JP2015161012A - Colored aluminum molding and production method thereof - Google Patents

Colored aluminum molding and production method thereof Download PDF

Info

Publication number
JP2015161012A
JP2015161012A JP2014038556A JP2014038556A JP2015161012A JP 2015161012 A JP2015161012 A JP 2015161012A JP 2014038556 A JP2014038556 A JP 2014038556A JP 2014038556 A JP2014038556 A JP 2014038556A JP 2015161012 A JP2015161012 A JP 2015161012A
Authority
JP
Japan
Prior art keywords
molded body
pores
aluminum
pigment
aluminum molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014038556A
Other languages
Japanese (ja)
Other versions
JP6306897B2 (en
Inventor
博義 山本
Hiroyoshi Yamamoto
博義 山本
伊藤 淳
Atsushi Ito
淳 伊藤
伊藤 征司郎
Seishiro Ito
征司郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Color Products Corp
Original Assignee
Sakura Color Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Color Products Corp filed Critical Sakura Color Products Corp
Priority to JP2014038556A priority Critical patent/JP6306897B2/en
Priority to US15/121,285 priority patent/US20170016136A1/en
Priority to CN201580010251.0A priority patent/CN106029957A/en
Priority to PCT/JP2015/055149 priority patent/WO2015129663A1/en
Publication of JP2015161012A publication Critical patent/JP2015161012A/en
Application granted granted Critical
Publication of JP6306897B2 publication Critical patent/JP6306897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • C25D11/22Electrolytic after-treatment for colouring layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum molding which has a coating colored sufficiently by filling pores formed by anodization with a pigment, keeps an original shape and has original properties of an anodized coating.SOLUTION: In an aluminum molding 1, an anodized coating 2 is formed on the surface, and pores 3 formed in the anodized coating 2 are filled with a coloring pigment. The anodized coating 2 having pores is formed on the surface of the aluminum molding by carrying out an anodization treatment of the aluminum molding 1 with a constant current value and an anodization treatment with a constant voltage. The resultant aluminum molding 1 is immersed in an aqueous solution of a metal salt, and an AC current is flowed through the aqueous solution to precipitate a pigment in the formed pores 3 formed so as to fill the pores 3 with the pigment.

Description

本発明は着色してなるアルミニウム成形体及びその製造方法に関する。   The present invention relates to a colored aluminum molded body and a method for producing the same.

アルミニウム成形体自体は、金属アルミニウムに由来する金属光沢を有しており、このような成形体を着色された用途に使用する際には、必要により周知の表面処理を行った上で、黒、赤、白等の目的とする任意の色の着色塗料を用いて塗装していた。
上記の塗装とは別に、アルミニウム成形体表面を例えば硫酸法やシュウ酸法によって陽極酸化処理したのち、表面に形成された微細な細孔に任意の染料を含浸させたり、顔料を充填したり、あるいはニッケル等を電解析出させて、電解着色させる方法も広く知られている。しかしながら、これらの方法、特に電解着色法によれば、限定された色彩のものしか得られない。
また電気泳動によって、アルミニウム成形体表面に形成された細孔中に顔料を入れて着色する方法によれば、細孔の径を顔料が入る程度に大きくする必要があり、かつ顔料の径を小さくすることが必要であった。しかし、この方法によっても安定して均一に着色させることが困難であり、かつ細孔に入れることができる顔料の量にも限界があったので濃色に着色させることも困難であった。
The aluminum molded body itself has a metallic luster derived from metallic aluminum, and when such a molded body is used for a colored application, after performing a known surface treatment if necessary, black, It was painted with a desired color paint such as red or white.
Apart from the above coating, after anodizing the surface of the aluminum molded body by, for example, sulfuric acid method or oxalic acid method, impregnating fine dyes formed on the surface with arbitrary dyes, filling with pigments, Alternatively, a method of electrolytically depositing nickel or the like and electrolytically coloring is also widely known. However, according to these methods, particularly electrolytic coloring methods, only limited colors can be obtained.
In addition, according to the method of coloring by putting a pigment in the pores formed on the surface of the aluminum molded body by electrophoresis, it is necessary to increase the pore diameter to such an extent that the pigment can enter, and to reduce the pigment diameter. It was necessary to do. However, even with this method, it is difficult to stably and uniformly color, and since there is a limit to the amount of pigment that can be put into the pores, it is also difficult to color deeply.

また、着色方法ではないが、特許文献1に記載されているように、アルミニウム成形体表面を予め陽極酸化皮膜処理した後、硫酸チタニル等と、陽イオンを形成する錯化剤とを含む混合液中で、電解処理して、陽極酸化皮膜の表面及び孔内面に二酸化チタンを析出させて二酸化チタン含有皮膜を形成するチタニル電解処理工程と、二酸化チタン皮膜を焼成して光触媒能を有する二酸化チタンからなる光触媒皮膜に変化させる焼成処理工程とを有する、陽極酸化皮膜の表面及び孔内面に二酸化チタンからなる光触媒皮膜を形成させる方法が知られている。   Moreover, although it is not a coloring method, as described in Patent Document 1, after the surface of the aluminum molded body is preliminarily treated with an anodized film, a mixed liquid containing titanyl sulfate and the like and a complexing agent that forms a cation is used. Among them, from a titanyl electrolytic treatment process for forming a titanium dioxide-containing film by depositing titanium dioxide on the surface of the anodized film and the inner surface of the hole by electrolytic treatment, and titanium dioxide having a photocatalytic ability by firing the titanium dioxide film There is known a method of forming a photocatalytic film made of titanium dioxide on the surface of the anodized film and the inner surface of the hole, which has a baking treatment step for changing to a photocatalytic film.

さらに特許文献2には、アルミニウム又はアルミニウム合金からなり、細孔内ではない基材表面に形成した陽極酸化皮膜上に、光触媒作用を有する平均粒径1nm〜1000nmの酸化チタン等の半導体微粒子が凝集して堆積してなる光触媒膜がコーティングされてなることを特徴とするアルミニウム又はアルミニウム合金材であり、陽極酸化皮膜に形成された細孔内に酸化チタン等が吸着されない皮膜が記載されている。   Furthermore, in Patent Document 2, semiconductor fine particles such as titanium oxide having an average particle diameter of 1 nm to 1000 nm having a photocatalytic action are aggregated on an anodized film made of aluminum or an aluminum alloy and formed on a substrate surface that is not in pores. A film is described which is an aluminum or aluminum alloy material characterized by being coated with a photocatalyst film deposited in such a manner that titanium oxide or the like is not adsorbed in the pores formed in the anodized film.

