JP2015162321A - Radio frequency heating device - Google Patents

Radio frequency heating device Download PDF

Info

Publication number
JP2015162321A
JP2015162321A JP2014036195A JP2014036195A JP2015162321A JP 2015162321 A JP2015162321 A JP 2015162321A JP 2014036195 A JP2014036195 A JP 2014036195A JP 2014036195 A JP2014036195 A JP 2014036195A JP 2015162321 A JP2015162321 A JP 2015162321A
Authority
JP
Japan
Prior art keywords
rotating antenna
inner conductor
wall
microwave
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014036195A
Other languages
Japanese (ja)
Inventor
窪田 哲男
Tetsuo Kubota
哲男 窪田
本間 満
Mitsuru Honma
満 本間
佐知 田中
Sachi Tanaka
佐知 田中
紀之 大都
Noriyuki Daito
紀之 大都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014036195A priority Critical patent/JP2015162321A/en
Publication of JP2015162321A publication Critical patent/JP2015162321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio frequency heating device in which generated microwave power can be efficiently supplied from a waveguide to a rotary antenna to couple the microwave power to the rotary antenna.SOLUTION: A rotary antenna 100 of a radio frequency heating device 1 has a short-circuit wall 102 as a shield face, and a coupling hole 108 formed in a wall surface (lower surface wall 104) which is substantially vertical to the short-circuit wall 102 adjacent to a waveguide 50, and an inner conductor 101 which is inserted through the coupling hole 108 and supported in contact with the inner wall of a rectangular cylindrical pipe. The rotary antenna 100 is configured in the form of a rectangular cylindrical pipe having the short-circuit wall 102 as a bottom. The rotary antenna 100 has an open face serving as a radiation port of microwave energy, and the open face 107 faces the short-circuit wall 102 through the inner conductor 101.

Description

本発明は、マイクロ波電力を被加熱物に照射する高周波加熱装置に関する。   The present invention relates to a high-frequency heating apparatus that irradiates an object to be heated with microwave power.

マイクロ波エネルギを加熱室内に放射し、食品などを加熱する高周波加熱装置がある。マイクロ波電力を応用した加熱方法は、マイクロ波エネルギが被照射物の内部に直接伝達され、迅速で高効率の加熱を実現することができる。マイクロ波発振デバイスには、一般的にマグネトロンが利用される。   There is a high-frequency heating device that radiates microwave energy into a heating chamber and heats food. In the heating method using the microwave power, the microwave energy is directly transmitted to the inside of the irradiation object, so that rapid and highly efficient heating can be realized. A magnetron is generally used for a microwave oscillation device.

最近では、加熱室の有効容積の拡大や装置の小型化の観点からターンテーブルを用いずに、被加熱物自体を回転させる代わりに回転アンテナを用いる方式が多く採用されている。回転アンテナを用いてマイクロ波を加熱室内に供給する技術としては、マイクロ波を伝送する導波管を備え、導波管から加熱室へと貫通する開口部に回転アンテナを設けて、マイクロ波を加熱室内に導出して放射する。   Recently, from the viewpoint of increasing the effective volume of the heating chamber and reducing the size of the apparatus, a system using a rotating antenna instead of rotating the object to be heated itself is often used without using a turntable. As a technique for supplying microwaves into a heating chamber using a rotating antenna, a microwave transmitting waveguide is provided, and a rotating antenna is provided in an opening that penetrates from the waveguide to the heating chamber. Derived into the heating chamber and emitted.

特許文献1には、加熱室の天井壁面に外部側に突出状態で回転アンテナ収納部を形成し、この回転アンテナ収納部に回転アンテナを収納した高周波加熱装置が記載されている。特許文献1に記載の高周波加熱装置は、固定導波管により導かれるマイクロ波エネルギを回転アンテナに結合させた後、回転アンテナの励振口部より加熱室内に放射し、載置台に載置された食品などを高周波加熱する。
上記回転アンテナは、上面が開口された箱形のもので、回転アンテナ収納部の電波給電口と固定導波管の電波給電口を貫通して、該電波給電口に略垂直に臨んで設けられた誘電体製の回転軸が回転アンテナの底面に固着され、回転アンテナの上面開口部が回転アンテナ収納部の上面と対向して上向き状態で回転軸により保持されている。また、回転アンテナの底面には回転軸が固定されている側の端部と反対側の端部側に励振口が形成され、マグネトロンで発生し固定導波管内を伝送されてきたマイクロ波を結合させた後、回転アンテナの励振口からマイクロ波を加熱室内に放射するようになっている。また、回転アンテナの底面に垂直な幅狭面端には固定導波管収納部の上面と対向して幅狭面端と直角に回転アンテナ外側方向にフランジを設け、結合されたマイクロ波がフランジ部とこれと対向する固定導波管収納部上面隙間から漏洩するのを抑制しようと試みている。
特許文献1では、固定導波管の電波給電口は、回転アンテナの上面開口部と互いに対向して設けられている。回転アンテナを回転させるために固定導波管と一定の距離をおいて、誘電体製の回転軸で回転アンテナを回転自在に支える構成としている。
Patent Document 1 describes a high-frequency heating device in which a rotating antenna housing portion is formed on the ceiling wall surface of a heating chamber so as to protrude outward, and the rotating antenna is housed in the rotating antenna housing portion. In the high-frequency heating device described in Patent Document 1, after the microwave energy guided by the fixed waveguide is coupled to the rotating antenna, the microwave energy is radiated from the excitation opening of the rotating antenna into the heating chamber and mounted on the mounting table. High-frequency heating foods.
The rotating antenna has a box shape with an open top surface, and is provided so as to pass through the radio power feeding port of the rotating antenna housing and the radio power feeding port of the fixed waveguide and face the radio power feeding port substantially vertically. The rotating shaft made of a dielectric is fixed to the bottom surface of the rotating antenna, and the upper surface opening of the rotating antenna is held by the rotating shaft in an upward state facing the upper surface of the rotating antenna storage portion. In addition, an excitation port is formed on the bottom of the rotating antenna on the side opposite to the end on which the rotating shaft is fixed, and the microwave generated by the magnetron and transmitted through the fixed waveguide is coupled. Then, microwaves are radiated from the excitation opening of the rotating antenna into the heating chamber. In addition, a flange is provided at the narrow surface end perpendicular to the bottom surface of the rotating antenna so as to face the top surface of the fixed waveguide housing portion and at a right angle to the narrow surface end in the direction toward the outer side of the rotating antenna. Attempts are made to suppress leakage from the upper surface gap between the upper portion and the fixed waveguide housing portion facing this portion.
In Patent Document 1, the radio wave feeding port of the fixed waveguide is provided so as to face the upper surface opening of the rotating antenna. In order to rotate the rotating antenna, the rotating antenna is rotatably supported by a dielectric rotating shaft at a certain distance from the fixed waveguide.

特許文献2には、略円錐台形状のアンテナドームに、該アンテナドーム天面の導出孔を貫通して設けた軸素子及び軸素子に結合された略円形の平板素子を有した回転アンテナを配したマイクロ波加熱装置が記載されている。特許文献2に記載のマイクロ波加熱装置は、回転アンテナである金属製の平板素子に金属製の軸素子が固着され、該軸素子は導出孔を貫通して導波管内に突出して導波管を貫通した回転自在の誘電体からなる回転子に導波管上面壁に接触されることなく導波管内で保持されると記載されている。   In Patent Document 2, a rotating antenna having a substantially circular truncated conical antenna dome having a shaft element provided through a lead-out hole on the top surface of the antenna dome and a substantially circular flat plate element coupled to the shaft element is arranged. A microwave heating apparatus is described. In the microwave heating apparatus described in Patent Document 2, a metal shaft element is fixed to a metal plate element which is a rotating antenna, and the shaft element penetrates the lead-out hole and protrudes into the waveguide to guide the waveguide. It is described that a rotor made of a rotatable dielectric material penetrating through the waveguide is held in the waveguide without being in contact with the upper wall of the waveguide.

