JP2015160778A - Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body - Google Patents

Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body Download PDF

Info

Publication number
JP2015160778A
JP2015160778A JP2014037295A JP2014037295A JP2015160778A JP 2015160778 A JP2015160778 A JP 2015160778A JP 2014037295 A JP2014037295 A JP 2014037295A JP 2014037295 A JP2014037295 A JP 2014037295A JP 2015160778 A JP2015160778 A JP 2015160778A
Authority
JP
Japan
Prior art keywords
boron carbide
aluminum
joined body
bonding
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037295A
Other languages
Japanese (ja)
Other versions
JP6278394B2 (en
Inventor
英紀 北
Hidenori Kita
英紀 北
猛 熊澤
Takeshi Kumazawa
猛 熊澤
圭人 関根
Yoshihito Sekine
圭人 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Mino Ceramic Co Ltd
Original Assignee
Nagoya University NUC
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Mino Ceramic Co Ltd filed Critical Nagoya University NUC
Priority to JP2014037295A priority Critical patent/JP6278394B2/en
Publication of JP2015160778A publication Critical patent/JP2015160778A/en
Application granted granted Critical
Publication of JP6278394B2 publication Critical patent/JP6278394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique for obtaining a boron carbide-containing ceramic joined body in which when boron carbide-based ceramics are joined to each other, high joining strength can be achieved at a lower temperature, and also a joined portion of the obtained boron carbide-containing ceramic joined body has non-conventional excellent durability against long term use and which is therefore suitable for practical application.SOLUTION: The boron carbide-containing ceramic joined body is provided in which: boron carbide ceramic members containing 60 mass% or more of boron carbide are integrated via a joint layer composed of an aluminum-silicon alloy having a silicon content of 5 to 25 mass%; a joined portion has a strength of 100 MPa or more; the joint layer has a melting point lower than a melting point of aluminum of 660°C; a change in the volume of the joint layer which occurs when the joint layer solidifies from a molten state by cooling is 5.5% or less; and the joint layer has a thermal expansion coefficient of 18×10to 22×10(1/°C).

Description

本発明は、部材を接合して大型化させてなる、高い接合強度と長期耐久性を示す炭化ホウ素含有セラミックス接合体及び該接合体の製造方法に関する。さらに詳しくは、炭化ホウ素を含有するセラミックス製の小型部材同士を強固に接合し、高い接合強度で一体化され、高速で稼働する場合や、化学的な反応が起こりうる環境下で使用する用途に適用可能であり、特に、温度変動等の外部刺激を繰り返し受けた場合における接合部分の耐久性が従来のものに比べて高く、長期耐久性に優れる実用化に適した大型化炭化ホウ素含有セラミックス部材を提供する技術に関する。   The present invention relates to a boron carbide-containing ceramic joined body that is obtained by joining members to increase the size and exhibiting high joining strength and long-term durability, and a method for producing the joined body. In more detail, small ceramic members containing boron carbide are firmly bonded to each other, integrated with high bonding strength, and used at high speeds or in environments where chemical reactions can occur. Applicable, especially large-sized boron carbide-containing ceramic material suitable for practical use, which has higher durability compared to conventional parts when subjected to repeated external stimuli such as temperature fluctuations and is superior in long-term durability Relating to technology.

セラミックスは、金属材料と比較して軽量で硬く、高い弾性率を示す材料であることから、構造用部材として工業製品に幅広く応用されている。その一つに炭化ホウ素含有セラミックスがあるが、実用セラミックスの中で最高の硬さと最高の軽量性(かさ密度:2.5g/cm3)を有し、例えば、高速で稼働する機械部材の構造材料等としての利用が期待されている。近年、常圧焼結で、理論密度の95%以上の高密度焼結体を得る方法が開発され(特許文献1参照)、緻密質炭化ホウ素セラミックスを安価に安定して提供することが可能になったことから、今後、炭化ホウ素セラミックの広範な利用が期待されている。一方、近年、稼働する機械部材の大型化は目覚しく、例えば、セラミックス材料が適用されている半導体製造装置用の露光装置では、シリコンウエハのサイズアップによって、稼働する機械部材であるステージも年々大型化しており、使用されるセラミック材料も、広い面積を有するものが要求されてきている。このような要求に応えるためには、セラミックス製造工程における工業施設や加工機を大型化することが必要になるが、この場合は、多大な設備投資を伴い、製品の経済性が損なわれるという極めて重大な実用上の課題を生じる。 Ceramics are widely applied to industrial products as structural members because they are lighter and harder than metal materials and exhibit a high elastic modulus. One of them is boron carbide-containing ceramics, which have the highest hardness and lightness (bulk density: 2.5 g / cm 3 ) among practical ceramics. Use as a material is expected. In recent years, a method for obtaining a high-density sintered body having a theoretical density of 95% or more by atmospheric pressure sintering has been developed (see Patent Document 1), and it is possible to stably provide dense boron carbide ceramics at low cost. Therefore, it is expected that boron carbide ceramics will be widely used in the future. On the other hand, in recent years, the size of operating mechanical members has increased dramatically. For example, in an exposure apparatus for a semiconductor manufacturing apparatus to which a ceramic material is applied, the stage, which is an operating mechanical member, has increased year by year due to an increase in the size of a silicon wafer. The ceramic material used is also required to have a large area. In order to meet such demands, it is necessary to increase the size of industrial facilities and processing machines in the ceramics manufacturing process. Creates significant practical challenges.

このような状況下、小型のセラミックス部材を作製し、得られた複数の小型のセラミックス部材同士を接合して一体化し、大型化することで、低コストで優れた特性を示す大型部品を製造する技術が注目され、後述するように、様々な研究機関や企業にて研究開発がされている。しかし、セラミックス製の小型部材同士を強固に接合し、高い接合強度で一体化することは難しく、特に、炭化ホウ素含有セラミックスの適用が期待される、高速で稼働する機械部材に用いる場合には、より高い接合強度が要求されるため、より優れた接合技術の確立が待望されている。   Under such circumstances, a small ceramic member is manufactured, and a plurality of small ceramic members obtained are joined and integrated to increase the size, thereby producing a large component exhibiting excellent characteristics at low cost. Technology is attracting attention, and research and development are being conducted at various research institutions and companies as described later. However, it is difficult to firmly bond small ceramic members and integrate them with high bonding strength, especially when used for machine members that operate at high speeds where application of boron carbide-containing ceramics is expected. Since higher bonding strength is required, establishment of a better bonding technique is awaited.

このため、下記に挙げるように、これまでにも小型のセラミックス部材同士を接合して一体化することについて種々の提案がされている。例えば、特許文献2では、エンジニアリングセラミックスとして高い特性を示す窒化ケイ素セラミックスを強固に接合させるために、接合面がともに嵌め合いとなる形状を有する小型部材を作製し、嵌め合い部にケイ素を含むペーストを充填し、ケイ素を窒素中で窒化ケイ素とすることで接合を行う方法を提案している。   For this reason, as mentioned below, various proposals have been made for joining and integrating small ceramic members. For example, in Patent Document 2, in order to firmly bond silicon nitride ceramics having high characteristics as engineering ceramics, a small member having a shape in which the joint surfaces are fitted together is prepared, and a paste containing silicon in the fitting part Has been proposed in which bonding is performed by filling silicon with silicon nitride in nitrogen.

炭化ホウ素セラミックス部材同士を接合してセラミックス構造体とする方法としては、特許文献3に、炭化ホウ素含有セラミックス部材同士の間に、アルミニウムを主成分とする、箔、ペースト及び蒸着層を介在させて、微少量のアルミニウムを介在させた状態で部材同士を保持して、600℃以上800℃よりも低い温度で加熱することで接合する方法が提案されている。アルミニウムを主成分とする接合材としてアルミニウム合金が使用可能であることが記載されている。また、特許文献4では、炭化ホウ素含有セラミックス部材同士の間に、銅、金またはジルコニウムを主成分とする、箔、ペースト及び蒸着層を介在させ、部材同士を保持して、700℃以上1600℃以下の温度で加熱することで接合する方法が提案されている。   As a method of joining boron carbide ceramic members to form a ceramic structure, in Patent Document 3, a foil, paste, and vapor deposition layer mainly composed of aluminum are interposed between boron carbide-containing ceramic members. A method has been proposed in which members are held in a state where a minute amount of aluminum is interposed, and the members are joined by heating at a temperature of 600 ° C. or higher and lower than 800 ° C. It is described that an aluminum alloy can be used as a bonding material mainly composed of aluminum. In Patent Document 4, a foil, a paste, and a vapor deposition layer containing copper, gold, or zirconium as a main component are interposed between boron carbide-containing ceramic members, and the members are held at 700 ° C. to 1600 ° C. A method of joining by heating at the following temperature has been proposed.

また、炭化ホウ素セラミックス部材同士の接合ではないが、特許文献5では、炭化ホウ素含有セラミックスと酸化物セラミックスとの接合に関し、アルミニウム又はアルミニウム化合物からなる、箔、ペースト及び蒸着層のいずれかを接合材として介在させて保持し、600℃以上1200℃以下の温度で加熱して接合する方法が提案されている。   Moreover, although it is not joining of boron carbide ceramic members, in patent document 5, regarding joining of boron carbide containing ceramics and oxide ceramics, either a foil, a paste, or a vapor deposition layer made of aluminum or an aluminum compound is used as a joining material. A method has been proposed in which bonding is performed by holding at a temperature of 600 ° C. or higher and 1200 ° C. or lower.

特開2009−215091号公報JP 2009-215091 A 特開2008−184352号公報JP 2008-184352 A 特開2012−072044号公報JP 2012-072044 A 特開2013−049598号公報JP 2013-049598 A 特開2013−060350号公報JP 2013-060350 A

先に述べた、半導体製造装置用の露光装置におけるシリコンウエハを載せて使用するステージのような、高速で稼働する機械部材にも利用が可能なセラミックスとして、セラミックス部材同士を接合したものを使用する場合、接合した部分の強度が100MPa以上、さらに好ましくは200MPa以上である高い接合強度が求められている。なお、本発明でいう接合強度とは、接合体が示す強度を総称している。   As ceramics that can be used for mechanical members that operate at high speed, such as the stage that uses a silicon wafer in an exposure apparatus for a semiconductor manufacturing apparatus, as described above, ceramics that are joined together are used. In this case, a high bonding strength is required in which the strength of the bonded portion is 100 MPa or more, more preferably 200 MPa or more. In addition, the joining strength as used in this invention is a general term for the strength which a joined body shows.

しかしながら、上述した従来技術では、それぞれ、下記に述べるような課題があった。特許文献2の技術では、セラミックス同士の強固な結合を実現するために、セラミックスの向かい合う接合面を、互いに嵌め合いとなる形状とすることが必要となるため煩雑であり、セラミックス部材のフラットな面同士で強く接合できる技術が望まれる。さらに、この技術では、窒化ケイ素を主成分とするセラミックスの接合に、ケイ素を主成分としたペーストを用い、そのペーストを、乾燥・窒素雰囲気で窒化する工程を必要としており、この点からも高コスト化は避けられず改善の余地があった。   However, each of the conventional techniques described above has the following problems. In the technique of Patent Document 2, in order to realize strong bonding between ceramics, it is necessary to make the joint surfaces of the ceramics facing each other into a shape that fits each other. A technology that can strongly bond each other is desired. Furthermore, this technology requires a process of using a silicon-based paste as a main component for bonding silicon nitride-based ceramics, and nitriding the paste in a dry and nitrogen atmosphere. Costing was inevitable and there was room for improvement.