特許文献3には、高電圧で陽極酸化したアルミニウム材に対し、金属塩溶液中にて交流電圧を印加して電解着色を行うこと、特許文献4には、陽極酸化皮膜を形成したアルミニウム材を希アルカリ水溶液によりエッチング処理して陽極酸化皮膜の細孔底部のバリヤ層の露出部表面を化学的に溶解した後、顔料粒子又は金属塩を含む電解着色浴中で電解着色、電気泳動して着色することが記載されている。   Patent Document 3 discloses that an aluminum material anodized at a high voltage is subjected to electrolytic coloring by applying an AC voltage in a metal salt solution. Patent Document 4 includes an aluminum material on which an anodized film is formed. Etching with a dilute alkaline aqueous solution to chemically dissolve the exposed surface of the barrier layer at the bottom of the pores of the anodized film, followed by electrolytic coloring and electrophoretic coloring in an electrolytic coloring bath containing pigment particles or metal salts It is described to do.

特許第4905659号Japanese Patent No. 4905659 特許第3326071号Japanese Patent No. 3326071 特開平11−335893号公報JP-A-11-335893 特開平11−236697号公報Japanese Patent Application Laid-Open No. 11-236697

従来技術においては、アルミニウム成形体表面を着色するために塗料を塗布していたので、アルミニウム成形体の使用を継続するにつれて、その白色塗膜が剥がれる等して、美観を損ねることがあった。
また陽極酸化皮膜の細孔に電気泳動によって顔料を充填させる方法によると、該顔料が着色力を発揮できる程度の量充填されるように、該細孔の径を大きくしなければならない。そうするとアルミニウム成形体の表面に粗さを生じ、美観を損ねかねない可能性があった。
さらに、このようにして得られた着色皮膜は緻密な皮膜ではなく、細孔の径が大きいことにより、酸化チタンを充填する以前において、既に細孔による光の反射によってアルミニウム成形体はある程度の光干渉性を有し、透明性のある白色を呈している。そのため、不透明な白色皮膜は得られない。
また、電気泳動により安定した濃色の着色を行うときには、電気泳動時の浴電流が小さいので、顔料が細孔内ではなく細孔外の表面に過剰に析出する傾向があった。
In the prior art, since the paint was applied to color the surface of the aluminum molded body, as the use of the aluminum molded body was continued, the white coating film was peeled off, and the appearance was sometimes impaired.
Further, according to the method of filling the pores of the anodized film with electrophoresis, the diameter of the pores must be increased so that the pigment is filled in an amount sufficient to exert coloring power. In this case, the surface of the aluminum molded body is roughened, which may impair the aesthetic appearance.
Further, the colored film obtained in this way is not a dense film, but has a large pore diameter, so that the aluminum molded body has already had a certain amount of light due to reflection of light by the pores before filling with titanium oxide. It has coherence and has a transparent white color. Therefore, an opaque white film cannot be obtained.
In addition, when performing stable dark coloring by electrophoresis, since the bath current during electrophoresis is small, the pigment tends to be excessively deposited on the surface outside the pores, not in the pores.

また上記特許文献1に記載されたような、陽極酸化皮膜の表面及び孔内面に二酸化チタンを析出させて二酸化チタン皮膜を形成するチタニル電解処理工程と、その二酸化チタン皮膜を焼成する工程を有する方法によると、十分な量の光触媒用二酸化チタンを析出させることが困難であると共に、比較的耐熱性に劣るアルミニウム成形体を高温に加熱するので、その成形体が変形、または物性が変質する可能性があった。
特許文献2に記載の方法は、陽極酸化処理済みのアルミニウム板を酸化チタンゾル中に浸漬し、電気泳動を行うことによって、アルミニウム板表面に形成された細孔内ではなく、表面上に酸化チタン粒子を析出させることにより、光触媒を担持させる方法であるが、担持される酸化チタンは光触媒用であり、かつ細孔内ではなく、かつ細孔内における担持量も少ないものであった。
特許文献3に記載の方法は陽極酸化皮膜を設けたアルミニウム材表面を、金属塩溶液中にて交流電圧を印加して着色させる方法ではあるが、陽極酸化処理は1回のみであるし、かつ細孔内に金属化合物を析出させることまでを示唆していない。
さらに特許文献4には陽極酸化処理皮膜により形成された細孔内に顔料を充填させる方法が記載されているものの、顔料の充填に先立ち、陽極酸化処理皮膜をエッチングして、バリヤ層を溶解させる工程を備えるのであり、このエッチング工程は当然ながら細孔内のバリヤ層のみを溶解させることはできず、陽極酸化処理皮膜全体をもエッチングさせることが明らかである。その結果、陽極酸化処理皮膜全体に対して凹凸表面を形成させることになり、仮に着色できたとしても、アルミニウム板としては凹凸のある不均一な表面を形成させるに留まる。
加えて、一旦形成した陽極酸化処理皮膜をエッチングすることにより、この陽極酸化処理皮膜が消失する。そのため、細孔は存在するものの、細孔内は陽極酸化処理皮膜によって保護されない状態となり、アルミニウム材を使用するにつれて細孔内やアルミニウム材表面が腐食することになる。
よって本発明は陽極酸化により形成された細孔に二酸化チタン等の顔料粒子を充填して、不透明で十分な着色皮膜を有しながら、当初の形状を維持し、陽極酸化処理皮膜による本来の物性を備えたアルミニウム成形体を得ることにある。
Further, a method comprising a titanyl electrolytic treatment step of forming titanium dioxide film by depositing titanium dioxide on the surface of the anodized film and the inner surface of the hole as described in Patent Document 1, and a step of firing the titanium dioxide film According to the above, it is difficult to deposit a sufficient amount of titanium dioxide for photocatalyst, and an aluminum molded body that is relatively inferior in heat resistance is heated to a high temperature, so that the molded body may be deformed or its physical properties may be altered. was there.
In the method described in Patent Document 2, an anodized aluminum plate is immersed in a titanium oxide sol and subjected to electrophoresis, so that titanium oxide particles are not formed in the pores formed on the surface of the aluminum plate but on the surface. In this method, the photocatalyst is supported by precipitating, but the supported titanium oxide is for the photocatalyst and is not in the pores, and the amount carried in the pores is small.
The method described in Patent Document 3 is a method of coloring an aluminum material surface provided with an anodized film by applying an AC voltage in a metal salt solution, but the anodizing treatment is performed only once, and There is no suggestion of depositing a metal compound in the pores.
Further, although Patent Document 4 describes a method of filling a pigment into pores formed by an anodized film, the barrier layer is dissolved by etching the anodized film before filling the pigment. It is obvious that this etching step cannot naturally dissolve only the barrier layer in the pores, but also etches the entire anodized film. As a result, an uneven surface is formed on the entire anodized film, and even if it can be colored, the aluminum plate only forms an uneven and uneven surface.
In addition, this anodized film disappears by etching the once formed anodized film. Therefore, although there are pores, the pores are not protected by the anodized film, and the inside of the pores and the aluminum material surface corrode as the aluminum material is used.
Therefore, in the present invention, the pores formed by anodization are filled with pigment particles such as titanium dioxide, and the original physical properties of the anodized film are maintained while maintaining the original shape while having an opaque and sufficient colored film. The object is to obtain an aluminum molded body provided with