実開昭62−67495号公報Japanese Utility Model Publication No. 62-67495 特開2013−37795号公報JP 2013-37795 A

特許文献1に記載の高周波加熱装置は、回転アンテナを回転させるために固定導波管と一定の距離をおいて、誘電体製の回転軸で回転アンテナを回転自在に支える構成であったので、この誘電体製回転軸が固定導波管の電波給電口から放射されたマイクロ波を回転アンテナの電波給電口に結合させることが難しく、回転アンテナにマイクロ波が結合されても回転アンテナ外側方向に設けたフランジとこれと対向する回転アンテナ収納部上面隙間から殆どのマイクロ波が漏洩するという問題がある。また、マイクロ波を回転アンテナ内で伝送させるために必要なTEモード(Transverse Electric mode)の波が発生しないので、回転アンテナの励振口からマイクロ波を加熱室内に放射することができないという問題点がある。   Since the high-frequency heating device described in Patent Document 1 is configured to rotatably support the rotating antenna with a dielectric rotating shaft at a certain distance from the fixed waveguide in order to rotate the rotating antenna. This dielectric rotating shaft makes it difficult to couple the microwave radiated from the radio wave feed port of the fixed waveguide to the radio wave feed port of the rotating antenna. Even if the microwave is coupled to the rotating antenna, There is a problem that most of the microwaves leak from the gap between the provided flange and the upper surface of the rotating antenna housing facing the flange. In addition, since the TE mode (Transverse Electric mode) wave necessary for transmitting the microwave in the rotating antenna does not occur, the microwave cannot be radiated into the heating chamber from the excitation opening of the rotating antenna. is there.

特許文献2に記載のマイクロ波加熱装置は、平板素子に金属製の軸素子を固着した回転アンテナを用いる構成であったので、実験等によれば、マイクロ波電力の結合度が劣り、マグネトロンで発生したマイクロ波電力を回転アンテナに効率よく結合させることができないことが判明した。   Since the microwave heating apparatus described in Patent Document 2 has a configuration using a rotating antenna in which a metal shaft element is fixed to a flat plate element, according to experiments and the like, the coupling degree of microwave power is inferior, It has been found that the generated microwave power cannot be efficiently coupled to the rotating antenna.

本発明は、このような事情に鑑みてなされたものであり、発生したマイクロ波電力を導波管から回転アンテナに効率良く供給して結合させることができる高周波加熱装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a high-frequency heating device capable of efficiently supplying and coupling generated microwave power from a waveguide to a rotating antenna. To do.

上記課題を解決するために、本発明の高周波加熱装置は、被加熱物を収容する加熱室と、前記加熱室の一面に設けた高周波供給室と、マイクロ波エネルギを発生するマイクロ波供給源と、前記マイクロ波供給源で発生したマイクロ波エネルギを伝える導波管と、前記高周波供給室と前記導波管とを結合する結合孔と、前記結合孔を貫通して一方の側が前記高周波供給室内に他方の側が前記導波管内に臨んで設けられる内導体と、前記高周波供給室に収納される箱型の金属製の回転アンテナと、前記回転アンテナを、前記内導体を中心に回転駆動する駆動部と、を備え、前記回転アンテナは、前記結合孔に対応した位置に前記内導体が貫通する孔部と、前記内導体と前記孔部により当該回転アンテナ内に導入されたマイクロ波エネルギを遠心方向に放射する放射口と、を有することを特徴とする。   In order to solve the above-described problems, a high-frequency heating device of the present invention includes a heating chamber that accommodates an object to be heated, a high-frequency supply chamber that is provided on one surface of the heating chamber, and a microwave supply source that generates microwave energy. A waveguide for transmitting microwave energy generated by the microwave supply source, a coupling hole for coupling the high-frequency supply chamber and the waveguide, and one side penetrating the coupling hole on the high-frequency supply chamber An inner conductor provided with the other side facing the waveguide, a box-shaped metal rotating antenna housed in the high-frequency supply chamber, and a drive for rotating the rotating antenna around the inner conductor The rotary antenna includes a hole through which the inner conductor penetrates at a position corresponding to the coupling hole, and the microwave energy introduced into the rotary antenna by the inner conductor and the hole is centrifuged. Direction It characterized by having a a radiation opening for emitting a.

本発明によれば、発生したマイクロ波電力を導波管から回転アンテナに効率良く供給して結合させることができる高周波加熱装置を提供する。   According to the present invention, there is provided a high frequency heating apparatus capable of efficiently supplying and coupling generated microwave power from a waveguide to a rotating antenna.

本発明の第1の実施形態に係る高周波加熱装置の構成を示す断面図である。It is sectional drawing which shows the structure of the high frequency heating apparatus which concerns on the 1st Embodiment of this invention. 上記第1の実施形態に係る高周波加熱装置の回転アンテナの要部断面斜視図である。It is a principal part cross-sectional perspective view of the rotating antenna of the high frequency heating apparatus which concerns on the said 1st Embodiment. 上記第1の実施形態に係る高周波加熱装置の回転アンテナの斜視図である。It is a perspective view of the rotating antenna of the high frequency heating device according to the first embodiment. 上記第1の実施形態に係る高周波加熱装置の回転アンテナ給電部の拡大断面図である。It is an expanded sectional view of the rotating antenna electric power feeding part of the high frequency heating apparatus which concerns on the said 1st Embodiment. 上記第1の実施形態に係る高周波加熱装置の回転アンテナの内導体と短絡壁距離によるカップリング特性解析結果を示す図である。It is a figure which shows the coupling characteristic analysis result by the inner conductor of a rotating antenna of the high frequency heating apparatus which concerns on the said 1st Embodiment, and a short circuit wall distance. 上記第1の実施形態に係る高周波加熱装置の内導体の形状をL型にした回転アンテナの要部断面斜視図である。It is a principal part cross-sectional perspective view of the rotating antenna which made the shape of the inner conductor of the high frequency heating apparatus which concerns on the said 1st Embodiment into the L shape. 上記第1の実施形態に係る高周波加熱装置の内導体の形状をT型にした回転アンテナの要部断面斜視図である。It is a principal part cross-sectional perspective view of the rotating antenna which made the shape of the inner conductor of the high frequency heating apparatus which concerns on the said 1st Embodiment into the T shape. 上記第1の実施形態に係る高周波加熱装置の回転アンテナと従来例の結合電力の解析結果を示す図である。It is a figure which shows the analysis result of the combined power of the rotating antenna of the high frequency heating apparatus which concerns on the said 1st Embodiment, and a prior art example. 本発明の第2の実施形態に係る高周波加熱装置の回転アンテナの斜視図である。It is a perspective view of the rotating antenna of the high frequency heating apparatus which concerns on the 2nd Embodiment of this invention. 上記第2の実施形態に係る高周波加熱装置の垂直壁を曲面にした回転アンテナの平面図である。It is a top view of the rotating antenna which made the vertical wall of the high frequency heating apparatus concerning the said 2nd embodiment into a curved surface. 上記第2の実施形態に係る高周波加熱装置の他の開口部を有する回転アンテナの平面図である。It is a top view of the rotating antenna which has the other opening part of the high frequency heating apparatus which concerns on the said 2nd Embodiment.

以下、本発明の実施形態について図面を参照して詳細に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る高周波加熱装置の構成を示す断面図である。本実施形態の高周波加熱装置は、被加熱物を収納する金属加熱箱内にマイクロ波発振デバイスからのマイクロ波電力を伝送する導波管を有する電子レンジに適用した例である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing the configuration of the high-frequency heating device according to the first embodiment of the present invention. The high-frequency heating device of this embodiment is an example applied to a microwave oven having a waveguide that transmits microwave power from a microwave oscillation device in a metal heating box that houses an object to be heated.

