP3858524A4 (en) * 2018-09-28 2022-04-06 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2020055097A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
CN112770858A (en) * 2018-09-28 2021-05-07 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2020055041A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
US20210402486A1 (en) * 2018-09-28 2021-12-30 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2020104209A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7198412B2 (en) 2018-12-27 2023-01-04 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2021137957A (en) * 2019-04-17 2021-09-16 住友電工ハードメタル株式会社 Cutting tool
JPWO2020213258A1 (en) * 2019-04-17 2021-04-30 住友電工ハードメタル株式会社 Cutting tools
WO2020213258A1 (en) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
WO2020213257A1 (en) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
JP6794604B1 (en) * 2019-04-19 2020-12-02 住友電工ハードメタル株式会社 Cutting tools
JP6780222B1 (en) * 2019-04-19 2020-11-04 住友電工ハードメタル株式会社 Cutting tools
WO2020213264A1 (en) * 2019-04-19 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
WO2020213263A1 (en) * 2019-04-19 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
CN111910172B (en) * 2020-07-24 2022-10-18 株洲钻石切削刀具股份有限公司 Composite coating PCBN cutting tool and preparation method thereof
CN111910172A (en) * 2020-07-24 2020-11-10 株洲钻石切削刀具股份有限公司 Composite coating PCBN cutting tool and preparation method thereof

Also Published As

Publication number Publication date
JP6394898B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP6037113B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6171638B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016124098A (en) Surface coated cutting tool excellent in chipping resistance and wear resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2016124099A (en) Surface coated cutting tool excellent in chipping resistance and wear resistance
JP2014083638A (en) Surface-coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-seed intermittent cutting work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180814

R150 Certificate of patent or registration of utility model

Ref document number: 6394898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150