また、特許文献3、4の技術は、本発明が目的とする炭化ホウ素系セラミックス同士を接合する技術であり、これらの技術によって要求される高い接合強度を達成でき、しかも焼結温度の半分以下の温度で接合させることが可能になったものの、接合するための熱処理には600℃以上の温度を必要としており、より低い温度で高い接合強度を達成できれば、より有用である。また、本発明者らの検討の結果、炭化ホウ素含有セラミックスと酸化物セラミックスとの接合を目的とした特許文献5の技術を含め、これらの従来技術で得た接合体の接合部分は、いずれも、実用化を考えた場合に重要となる、接合時に発生する接合界面での残留歪みの抑制が必要であり、部材の形状により長時間の使用に対する耐久性の低下が予想されることがわかった。より具体的には、炭化ホウ素含有セラミックス接合体を使用した際に、接合層が、冷却時の体積変化や温度変動等の外部刺激を繰り返し受けた場合などに、接合部分に接合界面から亀裂が発生し、最終的に接合部分が破壊することが起こり得るという、実用上、重要な課題があることがわかった。   Further, the techniques of Patent Documents 3 and 4 are techniques for joining the boron carbide ceramics intended by the present invention, can achieve the high joining strength required by these techniques, and are less than half the sintering temperature. However, the heat treatment for joining requires a temperature of 600 ° C. or higher, and it is more useful if high joining strength can be achieved at a lower temperature. In addition, as a result of the study by the present inventors, all of the joined parts of the joined bodies obtained by these conventional techniques, including the technique of Patent Document 5 aimed at joining boron carbide-containing ceramics and oxide ceramics, It is necessary to suppress residual strain at the bonding interface that occurs during bonding, which is important when considering practical use. . More specifically, when using a boron carbide-containing ceramic joined body, when the joining layer repeatedly receives external stimuli such as volume changes and temperature fluctuations during cooling, cracks from the joining interface occur at the joining portion. It has been found that there is an important practical problem that it may occur and eventually the joint portion may break.

したがって、本発明の目的は、炭化ホウ素系セラミックス同士の接合をする場合に、より低い温度で高い接合強度を達成でき、しかも、得られる炭化ホウ素含有セラミックス接合体の接合部分が、従来にない、長時間の使用に対する耐久性にも優れる、実用化に適した炭化ホウ素含有セラミックス接合体を得ることにある。   Therefore, the object of the present invention is to achieve a high bonding strength at a lower temperature when bonding between boron carbide based ceramics, and there is no bonding part of the obtained boron carbide-containing ceramic bonded body, An object of the present invention is to obtain a boron carbide-containing ceramic joined body that is excellent in durability against long-term use and suitable for practical use.

上記の目的は、下記の本発明によって達成される。すなわち、本発明は、炭化ホウ素を60質量%以上含有してなる炭化ホウ素セラミックス部材同士を、アルミニウム−シリコン合金を用いて接合することで一体化し、かつ、接合した部分の強度が100MPa以上である炭化ホウ素セラミックス接合体の製造方法において、前記炭化ホウ素セラミックス部材の接合させる部分に、接合層を形成させるためのシリコン含有率が5質量%以上25質量%以下のアルミニウム−シリコン合金或いは該合金となる混合材料を配置させて、該合金或いは該合金となる混合材料を介して炭化ホウ素セラミックス部材同士を合わせた状態とし、この状態を保持しながら真空条件下、少なくとも接合させる部分を550℃以上、700℃よりも低い温度に加熱して炭化ホウ素セラミックス部材同士を接合することを特徴とする炭化ホウ素含有セラミックス接合体の製造方法を提供する。   The above object is achieved by the present invention described below. That is, in the present invention, boron carbide ceramic members containing 60% by mass or more of boron carbide are integrated by bonding using an aluminum-silicon alloy, and the strength of the bonded portion is 100 MPa or more. In the method for manufacturing a boron carbide ceramic joined body, an aluminum-silicon alloy having a silicon content for forming a joining layer in a portion to be joined of the boron carbide ceramic member is 5 mass% or more and 25 mass% or less, or the alloy. The mixed material is arranged so that the boron carbide ceramic members are combined with each other through the alloy or the mixed material to be the alloy, and at least a portion to be bonded under vacuum condition is maintained at 550 ° C. or higher, 700 Joining boron carbide ceramic members by heating to a temperature lower than ℃ To provide a method for manufacturing a boron carbide containing ceramic bonding article characterized and.

上記炭化ホウ素含有セラミックス接合体の好ましい形態としては、下記のものが挙げられる。前記アルミニウム−シリコン合金は、その融点が、アルミニウムの融点の660℃よりも低く、かつ、溶融状態から冷却により凝固する過程において生じる体積変化が5.5%以内あって、その熱膨張係数が18×10-6〜22×10-6(1/℃)のものであること;前記アルミニウム−シリコン合金或いは該合金となる混合材料が、シリコン含有率が8質量%以上15質量%以下のものであること;前記接合させる部分を、580℃以上650℃以下の温度に加熱すること;前記アルミニウム−シリコン合金或いは該合金となる混合材料を配置させる方法が、塗布法、蒸着法、箔の載置又はコールドスプレー法のいずれかであることが挙げられる。 The following are mentioned as a preferable form of the said boron carbide containing ceramic joined body. The aluminum-silicon alloy has a melting point lower than 660 ° C., which is the melting point of aluminum, and has a volume change within 5.5% that occurs in the process of solidification by cooling from a molten state, and its thermal expansion coefficient is 18 × 10 −6 to 22 × 10 −6 (1 / ° C.); the aluminum-silicon alloy or a mixed material to be the alloy is a silicon content of 8% by mass to 15% by mass There are; heating the part to be joined to a temperature of 580 ° C. or more and 650 ° C. or less; a method of arranging the aluminum-silicon alloy or a mixed material to be the alloy includes a coating method, a vapor deposition method, and a foil placement Or it is any of the cold spray methods.

また、本発明は、別の実施形態として、炭化ホウ素を60質量%以上含有してなる炭化ホウ素セラミックス部材同士が、シリコン含有率が5質量%以上25質量%以下のアルミニウム−シリコン合金からなる接合層を介して一体化されており、かつ、接合した部分の強度が100MPa以上である炭化ホウ素セラミックス接合体であって、前記接合層は、その融点が、アルミニウムの融点の660℃よりも低く、かつ、溶融状態から冷却により凝固する過程において生じる体積変化が5.5%以内であって、その熱膨張係数が、18×10-6〜22×10-6(1/℃)以下であることを特徴とする炭化ホウ素含有セラミックス接合体を提供する。その好ましい形態としては、前記アルミニウム−シリコン合金は、シリコン含有率が8質量%以上15質量%以下であることが挙げられる。 Moreover, as another embodiment, the present invention provides a bonding in which boron carbide ceramic members containing 60% by mass or more of boron carbide are made of an aluminum-silicon alloy having a silicon content of 5% by mass to 25% by mass. A bonded body of boron carbide ceramics having a strength of 100 MPa or more, and the bonding layer has a melting point lower than the melting point of aluminum, 660 ° C. In addition, the volume change that occurs in the process of solidification by cooling from the molten state is within 5.5%, and the thermal expansion coefficient is 18 × 10 −6 to 22 × 10 −6 (1 / ° C.) or less. A boron carbide-containing ceramic joined body is provided. As a preferable form, the aluminum-silicon alloy has a silicon content of 8% by mass or more and 15% by mass or less.

上記したように、本発明によれば、炭化ホウ素含有セラミックス部材同士を、簡便な方法で、かつ、従来の方法よりも低い温度での加熱処理で、接合した部分の強度が100MPa以上である高い強度の接合を達成することができ、さらに、冷却時の体積変化や温度変動等の外部刺激を繰り返し受けた場合における接合部分の耐久性が、従来のものに比べて極めて高く、長期耐久性に優れ、高速で稼働する機械部材にも利用が可能な、実用化に適した大型化した炭化ホウ素含有セラミックス部材の提供が可能になる。また、本発明によれば、上記した極めて高い接合強度で炭化ホウ素含有セラミックス部材同士を接合して一体化されてなり、しかも、長期間の耐久性にも優れる大型化した炭化ホウ素含有セラミックス部材を、特殊な材料を用いることなく、簡便な方法で経済的に提供することが可能になるので、機能性に優れた素材である炭化ホウ素含有セラミックスの広範な利用の実現が可能になる。   As described above, according to the present invention, the strength of the bonded portions of the boron carbide-containing ceramic members is high at 100 MPa or more by a simple method and heat treatment at a temperature lower than that of the conventional method. It is possible to achieve strong bonding, and the durability of the bonded part when subjected to repeated external stimuli such as volume change and temperature fluctuation during cooling is extremely high compared to conventional ones, resulting in long-term durability. It is possible to provide a large-sized boron carbide-containing ceramic member suitable for practical use, which is excellent and can be used for machine members operating at high speed. In addition, according to the present invention, there is provided a large-sized boron carbide-containing ceramic member obtained by joining and integrating the boron carbide-containing ceramic members with the above-described extremely high bonding strength, and having excellent long-term durability. Since it can be economically provided by a simple method without using a special material, it is possible to realize a wide range of utilization of boron carbide-containing ceramics which are materials having excellent functionality.

本発明の接合体を製造する際の、セラミックス部材(1)同士の間に接合材(2)を配置した状態の断面を示す模式図。The schematic diagram which shows the cross section of the state which has arrange | positioned the bonding | jointing material (2) between ceramic members (1) at the time of manufacturing the conjugate | zygote of this invention. 本発明の接合体を構成する接合層のSEM写真の図である。It is a figure of the SEM photograph of the joining layer which comprises the conjugate | zygote of this invention. 図2よりも高倍率の、本発明の接合体を構成する接合層のSEM写真の図である。It is a figure of the SEM photograph of the joining layer which comprises the conjugate | zygote of this invention of higher magnification than FIG.

以下、本発明の好ましい実施の形態を挙げて、本発明を詳細に説明する。本発明者らは、先に述べた従来技術の課題を解決すべく鋭意検討の結果、特定のアルミニウム−シリコン合金を用いて接合するという極めて簡単な手段で、従来よりも低い温度での接合が可能になり、炭化ホウ素含有セラミックス部材同士を接合した部分の接合強度が100MPa以上と高く、しかも、従来の接合体に比べて、その接合部分が、熱等の刺激を繰り返し受けた場合における耐久性が高く、長期耐久性に優れ、高速で稼働する機械部材にも利用が可能な、実用化に適した大型化した炭化ホウ素含有セラミックス部材の提供が可能になる。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the present invention. As a result of intensive studies to solve the problems of the prior art described above, the present inventors can join at a lower temperature than before by a very simple means of joining using a specific aluminum-silicon alloy. The bonding strength of the bonded portions of the boron carbide-containing ceramic members is as high as 100 MPa or more, and compared to the conventional bonded body, the bonded portion is durable when repeatedly subjected to stimulation such as heat. Therefore, it is possible to provide a large-sized boron carbide-containing ceramic member suitable for practical use, which is high, has long-term durability, and can be used for a machine member that operates at high speed.