図1に示すように、高周波加熱装置1は、被加熱物Sを収容する加熱室10と、加熱室10の底面10aに設置された誘電体からなる被加熱物載置板20と、被加熱物載置板20の下方で加熱室10の底面略中央部に配置された高周波供給室30と、高周波供給室30の下方側部に設置され、マイクロ波エネルギを発生するマグネトロン40(マイクロ波供給源)と、マグネトロン40で発生したマイクロ波電力を伝送する導波管50と、を備える。また、高周波加熱装置1は、導波管50に導かれたマイクロ波エネルギを高周波供給室30に放射するために高周波供給室30の底面30aの略中央部に開口した結合孔31と、結合孔31の中心を貫通して高周波供給室30内へ略垂直に臨んで設けられた内導体101と、高周波供給室30に収納され、内導体101の一端に連結した金属製の回転アンテナ100と、導波管50内で内導体101に連結した誘電体軸60と、誘電体軸60を回転駆動する駆動部70と、を備える。   As shown in FIG. 1, the high-frequency heating device 1 includes a heating chamber 10 that houses an object to be heated S, a heated object mounting plate 20 made of a dielectric that is installed on a bottom surface 10 a of the heating chamber 10, and a heated object. A high-frequency supply chamber 30 disposed below the object placement plate 20 and substantially at the center of the bottom surface of the heating chamber 10, and a magnetron 40 (microwave supply) installed at a lower side of the high-frequency supply chamber 30 to generate microwave energy. Source) and a waveguide 50 for transmitting the microwave power generated by the magnetron 40. The high-frequency heating device 1 includes a coupling hole 31 that is opened at a substantially central portion of the bottom surface 30 a of the high-frequency supply chamber 30 in order to radiate the microwave energy guided to the waveguide 50 to the high-frequency supply chamber 30. An inner conductor 101 provided through the center of 31 and facing substantially vertically into the high-frequency supply chamber 30; a metal rotary antenna 100 housed in the high-frequency supply chamber 30 and connected to one end of the inner conductor 101; A dielectric shaft 60 connected to the inner conductor 101 in the waveguide 50 and a drive unit 70 that rotationally drives the dielectric shaft 60 are provided.

本実施形態の高周波加熱装置1は、加熱室10の下部(底部)に加熱室10内における定在波を解消する回転アンテナ100を収納する高周波供給室30を設け、さらにこの高周波供給室30の下部にマグネトロン40及び導波管50を配置した例である。高周波加熱装置1は、回転アンテナ100を収納する高周波供給室30を、加熱室10の上部又は側面部に備える構成でもよい。   The high-frequency heating device 1 of the present embodiment is provided with a high-frequency supply chamber 30 that houses a rotating antenna 100 that eliminates standing waves in the heating chamber 10 at the bottom (bottom) of the heating chamber 10. This is an example in which a magnetron 40 and a waveguide 50 are arranged in the lower part. The high-frequency heating device 1 may have a configuration in which the high-frequency supply chamber 30 that houses the rotating antenna 100 is provided on the upper portion or the side surface of the heating chamber 10.

<回転アンテナ>
図2は、本実施形態に係る高周波加熱装置の回転アンテナの要部断面斜視図である。図3は、図2の回転アンテナの斜視図である。
図2及び図3に示すように、回転アンテナ100は、断面が長方形の矩形状で一端面に短絡壁102を有する矩形導波管構造である。具体的には、回転アンテナ100は、遮蔽面である短絡壁102を有底とする金属製の矩形筒管形状であり、短絡壁102と略垂直な壁面(下面壁104)に設けられた結合孔(孔部)108と、結合孔108を貫通して挿入され、矩形筒管内壁に接触して支持される内導体101と、を備える。
<Rotating antenna>
FIG. 2 is a cross-sectional perspective view of the main part of the rotating antenna of the high-frequency heating device according to the present embodiment. FIG. 3 is a perspective view of the rotating antenna of FIG.
As shown in FIGS. 2 and 3, the rotating antenna 100 has a rectangular waveguide structure with a rectangular cross section and a short-circuit wall 102 on one end surface. Specifically, the rotating antenna 100 has a rectangular tube shape made of metal with a short-circuited wall 102 serving as a shielding surface as a bottom, and a coupling provided on a wall surface (lower wall 104) substantially perpendicular to the short-circuit wall 102. A hole (hole) 108 and an inner conductor 101 that is inserted through the coupling hole 108 and is supported in contact with the inner wall of the rectangular tube.

短絡壁102は、上下辺が左右辺より長い長方形形状である。回転アンテナ100は、この短絡壁102の4辺に、それぞれ直角に上面壁103と下面壁104とこれらを上下に繋ぐ垂直壁105,106とを設けた構成である。より詳細には、回転アンテナ100は、短絡壁102の長方形形状の4辺からマイクロ波放出側(開放面107側)に向かって上面壁103と下面壁104と垂直壁105,106とが延出するように構成されている。回転アンテナ100は、直方体形状であるため、開放面107は、短絡壁102と同じ大きさの長方形形状に構成されている。   The short-circuit wall 102 has a rectangular shape whose upper and lower sides are longer than the left and right sides. The rotating antenna 100 has a configuration in which an upper surface wall 103, a lower surface wall 104, and vertical walls 105 and 106 that connect them vertically are provided on four sides of the short-circuit wall 102 at right angles. More specifically, in the rotating antenna 100, the upper surface wall 103, the lower surface wall 104, and the vertical walls 105 and 106 extend from the four rectangular sides of the short-circuit wall 102 toward the microwave emission side (opening surface 107 side). Is configured to do. Since the rotating antenna 100 has a rectangular parallelepiped shape, the open surface 107 is configured in a rectangular shape having the same size as the short-circuit wall 102.

回転アンテナ100は、短絡壁102を有底とする矩形筒管形状であり、この矩形筒管の開口部がマイクロ波エネルギの放射口となる開放面107である。開放面107は、内導体101を挟んで短絡壁102と対面しており、回転アンテナ100内に導入されたマイクロ波エネルギを遠心方向に放射する放射口である。   The rotating antenna 100 has a rectangular tube shape with a shorted wall 102 as a bottom, and an opening of the rectangular tube is an open surface 107 serving as a microwave energy radiation port. The open surface 107 faces the short-circuit wall 102 with the inner conductor 101 interposed therebetween, and is a radiation port that radiates microwave energy introduced into the rotating antenna 100 in the centrifugal direction.

下面壁104は、導波管50から上方に離間して設けられ、短絡壁102から所定距離離隔して孔部である円形の結合孔108を形成し、結合孔108には、その中心を貫通して内導体101が挿入される。内導体101は、導波管50の結合孔51と高周波供給室30の底面30aの結合孔31と下面壁104の結合孔108とを貫通している。内導体101の一端は、直方体形状(箱状)の回転アンテナ100の上面壁103の内面に接触し、内導体101は上面壁103内面に略垂直に固定される。内導体101の他端は、導波管50内で連結した誘電体軸60で支持される。内導体101の一端が、回転アンテナ100の上面壁103の内面に接触して略垂直に固定されるので、回転アンテナ100は、導波管50内で連結した誘電体軸60によって支持される。   The lower wall 104 is provided so as to be spaced upward from the waveguide 50, and forms a circular coupling hole 108 that is a hole at a predetermined distance from the short-circuit wall 102. The coupling hole 108 passes through the center thereof. Thus, the inner conductor 101 is inserted. The inner conductor 101 passes through the coupling hole 51 of the waveguide 50, the coupling hole 31 of the bottom surface 30 a of the high frequency supply chamber 30, and the coupling hole 108 of the lower surface wall 104. One end of the inner conductor 101 is in contact with the inner surface of the upper surface wall 103 of the rectangular parallelepiped (box-shaped) rotating antenna 100, and the inner conductor 101 is fixed substantially vertically to the inner surface of the upper surface wall 103. The other end of the inner conductor 101 is supported by a dielectric shaft 60 connected in the waveguide 50. Since one end of the inner conductor 101 comes into contact with the inner surface of the upper surface wall 103 of the rotating antenna 100 and is fixed substantially vertically, the rotating antenna 100 is supported by the dielectric shaft 60 connected in the waveguide 50.