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、下記のアルミニウム成形体及びその製造方法を発明した。
1.表面に陽極酸化皮膜が形成され、該陽極酸化皮膜に形成された細孔の中に顔料が1平方デシメートルあたり2mgから30mgの密度で充填されてなるアルミニウム成形体。
2.該細孔の開口部の径が5〜300nmである1に記載のアルミニウム成形体。
3.該細孔の成形体の深さ方向の長さが5〜50μmである1又は2に記載のアルミニウム成形体。
4.該細孔の底部に径の拡径部を有する1〜3のいずれかに記載のアルミニウム成形体。
5.アルミニウム成形体表面の陽極酸化皮膜が、電流値を一定にした条件下での陽極酸化処理段階と、その後のリン酸溶液中で陽極酸化処理を行う方法により形成された1〜4のいずれかに記載のアルミニウム成形体。
6.アルミニウム成形体に対して、電流値を一定にした条件下での陽極酸化処理と、その後の電圧値を一定にした陽極酸化処理を含む陽極酸化処理を行い、アルミニウム成形体表面に細孔を有する陽極酸化皮膜を形成する。得られたアルミニウム成形体を金属塩水溶液に浸漬し、その水溶液中にて交流電流を通電して、形成された細孔内にて顔料を析出・充填するアルミニウム成形体表面を着色する方法。
As a result of intensive studies to solve the above problems, the present inventors have invented the following aluminum molded body and a method for producing the same.
1. An aluminum molded body in which an anodized film is formed on the surface, and a pigment is filled in pores formed in the anodized film at a density of 2 mg to 30 mg per square decimeter.
2. 2. The aluminum molded body according to 1, wherein the pore opening has a diameter of 5 to 300 nm.
3. 3. The aluminum molded body according to 1 or 2, wherein the length of the molded body of the pores in the depth direction is 5 to 50 μm.
4). 4. The aluminum molded body according to any one of 1 to 3, having an enlarged diameter portion at the bottom of the pore.
5. The anodized film on the surface of the aluminum molded body is any one of 1 to 4 formed by an anodizing treatment step under a condition where the current value is constant, and a method of performing anodizing treatment in a subsequent phosphoric acid solution. The aluminum molded body described.
6). The aluminum molded body has pores on the surface of the aluminum molded body by performing anodizing treatment including anodizing treatment under a condition where the current value is constant and subsequent anodizing treatment with a constant voltage value. An anodized film is formed. A method of coloring the surface of an aluminum molded body by immersing the obtained aluminum molded body in a metal salt aqueous solution and applying an alternating current in the aqueous solution to deposit and fill a pigment in the formed pores.

従来の塗装方法によるものと比較して、本発明によれば陽極酸化皮膜が剥離しない限り、着色皮膜が脱落することがない。加えて陽極酸化皮膜の細孔内に顔料や染料を入れてなる着色されたアルミニウム成形体において、より多くの顔料を固定させることができるので、安定して特に濃い着色を呈することができる。また、細孔内にて二次凝集させることができるので、一次粒子径が小さく顔料としての着色を呈さない顔料を使用しても、十分に着色させることができる。   Compared with the conventional coating method, according to the present invention, the colored film does not fall off unless the anodized film is peeled off. In addition, since a larger amount of pigment can be fixed in a colored aluminum molded body in which pigments or dyes are put in the pores of the anodized film, a particularly deep color can be stably exhibited. Further, since secondary aggregation can be performed in the pores, sufficient pigmentation can be achieved even when a pigment having a small primary particle diameter and not exhibiting coloration as a pigment is used.

本発明において酸化チタン粒子が導入される工程の模式図Schematic diagram of the process of introducing titanium oxide particles in the present invention

