JP2015157722A - Raw material composition of aluminosilicate cured body and cured body using the same and production method thereof - Google Patents

Raw material composition of aluminosilicate cured body and cured body using the same and production method thereof Download PDF

Info

Publication number
JP2015157722A
JP2015157722A JP2014032056A JP2014032056A JP2015157722A JP 2015157722 A JP2015157722 A JP 2015157722A JP 2014032056 A JP2014032056 A JP 2014032056A JP 2014032056 A JP2014032056 A JP 2014032056A JP 2015157722 A JP2015157722 A JP 2015157722A
Authority
JP
Japan
Prior art keywords
raw material
material composition
aluminosilicate
cured body
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014032056A
Other languages
Japanese (ja)
Other versions
JP6227439B2 (en
Inventor
山崎 裕司
Yuji Yamazaki
裕司 山崎
勝士 井上
Katsushi Inoue
勝士 井上
水野 裕章
Hiroaki Mizuno
裕章 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2014032056A priority Critical patent/JP6227439B2/en
Publication of JP2015157722A publication Critical patent/JP2015157722A/en
Application granted granted Critical
Publication of JP6227439B2 publication Critical patent/JP6227439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a raw material composition enabling an aluminosilicate cured body excellent in physical property and shapability to be produced, an aluminosilicate cured body using the same and a production method thereof.SOLUTION: The raw material composition of an aluminosilicate cured body is provided that contains aluminosilicate powder, an alkali metal salt and bio gum. The aluminosilicate cured body formed from the raw material composition and a production method of the aluminosilicate cured body using the raw material composition are also provided. The bio gum is preferably one or more kind of wellan gum, diutan gum and xanthan gum. The production method of cured body includes a step of producing the raw material composition, a step of molding the obtained raw material composition and further a step of curing the molded article. Thickeners are dispersed in the whole area of the raw material composition by mixing an aluminosilicate powder, the alkali metal salt and the thickeners in the step of producing the raw material composition.

Description

本発明は、アルミノケイ酸塩硬化体に関するものである。   The present invention relates to a cured aluminosilicate.

近年、環境問題への意識が高まっており、企業においては、地球温暖化問題への対策として、二酸化炭素の排出を抑制する取り組みや、産業廃棄物を有効利用する取り組みが行われている。それらの取り組みの一つとして、アルミノシリケート粉体と、骨材とを原料とした組成物の開発が行われている。   In recent years, awareness of environmental issues has increased, and companies have taken measures to reduce carbon dioxide emissions and effectively use industrial waste as countermeasures against global warming. As one of those efforts, a composition using aluminosilicate powder and aggregate as raw materials has been developed.

例えば、特許文献1には、石炭飛灰と、アルカリ活性剤と、骨材とからなる組成物及びその製造方法が記載されている。そして、該組成物を鋳型に入れて常温養生または40〜90℃の蒸気養生により固化することが記載されている。特許文献1の組成物及びその製造方法によれば、セメントを使用しないので、二酸化炭素の排出を低減できるとともに、産業廃棄物の有効利用にも繋がる。しかし、表面等に凹凸形状を形成するには、鋳型の形状が複雑になるので、流し込む該原料組成物の流動性をあげるために該原料組成物の含水率をあげる必要があるが、高含水率の原料組成物は水と原料が分離しやすく、得られる硬化体の物性が悪くなるという懸念がある。   For example, Patent Document 1 describes a composition comprising coal fly ash, an alkali activator, and an aggregate, and a method for producing the same. It is described that the composition is put into a mold and solidified by normal temperature curing or steam curing at 40 to 90 ° C. According to the composition of Patent Document 1 and the method for producing the composition, since no cement is used, the emission of carbon dioxide can be reduced and the industrial waste can be effectively used. However, in order to form an uneven shape on the surface or the like, since the shape of the mold becomes complicated, it is necessary to increase the water content of the raw material composition in order to increase the fluidity of the raw material composition to be poured. However, there is a concern that water and the raw material are easily separated, and the physical properties of the obtained cured product are deteriorated.

また、別の製造方法として、押出成形がある。押出成形は、耐圧性の型枠(ダイス)に原料組成物を入れ、高い圧力を加えて、一定断面形状のわずかな隙間から押出すことで求める形状に加工する方法である。押出成形は、原料組成物にかかる応力が圧縮応力とせん断応力だけであるため、もろい原料組成物でも成形できるとともに、非常に複雑な断面形状を形成できる。特許文献2には、活性フィラーとして850℃〜950℃で熱処理した仮焼カオリンを配合して高強度硬化体を製造することが開示されており、成形方法として、注型法、プレス法、押出成形法等を用いることも記載されている。   Another manufacturing method is extrusion molding. Extrusion molding is a method in which a raw material composition is placed in a pressure-resistant mold (die), and a high pressure is applied to extrude it through a slight gap having a constant cross-sectional shape to obtain a desired shape. In extrusion molding, since the stress applied to the raw material composition is only compression stress and shear stress, even a fragile raw material composition can be formed and a very complicated cross-sectional shape can be formed. Patent Document 2 discloses that a high-strength cured body is produced by blending calcined kaolin heat-treated at 850 ° C. to 950 ° C. as an active filler. As a molding method, a casting method, a pressing method, an extrusion method is disclosed. The use of a molding method or the like is also described.