このように、回転アンテナ100は、開放面107を一つ有する略直方体状の回転アンテナである。回転アンテナ100は、マイクロ波エネルギの放射口となる四角形の開放面107と下面壁104に形成された結合孔108のみが開口し、他の面が金属壁で覆われた構成である。また、回転アンテナ100の内導体101は、結合孔108を貫通して回転アンテナ100の上面壁103の内面に固定される。
なお、回転アンテナ100の短絡壁102の短辺の長さ、及び短絡壁102から結合孔108の中心までの距離については後記する。
Thus, the rotary antenna 100 is a substantially rectangular parallelepiped rotary antenna having one open surface 107. The rotating antenna 100 has a configuration in which only a rectangular open surface 107 serving as a microwave energy radiation port and a coupling hole 108 formed in the lower surface wall 104 are opened, and the other surface is covered with a metal wall. Further, the inner conductor 101 of the rotating antenna 100 passes through the coupling hole 108 and is fixed to the inner surface of the upper surface wall 103 of the rotating antenna 100.
The length of the short side of the short-circuit wall 102 of the rotating antenna 100 and the distance from the short-circuit wall 102 to the center of the coupling hole 108 will be described later.

以下、上述のように構成された高周波加熱装置1の動作について説明する。
図1乃至図3に示すように、内導体101は、回転アンテナ100の上面壁103の内面に接触して略垂直に固定される。ここで、内導体101は、回転アンテナ100の内壁に固定されるものであればよく、固定位置や固定箇所数には限定されない。
Hereinafter, the operation of the high-frequency heating device 1 configured as described above will be described.
As shown in FIGS. 1 to 3, the inner conductor 101 contacts the inner surface of the upper surface wall 103 of the rotating antenna 100 and is fixed substantially vertically. Here, the inner conductor 101 only needs to be fixed to the inner wall of the rotating antenna 100, and is not limited to a fixed position or the number of fixed places.

図1に示すように、マグネトロン40で発生したマイクロ波エネルギは、導波管50に導かれ、導波管50の結合孔51と高周波供給室30の底面30aの結合孔31を貫通する内導体101との同軸モード結合により回転アンテナ100に伝搬される。導波管50は、マグネトロン40で発生したマイクロ波をTEモード(Transverse Electric mode)で伝送する。ここで、内導体101の部分、すなわち、導波管50から内導体101を介して回転アンテナ101に至る経路は、同軸導波管変換器を構成している(伝搬モードはTEMモード(Transverse Electro Magnetic mode)となる)。そして、回転アンテナ100に伝搬されたマイクロ波エネルギ(再びTEモードとなる)は、高周波供給室30と被加熱物載置板20を通じて回転アンテナ100の開放面107から加熱室10内に放射される。回転アンテナ100は、駆動部70により回転制御されるので、回転アンテナ100からのマイクロ波は、開放面107から外方(遠心方向)に放射される。   As shown in FIG. 1, the microwave energy generated in the magnetron 40 is guided to the waveguide 50 and passes through the coupling hole 51 of the waveguide 50 and the coupling hole 31 of the bottom surface 30 a of the high-frequency supply chamber 30. Propagated to the rotating antenna 100 by coaxial mode coupling with the antenna 101. The waveguide 50 transmits the microwave generated by the magnetron 40 in the TE mode (Transverse Electric mode). Here, the portion of the inner conductor 101, that is, the path from the waveguide 50 to the rotating antenna 101 via the inner conductor 101 constitutes a coaxial waveguide converter (the propagation mode is a TEM mode (Transverse Electro Magnetic mode)). The microwave energy propagated to the rotating antenna 100 (becomes TE mode again) is radiated from the open surface 107 of the rotating antenna 100 into the heating chamber 10 through the high-frequency supply chamber 30 and the heated object placing plate 20. . Since the rotation antenna 100 is controlled to rotate by the drive unit 70, the microwave from the rotation antenna 100 is radiated outward (centrifugal direction) from the open surface 107.

高周波加熱装置1は、開放面107を一つ有する略直方体状(箱型)の回転アンテナ100を備えることで、高周波供給室30の底面30aと、これと対向する回転アンテナ100の下面壁104の結合孔108の隙間からのマイクロ波の漏洩を低減でき、マグネトロン40で発生したマイクロ波をTEモードで伝送する導波管50から一旦モードを別モードにした後、回転アンテナ100に同じTEモードの基本波のマイクロ波を供給することができ、両者の結合度が高くなる。このため、加熱室10の内部に効率よくマイクロ波が照射されて被加熱物Sを加熱するので、高い省エネ効果が得られる。また、回転アンテナ100を回転させているので、定在波も解消されムラなく被加熱物Sを加熱できる。   The high-frequency heating device 1 includes a substantially rectangular parallelepiped (box-shaped) rotating antenna 100 having one open surface 107, so that the bottom surface 30 a of the high-frequency supply chamber 30 and the bottom wall 104 of the rotating antenna 100 facing the bottom surface 30 a are opposed. The leakage of the microwave from the gap of the coupling hole 108 can be reduced, and after the mode is once changed from the waveguide 50 for transmitting the microwave generated in the magnetron 40 in the TE mode, the rotating antenna 100 is set to the same TE mode. A fundamental microwave can be supplied, and the degree of coupling between the two becomes high. For this reason, since the microwave is efficiently irradiated to the inside of the heating chamber 10 to heat the article to be heated S, a high energy saving effect is obtained. Further, since the rotating antenna 100 is rotated, the standing wave is also eliminated, and the object to be heated S can be heated without unevenness.

次に、回転アンテナ100の形状及びアンテナ特性について説明する。
図3に示すように、回転アンテナ100は、断面が長方形の矩形状で、一端面に短絡壁102を有する矩形導波管構造である。回転アンテナ100は、回転アンテナ100内でマイクロ波エネルギがTEモードで伝搬するように長方形断面の長辺の長さをλ/2(λは、マイクロ波の波長)より長く、かつλより短くする。また、回転アンテナ100は、短辺の高さをλ/2より短くする。
Next, the shape and antenna characteristics of the rotating antenna 100 will be described.
As shown in FIG. 3, the rotary antenna 100 has a rectangular waveguide structure having a rectangular cross section and a short-circuit wall 102 on one end face. In the rotating antenna 100, the length of the long side of the rectangular cross section is longer than λ / 2 (λ is the wavelength of the microwave) and shorter than λ so that the microwave energy propagates in the TE mode in the rotating antenna 100. . Further, the rotating antenna 100 has a short side height shorter than λ / 2.

図4は、高周波加熱装置1の回転アンテナ給電部の拡大断面図である。
図4に示すように、回転アンテナ100は、内導体101の中心と短絡壁102の距離を略λg/8(λgは、回転アンテナ100内を伝搬するマイクロ波の管内波長)とする。
FIG. 4 is an enlarged cross-sectional view of the rotating antenna power feeding unit of the high-frequency heating device 1.
As shown in FIG. 4, in the rotating antenna 100, the distance between the center of the inner conductor 101 and the short-circuit wall 102 is approximately λg / 8 (λg is the in-tube wavelength of the microwave propagating in the rotating antenna 100).

図5は、回転アンテナ100の内導体101と短絡壁距離によるカップリング特性の解析結果を示す図であり、図5(a)は内導体と短絡壁距離aを、図5(b)は、内導体と短絡壁距離aによるカップリング特性S21(dB)の解析結果をそれぞれ示す。
導波管50と回転アンテナ100の結合度は、カップリング特性S21により表される。図4に示すように、カップリング特性S21は、導波管50のポート1に給電されたマイクロ波Pinと、回転アンテナ100のポート2から放射されるマイクロ波Poutの比の対数を取ったものである。
FIG. 5 is a diagram illustrating an analysis result of the coupling characteristics depending on the distance between the inner conductor 101 and the short-circuit wall of the rotating antenna 100. FIG. 5A illustrates the inner conductor and the short-circuit wall distance a, and FIG. The analysis results of the coupling characteristic S21 (dB) according to the inner conductor and the short-circuit wall distance a are respectively shown.
The degree of coupling between the waveguide 50 and the rotating antenna 100 is represented by a coupling characteristic S21. As shown in FIG. 4, the coupling characteristic S21 is a logarithm of the ratio of the microwave Pin fed to the port 1 of the waveguide 50 and the microwave Pout radiated from the port 2 of the rotating antenna 100. It is.