本発明は、陽極酸化皮膜に形成された細孔内に、結果的に顔料粒子を充填させることにより行うことができる。また、より粒子径が小さい、例えば本来は一次粒子が小さいために白色を呈さない酸化チタン等の粒子であっても、その化合物の溶液を使用して、細孔内でこの溶液から顔料を析出させることにより、外部から入射した光がその凝集粒子を構成する酸化チタン粒子間にて乱反射するなどして不透明性が高くなることで、凝集した酸化チタン粒子が白色を呈して、結果的に陽極酸化皮膜が白色を呈することができる。そして、酸化チタンのみではなく他の顔料に関しても同様のことがいえる。
特に、本発明のアルミニウム成形体表面に形成された細孔は、アルミニウム成形体表面の開口部から内部に行くに従いその細孔の径が拡大し、あたかも壺状の形状を呈するものである。この結果、その細孔内により多くの顔料を析出させることが可能となり、ひいては着色力を向上させることができる。
このような本発明のアルミニウム成形体は、2段階の陽極酸化処理工程による細孔形成工程及びその後に行われる顔料の充填工程により製造されるものである。
The present invention can be carried out by eventually filling the fine particles formed in the anodized film with pigment particles. In addition, even if the particle size is smaller, for example, particles such as titanium oxide that do not exhibit white color because the primary particles are originally small, the pigment is precipitated from this solution in the pores using a solution of the compound. By making the light incident from the outside irregularly reflected between the titanium oxide particles constituting the aggregated particles, the opacity becomes high, and the aggregated titanium oxide particles exhibit a white color, resulting in an anode. The oxide film can exhibit a white color. The same applies to other pigments as well as titanium oxide.
In particular, the pores formed on the surface of the aluminum molded body of the present invention have an enlarged diameter as they go from the opening on the surface of the aluminum molded body to the inside, and have a bowl-like shape. As a result, it is possible to deposit more pigment in the pores, thereby improving the coloring power.
Such an aluminum molded body of the present invention is manufactured by a pore forming process by a two-stage anodizing process and a pigment filling process performed thereafter.

本発明において使用される陽極酸化法は下記のアルミニウム材料からなる成形体に対してなされる方法である
(アルミニウム成形体のアルミニウム材料)
本発明のアルミニウム成形体を構成するアルミニウム材料は、アルミニウムのみからなる材料でも良いが、一般にアルミニウム合金といわれる材料(例えば、Al−Mn系合金、Al−Mg系合金、Al−Mg−Si系合金等)であっても良く、陽極酸化処理されて細孔が形成される材料であればよい。またアルミニウム材料自体が他の金属と合金とされることにより、すでに着色された材料であっても良い。
どのようなアルミニウム材料を採用するかは、本発明のアルミニウム成形体の用途によって決められるものである。
The anodizing method used in the present invention is a method performed on a molded body made of the following aluminum material (aluminum material of an aluminum molded body).
The aluminum material constituting the aluminum molded body of the present invention may be a material made of only aluminum, but is generally a material called an aluminum alloy (for example, an Al—Mn alloy, an Al—Mg alloy, an Al—Mg—Si alloy). Or any other material that can be anodized to form pores. Further, the aluminum material itself may be an already colored material by being alloyed with another metal.
Which aluminum material is used is determined by the use of the aluminum molded body of the present invention.

本発明にてアルミニウム成形体に充填される顔料としては、例えば下記のような化合物溶液から電気的な析出条件にて析出されて得ることができる顔料であればよく、酸化チタン、酸化鉄、酸化亜鉛等を使用することができる。   The pigment filled in the aluminum molded body in the present invention may be any pigment that can be obtained by, for example, depositing from the following compound solution under electrical deposition conditions, such as titanium oxide, iron oxide, and oxidation. Zinc or the like can be used.

[陽極酸化処理工程]
2段階の陽極酸化を行う方法による細孔形成工程について述べる。
(2段階陽極酸化法)
(第1陽極酸化処理)
本発明のアルミニウム成形体を得るために行う第1段階の陽極酸化処理は、一般にアルミニウム成形体表面に形成されて表面に耐食性及び装飾性を付与するために行う処理と同様であり、陽極酸化皮膜に細孔を形成できる処理であることが必要である。
アルミニウム成形体を、陽極酸化処理装置のアノードに電気的に接触させて該アノードおよびカソードとともに電解液中に浸漬させ、前記アノードとカソードとの間で通電させることにより前記アルミニウム成形体に陽極酸化皮膜を形成する。
このときに使用される電解液としては、硫酸、リン酸、マレイン酸、マロン酸、シュウ酸、クロム酸からなる電解液が好ましく用いられるが、特にこれらに限定されるものではない。
第1段階の陽極酸化は、その条件として電流密度を一定に維持して処理を行う。このときの電流密度としては0.5〜3.0A/dmとすることが好ましい。
生成する細孔は、例えば図1(a)に示すように、アルミニウム成形体1の表面に形成された陽極酸化皮膜2の深さ方向に伸びた長い柱状の空間である細孔3として形成される。ただし、アルミニウム成形体表面に対して、図示するように直角に形成されるとは限らず、実際には屈曲、枝分かれなど不規則な形状を示す。その開口部の径は、陽極酸化条件により任意に調整することが可能であるが、本発明においてこの工程により生成する陽極酸化皮膜の細孔は、その開口部の径が5〜300nmであり、好ましくは5nm以上50nm未満であり、より好ましくは8〜50nmである。300nmよりも大きいと陽極酸化皮膜を均一な皮膜とすることが困難であり、5nm未満の多孔質皮膜は得られにくい。
また細孔の長さは、特に限定されないが、顔料により十分に着色されるに必要な量の顔料を析出させるためには、アルミニウム表面から厚さ方向に向けて5〜50μmであり、好ましくは10〜40μmである。
[Anodizing process]
A pore forming process by a method of performing two-step anodic oxidation will be described.
(Two-step anodizing method)
(First anodizing treatment)
The first stage anodizing treatment performed to obtain the aluminum molded body of the present invention is generally the same as the treatment formed on the surface of the aluminum molded body to impart corrosion resistance and decorativeness to the surface, and is an anodized film. It is necessary for the treatment to be able to form pores.
An aluminum molded body is brought into electrical contact with the anode of the anodizing apparatus, immersed in an electrolyte together with the anode and the cathode, and energized between the anode and the cathode, whereby an anodized film is formed on the aluminum molded body. Form.
As the electrolytic solution used at this time, an electrolytic solution composed of sulfuric acid, phosphoric acid, maleic acid, malonic acid, oxalic acid, and chromic acid is preferably used, but is not particularly limited thereto.
The first stage of anodic oxidation is performed under the condition that the current density is kept constant. It is preferable that the 0.5~3.0A / dm 2 as the current density of the.
The generated pores are formed as pores 3 that are long columnar spaces extending in the depth direction of the anodized film 2 formed on the surface of the aluminum molded body 1, for example, as shown in FIG. The However, it is not necessarily formed at a right angle as shown in the figure with respect to the surface of the aluminum molded body, and actually shows an irregular shape such as bending or branching. The diameter of the opening can be arbitrarily adjusted according to the anodizing conditions, but the pores of the anodized film produced by this step in the present invention have a diameter of 5 to 300 nm. Preferably it is 5 nm or more and less than 50 nm, More preferably, it is 8-50 nm. If it is larger than 300 nm, it is difficult to make the anodized film uniform, and a porous film of less than 5 nm is difficult to obtain.
Further, the length of the pore is not particularly limited, but in order to deposit the amount of pigment necessary to be sufficiently colored by the pigment, it is 5 to 50 μm from the aluminum surface in the thickness direction, preferably 10 to 40 μm.