しかし、特許文献1の組成物では流動性が悪いため、押出成形が行いにくく、かつ、押出成形を行ってから養生するまでの保形性が悪いので、養生するまでに形崩れを起こすという問題が発生する。原料組成物の含水率をあげると、流動性はあがるが保形性が更に低下し、形崩れを起こしやすくなる。特に、特許文献1の組成物は石炭飛灰を使用しているので、押出しにくい。特許文献2の組成で押出成形を行っても、流動性は十分ではなく、押出成形が行いにくく、かつ、押出成形を行ってから養生するまでの保形性も悪く、形崩れを起こしやすい。   However, since the composition of Patent Document 1 has poor fluidity, it is difficult to perform extrusion molding, and the shape-retaining property from the extrusion molding to curing is poor, so that the shape collapses before curing. Will occur. When the water content of the raw material composition is increased, the fluidity is increased, but the shape retaining property is further lowered, and the shape tends to be deformed. In particular, since the composition of Patent Document 1 uses coal fly ash, it is difficult to extrude. Even if the extrusion molding is performed with the composition of Patent Document 2, the fluidity is not sufficient, the extrusion molding is difficult to perform, the shape retaining property from the extrusion molding to the curing is poor, and the shape tends to collapse.

特開2008−239446号公報JP 2008-239446 A 特開2008−254939号公報JP 2008-254939 A

したがって、本発明の課題は、物性と造形性に優れたアルミノケイ酸塩硬化体を製造することができる原料組成物と、それを用いたアルミノケイ酸塩硬化体、及びその製造方法を提供する。   Therefore, the subject of this invention provides the raw material composition which can manufacture the aluminosilicate hardened | cured material excellent in the physical property and the formability, the aluminosilicate hardened | cured material using the same, and its manufacturing method.

本発明は、アルミノケイ酸塩硬化体の原料組成物を提供する。原料組成物は、アルミノシリケート粉体と、アルカリ金属塩と、バイオガムとを含有することを特徴とする。ウェランガム、ダイユータンガム、キサンタンガムは耐アルカリ性に優れているので、バイオガムは、ウェランガム、ダイユータンガム、キサンタンガムのいずれか1種以上であることが好ましい。また、バイオガムを全固形分対比で0.1〜5.0質量%含有すると、原料組成物が各製造方法に適した粘度となるとともにコスト面からも好ましい。更に、無機系増粘材、セルロース誘導体系増粘材のいずれか1種以上を含有すると、バイオガムの使用量を抑えることができるので好ましい。
また、本発明は、前述した原料組成物から形成されたアルミノケイ酸塩硬化体、及び、それを用いたアルミノケイ酸塩硬化体の製造方法も提供する。硬化体の製造方法では、前述した原料組成物を製造する工程と、得られた原料組成物を成形する工程と、更に養生する工程とを含み、該原料組成物を製造する工程において、アルミノシリケート粉体と、アルカリ金属塩と、増粘材とを混合することにより、該増粘材を該原料組成物全体に分散させることを特徴とする。原料組成物を成形する工程は、鋳型に該原料組成物を流し込むことにより行う、該原料組成物を押出成形することにより行う、該原料組成物を散布してマットを形成し、該マットを型押しすることにより行うことのいずれか1種以上により行うと、得られる硬化体は、より造形性と物性に優れるので好ましい。
The present invention provides a raw material composition for a cured aluminosilicate. The raw material composition includes an aluminosilicate powder, an alkali metal salt, and biogum. Since welan gum, diyutan gum and xanthan gum are excellent in alkali resistance, the biogum is preferably at least one of welan gum, diyutan gum and xanthan gum. In addition, when biogum is contained in an amount of 0.1 to 5.0% by mass relative to the total solid content, the raw material composition has a viscosity suitable for each production method and is preferable from the viewpoint of cost. Furthermore, it is preferable to contain any one or more of an inorganic thickener and a cellulose derivative thickener since the amount of biogum used can be suppressed.
Moreover, this invention also provides the manufacturing method of the aluminosilicate hardened | cured material formed from the raw material composition mentioned above, and the aluminosilicate hardened | cured material using the same. In the method for producing a cured product, the process of producing the raw material composition described above, the step of forming the obtained raw material composition, and the step of further curing, in the step of producing the raw material composition, aluminosilicate The thickening material is dispersed throughout the raw material composition by mixing powder, an alkali metal salt, and a thickening material. The step of forming the raw material composition is performed by pouring the raw material composition into a mold, the extrusion of the raw material composition, the raw material composition is sprayed to form a mat, and the mat is molded When it carries out by any 1 or more types of doing by pushing, since the hardened | cured body obtained is more excellent in modeling property and a physical property, it is preferable.