図5(b)に示すように、カップリング特性S21は、0dBに近づくほど途中での損失が小さく、すなわち導波管50と回転アンテナ100の結合度が大きくなる。図4に示すように、本実施形態の回転アンテナ100は、内導体101と短絡壁102の距離がλg/8のとき、カップリング特性S21が−0.35(dB)となり結合度が最大となることが分かる。なお、本解析では、印加マイクロ波の周波数fは2460(MHz)、波長換算でλ=122mmを用いた。   As shown in FIG. 5B, the coupling characteristic S21 has a smaller loss in the middle as it approaches 0 dB, that is, the degree of coupling between the waveguide 50 and the rotating antenna 100 increases. As shown in FIG. 4, in the rotating antenna 100 of the present embodiment, when the distance between the inner conductor 101 and the short-circuit wall 102 is λg / 8, the coupling characteristic S21 is −0.35 (dB), and the coupling degree is the maximum. I understand that In this analysis, the frequency f of the applied microwave was 2460 (MHz) and λ = 122 mm in terms of wavelength.

以上述べたように、本実施形態の高周波加熱装置1は、被加熱物を収容する加熱室10の一面に設けた高周波供給室30と、発生したマイクロ波電力を伝送する導波管50と、高周波供給室30の一面に設けた結合孔31と、結合孔31を貫通して高周波供給室30内へ略垂直に臨んで設けた内導体101と、高周波供給室30に収納されるとともに内導体101で支持された回転アンテナ100と、導波管50内で内導体101に連結した軸60を回転駆動する駆動部70と、を備える。回転アンテナ100は、前記した構成を有する。
この構成により、マグネトロン40で発生したマイクロ波エネルギを導波管50ではTEモードで伝送し、導波管50から内導体101を介して回転アンテナ101に至る経路ではTEMモードで伝送し、回転アンテナ100内の内導体101から回転アンテナ100に再びTEモードの基本波のマイクロ波エネルギとして供給する。このように、内導体101を有する回転アンテナ100は、効率の良い同軸導波管変換器を構成している。
As described above, the high-frequency heating device 1 of the present embodiment includes the high-frequency supply chamber 30 provided on one surface of the heating chamber 10 that accommodates the object to be heated, the waveguide 50 that transmits the generated microwave power, A coupling hole 31 provided on one surface of the high-frequency supply chamber 30, an inner conductor 101 provided through the coupling hole 31 so as to face the high-frequency supply chamber 30 substantially vertically, and an inner conductor accommodated in the high-frequency supply chamber 30 Rotating antenna 100 supported by 101, and drive unit 70 that rotationally drives shaft 60 connected to inner conductor 101 in waveguide 50. The rotating antenna 100 has the configuration described above.
With this configuration, the microwave energy generated in the magnetron 40 is transmitted in the TE mode in the waveguide 50, and is transmitted in the TEM mode in the path from the waveguide 50 to the rotating antenna 101 via the inner conductor 101. The TE-mode fundamental wave microwave energy is again supplied from the inner conductor 101 in 100 to the rotating antenna 100. Thus, the rotating antenna 100 having the inner conductor 101 constitutes an efficient coaxial waveguide converter.

したがって、マグネトロン40で発生したマイクロ波をTEモードで伝送する導波管50から回転アンテナ100に同じTEモードの基本波のマイクロ波として供給することができるので、両者の結合度が高くなる。このため、加熱室内に効率よくマイクロ波が照射されて被加熱物を加熱することができ、高い省エネ効果を得ることができる。また、回転アンテナ100の回転により、回転アンテナ100内の定在波を解消して被加熱物Sをムラなく加熱することができる。   Therefore, the microwave generated in the magnetron 40 can be supplied from the waveguide 50 transmitting in the TE mode to the rotating antenna 100 as the same TE-mode fundamental microwave, so that the degree of coupling between the two becomes high. For this reason, microwaves can be efficiently irradiated into the heating chamber to heat the object to be heated, and a high energy saving effect can be obtained. Further, by rotating the rotating antenna 100, the standing wave in the rotating antenna 100 can be eliminated and the object to be heated S can be heated evenly.

本実施形態では、回転アンテナ100は、短絡壁102の短辺の長さが、マグネトロン40の発振波長λの略λ/2以下である。より具体的には、回転アンテナ100は、長辺の長さをλ/2より長くかつλより短く、短辺の高さをλ/2より短くする。これにより、垂直壁105,106に垂直方向の電界が生じないために、高次モードのマイクロ波を発生することがない。マグネトロン40で発生したマイクロ波をTEモードで伝送する導波管50から回転アンテナに同じTEモードの基本波のマイクロ波を供給することができるので、結合度が上がり、高周波供給室底面30aと、これと対向する回転アンテナ100の下面壁104の隙間からのマイクロ波の漏洩を低減できるという効果がある。   In the present embodiment, in the rotating antenna 100, the length of the short side of the short-circuit wall 102 is approximately λ / 2 or less of the oscillation wavelength λ of the magnetron 40. More specifically, in the rotating antenna 100, the length of the long side is longer than λ / 2 and shorter than λ, and the height of the short side is shorter than λ / 2. As a result, a vertical electric field is not generated on the vertical walls 105 and 106, so that high-order mode microwaves are not generated. Since the microwave of the same TE mode can be supplied to the rotating antenna from the waveguide 50 that transmits the microwave generated in the magnetron 40 in the TE mode, the degree of coupling is increased, and the bottom surface 30a of the high frequency supply chamber is increased. There is an effect that the leakage of the microwave from the gap of the lower surface wall 104 of the rotating antenna 100 facing this can be reduced.

本実施形態では、短絡壁102から結合孔108中心までの距離は、マグネトロン40の発振波長λに対する管内波長λgの略λg/8である。結合孔108の中心と短絡壁102の距離をλg/8にすることで、開放面107方向にマイクロ波が伝搬し易くなるので、回転アンテナ100の内導体101と短絡壁102間でのマイクロ波損失が少なくなる。よって、図5(b)に示すように、結合電力(W)を大きく取ることができ、マグネトロン40で発生させたマイクロ波エネルギを効率良く回転アンテナ100に伝送できるという効果がある。   In the present embodiment, the distance from the short-circuit wall 102 to the center of the coupling hole 108 is approximately λg / 8 of the guide wavelength λg with respect to the oscillation wavelength λ of the magnetron 40. By setting the distance between the center of the coupling hole 108 and the short-circuit wall 102 to λg / 8, the microwave easily propagates in the direction of the open surface 107, so that the microwave between the inner conductor 101 of the rotating antenna 100 and the short-circuit wall 102 can be obtained. Loss is reduced. Therefore, as shown in FIG. 5B, the coupling power (W) can be increased, and the microwave energy generated by the magnetron 40 can be efficiently transmitted to the rotating antenna 100.

[変形例]
<L型内導体>
図6は、第1の実施形態に係る高周波加熱装置1の内導体の形状をL型にした回転アンテナの斜視断面図である。
図6に示すように、回転アンテナ110は、図1乃至図3に示す直線型の内導体101に代えて、先端部が直角に屈折したL型形状のL型内導体111を備える。なお、回転アンテナ110を収納する構成は、図1と同様である。
L型内導体111は、短絡壁102と略垂直な壁面に設けられた結合孔108を貫通して挿入された垂直内導体111aと、垂直内導体111aと垂直な水平内導体111bと、を備える。L型内導体111は、垂直内導体111aの先端部と水平内導体111bとが直角に結合され、さらに水平内導体111bの先端が短絡壁102に固着された構成となっている。
[Modification]
<L-shaped inner conductor>
FIG. 6 is a perspective cross-sectional view of a rotating antenna in which the shape of the inner conductor of the high-frequency heating device 1 according to the first embodiment is L-shaped.
As shown in FIG. 6, the rotating antenna 110 includes an L-shaped inner conductor 111 having an L-shaped bent end at a right angle instead of the linear inner conductor 101 shown in FIGS. 1 to 3. In addition, the structure which accommodates the rotation antenna 110 is the same as that of FIG.
The L-shaped inner conductor 111 includes a vertical inner conductor 111a inserted through a coupling hole 108 provided on a wall surface substantially perpendicular to the short-circuit wall 102, and a horizontal inner conductor 111b perpendicular to the vertical inner conductor 111a. . The L-shaped inner conductor 111 has a configuration in which the tip of the vertical inner conductor 111a and the horizontal inner conductor 111b are coupled at a right angle, and the tip of the horizontal inner conductor 111b is fixed to the short-circuit wall 102.