(第2陽極酸化処理)
第2陽極酸化処理は、第1陽極酸化処理により形成された、アルミニウム成形体表面の細孔の開口部付近ではなく、主に細孔内部の細孔の径を拡径させることを目的に行う。
そのため、第2陽極酸化処理は、使用する溶液としてリン酸溶液を選択し、リン酸溶液中に被処理物である第1陽極酸化処理済みのアルミニウム成形体を浸漬し、これに対して直流電流を通電することにより行う。
この結果、図1の(b)に示すように上記にて生成した細孔の底部付近Lにおいてその径が大きくなる。このような形状になる理由は、リン酸はアルミニウムや陽極酸化皮膜に対する溶解度が大きいためであると考えられる。
(Second anodizing treatment)
The second anodizing treatment is performed not for the vicinity of the pore openings on the surface of the aluminum molded body formed by the first anodizing treatment, but mainly for the purpose of expanding the diameter of the pores inside the pores. .
Therefore, in the second anodizing treatment, a phosphoric acid solution is selected as a solution to be used, and the first anodized aluminum molded body that is the object to be treated is immersed in the phosphoric acid solution, and a direct current is applied thereto. Is performed by energizing.
As a result, as shown in FIG. 1B, the diameter increases in the vicinity L of the bottom of the fine holes generated as described above. The reason for this shape is considered to be that phosphoric acid has a high solubility in aluminum and an anodized film.

[電析処理工程]
(細孔内部に顔料を析出させる工程)
本発明の方法における陽極酸化皮膜の細孔内に顔料を析出させる工程は、上記の陽極酸化処理後のアルミニウム成形体を、電気的に析出して顔料となる化合物の水溶液に浸漬し、この成形体に対して交流電流を通電することにより電析する工程である。
この結果として図1(c)に示すように、これまでの工程において形成された主に細孔の径が拡大された箇所Lにおいて、電析されて得た顔料が充填されることになる。
[Electrodeposition process]
(Step of depositing pigment inside the pores)
In the method of the present invention, the step of precipitating the pigment in the pores of the anodized film is performed by immersing the aluminum molded body after the above-described anodizing treatment in an aqueous solution of a compound that is electrically precipitated and becomes a pigment. This is a process of electrodeposition by applying an alternating current to the body.
As a result, as shown in FIG. 1 (c), the pigment obtained by electrodeposition is filled in the portion L where the diameter of the pores mainly formed in the steps so far is enlarged.

ここで使用される該化合物としては、チタン、鉄、銅、亜鉛等の金属の陰イオン性の錯塩が好ましい。特にビス(オキサラト)オキソチタン(IV)酸アンモニウム、チタンラクテート及びそのアンモニウム塩、チタントリエタノールアミネート、トリス(サリチラト)チタン酸錯体、クエン酸やグリコール酸を配位子とする、ペルオキソクエン酸チタン錯体やペルオキソグリコール酸チタン錯体、またはこれら以外の金属錯体、リンゴ酸や酒石酸のチタン等の金属錯体等が、顔料を析出させるための化合物として好ましい。
また、金属錯体自体ではなくても、例えば酸化硫酸チタン(IV)等のチタン源に、シュウ酸とアンモニア、あるいはシュウ酸アンモニウム等の配位子となり得る物質を加えたものの水溶液を、顔料充填工程にて使用する水溶液としてもよい。
ここで用いられる化合物の溶液には、上記の化合物の他にpHを調整するための酸、アンモニア等のアルカリ、シュウ酸アンモニウム等の塩等も含有させることができる。また、必要に応じてさらに公知の添加剤を併用することができる。
The compound used here is preferably an anionic complex salt of a metal such as titanium, iron, copper, or zinc. In particular, ammonium bis (oxalato) oxotitanium (IV), titanium lactate and its ammonium salt, titanium triethanolamate, tris (salicylate) titanic acid complex, titanium peroxocitrate complex with citric acid or glycolic acid as a ligand Or a metal complex other than these, or a metal complex such as titanium of malic acid or tartaric acid, is preferable as the compound for depositing the pigment.
In addition to the metal complex itself, for example, an aqueous solution of a titanium source such as titanium oxide (IV) oxide and a substance that can be a ligand such as oxalic acid and ammonia or ammonium oxalate is added to the pigment filling step. It is good also as the aqueous solution used by.
The solution of the compound used here may contain an acid for adjusting pH, an alkali such as ammonia, a salt such as ammonium oxalate, and the like in addition to the above compound. Moreover, a well-known additive can be used together as needed.