先に述べたように、本発明者らは、従来技術について鋭意検討する過程で、従来、提案されている炭化ホウ素含有セラミックス接合体にあっては、その炭化ホウ素セラミックス部材同士の接合部分における耐久性が、長期使用に耐え得るものとは言い難く、実用化できるものとするためには、さらなる検討が必要であることを認識した。さらに、従来技術における炭化ホウ素セラミックス部材同士を接合させるための接合温度は、低くなったとはいえ、未だ600℃以上の温度を必要としており、実用化のためには、上記した課題の解決に加え、従来技術よりも低い温度での接合を可能とできる、より経済的な製造方法を開発することが重要であるとの認識を持つに至った。   As described above, in the process of earnestly examining the prior art, the present inventors, in the conventionally proposed boron carbide-containing ceramic joined body, endurance at the joint portion between the boron carbide ceramic members. It is difficult to say that the product can withstand long-term use, and it has been recognized that further studies are necessary to make it practical. Furthermore, although the joining temperature for joining the boron carbide ceramic members in the prior art has been lowered, a temperature of 600 ° C. or higher is still required, and for practical use, in addition to solving the above-mentioned problems As a result, it has been recognized that it is important to develop a more economical manufacturing method that enables bonding at a lower temperature than the prior art.

先に述べた通り、本発明者らが見出した、炭化ホウ素含有セラミックス接合体を使用した際に、温度変動等の外部刺激を繰り返し受けると、炭化ホウ素系セラミックス同士の接合部分に、接合界面から亀裂が発生し、最終的に接合部分が破壊することが起こるという課題に対し、その原因について詳細な検討を行った。その結果、使用によって接合部分の耐久性が損なわれる原因となる、接合界面からの亀裂の発生は、下記の点に起因したものであるとの知見を得た。   As described above, when the boron carbide-containing ceramic joined body found by the present inventors is used, when an external stimulus such as temperature fluctuation is repeatedly received, the joining portion between the boron carbide based ceramics is joined from the joining interface. We examined the cause of the problem of cracks that eventually break the joint. As a result, it has been found that the occurrence of cracks from the bonding interface, which causes the durability of the bonded portion to be impaired by use, is due to the following points.

一般にセラミックスは金属に比べて熱膨張係数が小さいため、セラミックスと金属との接合体が温度変化を受ける場合には、素材間の熱膨長係数の差のために界面近傍に大きな歪が発生するとされている。また、接合材料中の熱応力分布は一様でないこと、接合界面近くで高くなることも知られている。さらに、金属は溶融から凝固過程において、大きな体積変化が伴うことが知られている。そのため、金属の凝固時に接合界面で大きな歪みが発生する可能性が予想される。ここで、接合体の強度に悪影響を及ぼす引張応力は、接合界面にほぼ垂直方向に働くため、見かけ上界面強度の低下をもたらすとされている。本発明者らは、このような知見に基づき、炭化ホウ素含有セラミックス部材同士を、簡便にかつ強固に接合させることができ、少なくとも、その接合部分における素材間の熱膨長率に差のない構成とすることが重要であるとの認識の下、使用する接合材料による耐久性の違いについて詳細な検討を行った結果、本発明に至ったものである。   In general, ceramics have a smaller coefficient of thermal expansion than metal, so if the bonded body of ceramics and metal undergoes a temperature change, a large strain will occur near the interface due to the difference in the coefficient of thermal expansion between the materials. Has been. It is also known that the thermal stress distribution in the bonding material is not uniform and increases near the bonding interface. Furthermore, it is known that metals undergo a large volume change during the process from melting to solidification. Therefore, it is expected that a large strain may occur at the bonding interface when the metal is solidified. Here, the tensile stress that adversely affects the strength of the bonded body works in a direction substantially perpendicular to the bonded interface, and thus apparently reduces the interface strength. Based on such knowledge, the present inventors can easily and firmly join the boron carbide-containing ceramic members, and at least a configuration in which there is no difference in the coefficient of thermal expansion between the materials in the joined portion As a result of detailed studies on the difference in durability depending on the bonding material used, the present invention has been achieved.

本発明者らの検討によれば、炭化ホウ素含有セラミックスと、接合材に用いる金属との界面では、接合材自体の固液相変態、ならびに固体の熱膨張係数差由来の非常に大きな歪みが発生しているとともに、熱膨張係数差が大きいと、接合界面近傍に熱応力に伴う歪みが発生し易くなり、接合体の強度が劣るものとなるが、その傾向は、接合材材料の種類や、使用の際に接合体が受ける温度変動等の外乱要因の違いによってもばらつきがあり、特に部材の形状によっては、安定した耐久性を実現した高強度の接合体とすることが難しい場合があることがわかった。炭化ホウ素含有セラミックス接合体の実用化に際して、このように接合強度がばらつくということは、接合に対する信頼性が低くなることを意味するため、安定した耐久性を実現した高強度の接合体を得る技術の達成は極めて重要である。   According to the study by the present inventors, at the interface between the boron carbide-containing ceramic and the metal used for the bonding material, a very large strain is generated due to the solid-liquid phase transformation of the bonding material itself and the difference in thermal expansion coefficient of the solid. In addition, if the difference in thermal expansion coefficient is large, distortion due to thermal stress is likely to occur in the vicinity of the bonding interface, and the strength of the bonded body is inferior, but the tendency is the type of bonding material, There are also variations due to differences in disturbance factors such as temperature fluctuations that the joined body receives during use, and depending on the shape of the member, it may be difficult to obtain a high-strength joined body that realizes stable durability. I understood. When the boron carbide-containing ceramic joined body is put to practical use, the fact that the joining strength varies in this way means that the reliability of joining is lowered, and thus a technology for obtaining a high-strength joined body that realizes stable durability. The achievement of is extremely important.

本発明者らは、先に示した特許文献3や4の従来技術において、炭化ホウ素含有セラミックス同士の接合に適したとされているアルミニウムを主成分とする材料について、詳細な検討を行った。まず、これらの従来技術における基本構成について、各素材の界面付近での現象という観点での検討を行った。その結果、アルミニウムで接合層を形成した場合の冷却時の体積収縮は約6.6%であるとともに、熱膨張係数は23.1×10-6(1/℃)である一方、母材である炭化ホウ素含有セラミックスの熱膨張係数は5.6×10-6(1/℃)であり、両者は、素材の違いによる大きな差がある。このため、長時間使用している際のわずかな温度変動により、これらの素材からなる接合界面に熱膨張係数差に起因する応力が発生し、接合界面からの亀裂が進展し、形状等によっては、接合部分の長期耐久性に劣るものが発現し、接合強度にばらつきが生じる現象が起きたものと考えられる。 The inventors of the present invention have made detailed studies on materials mainly composed of aluminum, which are considered to be suitable for bonding between boron carbide-containing ceramics in the prior arts of Patent Documents 3 and 4 described above. First, the basic structure of these conventional technologies was examined from the viewpoint of a phenomenon near the interface of each material. As a result, when the bonding layer is formed of aluminum, the volume shrinkage during cooling is about 6.6% and the thermal expansion coefficient is 23.1 × 10 −6 (1 / ° C.) The thermal expansion coefficient of a certain boron carbide-containing ceramic is 5.6 × 10 −6 (1 / ° C.), and there is a large difference between the two due to the difference in materials. For this reason, due to slight temperature fluctuations when used for a long time, stress due to the difference in thermal expansion coefficient occurs at the bonding interface made of these materials, cracks from the bonding interface develop, and depending on the shape etc. It is considered that a phenomenon in which the long-term durability of the bonded portion is inferior appears, and a phenomenon in which the bonding strength varies is caused.

そこで、炭化ホウ素含有セラミックス同士を簡便に、かつ高い強度で接合することが可能であり、さらに、母材である炭化ホウ素含有セラミックスと、接合層を形成させるための材料を強固に接合することができる構成を得ることが重要であるとの見地から、接合部分についてのより詳細な検討を行った。具体的には、従来技術で、接合材料に使用していたアルミニウムが、溶融状態から凝固する過程において約6.6%収縮することに着目し、接合温度を低下させることが可能であり、しかも、この凝固時に生じる収縮を緩和することができる材料として、シリコンを利用することの有効性を見出し、さらなる検討を行った。その結果、本発明者らは、本発明の目的を達成した実用価値の高い炭化ホウ素含有セラミックス接合体を得るためには、シリコンが約7.0%膨張する点を利用し、接合部分の構成を、溶融状態から凝固する過程において全体の体積変化が5.5%以下と小さくなるようにすることが有効であるとの結論に至った。より具体的には、溶融状態から凝固する過程において全体の体積変化が5.5%以下である、アルミニウムとシリコンとの合金の範囲について調べ、さらに、母材である炭化ホウ素含有セラミックスに比べて大きい熱膨張係数を有する、従来の接合層の形成に用いられているアルミニウムを主成分とする材料について、その熱膨張係数が小さくなるようにして、接合体の接合層の熱膨張係数を、より炭化ホウ素含有セラミックスの熱膨張係数に近づけることが重要であるとの認識の下、詳細な検討を行った。   Therefore, it is possible to bond boron carbide-containing ceramics easily and with high strength, and furthermore, it is possible to firmly bond the boron carbide-containing ceramics as the base material and the material for forming the bonding layer. From the viewpoint that it is important to obtain a possible structure, a more detailed study was made on the joint. Specifically, it is possible to reduce the bonding temperature by focusing on the fact that the aluminum used as the bonding material in the prior art shrinks by about 6.6% in the process of solidifying from the molten state, As a material that can alleviate the shrinkage that occurs during the solidification, the effectiveness of using silicon has been found and further studies have been conducted. As a result, in order to obtain a boron carbide-containing ceramic joined body having high practical value that has achieved the object of the present invention, the inventors have utilized the point that silicon expands by about 7.0%, It was concluded that it is effective to reduce the total volume change to 5.5% or less in the process of solidifying from a molten state. More specifically, in the process of solidifying from the molten state, the total volume change is 5.5% or less, and the range of the alloy of aluminum and silicon is examined, and further compared with the boron carbide-containing ceramics as the base material. For a material mainly composed of aluminum that has a large coefficient of thermal expansion and is used for forming a conventional bonding layer, the coefficient of thermal expansion of the bonding layer of the joined body is further increased by reducing the coefficient of thermal expansion. A detailed study was conducted with the recognition that it is important to approximate the thermal expansion coefficient of the boron carbide-containing ceramics.