<T型内導体>
図7は、第1の実施形態に係る高周波加熱装置1の内導体の形状をT型にした回転アンテナの斜視断面図である。
図7に示すように、回転アンテナ120は、図1乃至図3に示す直線型の内導体101に代えて、先端部がT型形状のT型内導体121を備える。なお、回転アンテナ120を収納する構成は、図1と同様である。
T型内導体121は、短絡壁102と略垂直な壁面に設けられた結合孔108を貫通して挿入された垂直内導体121aと、垂直内導体121aと垂直な水平内導体121bと、を備える。T型内導体121は、水平内導体121bの中央に垂直内導体121aの先端部が直角に結合され、水平内導体121bの一方の先端と他方の先端が垂直壁105,106の内壁に固着された構成となっている。
<T-shaped inner conductor>
FIG. 7 is a perspective cross-sectional view of a rotating antenna in which the shape of the inner conductor of the high-frequency heating device 1 according to the first embodiment is T-shaped.
As shown in FIG. 7, the rotating antenna 120 includes a T-shaped inner conductor 121 having a T-shaped tip instead of the linear inner conductor 101 shown in FIGS. In addition, the structure which accommodates the rotation antenna 120 is the same as that of FIG.
The T-shaped inner conductor 121 includes a vertical inner conductor 121a inserted through a coupling hole 108 provided on a wall surface substantially perpendicular to the short-circuit wall 102, and a horizontal inner conductor 121b perpendicular to the vertical inner conductor 121a. . In the T-type inner conductor 121, the tip of the vertical inner conductor 121a is coupled to the center of the horizontal inner conductor 121b at a right angle, and one end and the other end of the horizontal inner conductor 121b are fixed to the inner walls of the vertical walls 105 and 106. It becomes the composition.

図8は、本実施形態の回転アンテナ100,110,120と従来例の結合電力(W)のマイクロ波解析結果を比較する説明図である。図8中、結合電力(W)とは、図4に示す導波管50のポート1にマイクロ波電力Pin=1000(W)を給電した場合の回転アンテナ100,110,120の開放面107のポート2から放射されるマイクロ波電力Pout(W)である。
回転アンテナ100(図1乃至図3参照)の結合電力(W)のマイクロ波解析結果は、図8の二点鎖線で示され、回転アンテナ110(図6参照)の結合電力(W)のマイクロ波解析結果は、図8の鎖線で示される。また、回転アンテナ120(図7参照)の結合電力(W)のマイクロ波解析結果は、図8の実線で示され、特許文献1の従来例(公知例)の結合電力(W)のマイクロ波解析結果は、図8の丸点線で示される。
FIG. 8 is an explanatory diagram for comparing the microwave analysis results of the combined power (W) of the rotating antennas 100, 110, 120 of the present embodiment and the conventional example. In FIG. 8, the coupling power (W) refers to the open surface 107 of the rotating antenna 100, 110, 120 when the microwave power Pin = 1000 (W) is supplied to the port 1 of the waveguide 50 shown in FIG. 4. This is the microwave power Pout (W) radiated from the port 2.
The microwave analysis result of the coupling power (W) of the rotating antenna 100 (see FIGS. 1 to 3) is indicated by a two-dot chain line in FIG. 8, and the coupling power (W) of the rotating antenna 110 (see FIG. 6) is microscopic. The wave analysis result is indicated by a chain line in FIG. Moreover, the microwave analysis result of the coupling power (W) of the rotating antenna 120 (see FIG. 7) is shown by the solid line in FIG. 8, and the microwave of the coupling power (W) of the conventional example (known example) of Patent Document 1 is shown. The analysis result is indicated by a round dotted line in FIG.

図8に示すように、本実施形態の回転アンテナ100,110,120は、従来例(図8の丸点線参照)と比較して周波数2450(MHz)〜2470(MHz)において約200(W)結合電力が向上していることが分かる。また、図8に示すように、T型内導体121を有する回転アンテナ120(図7参照)の結合電力(W)が最も大きく、L型内導体111を有する回転アンテナ110(図6参照)と内導体101を有する回転アンテナ100(図3参照)がそれに次ぐ。結合電力(W)の向上の観点からは、T型内導体121を有する回転アンテナ120(図7参照)を用いるのがよいことは言うまでもないが、構造が簡素な直線型の内導体101を有する回転アンテナ100(図3参照)又は先端部が直角に屈折したL型内導体111を有する回転アンテナ110(図6参照)を用いても、従来例(公知例)と比較して大幅な結合電力(W)の向上を図ることができる。   As shown in FIG. 8, the rotating antennas 100, 110, and 120 of this embodiment are approximately 200 (W) at frequencies 2450 (MHz) to 2470 (MHz) as compared with the conventional example (see the dotted line in FIG. 8). It can be seen that the coupling power is improved. Further, as shown in FIG. 8, the rotating antenna 120 (see FIG. 7) having the T-shaped inner conductor 121 has the largest combined power (W) and the rotating antenna 110 (see FIG. 6) having the L-shaped inner conductor 111. The rotating antenna 100 (see FIG. 3) having the inner conductor 101 is next to it. From the viewpoint of improving the coupling power (W), it goes without saying that the rotating antenna 120 (see FIG. 7) having the T-shaped inner conductor 121 is preferably used, but has the linear inner conductor 101 having a simple structure. Even when the rotating antenna 100 (see FIG. 3) or the rotating antenna 110 (see FIG. 6) having the L-shaped inner conductor 111 whose tip is refracted at a right angle is used, a significant coupling power is obtained as compared with the conventional example (known example). (W) can be improved.

なお、箱形の回転アンテナ100,110,120の折り曲げ部は、必ずしも直角ではなく曲面の折り曲げでよい。また、深絞りやプレス加工により、筒部や一面が開口された箱部を制作し開口面(開口部)に平板を溶接する等をして制作してもよい。また、矩形管の開口面に平板を溶接して制作してもよい。   Note that the bent portions of the box-shaped rotating antennas 100, 110, and 120 are not necessarily right angles but may be curved surfaces. Further, it may be produced by producing a cylindrical portion or a box portion having one surface opened by deep drawing or pressing and welding a flat plate to the opening surface (opening portion). Moreover, you may produce by welding a flat plate to the opening surface of a rectangular tube.

(第2の実施形態)
図9は、本発明の第2の実施形態に係る高周波加熱装置の回転アンテナの斜視断面図である。
図9に示すように、回転アンテナ130は、内導体101を貫通させる結合孔108を有する下面壁134と、下面壁134に略平行で内導体101が固着された上面壁133と、を備え、下面壁134と上面壁133の二面が台形形状の平面で構成されている。すなわち、回転アンテナ130は、図1乃至図3の回転アンテナ100の上面壁103と下面壁104を、開放面137が台形底部となる台形形状で構成したものである。回転アンテナ130は、開放面137と短絡壁102の断面が長辺の異なる大きさの長方形で構成され、開放面137の長辺は、短絡壁102の長辺より長くなっている。特に、短絡壁102の長辺の長さは、供給するマイクロ波の波長の1/2以上の長さとしている。
なお、下面壁134と上面壁133と垂直壁105,106により開放面137に向かう箱状の断面は長方形である。また、下面壁134と短絡壁102、及び上面壁133と短絡壁102は互いに直角に連結されている。
(Second Embodiment)
FIG. 9 is a perspective cross-sectional view of the rotating antenna of the high-frequency heating device according to the second embodiment of the present invention.
As shown in FIG. 9, the rotating antenna 130 includes a lower surface wall 134 having a coupling hole 108 that penetrates the inner conductor 101, and an upper surface wall 133 that is substantially parallel to the lower surface wall 134 and to which the inner conductor 101 is fixed. Two surfaces of the lower wall 134 and the upper wall 133 are formed as trapezoidal planes. That is, the rotating antenna 130 is configured by forming the upper surface wall 103 and the lower surface wall 104 of the rotating antenna 100 of FIGS. 1 to 3 in a trapezoidal shape with the open surface 137 serving as a trapezoid bottom. The rotating antenna 130 is configured by a rectangle having a cross section with different long sides in the open surface 137 and the short-circuit wall 102, and the long side of the open surface 137 is longer than the long side of the short-circuit wall 102. In particular, the length of the long side of the short-circuit wall 102 is set to a length of ½ or more of the wavelength of the microwave to be supplied.
In addition, the box-shaped cross section which goes to the open surface 137 by the lower surface wall 134, the upper surface wall 133, and the vertical walls 105 and 106 is a rectangle. Further, the lower surface wall 134 and the short-circuit wall 102, and the upper surface wall 133 and the short-circuit wall 102 are connected to each other at a right angle.