本発明によれば、物性と造形性に優れた硬化体を製造することができる原料組成物と、それを用いた硬化体、及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the raw material composition which can manufacture the hardening body excellent in the physical property and the modeling property, the hardening body using the same, and its manufacturing method can be provided.

以下、本発明の実施の形態を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

本発明の原料組成物は、アルミノシリケート粉体と、アルカリ金属塩と、バイオガムとを含有する。   The raw material composition of the present invention contains an aluminosilicate powder, an alkali metal salt, and biogum.

アルミノシリケート粉体は、シリカとアルミナを含有する無機粉体であれば特に限定されず、例えば、カオリン、石炭飛灰、スラグ、流紋岩類、アロフェン、パイロフィライト、ムライト、焼却汚泥、白土等があり、これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。なお、カオリンとはカオリン鉱物又はカオリナイト類を含有する粉体であり、流紋岩類とは、黒曜石、真珠岩、松脂岩等の天然ガラス質岩粉砕物、又はこれらを焼成してなる粉体である。
アルカリ金属塩としては、アルカリ金属水酸化物、ケイ酸アルカリ、炭酸アルカリ、炭酸水素アルカリがある。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどあり、ケイ酸アルカリとしては、ケイ酸ナトリウム、ケイ酸カリウムなどがあり、炭酸アルカリとしては炭酸ナトリウム、炭酸カリウムなどがあり、炭酸水素アルカリとしては炭酸水素ナトリウム、炭酸水素カリウムなどがある。これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。なお、アルカリ金属塩は、固形分の質量比でアルミノシリケート粉体100に対し5〜40含有すると、アルミノシリケート粉体とアルカリ金属塩の反応が進み、得られる硬化体は強度、寸法安定性、耐水性に優れるので好ましい。
バイオガムとしては、例えば、ウェランガム、ダイユータンガム、キサンタンガム、ジェランガム、アルカリゲネスレータスB16株細菌産生多糖類等があり、これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。ウェランガム、ダイユータンガム、キサンタンガムは耐アルカリ性に優れているので、原料組成物の流動性が良く、成形性に優れるので好ましい。なお、バイオガムは、全固形分対比で0.1〜5.0質量%含有すると、原料組成物が各製造方法に適した粘度となるので好ましい。0.1質量%未満では適した粘度とならず、固液分離する懸念があり、5.0質量%より多くてもそれ以上の効果が得られず、コスト高となる懸念がある。また、増粘材として、バイオガムの他に、ベントナイト、セピオライト、アタパルジャイト、アスベスト、ビーガム等の無機系増粘材や、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体系増粘材があるが、バイオガムとそれらを併用しても良い。その場合には、バイオガムの使用量を抑えても、無機系増粘材やセルロース誘導体系増粘材の併用により、原料組成物を各製造方法に適した粘度とすることができ、コストを抑えることができる。
The aluminosilicate powder is not particularly limited as long as it is an inorganic powder containing silica and alumina. For example, kaolin, coal fly ash, slag, rhyolite, allophane, pyrophyllite, mullite, incineration sludge, clay Etc., and any one of these substances may be contained, or two or more kinds may be contained. Kaolin is a powder containing kaolin minerals or kaolinites, and rhyolite is a powder of natural vitreous rocks such as obsidian, pearlite, and pine sebite, or a powder obtained by firing these. Is the body.
Examples of the alkali metal salt include an alkali metal hydroxide, an alkali silicate, an alkali carbonate, and an alkali hydrogen carbonate. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide. Examples of the alkali silicate include sodium silicate and potassium silicate. Examples of the alkali carbonate include sodium carbonate and potassium carbonate. Yes, examples of the alkali hydrogen carbonate include sodium hydrogen carbonate and potassium hydrogen carbonate. Among these substances, only one of them may be contained, or two or more kinds may be contained. In addition, when the alkali metal salt is contained in a mass ratio of solid content of 5 to 40 with respect to the aluminosilicate powder 100, the reaction between the aluminosilicate powder and the alkali metal salt proceeds, and the obtained cured product has strength, dimensional stability, It is preferable because of its excellent water resistance.
Examples of biogum include welan gum, dieutan gum, xanthan gum, gellan gum, alkaline generators B16 strain bacterially produced polysaccharide, etc., and any one of these substances may be contained, or two kinds You may contain the above. Welan gum, Dieutan gum, and Xanthan gum are preferable because they are excellent in alkali resistance and have good fluidity and excellent moldability. In addition, when biogum contains 0.1-5.0 mass% with respect to total solid content, since the raw material composition becomes a viscosity suitable for each manufacturing method, it is preferable. If the amount is less than 0.1% by mass, the viscosity is not suitable, and there is a concern that solid-liquid separation may occur. If the amount is more than 5.0% by mass, no further effect can be obtained, leading to an increase in cost. In addition to biogum, as thickeners, there are inorganic thickeners such as bentonite, sepiolite, attapulgite, asbestos, and bee gum, and cellulose derivative thickeners such as methylcellulose, ethylcellulose, hydroxyethylcellulose, and carboxymethylcellulose. They may be used in combination with biogum. In that case, even if the amount of biogum used is reduced, the viscosity of the raw material composition can be made suitable for each production method by using an inorganic thickener or a cellulose derivative thickener in combination, thereby reducing costs. be able to.