上記したように、本発明は、先に述べた、アルミニウムを主成分とする接合層で炭化ホウ素含有セラミックス同士を簡便に接合し、かつ、高い接合強度を達成している特許文献3に記載の技術の改良に関し、その高い接合強度の実現に加えて、その接合部分が、より長期耐久性に優れた、安定した接合強度を実現し得るものとなることを主たる目的としている。このため、本発明の炭化ホウ素含有セラミックス接合体は、特許文献3に記載されている炭化ホウ素セラミックス接合体と、その長期耐久性において異なるものの、接合層の性状(形態)において何ら異なることはなく、簡便な手段で、その高い接合強度を実現したものとなる。具体的には、本発明の炭化ホウ素セラミックス接合体の接合部分は、各炭化ホウ素セラミックス部材の接合界面に微細な亀裂或いは気孔が存在し、これらの内部まで上記接合材である金属が浸透しており、そのアンカー効果によってセラミックス部材同士が強固に結合されたものとなる。また、その際の亀裂或いは気孔は、幅が1μm以下程度であり、そのアスペクト比が5以上のものとなる。また、接合層は、その厚みが1〜1,000μm程度、或いは、1〜100μm程度であり、接合時の反応によってアルミニウムと炭化ホウ素とが混在している状態の部分を有するものとなる。   As described above, the present invention is described in Patent Document 3 in which boron carbide-containing ceramics are simply joined to each other with the joining layer mainly composed of aluminum as described above and high joining strength is achieved. Regarding the improvement of the technology, in addition to the realization of the high joint strength, the main purpose is that the joint portion can realize a stable joint strength with excellent long-term durability. For this reason, the boron carbide-containing ceramic joined body of the present invention differs from the boron carbide ceramic joined body described in Patent Document 3 in its long-term durability, but there is no difference in the properties (forms) of the joining layer. The high bonding strength is realized by simple means. Specifically, in the bonded portion of the boron carbide ceramic joined body of the present invention, fine cracks or pores exist at the bonding interface of each boron carbide ceramic member, and the metal as the bonding material penetrates into these inside. Therefore, the ceramic members are firmly bonded by the anchor effect. In addition, the crack or pore at that time has a width of about 1 μm or less and an aspect ratio of 5 or more. The bonding layer has a thickness of about 1 to 1,000 μm or about 1 to 100 μm, and has a portion in which aluminum and boron carbide are mixed due to a reaction during bonding.

以下、本発明の炭化ホウ素含有セラミックス接合体の製造方法について説明する。本発明の製造方法の主たる特徴は、炭化ホウ素セラミックス部材の接合させる部分に、接合層を形成させるためのシリコン含有率が5質量%以上25質量%以下のアルミニウム−シリコン合金或いは該合金となる混合材料を配置させて、該合金或いは該合金となる混合材料を介して炭化ホウ素セラミックス部材同士を合わせた状態とし、この状態を保持しながら真空条件下、少なくとも接合させる部分を550℃以上、700℃よりも低い温度に加熱して炭化ホウ素セラミックス部材同士を接合する構成としたことにある。より好ましくは、接合層を形成させるための材料として、シリコン含有率が8質量%以上15質量%以下のものを使用すること、接合させる部分の加熱温度を、580℃以上650℃以下とすることが挙げられる。また、より詳細な検討によれば、接合層を形成させるための材料に使用するアルミニウム−シリコン合金の融点が、アルミニウムの融点の660℃よりも低く、かつ、溶融状態から冷却により凝固する過程において生じる体積変化が5.5%以内あって、その熱膨張係数が、18×10-6〜22×10-6(1/℃)のものであることが好ましい。上記したシリコン含有率のアルミニウム−シリコン合金であれば、その熱膨張係数は上記範囲内のものとなる。先に述べたように、アルミニウムを接合材とした場合の熱膨張係数は23.1×10-6(1/℃)であったことから、本発明では、その熱膨張係数を、接合する母材の炭化ホウ素含有セラミックスの熱膨張係数に、ほんのわずか近づけるという簡単な手段によって、接合部分における長期耐久性の達成、という本発明の実用化に際して重要となる顕著な効果を達成したものであり、その有用性は極めて高い。 Hereinafter, the manufacturing method of the boron carbide containing ceramic joined body of this invention is demonstrated. The main feature of the production method of the present invention is that an aluminum-silicon alloy having a silicon content of 5 mass% or more and 25 mass% or less for forming a bonding layer in a portion to be bonded to a boron carbide ceramic member or a mixture of the alloy. The material is arranged so that the boron carbide ceramic members are combined with each other through the alloy or a mixed material to be the alloy, and at least a portion to be joined under vacuum conditions is maintained at 550 ° C. or higher and 700 ° C. while maintaining this state. In other words, the boron carbide ceramic members are joined to each other by heating to a lower temperature. More preferably, a material having a silicon content of 8% by mass or more and 15% by mass or less is used as a material for forming the bonding layer, and the heating temperature of the part to be bonded is 580 ° C. or more and 650 ° C. or less. Is mentioned. Further, according to a more detailed study, the melting point of the aluminum-silicon alloy used as the material for forming the bonding layer is lower than the melting point of aluminum, 660 ° C., and in the process of solidifying by cooling from the molten state. It is preferable that the volume change to occur is within 5.5%, and the thermal expansion coefficient is 18 × 10 −6 to 22 × 10 −6 (1 / ° C.). In the case of the aluminum-silicon alloy having the silicon content described above, the thermal expansion coefficient is within the above range. As described above, the coefficient of thermal expansion when aluminum is used as the bonding material is 23.1 × 10 −6 (1 / ° C.). It achieves the remarkable effect that is important in the practical application of the present invention, that is, the achievement of long-term durability at the joint portion, by a simple means of making it slightly closer to the thermal expansion coefficient of the boron carbide-containing ceramic of the material, Its usefulness is extremely high.

炭化ホウ素セラミックス部材の接合させる部分に、接合層を形成させるためのアルミニウム−シリコン合金或いは該合金となる混合材料を配置させる方法は、特に限定されないが、例えば、塗布法、蒸着法、合金製の箔を載置する方法、コールドスプレー法などが挙げられる。形成した接合層の厚みも特に限定されないが、例えば、1000μm以下となる範囲で介在させればよい。本発明の製造方法では、1〜100μm程度の薄い接合層の厚みで、高い接合強度を示し、しかも、長期耐久性に優れる炭化ホウ素含有セラミックス接合体を得ることができる。   The method of placing an aluminum-silicon alloy for forming a bonding layer or a mixed material to be an alloy on the portion to be bonded of the boron carbide ceramic member is not particularly limited. For example, a coating method, a vapor deposition method, an alloy Examples include a method of placing a foil and a cold spray method. Although the thickness of the formed joining layer is not specifically limited, For example, what is necessary is just to interpose in the range used as 1000 micrometers or less. In the production method of the present invention, it is possible to obtain a boron carbide-containing ceramic joined body having a high joining strength and excellent long-term durability with a thin joining layer thickness of about 1 to 100 μm.

本発明では、上記に挙げたようないずれかの方法で、接合させる母材である炭化ホウ素含有セラミックス部材の少なくとも一方に、接合層を形成させるためのアルミニウム−シリコン合金或いは該合金となる混合材料を配置させ、該合金を介して炭化ホウ素セラミックス部材同士を合わせた状態とし、さらに、この状態を保持しながら真空条件下、少なくとも接合させる部分を、550℃以上、700℃よりも低い温度に加熱して炭化ホウ素セラミックス部材同士を接合する。すなわち、本発明では、接合層を形成させるための材料に、特定の比率でシリコンを含有したアルミニウム−シリコン合金或いは該合金となる混合材料を使用する構成としたことで、接合させる際の接合部分への加熱温度を、550℃以上で、700℃よりも低い温度で、より好ましくは、580℃以上650℃以下の、従来の方法よりも明らかに低い温度範囲とすることができる。本発明の製造方法によれば、このような低い温度条件で加熱して接合したにも関わらず、接合した部分の強度が100MPa以上である炭化ホウ素セラミックス接合体を得ることができる。   In the present invention, an aluminum-silicon alloy for forming a bonding layer on at least one of the boron carbide-containing ceramic members which are base materials to be bonded by any one of the methods described above, or a mixed material to be the alloy The boron carbide ceramic members are put together through the alloy, and at least the part to be joined is heated to a temperature of 550 ° C. or higher and lower than 700 ° C. under vacuum conditions while maintaining this state. Then, the boron carbide ceramic members are joined together. In other words, in the present invention, the material for forming the bonding layer is configured to use an aluminum-silicon alloy containing silicon at a specific ratio or a mixed material to be the alloy, so that a bonding portion at the time of bonding is used. The heating temperature can be a temperature range of 550 ° C. or higher and lower than 700 ° C., more preferably 580 ° C. or higher and 650 ° C. or lower, clearly lower than the conventional method. According to the production method of the present invention, it is possible to obtain a boron carbide ceramic joined body in which the strength of the joined portion is 100 MPa or more despite being heated and joined under such a low temperature condition.

ここで、部材同士の接合強度が100MPa以上であることは、その接合部分が、炭化ホウ素含有セラミックス自体の強度と、使用上ほぼ同じレベルであることを意味する。従って、このような接合状態で一体化されて、大型化或いは多様な形状とされた炭化ホウ素含有セラミックス接合体は、その強度において、接合処理せずに、炭化ホウ素含有セラミックス自体で作製された大型化のあるいは多様な形状の部材と、何ら遜色がないものとなる。   Here, the bonding strength between the members being 100 MPa or more means that the bonding portion is substantially in the same level as the strength of the boron carbide-containing ceramic itself. Therefore, the boron carbide-containing ceramic joined body that is integrated in such a joined state and has a large size or various shapes has a large size that is made of the boron carbide-containing ceramic itself without joining treatment in its strength. It will not be inferior to the members of various shapes.

上記した方法によって、接合強度が100MPa以上の強固な接合状態を有する炭化ホウ素含有セラミックス接合体となる理由は定かではないが、本発明者らは、以下のように考えている。まず、炭化ホウ素含有セラミックス部材同士の間に介在させたアルミニウム−シリコン合金は、炭化ホウ素との濡れ性が良好なものであることから、容易に接合面に均一にいきわたらせることができると考えられる。また、アルミニウム−シリコン合金は、炭化ホウ素と反応し様々な化合物を形成する。このため、炭化ホウ素含有セラミックス部材の間に、例えば、アルミニウム−シリコン合金を90質量%以上含む、箔やペーストや蒸着層といったものを接合層の形成用材料とし、これを微少量で介在させ、この状態を保持しながら、アルミニウム−シリコン合金の融点以上の、本発明で規定する温度で加熱すると、微少量のアルミニウム−シリコン合金が、その接合面に均一な状態にいきわたり、炭化ホウ素とアルミニウム−シリコン合金が反応して、これらが混在する接合層が形成されるものと考えられる。すなわち、該接合層では、アルミニウム−シリコン合金の状態で存在するのではなく、ホウ化アルミニウムや炭ホウ化アルミニウム等が生成されて、アルミニウム−シリコン合金が炭化ホウ素と融合し、これらが混在した状態になる結果、この接合層を介して炭化ホウ素同士が強固に接合することとなり、母材である炭化ホウ素のみからなるセラミックスの強度にほぼ近い100MPa以上という接合強度を示し、しかも長期耐久性にも優れた、従来の技術では到底得られなかった炭化ホウ素含有セラミックス接合体とできたものと推論している。   The reason why the boron carbide-containing ceramic joined body having a strong joining state with a joining strength of 100 MPa or more is not certain by the above-described method, but the present inventors consider as follows. First, since the aluminum-silicon alloy interposed between the boron carbide-containing ceramic members has good wettability with boron carbide, it can be easily distributed uniformly on the joint surface. It is done. Aluminum-silicon alloys also react with boron carbide to form various compounds. For this reason, between the boron carbide-containing ceramic members, for example, an aluminum-silicon alloy containing 90% by mass or more is used as a material for forming a bonding layer such as a foil, a paste or a vapor deposition layer, and this is interposed in a minute amount, While maintaining this state, when heated at a temperature defined by the present invention that is equal to or higher than the melting point of the aluminum-silicon alloy, a small amount of the aluminum-silicon alloy reaches a uniform state on the joint surface, and boron carbide and aluminum- It is considered that a bonding layer in which the silicon alloy reacts and these are mixed is formed. That is, the bonding layer does not exist in the state of an aluminum-silicon alloy, but aluminum boride, aluminum carboboride, or the like is generated, the aluminum-silicon alloy is fused with boron carbide, and these are mixed. As a result, the boron carbides are strongly bonded to each other through this bonding layer, exhibiting a bonding strength of 100 MPa or more which is almost close to the strength of ceramics made of only boron carbide as a base material, and also for long-term durability. It is inferred that this was an excellent boron carbide-containing ceramic joined body that could not be obtained by conventional techniques.