以上のように、本実施形態の回転アンテナ130は、下面壁133と上面壁133を台形形状の平面で構成することで、導波管50と回転アンテナ130間でのマイクロ波損失をより少なくすることができる。また、反射波も抑制することができ、結合度の向上を図ることができる。
よって、図1に示すように、マグネトロン40で発生させたマイクロ波エネルギを効率よく回転アンテナ130に伝送することができる。
As described above, the rotating antenna 130 according to the present embodiment further reduces the microwave loss between the waveguide 50 and the rotating antenna 130 by configuring the lower wall 133 and the upper wall 133 in a trapezoidal plane. be able to. Further, reflected waves can also be suppressed, and the degree of coupling can be improved.
Therefore, as shown in FIG. 1, the microwave energy generated by the magnetron 40 can be efficiently transmitted to the rotating antenna 130.

図10は、回転アンテナの垂直壁を曲面にした回転アンテナの平面図である。
図10に示すように、回転アンテナ140は、内導体101を貫通させる結合孔108を有する下面壁144と、下面壁144に略平行で内導体101が固着された上面壁143と、下面壁144と上面壁143とを繋ぐ曲面の垂直壁145,146と、を備える。垂直壁145,146は、内面が凹部となる曲面であり、下面壁134と上面壁133は、垂直壁145,146の曲面形状に合わせるようにして端部が曲線である。
ここで、回転アンテナ140は、短絡壁102の横幅Aが、供給するマイクロ波の波長の1/2以上の長さとする。
FIG. 10 is a plan view of a rotating antenna having a curved vertical wall.
As shown in FIG. 10, the rotating antenna 140 includes a lower surface wall 144 having a coupling hole 108 that penetrates the inner conductor 101, an upper surface wall 143 that is substantially parallel to the lower surface wall 144 and to which the inner conductor 101 is fixed, and a lower surface wall 144. Curved vertical walls 145 and 146 connecting the upper wall 143 and the upper surface wall 143. The vertical walls 145 and 146 are curved surfaces whose inner surfaces are recessed, and the lower wall 134 and the upper wall 133 are curved at the ends so as to match the curved shape of the vertical walls 145 and 146.
Here, in the rotating antenna 140, the lateral width A of the short-circuit wall 102 is set to a length that is ½ or more of the wavelength of the microwave to be supplied.

図11は、回転アンテナの短絡壁、下面壁、上面壁、垂直壁のいずれかに他の開放面を設けた回転アンテナの平面図である。
図11に示すように、回転アンテナ150は、上面壁103に開口面107の他に他の開口部151をさらに備える。図11では、開口部151は、上面壁103に設けられ、数量は3である。
例えば、回転アンテナ150は、開放面107以外にも導波管形状の回転アンテナ150の被加熱物Sと対向する壁面側(ここでは上面壁103)に遮断波長の1/2以上の長さを有するスリット状の開口部151をマイクロ波の伝搬方向に対して直角、もしくは0から90度内の適度の角度で複数設けている。
この場合、スリット状の開口部151をマイクロ波の伝搬方向に対して適度の角度を持たせて設けるように構成すれば、それぞれの開口部151から放射されるマイクロ波は、位相に関係なく、したがって打ち消されることはなく複数の開口部151から放射される。
FIG. 11 is a plan view of the rotating antenna in which another open surface is provided on any one of the short-circuit wall, the lower surface wall, the upper surface wall, and the vertical wall of the rotating antenna.
As shown in FIG. 11, the rotating antenna 150 further includes another opening 151 in addition to the opening surface 107 in the upper surface wall 103. In FIG. 11, the opening 151 is provided in the top wall 103 and the quantity is three.
For example, in addition to the open surface 107, the rotating antenna 150 has a length of ½ or more of the cutoff wavelength on the wall surface side (in this case, the upper surface wall 103) facing the object to be heated S of the waveguide-shaped rotating antenna 150. A plurality of slit-shaped openings 151 having a right angle with respect to the propagation direction of the microwave or an appropriate angle within 0 to 90 degrees are provided.
In this case, if the slit-shaped opening 151 is provided so as to have an appropriate angle with respect to the propagation direction of the microwave, the microwave radiated from each opening 151 is independent of the phase, Therefore, the light is emitted from the plurality of openings 151 without being canceled.

なお、開口部151の形状や状態、又は配置や個数は、加熱室10(図1参照)で加熱される被加熱物Sの加熱むらに関連して定められるものであり、これらの調整により加熱むらの抑制も行える。
例えば、開放面107以外にも導波管形状の回転アンテナ100の被加熱物Sと対向する壁面側(上面壁103)に遮断波長の1/2以上の長さを有するスリット状の開口をマイクロ波の伝搬方向に対して直角、もしくは0から90度内の適度の角度で複数設けてもよい。
この場合、スリット状の開口部をマイクロ波の伝搬方向に対して適度の角度を持たせて設ければ、それぞれの開口部から放射されるマイクロ波は、(位相に関係なく)打ち消されることはなく複数の開口部から放射される。
また、開放面の形状や状態、あるいは開口部の配置や個数は、加熱室10で加熱される被加熱物Sの加熱むらに関連して定められるものであり、これらの調整により加熱むらの抑制も可能になる。
Note that the shape, state, arrangement, and number of the openings 151 are determined in relation to uneven heating of the article S to be heated in the heating chamber 10 (see FIG. 1). Unevenness can also be suppressed.
For example, in addition to the open surface 107, a slit-shaped opening having a length of ½ or more of the cutoff wavelength is provided on the wall surface (upper surface wall 103) facing the object to be heated S of the waveguide-shaped rotating antenna 100. A plurality may be provided at right angles to the wave propagation direction or at an appropriate angle within 0 to 90 degrees.
In this case, if the slit-shaped opening is provided with an appropriate angle with respect to the propagation direction of the microwave, the microwave radiated from each opening will be canceled (regardless of the phase). Without being emitted from a plurality of openings.
Further, the shape and state of the open surface, or the arrangement and number of openings are determined in relation to the uneven heating of the article S to be heated in the heating chamber 10, and the uneven heating is suppressed by adjusting these. Is also possible.

また、L型内導体111(図6参照)やT型内導体121(図7参照)を、第2の実施の形態に適用してもよく、第1の実施形態と同様の効果を得ることができる。   Further, the L-type inner conductor 111 (see FIG. 6) and the T-type inner conductor 121 (see FIG. 7) may be applied to the second embodiment, and the same effects as in the first embodiment can be obtained. Can do.

なお、本発明は、上記各実施形態に記載した構成に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、適宜その構成を変更することができる。   In addition, this invention is not limited to the structure described in each said embodiment, The structure can be suitably changed unless it deviates from the summary of this invention described in the claim.

例えば、上記各実施形態では、マイクロ波エネルギを発生するマイクロ波供給源としてマグネトロンを用いたが、マイクロ波を発振出力する他のマイクロ波発振デバイスとしては、クライストロン、ジャイロトロンなどの電子管のほか、発振源として半導体を用いたマイクロ波発生装置でもよい。また、導波管や回転アンテナの材質、形状、構造などは一例であってどのようなものを適用してもよい。   For example, in each of the above embodiments, a magnetron is used as a microwave supply source that generates microwave energy, but other microwave oscillation devices that oscillate and output microwaves include electron tubes such as a klystron and a gyrotron, A microwave generator using a semiconductor as the oscillation source may be used. Further, the material, shape, structure, and the like of the waveguide and the rotating antenna are examples, and any materials may be applied.