本発明の原料組成物は、更に、補強材を含有することができる。
補強材としては、無機補強材、有機補強材がある。無機補強材としては、珪砂、ケイ石粉、シリカ粉、珪藻土、シリカフューム、シラスバルーン、パーライト、バーミキュライト、マイカ、ガラス繊維、カーボン繊維、セラミック繊維、ロックウール、ワラストナイト等がある。有機補強材としては、木片、竹片、木粉、故紙、針葉樹未晒しクラフトパルプ(NUKP)、針葉樹晒しクラフトパルプ(NBKP)、広葉樹未晒しクラフトパルプ(LUKP)、広葉樹晒しクラフトパルプ(LBKP)等の木質補強材や、ポリエステル繊維、ポリアミド繊維、アクリル繊維、ポリ塩化ビニリデン繊維、アセテート繊維、ポリプロピレン繊維、ポリエチレン繊維、ビニロン繊維等の合成繊維、発泡性熱可塑性プラスチックビーズ、プラスチック発泡体等がある。本発明では、これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。なお、補強材は、固形分の質量比でアルミノシリケート粉体100に対し30〜300含有すると、得られる硬化体は強度、寸法安定性に優れるので好ましい。より好ましくは、45〜300である。
The raw material composition of the present invention can further contain a reinforcing material.
As the reinforcing material, there are an inorganic reinforcing material and an organic reinforcing material. Examples of the inorganic reinforcing material include quartz sand, quartzite powder, silica powder, diatomaceous earth, silica fume, shirasu balloon, perlite, vermiculite, mica, glass fiber, carbon fiber, ceramic fiber, rock wool, wollastonite and the like. Organic reinforcing materials include wood, bamboo, wood powder, waste paper, unexposed kraft pulp (NUKP), uncovered kraft pulp (NBKP), unexposed kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), etc. Wood reinforcing materials, synthetic fibers such as polyester fibers, polyamide fibers, acrylic fibers, polyvinylidene chloride fibers, acetate fibers, polypropylene fibers, polyethylene fibers, and vinylon fibers, expandable thermoplastic beads, and plastic foams. In the present invention, any one of these substances may be contained, or two or more kinds may be contained. In addition, when a reinforcing material contains 30-300 with respect to the aluminosilicate powder 100 by mass ratio of solid content, since the hardening body obtained is excellent in intensity | strength and dimensional stability, it is preferable. More preferably, it is 45-300.

また、本発明の原料組成物は、質量比で、水を全固形分100に対し8〜40含有すると、流動性に優れ、製造工程において、成形性に優れるので好ましい。   In addition, the raw material composition of the present invention is preferably contained in a mass ratio of 8 to 40 water with respect to 100 of the total solid content, because it is excellent in fluidity and excellent in moldability in the production process.

そして、本発明の原料組成物は、原料組成物を製造する工程と、得られた原料組成物を成形する工程と、更に養生する工程とを含む製造方法に用いられる。   And the raw material composition of this invention is used for the manufacturing method including the process of manufacturing a raw material composition, the process of shape | molding the obtained raw material composition, and the process of curing further.

原料組成物を製造する工程は、アルミノシリケート粉体と、アルカリ金属塩と、バイオガムを含む増粘材とを混合することにより行う。用いる原料、配合については前述の通りである。アルミノシリケート粉体と、アルカリ金属塩と、増粘材は、全てを一度に混合しても良いし、先に粉体原料を混合し、次に液体原料を混合しても良い。成形方法により、原料組成物に求められる原料性状が異なるので、混合手順は特に限定されないが、アルミノシリケート粉体と、アルカリ金属塩と、バイオガムを含む増粘材とを混合することにより、該増粘材は原料組成物全体に分散するので、該原料組成物は流動性と成形性に優れることとなる。   The step of producing the raw material composition is performed by mixing an aluminosilicate powder, an alkali metal salt, and a thickener containing biogum. The raw materials and blends used are as described above. The aluminosilicate powder, the alkali metal salt, and the thickener may be mixed all at once, the powder raw material may be mixed first, and then the liquid raw material may be mixed. Since the raw material properties required for the raw material composition differ depending on the molding method, the mixing procedure is not particularly limited, but the increase is achieved by mixing an aluminosilicate powder, an alkali metal salt, and a thickener containing biogum. Since the viscous material is dispersed throughout the raw material composition, the raw material composition is excellent in fluidity and moldability.