上記のことを検証するため、本発明者らは、アルミニウム−シリコン合金を用いてなる本発明の炭化ホウ素含有セラミックス接合体の接合部分について検討を行った。上記接合体の接合層の微細構造を、SEM(走査型電子顕微鏡)を使って観察した。その結果、得られたSEM写真の図を、図2〜図3に示したが、被接合体である炭化ホウ素焼結体の接合面には、例えば、1,000nm(1μm)以下の無数の亀裂或いは気孔や、アスペクト比が5以上と大きい亀裂或いは気孔が存在し、さらに、これらの亀裂或いは気孔の極めて細い内部先端にまで、接合材が浸透して接合層が形成されていることを確認した。このことから、本発明の炭化ホウ素含有セラミックス接合体は、アルミニウム−シリコン合金と炭化ホウ素とが融合して強固に接合するとともに、その接合時に、炭化ホウ素焼結体の接合面に生じる無数のナノレベルの亀裂或いは気孔内に、浸透性のよいアルミニウムが極めて細い部分にまで入り込み、この結果、アルミニウムがヘアークラックを埋めつつ強固な結合を生じさせ(所謂、アンカー効果)、炭化ホウ素含有セラミックス接合体の接合部分に、従来、達成できなかった極めて高い接合強度を発現できたものと考えられる。   In order to verify the above, the inventors of the present invention have examined the joint portion of the boron carbide-containing ceramic joined body of the present invention using an aluminum-silicon alloy. The microstructure of the bonding layer of the bonded body was observed using a SEM (scanning electron microscope). As a result, the obtained SEM photographs are shown in FIG. 2 to FIG. 3, and the bonding surface of the boron carbide sintered body that is the bonded body has, for example, an infinite number of 1,000 nm (1 μm) or less. Confirm that there are cracks or pores, or cracks or pores with a large aspect ratio of 5 or more, and that the bonding material has penetrated to the very thin internal tips of these cracks or pores to form a bonding layer. did. From this, the boron carbide-containing ceramic joined body of the present invention fuses and firmly joins the aluminum-silicon alloy and boron carbide, and at the time of joining, the innumerable nanometers generated on the joint surface of the boron carbide sintered body. Aluminum with good permeability penetrates into very thin parts in the cracks or pores of the level, and as a result, aluminum forms a strong bond while filling the hair crack (so-called anchor effect), and the boron carbide-containing ceramic joined body It is considered that extremely high bonding strength that could not be achieved in the past could be expressed at the bonding portion.

以下、本発明の炭化ホウ素含有セラミックス接合体の構成について説明する。まず、接合する際に用いる炭化ホウ素を含有する各セラミックス部材は、用途によって異なり、炭化ホウ素の含有量の異なるものを適宜に選択して使用すればよい。例えば、高速で稼働し、高い位置精度が求められる用途では、炭化ホウ素含有量が高い組成領域のもの、例えば、炭化ホウ素含有量として80質量%の値を示すセラミックス部材を用いることが好ましい。例えば、各炭化ホウ素含有セラミックス部材に、理論密度の95質量%以上の高密度セラミックスを使用すれば、得られる炭化ホウ素含有セラミックス接合体は、様々な用途にも利用できる、軽量で硬く、高い弾性率を示し、しかも大型のものとなる。炭化ホウ素含有セラミックス部材の形状も、その一部に、できるだけ平坦な接合面をそれぞれ設けることが好ましいが、それ以外は制約を受けることなく、目的とする大型或いは複雑な形状の接合体の形状に合わせて自由に設計することができる。   Hereinafter, the structure of the boron carbide containing ceramic joined body of this invention is demonstrated. First, each ceramic member containing boron carbide used for bonding differs depending on the use, and those having different boron carbide contents may be appropriately selected and used. For example, in applications that operate at high speed and require high positional accuracy, it is preferable to use a ceramic member having a composition region with a high boron carbide content, for example, a value of 80% by mass as the boron carbide content. For example, if high-density ceramics having a theoretical density of 95% by mass or more are used for each boron carbide-containing ceramic member, the resulting boron carbide-containing ceramic joined body can be used for various purposes, and is lightweight, hard, and highly elastic. It shows the rate and becomes large. As for the shape of the boron carbide-containing ceramic member, it is preferable to provide a part having a flat joining surface as much as possible. However, other than that, there is no restriction, and the shape of the intended large or complex joined body is obtained. It can be designed freely.

上記した本発明の炭化ホウ素含有セラミックス接合体は、先に述べた本発明の製造方法によって、特殊な材料や装置を用いることなく、簡易に、かつ、安定して得ることができる。本発明の製造方法では、まず、上記した接合させるための複数の炭化ホウ素含有セラミックス部材を用意し、これら部材の接合面に、特定のシリコン含有比率のアルミニウム−シリコン合金或いは該合金となる混合材料を含む接合材を介在させて、この状態で互いの部材が保持されるようにし、さらに、少なくとも接合させる部分を、550℃以上、700℃よりも低い温度で加熱することで接合体を得る。本発明では、前記したように、この結果起こる、炭化ホウ素含有セラミックス部材を構成している炭化ホウ素と、接合材を構成しているアルミニウム−シリコン合金との界面反応を利用し、炭化ホウ素含有セラミックス部材同士を強固に接合させる。   The above-described boron carbide-containing ceramic joined body of the present invention can be easily and stably obtained by the above-described production method of the present invention without using a special material or apparatus. In the manufacturing method of the present invention, first, a plurality of boron carbide-containing ceramic members for bonding are prepared, and an aluminum-silicon alloy having a specific silicon content ratio or a mixed material that becomes the alloy is formed on the bonding surface of these members. In this state, the members are held together, and at least a part to be joined is heated at a temperature of 550 ° C. or higher and lower than 700 ° C. to obtain a joined body. In the present invention, as described above, boron carbide-containing ceramics are obtained by utilizing the interfacial reaction between boron carbide constituting the boron carbide-containing ceramic member and the aluminum-silicon alloy constituting the bonding material, which occurs as a result. The members are firmly joined together.

上記で使用する接合面に介在させる接合材としては、アルミニウム−シリコン合金或いは該合金となる混合材料を主成分として含んでなる(例えば、90質量%以上、さらには99%以上含有)、箔、ペースト、蒸着層及びコールドスプレーによる層のいずれかを用いるが、その厚みは、1,000μm以下となる範囲で、より好ましくは100μm以下、さらには、50μm以下の範囲で用いるとよい。その下限値は、1μm以上、少なくとも数μmの厚みで設けることが好ましい。本発明者らの検討によれば、接合面に介在させるアルミニウム−シリコン合金の量は、あまり多過ぎると本発明で目的とするまでの高い接合強度を得ることができなくなるおそれがある。具体的なものとしては、例えば、アルミニウム粉末とシリコン粉末の混合粉をコールドスプレー法により接合面に噴霧する方法が挙げられる。コールドスプレー法とは、常温または200℃程度に加熱した高圧ガスを特殊ノズルによって超音速に加速し、そのガス流の中心に混合粉末を投入することにより混合粉末が加速され、ノズル出口より噴出し固体のまま基材に衝突される溶射技術の1つである。母材に衝突した混合粉末は、塑性変形し母材に付着する。コールドスプレー法では、噴霧ガス温度が融点よりも低くアルミニウムとシリコンの酸化が少なく、緻密な被膜を生成することができる。接合部分に介在させるその他の方法としては、アルミニウム−シリコン合金を箔状に成形したものを、接合する部分に介在させる方法や、炭化ホウ素含有セラミックス部材の接合面に、アルミニウム粉末とシリコン粉末を有機溶剤等の液媒体に分散させてなるペースト状のものを上記範囲の厚みに塗布する方法や、上記接合面に上記範囲の厚みで、アルミニウムを蒸着させて蒸着層を形成する方法や、溶射させてアルミニウムとシリコンを介在させる方法が挙げられる。   As a bonding material interposed in the bonding surface used above, an aluminum-silicon alloy or a mixed material to be the alloy is included as a main component (for example, 90% by mass or more, further 99% or more), foil, Any one of a paste, a vapor deposition layer, and a cold spray layer is used, and the thickness thereof is in the range of 1,000 μm or less, more preferably 100 μm or less, and further preferably in the range of 50 μm or less. The lower limit is preferably provided with a thickness of 1 μm or more and at least several μm. According to the study by the present inventors, if the amount of the aluminum-silicon alloy interposed in the joint surface is too large, there is a possibility that high joint strength up to the purpose of the present invention cannot be obtained. Specific examples include a method in which a mixed powder of aluminum powder and silicon powder is sprayed onto the joint surface by a cold spray method. In the cold spray method, high-pressure gas heated to room temperature or about 200 ° C is accelerated at supersonic speed by a special nozzle, and the mixed powder is accelerated by injecting the mixed powder into the center of the gas flow. This is one of the thermal spraying techniques in which a solid is collided with a substrate. The mixed powder colliding with the base material is plastically deformed and adheres to the base material. In the cold spray method, the atomizing gas temperature is lower than the melting point, and there is little oxidation of aluminum and silicon, and a dense coating can be generated. Other methods of interposing at the joining portion include a method in which an aluminum-silicon alloy formed into a foil shape is interposed at the joining portion, and aluminum powder and silicon powder are organically bonded to the joining surface of the boron carbide-containing ceramic member. A method in which a paste-like material dispersed in a liquid medium such as a solvent is applied to a thickness in the above range, a method in which aluminum is vapor-deposited on the bonding surface in a thickness in the above range to form a vapor deposition layer, or thermal spraying. And a method of interposing aluminum and silicon.

上記したような方法によって、炭化ホウ素含有セラミックス部材同士の接合面にアルミニウム−シリコン合金を含む接合材を介在させた後、カーボンや耐熱性の金属等の治具で、この状態が保持されるようにして固定する。固定する際に、部材同士を圧着してもよいし、接合時に製品がズレたり、動かない範囲で無負荷の状態で保持してもよい。本発明では、次に、この状態で少なくとも接合させる部分を加熱して、炭化ホウ素含有セラミックス部材同士を接合させる。以下、加熱する条件についてより詳細に説明する。   After a bonding material containing an aluminum-silicon alloy is interposed between bonding surfaces of boron carbide-containing ceramic members by the above-described method, this state is maintained with a jig such as carbon or a heat-resistant metal. And fix it. When fixing, the members may be pressure-bonded to each other, or may be held in an unloaded state within a range where the product is displaced or does not move at the time of joining. In the present invention, next, at least a portion to be joined in this state is heated to join the boron carbide-containing ceramic members together. Hereinafter, the heating conditions will be described in more detail.