この工程において、水溶液中の上記化合物の濃度としては0.1〜10.0重量%の範囲であり、これらの範囲を逸脱すると、顔料の充填が不十分、又は析出時の作業性が悪化する可能性がある。
また、例えばビス(オキサラト)オキソチタン(IV)酸アンモニウム水溶液を使用する場合には、酸化チタン濃度換算で0.5〜2.0重量%とし、そのpHを4.0〜6.0、好ましくは4.5〜5.0とすることが好ましい。
交流電流を通電して顔料を析出させる原理としては、交流電流が通電されたアルミニウム成形体がアノード時には、析出されて顔料となる化合物のイオンが細孔内に泳動・導入され、アルミニウム成形体がカソード時には、水の電気分解で生成した水酸イオンが、その導入された化合物を加水分解して顔料化合物として析出させることによる。
このようにして、ビス(オキサラト)オキソチタン(IV)酸アンモニウム水溶液を使用した場合には、細孔内に酸化チタン粒子を析出させることにより、図1(c)に示すように細孔3の主に底部に酸化チタン粒子4が析出する。もちろん他の金属塩を使用すると別の顔料を析出させることができる。
電析処理工程では交流以外にパルス波形の電流を使用する方法や、それ以外にも従来から公知の方法でも行うことができる。
In this step, the concentration of the above compound in the aqueous solution is in the range of 0.1 to 10.0% by weight. When the concentration deviates from these ranges, the pigment is not sufficiently charged or the workability during precipitation deteriorates. there is a possibility.
For example, when using an aqueous solution of ammonium bis (oxalato) oxotitanium (IV), the pH is set to 0.5 to 2.0% by weight in terms of titanium oxide concentration, and the pH is set to 4.0 to 6.0, preferably It is preferable to set it as 4.5-5.0.
The principle of precipitating the pigment by energizing the alternating current is that when the aluminum molded body to which the alternating current is energized is the anode, the ions of the compound that precipitates and becomes the pigment migrates and is introduced into the pores. At the time of cathode, hydroxide ions generated by electrolysis of water hydrolyze the introduced compound and precipitate as a pigment compound.
In this way, when an aqueous bis (oxalato) oxotitanium (IV) acid solution is used, titanium oxide particles are precipitated in the pores, thereby forming the main pores 3 as shown in FIG. The titanium oxide particles 4 are deposited on the bottom. Of course, when other metal salts are used, other pigments can be precipitated.
In the electrodeposition treatment step, a method using a pulse waveform current in addition to alternating current, or a conventionally known method can be used.

また、交流電流を通電して錯体から顔料を析出させた後、析出した化合物を十分に加水分解させるために、例えばトリエタノールアミン等のアルカリの希薄溶液に浸漬してもよい。   Moreover, after energizing an alternating current and depositing a pigment from a complex, in order to fully hydrolyze the deposited compound, it may be immersed in a dilute alkali solution such as triethanolamine.

本発明により形成されたアルミニウム成形体は、その表面の1dm当たりの細孔内に充填された酸化チタンはチタンとして2〜30mgの範囲である。2〜30mg/dmのような密度で酸化チタンが充填されることにより、従来の方法による着色よりも、さらに着色力を向上させることができる。
例えば酸化チタン顔料を充填した場合において、その表面の色がL*値が73以上、a*、b*値が0±5の範囲であり、単に陽極酸化処理されたものの色(L*58.22、a*−0.83、b*−0.01)よりも白色であることがわかる。
さらに、本発明のアルミニウム成形体は艶消しされていてもいなくてもよい。
本発明のアルミニウム成形体は、これまでアルミニウム成形体が使用されてきた、多くの分野・用途にて使用することができる。例えば情報家電の筐体、家具、食器、容器、家電製品、日用品等のあらゆる用途において、表面が白色のアルミニウム成形体を必要とする場合に採用することができる。
In the aluminum molded body formed according to the present invention, the titanium oxide filled in the pores per 1 dm 2 on the surface is in the range of 2 to 30 mg as titanium. When the titanium oxide is filled at a density of 2 to 30 mg / dm 2, the coloring power can be further improved as compared with the coloring by the conventional method.
For example, when a titanium oxide pigment is filled, the color of the surface has an L * value of 73 or more and a * and b * values of 0 ± 5, and the color (L * 58. 22, a * -0.83, b * -0.01).
Furthermore, the aluminum molded body of the present invention may or may not be matt.
The aluminum molded body of the present invention can be used in many fields and applications where aluminum molded bodies have been used so far. For example, it can be employed when an aluminum molded body with a white surface is required in all uses such as a housing for information appliances, furniture, tableware, containers, home appliances, and daily necessities.

実施例
(アルミニウム板の陽極酸化処理工程)
陽極酸化処理工程を通常の陽極酸化処理と、その後の再陽極酸化処理により行った。
(通常の陽極酸化処理)
20℃の15重量%のHSO溶液を用意し、これにアルミニウム板を浸漬した。このアルミニウム板に直流電流を1.5A・dm−2となるようにし、45分間通電し、膜厚22μmの多孔質皮膜を形成した。
(再陽極酸化処理)
次に、20℃の10%リン酸水溶液にアルミニウム成形体を浸漬し、16V直流電圧を5〜15分間かけた。この再陽極酸化処理によって、細孔内部の径を増加させた。
Example (Anodizing process of aluminum plate)
The anodizing treatment step was performed by ordinary anodizing treatment and subsequent reanodizing treatment.
(Normal anodizing treatment)
A 15 wt% H 2 SO 4 solution at 20 ° C. was prepared, and an aluminum plate was immersed therein. The aluminum plate was subjected to a direct current of 1.5 A · dm −2 and energized for 45 minutes to form a porous film having a thickness of 22 μm.
(Re-anodizing treatment)
Next, the aluminum molded body was immersed in a 10% phosphoric acid aqueous solution at 20 ° C., and a 16 V DC voltage was applied for 5 to 15 minutes. By this re-anodizing treatment, the diameter inside the pores was increased.

(電析処理)
陽極酸化処理を行うことにより内部の径が増加された細孔を設けてなるアルミニウム板を、酸化チタン濃度換算で1重量%のビス(オキサラト)オキソチタン(IV)酸アンモニウムをアンモニアでpH5.0に調整したものを電析浴(温度20℃)とし所定の一定の電圧で5分間交流により電析した。
(後処理)
50℃の0.5重量%トリエタノールアミン溶液中に3分間浸漬した後に湯により洗浄した。
(Electrodeposition treatment)
An aluminum plate provided with pores having an internal diameter increased by anodizing treatment is adjusted to pH 5.0 with 1% ammonium bis (oxalato) oxotitanium (IV) acid in terms of titanium oxide concentration with ammonia. The prepared solution was used as an electrodeposition bath (temperature: 20 ° C.) and electrodeposited by alternating current at a predetermined constant voltage for 5 minutes.
(Post-processing)
After being immersed in a 0.5 wt% triethanolamine solution at 50 ° C. for 3 minutes, it was washed with hot water.