原料組成物を成形する工程としては、原料組成物を鋳型に流し込み、硬化後に脱型する方法、原料組成物を押出成形機により成形する方法、原料組成物を散布して形成したマットを型押しにより成形する方法などがある。なお、成形方法は組み合わせても良い。   The steps of forming the raw material composition include pouring the raw material composition into a mold and demolding after curing, molding the raw material composition with an extruder, and embossing a mat formed by spraying the raw material composition. There is a method of molding by. The molding methods may be combined.

成形物を養生する工程としては、自然養生、蒸気養生、オートクレーブ養生、水中養生などがある。通常、自然養生では、外気で1〜28日間養生し、蒸気養生は湿度50%以上、温度40〜190℃で3時間〜28日間養生し、オートクレーブ養生では、110〜190 ℃で3〜24時間養生し、水中養生では水中で1〜28日間養生することが行われているが、これに限定されず、必要に応じて湿度、温度、時間を調整して良い。また、養生方法は組み合わせても良く、蒸気養生の後にオートクレーブ養生を行っても良い。   Examples of the process for curing the molded article include natural curing, steam curing, autoclave curing, and water curing. Usually, natural curing is performed for 1 to 28 days with outside air, steam curing is performed at a humidity of 50% or more and temperature is 40 to 190 ° C. for 3 hours to 28 days, and autoclave curing is performed at 110 to 190 ° C. for 3 to 24 hours. In curing under water, curing in water is performed for 1 to 28 days. However, the present invention is not limited to this, and humidity, temperature, and time may be adjusted as necessary. Further, the curing methods may be combined, and autoclave curing may be performed after steam curing.

次に、本発明の実施例をあげる。   Next, examples of the present invention will be given.

各原料を、表1に示す組成で混合し、原料組成物を得た。そして、得られた原料組成物は、表1に示す製法により成形し、養生して、実施例1〜17、比較例1〜4の硬化体を製造した。なお、表1において、配合の値(水分を除く)は、各原料の固形分を質量比で表している。また、各試料において、硬化体の板厚は16mmとし、表面にストライプ模様を形成させた。更に、流し込み製法では、オムニミキサーを用いて表1に示す組成の原料を混合し、得られた原料組成物を鋳型に流し込み、80℃、湿度80%で3日間養生後に鋳型から脱型して硬化体を製造した。押出製法では、粉体原料のみを始めにアイリッヒミキサーで混合し、次に混合された粉体原料とアルカリ金属塩と水の混合物をニーダーで混練して表1に示す組成の原料組成物を製造し、該原料組成物を押出成形機により成形し、得られた成形物を60℃、湿度80%で24時間蒸気養生し、更に165℃で7時間オートクレーブ養生して硬化体を製造した。乾式製法では、アイリッヒミキサーを用いて表1に示す組成の原料を混合し、原料組成物を散布してマットを形成し、該マットに型を押し当てて成形し、その後、60℃、湿度80%で24時間蒸気養生し、更に165℃で7時間オートクレーブ養生して硬化体を製造した。   Each raw material was mixed with the composition shown in Table 1 to obtain a raw material composition. And the obtained raw material composition was shape | molded by the manufacturing method shown in Table 1, and it cured, and manufactured the hardening body of Examples 1-17 and Comparative Examples 1-4. In Table 1, the compounding value (excluding moisture) represents the solid content of each raw material by mass ratio. In each sample, the thickness of the cured body was 16 mm, and a stripe pattern was formed on the surface. Furthermore, in the casting method, raw materials having the composition shown in Table 1 are mixed using an omni mixer, and the obtained raw material composition is poured into a mold, and after being cured at 80 ° C. and 80% humidity for 3 days, the mold is removed from the mold. A cured product was produced. In the extrusion manufacturing method, only the powder raw material is first mixed by an Eirich mixer, and then the mixed powder raw material, an alkali metal salt and water mixture are kneaded by a kneader to obtain a raw material composition having the composition shown in Table 1. Then, the raw material composition was molded by an extruder, and the resulting molded product was steam-cured at 60 ° C. and 80% humidity for 24 hours, and further autoclaved at 165 ° C. for 7 hours to produce a cured product. In the dry manufacturing method, raw materials having the composition shown in Table 1 are mixed using an Eirich mixer, a raw material composition is sprayed to form a mat, a mold is pressed against the mat, and then molded at 60 ° C. and humidity Steam curing was performed at 80% for 24 hours, and further autoclaving was performed at 165 ° C. for 7 hours to produce a cured product.