本発明者らは、加熱条件について詳細な検討を行う過程で、本発明において特に重要なことは、加熱の際に、炭化ホウ素含有セラミックス部材同士を接合させる部分に、多くなり過ぎない僅少量のアルミニウム−シリコン混合物または、アルミニウム−シリコン合金を介在させることであることを見出した。したがって、その加熱条件については、その温度が、アルミニウム−シリコン合金の融点以上であればよく、特に詳細に規定する必要はない。しかし、より強固な接合を実現するためには、温度以外の加熱条件に応じて、好適な温度範囲で加熱すればよいことがわかった。具体的には、真空条件下で、少なくとも接合させる部分を550℃〜700℃の温度、より好ましくは、580℃以上650℃以下の温度に加熱する。上記した加熱温度は、加熱する雰囲気や、使用する接合材やセラミックス部材によっても異なるが、強度のより高い接合体が得られる最適範囲としては、真空条件下で加熱する場合は、550〜700℃の温度範囲で加熱することが好ましい。   In the process of conducting detailed studies on the heating conditions, the inventors of the present invention are particularly important in the present invention. It was found that an aluminum-silicon mixture or an aluminum-silicon alloy was interposed. Therefore, the heating condition is not particularly limited as long as the temperature is not lower than the melting point of the aluminum-silicon alloy. However, it has been found that in order to realize stronger bonding, heating should be performed in a suitable temperature range according to heating conditions other than temperature. Specifically, at least a portion to be joined is heated to a temperature of 550 ° C. to 700 ° C., more preferably, a temperature of 580 ° C. to 650 ° C. under vacuum conditions. The heating temperature described above varies depending on the atmosphere to be heated, the bonding material used, and the ceramic member, but the optimum range for obtaining a bonded body with higher strength is 550 to 700 ° C. when heated under vacuum conditions. It is preferable to heat in the temperature range.

また、加熱時間は、使用する接合材や、セラミックス部材の種類や、接合部分の大きさにもよるが、数時間、具体的には、1〜3時間程度とすればよい。その後、徐冷することで、接合層を介してセラミックス部材が一体化されてなり、その接合強度が100MPa以上である本発明の炭化ホウ素含有セラミックス接合体を、容易に得ることができる。さらに、本発明の製造方法において、使用する材料や、加熱処理条件を選べば、200MPa以上、或いは300MPa以上、さらには400MPa程度の、より接合強度の高い接合体を得ることができる。   The heating time may be several hours, specifically about 1 to 3 hours, depending on the bonding material used, the type of ceramic member, and the size of the bonded portion. Then, by slowly cooling, the ceramic member is integrated through the bonding layer, and the boron carbide-containing ceramic bonded body of the present invention having a bonding strength of 100 MPa or more can be easily obtained. Furthermore, in the production method of the present invention, if a material to be used and a heat treatment condition are selected, a bonded body having a higher bonding strength of 200 MPa or more, 300 MPa or more, and further about 400 MPa can be obtained.

上記した本発明の製造方法による接合処理の結果、形成される前記した接合層に存在するアルミニウム−シリコン合金は、電子線マイクロアナライザー(EPMA:波長分散型分光器WDS、エネルギー分散型分光器EDS)による表面分析法や、透過型電子顕微鏡(TEM)によるEDSや電子線回折によって測定することができる。また、X線回折法(XRD)により結晶構造を同定することにより、測定できる。本発明者らの検討によれば、アルミニウムとシリコンと炭化ホウ素の化合物が存在している接合層となる範囲は、介在させた接合材の厚みと、圧着等の保持方法にもよるが、その範囲は条件に依存し、1〜300μm程度となる。得られる接合体の接合強度と、この接合層となる範囲との関係については、より詳細な検討が待たれるが、より高い強度を達成するためには、接合層の厚みが10〜100μm程度となるようにするとよい。   The aluminum-silicon alloy present in the bonding layer formed as a result of the bonding process according to the manufacturing method of the present invention described above is an electron beam microanalyzer (EPMA: wavelength dispersive spectrometer WDS, energy dispersive spectrometer EDS). It can be measured by the surface analysis method by EDS, EDS by transmission electron microscope (TEM) or electron diffraction. Further, it can be measured by identifying the crystal structure by X-ray diffraction (XRD). According to the study by the present inventors, the range of the bonding layer in which the compound of aluminum, silicon, and boron carbide is present depends on the thickness of the interposed bonding material and the holding method such as pressure bonding. The range depends on conditions and is about 1 to 300 μm. Regarding the relationship between the bonding strength of the obtained bonded body and the range to be the bonding layer, more detailed examination is awaited. In order to achieve higher strength, the thickness of the bonding layer is about 10 to 100 μm. It is good to be.

以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.

(実施例1〜3)
接合後の接合体の少なくとも一辺の全長が40mmとなるようにするため、20mm×20mm×4.5mmの板状の、99%の高純度炭化ホウ素セラミックス部材を2枚1組として9組用意した。また、接合層を形成させるためのシリコン含有率が異なる3種類のアルミニウム−シリコン合金用の混合粉末を接合材として用意し、これらを用いて下記のようにして、接合材と接合温度が異なる接合体をそれぞれ調製した。具体的には、接合材として、Al−8%Si粉末(実施例1、Al−8Siと略記)、Al−12%Si粉末(実施例2、Al−12Siと略記)、及び、Al−15%Si粉末(実施例3、Al−15Siと略記)をそれぞれ用いた。そして、2枚1組のうちの炭化ホウ素セラミックス部材のそれぞれに、その接合面となる20mm×4.5mmの側面に、先に述べたコールドスプレー法によって各接合材を噴霧して、混合粉末からなる被膜を生成させた。次に、上記2枚の炭化ホウ素含有セラミックス部材の被膜面同士を合わせ、カーボン治具にて固定した。加熱条件を、真空条件下で、少なくとも接合させる部分を、580℃、600℃、650℃の各温度に固定して加熱し、接合処理をそれぞれに行って、接合材と接合温度が異なる9種類の接合体を得た。
(Examples 1-3)
In order to make the total length of at least one side of the joined body after joining to be 40 mm, nine pairs of 99% high-purity boron carbide ceramic members having a plate shape of 20 mm × 20 mm × 4.5 mm were prepared as one set. . In addition, three types of mixed powders for aluminum-silicon alloys having different silicon contents for forming a bonding layer are prepared as bonding materials, and these are used to bond bonding materials having different bonding temperatures as described below. Each body was prepared. Specifically, as a bonding material, Al-8% Si powder (Example 1, abbreviated as Al-8Si), Al-12% Si powder (Example 2, abbreviated as Al-12Si), and Al-15. % Si powder (Example 3, abbreviated as Al-15Si) was used. Then, each bonding material is sprayed on the side surface of 20 mm × 4.5 mm, which is the bonding surface, to each of the boron carbide ceramic members of the set of two sheets by the cold spray method described above, from the mixed powder A coating was produced. Next, the coated surfaces of the two boron carbide-containing ceramic members were put together and fixed with a carbon jig. Nine types with different bonding materials and bonding temperatures by fixing and heating at least the portions to be bonded under vacuum conditions at temperatures of 580 ° C., 600 ° C., and 650 ° C. A zygote was obtained.

上記で得られた各接合体をそれぞれ加工して、JIS R1601(ファインセラミックスの曲げ強さ試験方法)に準じて、接合箇所が中央となるようにした、厚み3mm、幅4mm、長さ40mmの試験片を、それぞれ作製した。そして、得られた各試験片を用いて、JISに準拠して抗折強度を測定し、結果を表1に示した。また、表1中に、共晶温度、凝固時の体積変化、使用した接合材の熱膨張係数と、母材と接合材の熱膨張係数の差を併せて示した。   Each of the joined bodies obtained above was processed, and in accordance with JIS R1601 (bending strength test method for fine ceramics) so that the joint location was at the center, the thickness was 3 mm, the width was 4 mm, and the length was 40 mm. Each test piece was produced. And the bending strength was measured based on JIS using each obtained test piece, and the result was shown in Table 1. Table 1 also shows the eutectic temperature, the volume change during solidification, the thermal expansion coefficient of the used bonding material, and the difference in the thermal expansion coefficient between the base material and the bonding material.

(比較例1)
実施例1で用いたと同様の炭化ホウ素セラミックス部材を2枚1組として用い、接合材をアルミニウムとして、少なくとも接合させる部分を、580℃、600℃、650℃の各温度に固定して加熱し、接合処理をそれぞれに行って、3種類の比較用の接合体を得た。具体的には、各セラミックス部材の接合面に、実施例1と同様に、コールドスプレー法によってAl粉末を噴霧し、被膜を生成させた。これらを、実施例1と同様にしてカーボン治具にて固定し、上記した各加熱条件で接合処理を行って、2枚の炭化ホウ素含有セラミックス部材を接合した接合体を得た。得られた接合体を上記と同様に抗折強度を測定した。その結果を表1にまとめて示した。
(Comparative Example 1)
Using the same boron carbide ceramics member as used in Example 1 as a set, the joining material is aluminum, and at least the part to be joined is fixed at each temperature of 580 ° C., 600 ° C., and 650 ° C. and heated, Each of the joining processes was performed to obtain three types of comparative joined bodies for comparison. Specifically, Al powder was sprayed on the joint surface of each ceramic member by a cold spray method in the same manner as in Example 1 to form a coating. These were fixed with a carbon jig in the same manner as in Example 1 and bonded under the above-described heating conditions to obtain a bonded body in which two boron carbide-containing ceramic members were bonded. The bending strength of the obtained joined body was measured in the same manner as described above. The results are summarized in Table 1.

(比較例2)
実施例1で用いたと同様の炭化ホウ素セラミックス部材を2枚1組として用い、接合層が、シリコン含有率が30質量%のアルミニウム−シリコン合金で形成されるように、接合材としてAl−30%Si粉末(Al−30Siと略記)を用い、少なくとも接合させる部分を、580℃、600℃、650℃の各温度に固定して加熱し、接合処理をそれぞれに行って、3種類の比較用の接合体を得た。具体的には、各セラミックス部材の接合面に、実施例1と同様に、コールドスプレー法によってAl−30Si混合粉末を噴霧し、被膜を生成させた。これらを、実施例1と同様にしてカーボン治具にて固定し、上記した各加熱条件で接合処理を行って、2枚の炭化ホウ素含有セラミックス部材を接合した接合体を得た。得られた接合体を上記と同様に抗折強度を測定した。その結果を表1にまとめて示した。
(Comparative Example 2)
The same boron carbide ceramic member as used in Example 1 was used as a pair, and the bonding layer was formed of an aluminum-silicon alloy having a silicon content of 30% by mass. Using Si powder (abbreviated as Al-30Si), at least the part to be joined is fixed at each temperature of 580 ° C., 600 ° C. and 650 ° C. and heated, and the joining treatment is performed for each of the three types for comparison. A joined body was obtained. Specifically, the Al-30Si mixed powder was sprayed on the bonding surfaces of the ceramic members by the cold spray method in the same manner as in Example 1 to form a coating. These were fixed with a carbon jig in the same manner as in Example 1 and bonded under the above-described heating conditions to obtain a bonded body in which two boron carbide-containing ceramic members were bonded. The bending strength of the obtained joined body was measured in the same manner as described above. The results are summarized in Table 1.