上記表1にて示した表面1平方デシメートル当たりのチタン量の測定方法は以下の通り。
イオン交換水1L中に85%リン酸35mlと無水クロム酸20gを混合・溶解させてなる溶液から、50mlを用意し、この溶液に20mm×30mmの電析処理済みのアルミニウム板を浸漬し、50〜100℃にて皮膜部分を溶解させる。このとき溶液中には溶解された該皮膜成分と、該皮膜成分中に存在していた若干の酸化チタン粒子が存在している。そのため、さらに濃硫酸を適当量(10ml程度)加えて加熱し、酸化チタンを溶解させる。この溶液を全量が100mlとなるように調製して、ICP−AES(誘導結合プラズマ発光分析装置)によって、溶液中のチタンの量を定量した。
上記表1にて示したL*、a*及びb*は、日本電色工業社製の分光色差計SE2000型を使用して測定した。
The method for measuring the amount of titanium per square decimeter shown in Table 1 is as follows.
50 ml of a solution prepared by mixing and dissolving 35 ml of 85% phosphoric acid and 20 g of chromic anhydride in 1 L of ion-exchanged water is prepared, and a 20 mm × 30 mm electrodeposited aluminum plate is immersed in this solution. The film part is dissolved at ~ 100 ° C. At this time, the dissolved film component and some titanium oxide particles present in the film component are present in the solution. Therefore, an appropriate amount (about 10 ml) of concentrated sulfuric acid is further added and heated to dissolve the titanium oxide. The total amount of this solution was adjusted to 100 ml, and the amount of titanium in the solution was quantified by ICP-AES (inductively coupled plasma emission spectrometer).
L *, a *, and b * shown in Table 1 above were measured using a spectral color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd.

表1の結果によれば、再陽極酸化と電析を共に実施した例によると、L*が73.00を超えて明るい皮膜を形成できたといえる。これは細孔内の径が拡大した部位に多くの酸化チタン顔料が析出したことによる。
これらの表1で示される事項を総合すると本発明によれば処理済みのアルミニウム板は、その表面に厚さ方向に向けた多数の細孔を備え、かつその細孔の特に中深くに酸化チタン顔料が充填されていることが理解できる。
この結果、アルミニウム板表面の色彩は酸化チタン顔料の色を強く反映した色を呈し、白色を有することになる。
According to the results in Table 1, it can be said that according to the example in which re-anodization and electrodeposition were performed, L * exceeded 73.00 and a bright film could be formed. This is due to the fact that many titanium oxide pigments were deposited at the site where the diameter in the pores was enlarged.
By summing up the items shown in Table 1, the treated aluminum plate according to the present invention has a large number of pores directed in the thickness direction on the surface thereof, and titanium oxide particularly deep in the pores. It can be seen that the pigment is filled.
As a result, the color of the surface of the aluminum plate exhibits a color that strongly reflects the color of the titanium oxide pigment and has a white color.

1・・・アルミニウム成形体
2・・・陽極酸化皮膜
3・・・細孔
4・・・酸化チタン粒子
DESCRIPTION OF SYMBOLS 1 ... Aluminum molded object 2 ... Anodized film 3 ... Fine pore 4 ... Titanium oxide particle

Claims (6)

表面に陽極酸化皮膜が形成され、該陽極酸化皮膜に形成された細孔の中に顔料が1平方デシメートルあたり2mgから30mgの密度で充填されてなるアルミニウム成形体。   An aluminum molded body in which an anodized film is formed on the surface, and a pigment is filled in pores formed in the anodized film at a density of 2 mg to 30 mg per square decimeter. 該細孔の開口部の径が5〜300nmである請求項1に記載のアルミニウム成形体。   The aluminum molded body according to claim 1, wherein the diameter of the opening of the pore is 5 to 300 nm. 該細孔の成形体の深さ方向の長さが5〜50μmである請求項1又は2に記載のアルミニウム成形体。   The aluminum molded body according to claim 1 or 2, wherein a length of the molded body of the pores in the depth direction is 5 to 50 µm. 該細孔の底部に径の拡径部を有する請求項1〜3のいずれかに記載のアルミニウム成形体。   The aluminum molded body according to any one of claims 1 to 3, which has an enlarged diameter portion at the bottom of the pore. アルミニウム成形体表面の陽極酸化皮膜が、電流値を一定にした条件下での陽極酸化処理段階と、その後のリン酸溶液中で陽極酸化処理を行う方法により形成された請求項1〜4のいずれかに記載のアルミニウム成形体。   The anodized film on the surface of the aluminum molded body is formed by an anodizing treatment step under a condition in which a current value is constant, and a method of anodizing in a subsequent phosphoric acid solution. An aluminum molded body according to any one of the above. アルミニウム成形体に対して、電流値を一定にした条件下での陽極酸化処理と、その後の電圧値を一定にした陽極酸化処理を含む陽極酸化処理を行い、アルミニウム成形体表面に細孔を有する陽極酸化皮膜を形成する。得られたアルミニウム成形体を金属塩水溶液に浸漬し、その水溶液中にて交流電流を通電して、形成された細孔内にて顔料を析出・充填するアルミニウム成形体表面を着色する方法。   The aluminum molded body has pores on the surface of the aluminum molded body by performing anodizing treatment including anodizing treatment under a condition where the current value is constant and subsequent anodizing treatment with a constant voltage value. An anodized film is formed. A method of coloring the surface of an aluminum molded body by immersing the obtained aluminum molded body in a metal salt aqueous solution and applying an alternating current in the aqueous solution to deposit and fill a pigment in the formed pores.
JP2014038556A 2014-02-28 2014-02-28 Colored aluminum molded body and method for producing the same Active JP6306897B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014038556A JP6306897B2 (en) 2014-02-28 2014-02-28 Colored aluminum molded body and method for producing the same
US15/121,285 US20170016136A1 (en) 2014-02-28 2015-02-24 Colored shaped aluminum article and method for manufacturing same
CN201580010251.0A CN106029957A (en) 2014-02-28 2015-02-24 Colored formed aluminum body and method for manufacturing same
PCT/JP2015/055149 WO2015129663A1 (en) 2014-02-28 2015-02-24 Colored formed aluminum body and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038556A JP6306897B2 (en) 2014-02-28 2014-02-28 Colored aluminum molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015161012A true JP2015161012A (en) 2015-09-07
JP6306897B2 JP6306897B2 (en) 2018-04-04