そして、得られた実施例1〜17、比較例1〜4の各硬化体について、成形性、縦断材料分布、曲げ強度、吸水寸法変化を測定したので、その結果も表1に示す。
なお、成形性は、硬化体の状態を確認し、表面に施した凹凸模様(ストライプ模様)が型又はダイスの通り形成されている場合は”○”とし、それ以外は”×”と評価した。縦断材料分布は、硬化体の断面状態を確認し、厚み方向での材料分布が均一な場合は”○”とし、それ以外は”×”と評価した。曲げ強度は、4×16cmとした試験片を用いること以外はJIS A 1408に準じて測定した。吸水寸法変化率は、硬化体を60℃で3日間調湿後、常温まで冷やした状態での寸法を初期値として、15日間常温の水に浸漬し、浸漬後の寸法との差を初期値で除した値である。
And about each obtained hardening body of Examples 1-17 and Comparative Examples 1-4, since the moldability, longitudinal material distribution, bending strength, and a water absorption dimension change were measured, the result is also shown in Table 1.
In addition, the moldability was evaluated as “◯” when the state of the cured body was confirmed, and the uneven pattern (stripe pattern) formed on the surface was formed as a mold or a die, and “×” was evaluated otherwise. . The longitudinal material distribution was evaluated as “◯” when the cross-sectional state of the cured body was confirmed, and when the material distribution in the thickness direction was uniform, and “x” otherwise. The bending strength was measured according to JIS A 1408 except that a test piece having a size of 4 × 16 cm was used. The water absorption dimensional change rate is the initial value of the difference between the dimension after immersion after immersion in water at room temperature for 15 days, with the initial value being the dimension after the cured body is conditioned at 60 ° C. for 3 days and cooled to room temperature. The value divided by.

Figure 2015157722
Figure 2015157722

比較例1は、増粘材を含有しない原料組成物を流し込み製法により成形し、硬化体としているが、硬化体は縦断材料分布が均一でなく(厚み方向で均一でなく)、流し込み時に上方となる側に比重の軽い原料が多く分布していた。そのため、硬化体の曲げ強度は小さく、吸水寸法変化も大きかった。
一方、同じ流し込み製法で成形した硬化体であっても、バイオガムを含有する原料組成物から製造した実施例1〜3の硬化体は、縦断材料分布が均一(厚み方向で均一)であり、曲げ強度に優れ、吸水寸法変化も小さかった。
比較例2は、増粘材を含有しない原料組成物を押出製法により成形し、硬化体としているが、押出後にマットはすぐに変形し、成形性に劣った。また、養生して得られた硬化体は吸水1日で破損した。
比較例3、4は、増粘材としてメチルセルロースを含有する原料組成物を押出製法により成形し、硬化体としているが、比較例3は成形性に劣るとともに吸水寸法変化も大きく、比較例4は曲げ強度が小さかった。
一方、同じ押出製法で成形した硬化体であっても、バイオガムを含有する原料組成物から製造した実施例4〜14の硬化体は、成形性は”○”で成形性に優れると共に、曲げ強度にも優れ、吸水寸法変化も小さかった。
バイオガムを含有する原料組成物を乾式製法で成形した実施例15〜17の硬化体は、成形性は”○”で成形性に優れると共に、曲げ強度にも優れ、吸水寸法変化も小さかった。
In Comparative Example 1, a raw material composition that does not contain a thickening material is molded by a casting method to obtain a cured body, but the cured body has a non-uniform longitudinal material distribution (not uniform in the thickness direction) and Many raw materials with low specific gravity were distributed on the side. Therefore, the bending strength of the cured body was small, and the water absorption dimensional change was also large.
On the other hand, even if it is the hardening body shape | molded by the same casting manufacturing method, the hardening body of Examples 1-3 manufactured from the raw material composition containing biogum has a uniform vertical distribution of material (uniform in the thickness direction), and bending. Excellent strength and small change in water absorption.
In Comparative Example 2, a raw material composition not containing a thickener was molded by an extrusion manufacturing method to obtain a cured body. However, the mat was immediately deformed after extrusion and was inferior in moldability. Further, the cured product obtained by curing was damaged in one day of water absorption.
In Comparative Examples 3 and 4, a raw material composition containing methylcellulose as a thickener is molded by an extrusion method to obtain a cured body, but Comparative Example 3 is inferior in moldability and has a large water absorption dimensional change. The bending strength was small.
On the other hand, even if it is the hardening body shape | molded by the same extrusion manufacturing method, the hardening body of Examples 4-14 manufactured from the raw material composition containing biogum is excellent in a moldability with "(circle)", and a bending strength. The water absorption dimension change was also small.
The cured bodies of Examples 15 to 17 in which the raw material composition containing biogum was molded by a dry process had excellent moldability with excellent moldability, excellent bending strength, and small change in water absorption dimension.