また、例えば図2に示す回転アンテナ100において、開放面107を短絡壁102と平行に設けない態様や、上面壁103と下面壁104の大きさが異なる態様、さらには開放面107を湾曲させる態様でもよく、同様の効果を得ることができる。   Further, for example, in the rotating antenna 100 shown in FIG. 2, an aspect in which the open surface 107 is not provided parallel to the short-circuit wall 102, an aspect in which the upper surface wall 103 and the lower surface wall 104 are different, and an aspect in which the open surface 107 is curved. However, the same effect can be obtained.

上記した実施形態例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The above-described exemplary embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each exemplary embodiment.

1 高周波加熱装置
10 加熱室
30 高周波供給室
31 結合孔
40 マグネトロン(マイクロ波供給源)
50 導波管
60 誘電体軸
70 駆動部
100,110,120,130,140,150 回転アンテナ
101 内導体
102 短絡壁
103,133,143 上面壁
104,134,144 下面壁
105,106,145,146 垂直壁
107,137 開放面(放射口)
108 結合孔(孔部)
111 L型内導体(内導体)
111a,121a 垂直内導体
111b,121b 水平内導体
121 T型内導体(内導体)
151 開口部(放射口)
DESCRIPTION OF SYMBOLS 1 High frequency heating apparatus 10 Heating chamber 30 High frequency supply chamber 31 Coupling hole 40 Magnetron (microwave supply source)
50 Waveguide 60 Dielectric shaft 70 Drive unit 100, 110, 120, 130, 140, 150 Rotating antenna 101 Inner conductor 102 Short-circuit wall 103, 133, 143 Upper surface wall 104, 134, 144 Lower surface wall 105, 106, 145 146 Vertical wall 107,137 Open surface (radiant opening)
108 Bonding hole (hole)
111 L-type inner conductor (inner conductor)
111a, 121a Vertical inner conductor 111b, 121b Horizontal inner conductor 121 T-type inner conductor (inner conductor)
151 Opening (radiation port)

Claims (5)

被加熱物を収容する加熱室と、
前記加熱室の一面に設けた高周波供給室と、
マイクロ波エネルギを発生するマイクロ波供給源と、
前記マイクロ波供給源で発生したマイクロ波エネルギを伝える導波管と、
前記高周波供給室と前記導波管とを結合する結合孔と、
前記結合孔を貫通して一方の側が前記高周波供給室内に他方の側が前記導波管内に臨んで設けられる内導体と、
前記高周波供給室に収納される箱型の金属製の回転アンテナと、
前記回転アンテナを、前記内導体を中心に回転駆動する駆動部と、を備え、
前記回転アンテナは、
前記結合孔に対応した位置に前記内導体が貫通する孔部と、
前記内導体と前記孔部により当該回転アンテナ内に導入されたマイクロ波エネルギを遠心方向に放射する放射口と、を有する
ことを特徴とする高周波加熱装置。
A heating chamber for storing an object to be heated;
A high-frequency supply chamber provided on one surface of the heating chamber;
A microwave source for generating microwave energy;
A waveguide for transmitting microwave energy generated by the microwave source;
A coupling hole for coupling the high-frequency supply chamber and the waveguide;
An inner conductor provided so that one side thereof penetrates the coupling hole and the other side faces the waveguide in the high-frequency supply chamber;
A box-shaped metal rotating antenna housed in the high-frequency supply chamber;
A drive unit that rotationally drives the rotating antenna around the inner conductor; and
The rotating antenna is
A hole through which the inner conductor passes at a position corresponding to the coupling hole;
A high-frequency heating apparatus comprising: a radiation port for radiating microwave energy introduced into the rotating antenna by the inner conductor and the hole portion in a centrifugal direction.
前記回転アンテナは、遮蔽面である短絡壁と、前記導波管と隣接した前記短絡壁と略垂直な壁面に設けられた前記孔部と、当該孔部を貫通して挿入され、内壁に接触して支持される前記内導体と、を備え、
前記短絡壁を有底とする矩形筒管形状である
ことを特徴とする請求項1に記載の高周波加熱装置。
The rotating antenna includes a short-circuit wall that is a shielding surface, a hole provided in a wall surface that is substantially perpendicular to the short-circuit wall adjacent to the waveguide, and is inserted through the hole and contacts the inner wall. And the inner conductor supported by
The high-frequency heating device according to claim 1, wherein the high-frequency heating device has a rectangular tube shape with the short-circuit wall as a bottom.
前記回転アンテナは、
マイクロ波エネルギの放射口となる開放面を有し、当該開放面は、前記内導体を挟んで前記短絡壁と対面する
ことを特徴とする請求項1又は請求項2に記載の高周波加熱装置。
The rotating antenna is
The high-frequency heating device according to claim 1, wherein the high-frequency heating device has an open surface serving as a microwave energy radiating port, and the open surface faces the short-circuit wall with the inner conductor interposed therebetween.
前記回転アンテナは、
前記短絡壁の短辺の長さが、マイクロ波供給源の発振波長λの略λ/2以下である
ことを特徴とする請求項1乃至請求項3のいずれか一項に記載の高周波加熱装置。
The rotating antenna is
4. The high-frequency heating device according to claim 1, wherein a length of a short side of the short-circuit wall is approximately λ / 2 or less of an oscillation wavelength λ of a microwave supply source. .
前記短絡壁から前記結合孔の中心までの距離は、マイクロ波供給源の発振波長λに対する管内波長λgの略λg/8である
ことを特徴とする請求項1乃至請求項4のいずれか一項に記載の高周波加熱装置。
5. The distance from the short-circuit wall to the center of the coupling hole is approximately λg / 8 of the in-tube wavelength λg with respect to the oscillation wavelength λ of the microwave supply source. The high-frequency heating device described in 1.
JP2014036195A 2014-02-27 2014-02-27 Radio frequency heating device Pending JP2015162321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036195A JP2015162321A (en) 2014-02-27 2014-02-27 Radio frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036195A JP2015162321A (en) 2014-02-27 2014-02-27 Radio frequency heating device

Publications (1)

Publication Number Publication Date
JP2015162321A true JP2015162321A (en) 2015-09-07

Family

ID=54185307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036195A Pending JP2015162321A (en) 2014-02-27 2014-02-27 Radio frequency heating device

Country Status (1)

Country Link
JP (1) JP2015162321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769021A (en) * 2020-04-16 2020-10-13 成都迈频科技有限公司 Side-connected microwave circular waveguide excitation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983393A (en) * 1982-11-02 1984-05-14 松下電器産業株式会社 High frequency heater
JP2013246999A (en) * 2012-05-28 2013-12-09 Hitachi Appliances Inc High-frequency heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983393A (en) * 1982-11-02 1984-05-14 松下電器産業株式会社 High frequency heater
JP2013246999A (en) * 2012-05-28 2013-12-09 Hitachi Appliances Inc High-frequency heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769021A (en) * 2020-04-16 2020-10-13 成都迈频科技有限公司 Side-connected microwave circular waveguide excitation device

Similar Documents

Publication Publication Date Title
WO2013018358A1 (en) Microwave heating device
TWI454647B (en) Microwave heating device
WO2013171990A1 (en) Microwave heating device
KR19980017873A (en) Microwave Waveguide Structure
JP2011034795A (en) Microwave irradiation system
JP2000048946A (en) Microwave oven
JP2018006718A (en) Microwave plasma processing device
JP2013218904A (en) Microwave heating device
WO2013005438A1 (en) Microwave heating device
JP6179814B2 (en) Microwave heating device
JP7230802B2 (en) Microwave processor
WO2013005420A1 (en) Microwave heating device
JP2015162321A (en) Radio frequency heating device
JP5894864B2 (en) High frequency heating device
JP2016213099A (en) Heating cooker
US20090032528A1 (en) Microwave heating applicator
JP2014216067A (en) High-frequency wave heating device
JP2014229532A (en) Microwave heating apparatus
JP2011124049A (en) Microwave heating device
JP6111421B2 (en) Microwave heating device
JP6212705B2 (en) Microwave heating device
JP7378019B2 (en) Microwave processing equipment
JP2014089942A (en) Microwave heating device
KR100284500B1 (en) Waveguide system for electronic range
JP2018006257A (en) Microwave plasma processing device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171219