Family

ID=54008981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038556A Active JP6306897B2 (en) 2014-02-28 2014-02-28 Colored aluminum molded body and method for producing the same

Country Status (4)

Country Link
US (1) US20170016136A1 (en)
JP (1) JP6306897B2 (en)
CN (1) CN106029957A (en)
WO (1) WO2015129663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
US11131036B2 (en) 2013-09-27 2021-09-28 Apple Inc. Cosmetic anodic oxide coatings

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129660A1 (en) * 2014-02-28 2015-09-03 株式会社サクラクレパス Colored formed aluminum article and method for manufacturing same
DE202017000426U1 (en) 2016-02-05 2017-05-02 Apple Inc. White, anodic oxide finishing
JP6855063B2 (en) * 2017-06-15 2021-04-07 株式会社サクラクレパス White aluminum molded product, its manufacturing method, and white coloring composition
CN110257875A (en) * 2018-03-12 2019-09-20 深圳市裕展精密科技有限公司 Anode oxide film and preparation method thereof
CN110257876A (en) * 2018-03-12 2019-09-20 深圳市裕展精密科技有限公司 The production method of anode oxide film
US11214886B2 (en) 2018-06-15 2022-01-04 Apple Inc. Zinc-based seal for anodized parts
US11795564B2 (en) 2018-08-17 2023-10-24 Apple Inc. Dye solution alternatives for reduced dye uptake in anodized layers
US11312107B2 (en) * 2018-09-27 2022-04-26 Apple Inc. Plugging anodic oxides for increased corrosion resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121293A (en) * 1997-09-16 1998-05-12 Ykk Corp Colored body of aluminum or aluminum alloy
JPH11335893A (en) * 1998-05-22 1999-12-07 Ykk Corp Preparation of pigmented aluminum material
JP2008050674A (en) * 2006-08-28 2008-03-06 Mitsubishi Chemicals Corp Method for forming oxide film and apparatus for forming oxide film
JP2008179884A (en) * 2006-12-28 2008-08-07 Tohoku Univ Metal member having metal oxide film and method of manufacturing the same
JP2013019009A (en) * 2011-07-08 2013-01-31 Shinryo Corp Method for controlling anodizing electrolytic solution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759897B2 (en) * 1991-09-30 1998-05-28 ワイケイケイ株式会社 Method for producing colored body of aluminum or aluminum alloy
CN1059476C (en) * 1996-08-21 2000-12-13 邓维鹏 Eletrolytic colouring technology for golden colour aluminium alloy selenide
JP3302582B2 (en) * 1996-11-18 2002-07-15 ワイケイケイ株式会社 Electrolytic coloring of aluminum material and gray-colored aluminum material obtained thereby
CN1492081A (en) * 2003-09-04 2004-04-28 上海交通大学 Process for preparing solar energy colour absorption coating by aluminium three-step electrolysis
US8282807B2 (en) * 2006-12-28 2012-10-09 National University Corporation Tohoku University Metal member having a metal oxide film and method of manufacturing the same
JP6093523B2 (en) * 2011-09-29 2017-03-08 電化皮膜工業株式会社 Method for producing colored aluminum product or colored aluminum alloy product
WO2015129660A1 (en) * 2014-02-28 2015-09-03 株式会社サクラクレパス Colored formed aluminum article and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121293A (en) * 1997-09-16 1998-05-12 Ykk Corp Colored body of aluminum or aluminum alloy
JPH11335893A (en) * 1998-05-22 1999-12-07 Ykk Corp Preparation of pigmented aluminum material
JP2008050674A (en) * 2006-08-28 2008-03-06 Mitsubishi Chemicals Corp Method for forming oxide film and apparatus for forming oxide film
JP2008179884A (en) * 2006-12-28 2008-08-07 Tohoku Univ Metal member having metal oxide film and method of manufacturing the same
JP2013019009A (en) * 2011-07-08 2013-01-31 Shinryo Corp Method for controlling anodizing electrolytic solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131036B2 (en) 2013-09-27 2021-09-28 Apple Inc. Cosmetic anodic oxide coatings
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
US10760175B2 (en) 2015-10-30 2020-09-01 Apple Inc. White anodic films with multiple layers
US10781529B2 (en) 2015-10-30 2020-09-22 Apple Inc. Anodized films with pigment coloring

Also Published As

Publication number Publication date
CN106029957A (en) 2016-10-12
WO2015129663A1 (en) 2015-09-03
JP6306897B2 (en) 2018-04-04
US20170016136A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6306897B2 (en) Colored aluminum molded body and method for producing the same
JP2017025384A (en) Colored aluminum molded body and method for producing the same
JP6720073B2 (en) Colored aluminum molded body and method for producing the same
US4022671A (en) Electrolytic coloring of anodized aluminum
US20140209467A1 (en) Method For Producing White Anodized Aluminum Oxide
US4152222A (en) Electrolytic coloring of anodized aluminium by means of optical interference effects
WO1991002830A1 (en) Improved electrolytic method for coloring anodized aluminum
JP6855063B2 (en) White aluminum molded product, its manufacturing method, and white coloring composition
JPS5948960B2 (en) How to color aluminum or aluminum alloy with primary colors
JPH11217693A (en) Production of gray colored aluminum material and colored body thereof
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
JPH10147899A (en) Electrolytic coloring method of aluminum material and gray-colored aluminum material produced therewith
RU2516142C2 (en) Method to modify titanium surface
JPH01205093A (en) Coloring method for aluminum or aluminum alloy
JPS61110797A (en) Surface treatment of aluminum or aluminum alloy
JP6909582B2 (en) Coloring plating solution and coloring method
JP2001329397A (en) Coloration method for aluminum and aluminum alloy
TWI441949B (en) Method for forming an interference film on surface of aluminum alloy substrate
JPH11269696A (en) Production of electrode deposition coated aluminum material
JP3344973B2 (en) How to color aluminum material
CN110359072A (en) Produce the method with the aluminium parts of colored surface
JP2879451B2 (en) Electrolytic coloring of aluminum material
JPS6020478B2 (en) Aluminum surface treatment method
JPH0250988B2 (en)
JPH11335893A (en) Preparation of pigmented aluminum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6306897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150