以上に本発明の一実施形態について説明したが、本発明はこれに限定されず、特許請求の範囲に記載の発明の範囲において種々の形態を取り得る。   Although one embodiment of the present invention has been described above, the present invention is not limited to this, and can take various forms within the scope of the invention described in the claims.

以上説明したように、本発明によれば、物性と造形性に優れたアルミノケイ酸塩硬化体を製造することができる原料組成物と、それを用いたアルミノケイ酸塩硬化体、及びその製造方法を提供することができる。   As described above, according to the present invention, a raw material composition capable of producing a cured aluminosilicate having excellent physical properties and formability, a cured aluminosilicate using the same, and a method for producing the same. Can be provided.

Claims (9)

アルミノシリケート粉体と、アルカリ金属塩と、バイオガムとを含有する
ことを特徴とするアルミノケイ酸塩硬化体の原料組成物。
A raw material composition for a cured aluminosilicate comprising an aluminosilicate powder, an alkali metal salt, and a biogum.
前記バイオガムは、ウェランガム、ダイユータンガム、キサンタンガムのいずれか1種以上である
ことを特徴とする請求項1に記載のアルミノケイ酸塩硬化体の原料組成物。
2. The raw material composition for a cured aluminosilicate according to claim 1, wherein the biogum is at least one of welan gum, diutan gum, and xanthan gum.
全固形分対比で前記バイオガムを0.1〜5.0質量%含有する
ことを特徴とする請求項1又は2に記載のアルミノケイ酸塩硬化体の原料組成物。
The biogum content is 0.1 to 5.0% by mass relative to the total solid content. The raw material composition for a cured aluminosilicate according to claim 1 or 2.
更に、無機系増粘材、セルロース誘導体系増粘材のいずれか1種以上を含有する
ことを特徴とする請求項1〜3のいずれかに記載のアルミノケイ酸塩硬化体の原料組成物。
Furthermore, any 1 type or more of an inorganic type thickener and a cellulose derivative type | system | group thickener are contained. The raw material composition of the aluminosilicate hardening body in any one of Claims 1-3 characterized by the above-mentioned.
請求項1〜4のいずれかに記載の原料組成物から形成されたアルミノケイ酸塩硬化体。   A cured aluminosilicate formed from the raw material composition according to claim 1. 請求項1〜4のいずれかに記載の原料組成物を製造する工程と、
得られた原料組成物を成形する工程と、
更に養生する工程とを含み、
上記原料組成物を製造する工程において、前記アルミノシリケート粉体と、前記アルカリ金属塩と、前記増粘材とを混合することにより、該増粘材を該原料組成物全体に分散させる
ことを特徴とするアルミノケイ酸塩硬化体の製造方法。
A step of producing the raw material composition according to claim 1;
A step of molding the obtained raw material composition;
And a curing process,
In the step of producing the raw material composition, the thickener is dispersed throughout the raw material composition by mixing the aluminosilicate powder, the alkali metal salt, and the thickener. A method for producing a cured aluminosilicate.
請求項6に記載の製造方法において、
前記原料組成物を成形する工程は、鋳型に該原料組成物を流し込むことにより行う
ことを特徴とするアルミノケイ酸塩硬化体の製造方法。
The manufacturing method according to claim 6,
The step of forming the raw material composition is performed by pouring the raw material composition into a mold.
請求項6に記載の製造方法において、
前記原料組成物を成形する工程は、該原料組成物を押出成形することにより行う
ことを特徴とするアルミノケイ酸塩硬化体の製造方法。
The manufacturing method according to claim 6,
The method for producing a cured aluminosilicate, wherein the step of forming the raw material composition is performed by extruding the raw material composition.
請求項6に記載の製造方法において、
前記原料組成物を成形する工程は、該原料組成物を散布してマットを形成し、該マットを型押しすることにより行う
ことを特徴とするアルミノケイ酸塩硬化体の製造方法。
The manufacturing method according to claim 6,
The step of forming the raw material composition is carried out by spraying the raw material composition to form a mat, and embossing the mat.
JP2014032056A 2014-02-21 2014-02-21 Raw material composition of cured aluminosilicate, cured product using the same, and method for producing the same Active JP6227439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032056A JP6227439B2 (en) 2014-02-21 2014-02-21 Raw material composition of cured aluminosilicate, cured product using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032056A JP6227439B2 (en) 2014-02-21 2014-02-21 Raw material composition of cured aluminosilicate, cured product using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015157722A true JP2015157722A (en) 2015-09-03
JP6227439B2 JP6227439B2 (en) 2017-11-08