(長期耐久性についての評価方法)
上記で得た実施例1〜3の各接合体と、これらの実施例と同様の抗折強度を示した比較例1−2と比較例1−3の接合体のそれぞれについて、下記の方法で長期耐久性を調べた。まず、得られた各接合体をそれぞれ加工して、JIS R1601(ファインセラミックスの曲げ強さ試験方法)に準じて、接合箇所が中央となるようにした、厚み3mm、幅4mm、長さ40mmの試験片を、それぞれ作製した。そして、得られた各試験片を室温から400℃までを1時間あたり100℃の速度で昇温し、400℃で1時間保持後冷却するサイクルをそれぞれ20回実施した。この繰り返し試験後、JISに準拠した抗折強度を測定し、強度低下の程度により接合材の長期耐久性の評価を行った。評価の基準は、強度低下が、評価前の値から10%を超えた場合を×とし、10%以下で5%以上の場合を△とし、5%未満を○で示した。
(Evaluation method for long-term durability)
About each joined body of Examples 1-3 obtained above, and each of the joined body of Comparative Example 1-2 and Comparative Example 1-3 which showed the bending strength similar to these Examples by the following method. Long-term durability was examined. First, each of the obtained joined bodies was processed, and in accordance with JIS R1601 (bending strength test method for fine ceramics), the joint location was in the center. The thickness was 3 mm, the width was 4 mm, and the length was 40 mm. Each test piece was produced. Then, each test piece obtained was heated from room temperature to 400 ° C. at a rate of 100 ° C. per hour, held at 400 ° C. for 1 hour, and then cooled 20 times. After this repeated test, the bending strength in accordance with JIS was measured, and the long-term durability of the bonding material was evaluated based on the degree of strength reduction. The criteria for evaluation were x when the strength decrease exceeded 10% from the value before evaluation, Δ when the strength was 10% or less and 5% or more, and ○ when less than 5%.

また、本発明を構成するアルミニウム−シリコン合金におけるシリコン含有率の下限値を確認するため、シリコン含有率を4%としたAl−4Siを用い、実施例1と同じ温度条件で接合処理を行って比較したところ、600℃でも接合は可能であり、また、得られた接合体の抗折強度はAlを用いた試料と同じ傾向を示した。しかし、この試料の凝固時の体積変化を調べたところ、−5.6%であり、その長期耐久性において実施例1の場合と比較して明らか劣っていた。   Moreover, in order to confirm the lower limit of the silicon content in the aluminum-silicon alloy constituting the present invention, Al-4Si with a silicon content of 4% was used, and a bonding process was performed under the same temperature conditions as in Example 1. As a result of the comparison, bonding was possible even at 600 ° C., and the bending strength of the obtained bonded body showed the same tendency as the sample using Al. However, when the volume change at the time of solidification of this sample was examined, it was -5.6%, and its long-term durability was clearly inferior to that of Example 1.

(実施例4)
実施例1で用いたと同様の2枚1組の炭化ホウ素セラミックス部材に、実施例1で使用したと同様にAl−8%Si粉末を接合材として用い、接合面にAl−8%Si粉末からなる被膜を形成する方法を変えた以外は同様にして、2枚の炭化ホウ素含有セラミックス部材をアルミニウム−シリコン合金で接合した接合体を得た。具体的には、2枚のセラミックス部材のそれぞれの接合面に、Al-8%Si粉末をブチルアルコール系の溶剤に分散させたペーストを、スクリーン印刷により10μmの厚さとなるようにそれぞれ塗布した。次に、2枚のセラミックス部材を、実施例1と同様にしてカーボン治具にて固定し、580℃の加熱条件で接合処理を行って、2枚の炭化ホウ素含有セラミックス部材が接合した接合体を得た。得られた接合体について、実施例1と同様に抗折強度を測定した。その結果を表2にまとめて示した。比較のため、被膜を形成する方法以外は同様の実施例1−1の結果を併せて示した。
Example 4
As in Example 1, Al-8% Si powder was used as a bonding material for a set of two boron carbide ceramic members similar to those used in Example 1, and Al-8% Si powder was used as a bonding surface. In the same manner except that the method for forming the coating film was changed, a joined body in which two boron carbide-containing ceramic members were joined with an aluminum-silicon alloy was obtained. Specifically, a paste in which Al-8% Si powder was dispersed in a butyl alcohol solvent was applied to each bonding surface of the two ceramic members to a thickness of 10 μm by screen printing. Next, the two ceramic members were fixed with a carbon jig in the same manner as in Example 1, and bonded under a heating condition of 580 ° C. to join the two boron carbide-containing ceramic members. Got. The bending strength of the obtained joined body was measured in the same manner as in Example 1. The results are summarized in Table 2. For comparison, the result of Example 1-1 was also shown except for the method of forming a film.

(実施例5)
実施例4で行った接合面に、接合材を付与する方法を変えた以外は実施例4と同様にして、2枚の炭化ホウ素含有セラミックス部材をアルミニウム−シリコン合金で接合した接合体を得た。具体的には、接合材として、Al−8%Si合金を圧延により箔状にしたものを準備し、2枚の炭化ホウ素含有セラミックス部材の接合部分に、上記で用意したAl−8%Si合金箔を挟み、カーボン治具にて固定し、加熱条件を、真空条件下で、580℃の温度で固定して接合処理を行って接合体を得た。得られた接合体について実施例1と同様に抗折強度を測定した。その結果を表2にまとめて示した。
(Example 5)
A joined body in which two boron carbide-containing ceramic members were joined with an aluminum-silicon alloy was obtained in the same manner as in Example 4 except that the method of applying the joining material to the joining surface performed in Example 4 was changed. . Specifically, as the bonding material, an Al-8% Si alloy formed into a foil shape by rolling was prepared, and the Al-8% Si alloy prepared above was bonded to the bonding portion of the two boron carbide-containing ceramic members. The foil was sandwiched and fixed with a carbon jig, and the heating condition was fixed at a temperature of 580 ° C. under vacuum conditions to perform a bonding process to obtain a bonded body. The bending strength of the obtained joined body was measured in the same manner as in Example 1. The results are summarized in Table 2.

(実施例6)
実施例4で行った接合面に、接合材を付与する方法を変えた以外は実施例4と同様にして、2枚の炭化ホウ素含有セラミックス部材をアルミニウム−シリコン合金で接合した接合体を得た。具体的には、2枚のセラミックス部材のそれぞれの接合面に、真空中でAl−8%Si合金を蒸着させ、カーボン治具にて固定し、加熱条件を、真空条件下で、580℃の温度で固定して接合処理を行って接合体を得た。得られた接合体について実施例1と同様に抗折強度を測定した。その結果を表2にまとめて示した。
(Example 6)
A joined body in which two boron carbide-containing ceramic members were joined with an aluminum-silicon alloy was obtained in the same manner as in Example 4 except that the method of applying the joining material to the joining surface performed in Example 4 was changed. . Specifically, an Al-8% Si alloy is vapor-deposited in vacuum on each bonding surface of the two ceramic members, fixed with a carbon jig, and the heating conditions are 580 ° C. under vacuum conditions. A bonded body was obtained by fixing at temperature and performing a bonding process. The bending strength of the obtained joined body was measured in the same manner as in Example 1. The results are summarized in Table 2.

(評価結果)
表1に示したように、比較例1の、接合材にアルミニウム粉末を用い、炭化ホウ素セラミックス部材の接合面に、接合材をコールドスプレーにて被膜を形成させた系では、600℃及び650℃の加熱温度で接合処理した場合は100MPa以上の強度を有した接合が可能であったが、580℃の加熱温度では接合できなかった。これに対して、表1に示したように、実施例1〜3の、Al−8%Si合金、Al−12%Si合金、Al−15%Si合金の各接合材を用いた系では、いずれも、580℃にて、100MPa以上の強度があり、ほぼ母材である炭化ホウ素セラミックスと同等な高い抗折強度を示した。しかし、シリコン含有率が30質量%のAl−30%Si粉末を接合材として使用した系の比較例2では、580℃の加熱温度では接合できなかった。また、比較例1−2と1−3では、本発明の実施例と同様に、抗折強度が100MPa以上のものが得られたが、接合材を変えた以外は同様の条件で作製した実施例1−2、1−3、実施例2−2、2−3、実施例3−2、3−3の接合体と比べて、接合材の凝固時の収縮が大きく、母材と接合材の熱膨張係数差が大きいため、接合部分に亀裂が生じやすい傾向があることが予想された。その確認として行った長期耐久性の評価結果から、比較例1−2と1−3の接合体は、実施例のものと比べて耐久性に劣ることが確認された。
(Evaluation results)
As shown in Table 1, in a system in which aluminum powder was used as the bonding material of Comparative Example 1 and a film was formed on the bonding surface of the boron carbide ceramic member by cold spraying the bonding material, 600 ° C. and 650 ° C. When the bonding treatment was performed at a heating temperature of 1, a bonding having a strength of 100 MPa or more was possible, but the bonding could not be performed at a heating temperature of 580 ° C. On the other hand, as shown in Table 1, in the systems using the bonding materials of Al-8% Si alloy, Al-12% Si alloy, Al-15% Si alloy of Examples 1 to 3, Each had a strength of 100 MPa or more at 580 ° C., and showed a high bending strength almost equal to that of boron carbide ceramics as a base material. However, in Comparative Example 2 in which the Al-30% Si powder having a silicon content of 30% by mass was used as the bonding material, bonding was not possible at a heating temperature of 580 ° C. Further, in Comparative Examples 1-2 and 1-3, as in the example of the present invention, a material having a bending strength of 100 MPa or more was obtained, but the production was performed under the same conditions except that the bonding material was changed. Compared with the joined bodies of Examples 1-2, 1-3, Examples 2-2, 2-3, Examples 3-2 and 3-3, the shrinkage at the time of solidification of the joining material is large, and the base material and the joining material Because of the large difference in thermal expansion coefficient, it was predicted that cracks tend to occur at the joints. From the evaluation results of the long-term durability performed as the confirmation, it was confirmed that the joined bodies of Comparative Examples 1-2 and 1-3 were inferior in durability as compared with the examples.

実施例4〜6の系では、アルミニウム−シリコン合金或いは該合金となる混合材料接合面に付与する方法を、コールドスプレー法に変えた以外は実施例1と同様にして、2枚の炭化ホウ素セラミックス部材の接合体を得たが、実施例1で得た接合体と同様に高強度の接合体が得られ、また、長期耐久性についても、実施例1で得た各接合体と同様に、比較例1、2の接合体と比べて明らかに優れたものとなることを確認した。また、アルミニウム−シリコン合金を用いたことで、酸性雰囲気下での使用でも接合層の腐食進展が抑制される効果が見られた。さらに、本発明の実施例では、比較例の場合に比べて、より低温での接合処理によって高強度の接合が達成されることを確認した。   In the systems of Examples 4 to 6, two boron carbide ceramics were used in the same manner as in Example 1 except that the method of applying to the aluminum-silicon alloy or the mixed material joining surface to be the alloy was changed to the cold spray method. Although a joined body of members was obtained, a joined body having high strength was obtained in the same manner as the joined body obtained in Example 1, and also for long-term durability, as in each joined body obtained in Example 1, It was confirmed that the bonded bodies of Comparative Examples 1 and 2 were clearly superior. In addition, the use of the aluminum-silicon alloy showed an effect of suppressing the corrosion progress of the bonding layer even when used in an acidic atmosphere. Furthermore, in the Example of this invention, it confirmed that high intensity | strength joining was achieved by the joining process at lower temperature compared with the case of a comparative example.