Family

ID=54182053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032056A Active JP6227439B2 (en) 2014-02-21 2014-02-21 Raw material composition of cured aluminosilicate, cured product using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6227439B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254823A (en) * 1993-03-08 1994-09-13 Shin Etsu Chem Co Ltd Method for extrusion molding of cement material
JPH08259302A (en) * 1995-03-20 1996-10-08 Nichiha Corp Production of inorganic plate
JPH0929728A (en) * 1995-07-24 1997-02-04 Sekisui Chem Co Ltd Production of inorganic cured object
WO2001016048A1 (en) * 1999-08-26 2001-03-08 James Hardie Research Pty Limited Extrudable cementitious material
JP2003055888A (en) * 2001-08-10 2003-02-26 Tokiwa Electric Co Ltd Inorganic sheet material, inorganic composite material, and inorganic structural material
JP2006150692A (en) * 2004-11-26 2006-06-15 Sekisui Chem Co Ltd Method for producing inorganic molding
JP2007534607A (en) * 2004-04-27 2007-11-29 ハーキュリーズ・インコーポレーテッド Cement-based system using plasticizing / extrusion aid made from raw cotton linter
WO2013163010A1 (en) * 2012-04-27 2013-10-31 United States Gypsum Company Dimensionally stable geopolymer compositions and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254823A (en) * 1993-03-08 1994-09-13 Shin Etsu Chem Co Ltd Method for extrusion molding of cement material
JPH08259302A (en) * 1995-03-20 1996-10-08 Nichiha Corp Production of inorganic plate
JPH0929728A (en) * 1995-07-24 1997-02-04 Sekisui Chem Co Ltd Production of inorganic cured object
WO2001016048A1 (en) * 1999-08-26 2001-03-08 James Hardie Research Pty Limited Extrudable cementitious material
JP2003055888A (en) * 2001-08-10 2003-02-26 Tokiwa Electric Co Ltd Inorganic sheet material, inorganic composite material, and inorganic structural material
JP2007534607A (en) * 2004-04-27 2007-11-29 ハーキュリーズ・インコーポレーテッド Cement-based system using plasticizing / extrusion aid made from raw cotton linter
JP2006150692A (en) * 2004-11-26 2006-06-15 Sekisui Chem Co Ltd Method for producing inorganic molding
WO2013163010A1 (en) * 2012-04-27 2013-10-31 United States Gypsum Company Dimensionally stable geopolymer compositions and method

Also Published As

Publication number Publication date
JP6227439B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6919136B2 (en) Method for manufacturing cement composition for modeling and hardened cementum
KR101620075B1 (en) Mortar for 3D Printing, Concrete and Manufacturing Method of the Concrete using it
KR101620074B1 (en) Concrete composition for 3D Printing, Concrete and Manufacturing Method of the Concrete using it
CL2008002729A1 (en) Coating composition comprising 20 to 70% by weight of a clay mineral, 20 to 70% by weight of an alkali silicate and 1 to 30% by weight of a coating polymer; fluffy particles; and method for the manufacture of foamed molded bodies.
TW200728367A (en) An extruded porous substrate and products using the same
CN111635156B (en) Preparation method of 3D printing building material aggregate
CN103232719B (en) A kind of Firework cylinder material and preparation method thereof
CN101433822B (en) Air purification material and preparation method thereof as well as produced art ware or material for decoration
KR101309736B1 (en) Extrusion moulding concrete insulation panel with ultra light micro hollow filler and method for manufacturing thereof
JP6227439B2 (en) Raw material composition of cured aluminosilicate, cured product using the same, and method for producing the same
JP6235946B2 (en) Method for producing cured aluminosilicate
JP6224497B2 (en) Raw material composition of cured aluminosilicate and cured body using the same
CN201620486U (en) Novel glass micro bead fire-proof and heat-insulation plate
KR101233807B1 (en) Composition for manufacturing cement block and manufacturing method of cement block using the same
KR102387959B1 (en) 3D Printing Material and 3D Printing Method using the same
JP5722656B2 (en) INORGANIC PLATE AND METHOD FOR PRODUCING INORGANIC PLATE
JP2012522666A5 (en)
CN104072103A (en) Novel ceramic product
JPS63123851A (en) Cement composition for extrusion molding
JP2018202812A (en) Method for producing cement molding
JP6622997B2 (en) Raw material composition of cured aluminosilicate and cured body
JP6235874B2 (en) Raw material composition
JP6352708B2 (en) Raw material composition of cured aluminosilicate and cured body using the same
CN207419828U (en) New construction energy-saving brick
JP2016190756A (en) Raw material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6227439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150