本発明の活用例としては、硬度や軽量性において極めて優れた特性を示す炭化ホウ素含有セラミックスにおいて、小型部材を接合して大型の接合体が接合温度を下げることによってより安価に提供できるとともに、これまで、母材と接合層の熱膨張係数差による熱応力が原因で接合部の強度のばらつくことにより、信頼性の向上が接合体の実用化への課題であったのに対して、熱膨張係数差を減らし、接合界面に発生する熱応力を抑制する信頼性の高い接合体を提供することが可能となった。
このため、有用な工業部材である炭化ホウ素セラミックスの利用拡大が図れ、これまで、大型部材への応用が期待されていたが、歩留まり等が低いが故に使用されなかった種々の用途への適用が可能になる。また、本発明によれば複数の小型部材を組合せることによって、無垢材と同等の性質を示す大型部材を提供することが可能であることから、製造プロセスにおいてトータルでの省エネ効果を生みだし、コストと大幅なグリーンガス削減との相乗効果等も期待できる。
As an application example of the present invention, in boron carbide-containing ceramics that exhibit extremely excellent characteristics in hardness and lightness, a small-sized member can be joined and a large joined body can be provided at a lower cost by lowering the joining temperature. Up to now, improvement in reliability due to thermal stress due to the difference in thermal expansion coefficient between the base material and the bonding layer has been an issue for practical application of the bonded body, but thermal expansion It has become possible to provide a highly reliable bonded body that reduces the coefficient difference and suppresses thermal stress generated at the bonding interface.
For this reason, the use of boron carbide ceramics, which is a useful industrial member, can be expanded, and application to large-sized members has been expected so far, but it can be applied to various uses that were not used because of low yields. It becomes possible. In addition, according to the present invention, by combining a plurality of small members, it is possible to provide a large member that exhibits the same properties as a solid material. And a synergistic effect with significant reduction of green gas can be expected.

Claims (7)

炭化ホウ素を60質量%以上含有してなる炭化ホウ素セラミックス部材同士を、アルミニウム−シリコン合金を用いて接合することで一体化し、かつ、接合した部分の強度が100MPa以上である炭化ホウ素セラミックス接合体の製造方法において、
前記炭化ホウ素セラミックス部材の接合させる部分に、接合層を形成させるためのシリコン含有率が5質量%以上25質量%以下のアルミニウム−シリコン合金或いは該合金となる混合材料を配置させて、該合金或いは該合金となる混合材料を介して炭化ホウ素セラミックス部材同士を合わせた状態とし、この状態を保持しながら真空条件下、少なくとも接合させる部分を550℃以上、700℃よりも低い温度に加熱して炭化ホウ素セラミックス部材同士を接合することを特徴とする炭化ホウ素含有セラミックス接合体の製造方法。
A boron carbide ceramic joined body in which boron carbide ceramic members containing 60% by mass or more of boron carbide are joined together by using an aluminum-silicon alloy, and the strength of the joined parts is 100 MPa or more. In the manufacturing method,
An aluminum-silicon alloy having a silicon content of 5% by mass or more and 25% by mass or less for forming a bonding layer or a mixed material to be the alloy is disposed at a portion to be bonded to the boron carbide ceramic member, and the alloy or The boron carbide ceramic members are combined with each other through the mixed material that becomes the alloy, and at least a portion to be joined is heated to a temperature of 550 ° C. or higher and lower than 700 ° C. under vacuum conditions while maintaining this state. A method for producing a boron carbide-containing ceramic joined body comprising joining boron ceramic members together.
前記アルミニウム−シリコン合金は、その融点が、アルミニウムの融点の660℃よりも低く、かつ、溶融状態から冷却により凝固する過程において生じる体積変化が5.5%以内あって、その熱膨張係数が18×10-6〜22×10-6(1/℃)のものである請求項1に記載の炭化ホウ素含有セラミックス接合体の製造方法。 The aluminum-silicon alloy has a melting point lower than 660 ° C., which is the melting point of aluminum, and has a volume change within 5.5% that occurs in the process of solidification by cooling from a molten state, and its thermal expansion coefficient is 18 × 10 -6 ~22 × 10 -6 ( 1 / ℃) method for producing a boron carbide containing ceramic assembly according to claim 1 is of. 前記アルミニウム−シリコン合金或いは該合金となる混合材料が、シリコン含有率が8質量%以上15質量%以下のものである請求項1又は2に記載の炭化ホウ素含有セラミックス接合体の製造方法。   The method for producing a boron carbide-containing ceramic joined body according to claim 1 or 2, wherein the aluminum-silicon alloy or a mixed material to be the alloy has a silicon content of 8% by mass or more and 15% by mass or less. 前記接合させる部分を、580℃以上650℃以下の温度に加熱する請求項1〜3のいずれか1項に記載の炭化ホウ素含有セラミックス接合体の製造方法。   The manufacturing method of the boron carbide containing ceramic joined body of any one of Claims 1-3 which heats the said part to be joined to the temperature of 580 to 650 degreeC. 前記アルミニウム−シリコン合金或いは該合金となる混合材料を配置させる方法が、塗布法、蒸着法、箔の載置又はコールドスプレー法のいずれかである請求項1〜4のいずれか1項に記載の炭化ホウ素含有セラミックス接合体の製造方法。   5. The method according to claim 1, wherein a method of arranging the aluminum-silicon alloy or a mixed material to be the alloy is any one of a coating method, a vapor deposition method, a foil placement, or a cold spray method. A method for producing a boron carbide-containing ceramic joined body. 炭化ホウ素を60質量%以上含有してなる炭化ホウ素セラミックス部材同士が、シリコン含有率が5質量%以上25質量%以下のアルミニウム−シリコン合金からなる接合層を介して一体化されており、かつ、接合した部分の強度が100MPa以上である炭化ホウ素セラミックス接合体であって、
前記接合層は、その融点が、アルミニウムの融点の660℃よりも低く、かつ、溶融状態から冷却により凝固する過程において生じる体積変化が5.5%以内であって、その熱膨張係数が、18×10-6〜22×10-6(1/℃)以下であることを特徴とする炭化ホウ素含有セラミックス接合体。
Boron carbide ceramic members containing 60% by mass or more of boron carbide are integrated through a bonding layer made of an aluminum-silicon alloy having a silicon content of 5% by mass to 25% by mass, and It is a boron carbide ceramic joined body having a strength of joined portions of 100 MPa or more,
The bonding layer has a melting point lower than the melting point of aluminum, 660 ° C., and a volume change that occurs in the process of solidification by cooling from the molten state is within 5.5%, and its thermal expansion coefficient is 18 A boron carbide-containing ceramic joined body characterized by having a temperature of × 10 −6 to 22 × 10 −6 (1 / ° C.) or less.
前記アルミニウム−シリコン合金は、シリコン含有率が8質量%以上15質量%以下である請求項6に記載の炭化ホウ素含有セラミックス接合体。   The boron carbide-containing ceramic joined body according to claim 6, wherein the aluminum-silicon alloy has a silicon content of 8% by mass or more and 15% by mass or less.
JP2014037295A 2014-02-27 2014-02-27 Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body Active JP6278394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037295A JP6278394B2 (en) 2014-02-27 2014-02-27 Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037295A JP6278394B2 (en) 2014-02-27 2014-02-27 Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body

Publications (2)

Publication Number Publication Date
JP2015160778A true JP2015160778A (en) 2015-09-07
JP6278394B2 JP6278394B2 (en) 2018-02-14

Family

ID=54184126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037295A Active JP6278394B2 (en) 2014-02-27 2014-02-27 Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body

Country Status (1)

Country Link
JP (1) JP6278394B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128975A (en) * 1985-11-29 1987-06-11 京セラ株式会社 Adhesive composition for bonding ceramics and method therefor
JP2001261457A (en) * 2000-03-16 2001-09-26 Kyocera Corp Boron carbide joined body, method for producing the same and plasma-resistant member
JP2012072044A (en) * 2010-08-31 2012-04-12 Mino Ceramic Co Ltd Boron carbide-containing ceramic bonded body, and method for producing the bonded body
JP2013049598A (en) * 2011-08-30 2013-03-14 Mino Ceramic Co Ltd Boron carbide-containing ceramics joint and method of producing the same
JP2015067472A (en) * 2013-09-27 2015-04-13 京セラ株式会社 Jointed ceramic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128975A (en) * 1985-11-29 1987-06-11 京セラ株式会社 Adhesive composition for bonding ceramics and method therefor
JP2001261457A (en) * 2000-03-16 2001-09-26 Kyocera Corp Boron carbide joined body, method for producing the same and plasma-resistant member
JP2012072044A (en) * 2010-08-31 2012-04-12 Mino Ceramic Co Ltd Boron carbide-containing ceramic bonded body, and method for producing the bonded body
JP4936261B2 (en) * 2010-08-31 2012-05-23 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP2013049598A (en) * 2011-08-30 2013-03-14 Mino Ceramic Co Ltd Boron carbide-containing ceramics joint and method of producing the same
JP5809884B2 (en) * 2011-08-30 2015-11-11 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP2015067472A (en) * 2013-09-27 2015-04-13 京セラ株式会社 Jointed ceramic

Also Published As

Publication number Publication date
JP6278394B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP4936261B2 (en) BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
Liu et al. SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers
Asthana et al. Joining of partially sintered alumina to alumina, titanium, Hastealloy and C–SiC composite using Ag–Cu brazes
KR101454983B1 (en) Brazing material for bonding in atmosphere, bonded article, and current collecting material
Naidich et al. Liquid metal wettability and advanced ceramic brazing
US20070235122A1 (en) Process for the low-deformation diffusion welding of ceramic components
WO2016109793A1 (en) High temperature method for joining materials and devices utilizing same
JP2010520063A (en) Metal-ceramic composite air brazing material with ceramic particulates.
Dezellus et al. Wettability of Ti 3 SiC 2 by Ag–Cu and Ag–Cu–Ti melts
US20080241475A1 (en) Graphite-silicon carbide composite and making method
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
JP2015093295A (en) Metal joint structure using metal nanoparticle, and metal joining method and metal joint material
Su et al. Microstructure and mechanical properties of AlN/Cu brazed joints
TWI441796B (en) Method for manufacturing ceramic joint
CN104711457A (en) High temperature solder and application thereof
JP6278394B2 (en) Method for producing boron carbide-containing ceramic joined body and boron carbide-containing ceramic joined body
JP2012082095A (en) Method of joining two or more ceramic members mutually
KR101039361B1 (en) Low temperature joining method between Ti/Ti-based alloys having a bonding strength higher than those of base metals
JP5809896B2 (en) BORON CARBIDE-CONTAINING CERAMIC-OXIDE CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
JP5809884B2 (en) BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
Koltsov et al. Brazing of AlN to SiC by a Pr silicide: Physicochemical aspects
Li et al. Joining of C f/SiC composite with Cu–Pd–V filler alloy and Mo interlayer
JP2019202331A (en) Joining method of dissimilar material, and joined body of dissimilar material
Chen et al. Enhanced shear strength of Cu/AlN/Cu gradient materials with continuous and quasi‐continuous interfacial structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

R150 Certificate of patent or registration of utility model

Ref document number: 6278394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250