JP2015155941A - Developing device and image forming apparatus including the same - Google Patents

Developing device and image forming apparatus including the same Download PDF

Info

Publication number
JP2015155941A
JP2015155941A JP2014030276A JP2014030276A JP2015155941A JP 2015155941 A JP2015155941 A JP 2015155941A JP 2014030276 A JP2014030276 A JP 2014030276A JP 2014030276 A JP2014030276 A JP 2014030276A JP 2015155941 A JP2015155941 A JP 2015155941A
Authority
JP
Japan
Prior art keywords
alternating voltage
frequency
khz
duty ratio
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014030276A
Other languages
Japanese (ja)
Other versions
JP6278260B2 (en
JP2015155941A5 (en
Inventor
昌也 濱口
Masaya Hamaguchi
昌也 濱口
中村 均
Hitoshi Nakamura
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014030276A priority Critical patent/JP6278260B2/en
Publication of JP2015155941A publication Critical patent/JP2015155941A/en
Publication of JP2015155941A5 publication Critical patent/JP2015155941A5/ja
Application granted granted Critical
Publication of JP6278260B2 publication Critical patent/JP6278260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image forming apparatus that can improve granularity in performing development using a high-frequency alternating voltage.
SOLUTION: A developing device 4 has developing rollers 42A and 42B that are arranged opposite to a photoreceptor 2, and a power source unit 510 that applies an alternating voltage to the developing rollers 42A and 42B in order to form an alternating electric field for moving toner from the developing roller side to the photoreceptor side while making the reciprocating movement of the toner in a developing area where the developing rollers 42A and 42B oppose the photoreceptor 2, and further includes a control box 512 that performs switching of the alternating voltage frequency and switching of a duty ratio according to the frequency.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、トナーを往復運動させながら現像剤担持体側から潜像担持体側へ移動させる交番電界を現像領域に形成して現像処理を行う現像装置及びこれを備えた画像形成装置に関するものである。   The present invention relates to a developing device that performs development processing by forming an alternating electric field that moves toner from a developer carrier side to a latent image carrier side while reciprocating toner, and an image forming apparatus including the developing device.

電子写真方式を採用した複写機、プリンタ等の画像形成装置においては、潜像担持体の表面を帯電装置によって一様に帯電した後、潜像担持体の表面に像光を照射して静電潜像を形成し、この静電潜像を現像してトナー像を形成している。このトナー像は、転写装置によって用紙等の記録媒体や中間転写体上に転写され、さらに紙面上へ転写される。これまで、現像方式については種々の方法が検討されてきた。具体的には、直流電圧現像方式、交番電圧現像方式があり、直流、交流それぞれで発揮される現像剤特性の違いを利用し、高画質を目指してきた。また、使用される現像剤の種類にも一成分、二成分があり、現像領域で現像剤を潜像担持体表面に接触させるか非接触にするかの違いもある。それ以外にも、潜像担持体、現像剤担持体に特徴を持たせ、新規な現像方式を開発し、それら現像剤特性などと現像方式を組み合わせることで、複写機、プリンタの性能を充足させる機能を持たせてきた。この中でも特に、現像方式として用いられてきた交番電圧現像方式には、以下のような技術が知らされている。   In image forming apparatuses such as copying machines and printers that employ an electrophotographic method, the surface of the latent image carrier is uniformly charged by a charging device, and then the surface of the latent image carrier is irradiated with image light to electrostatically charge the surface. A latent image is formed, and the electrostatic latent image is developed to form a toner image. This toner image is transferred onto a recording medium such as paper or an intermediate transfer member by a transfer device, and further transferred onto the paper surface. Up to now, various methods have been studied for the development method. Specifically, there are a DC voltage developing method and an alternating voltage developing method, and the aim has been to achieve high image quality by utilizing the difference in developer characteristics exhibited by each of DC and AC. There are also one component and two components in the type of developer used, and there is a difference in whether the developer is brought into contact with the surface of the latent image carrier or not in the development region. In addition, the latent image carrier and developer carrier are characterized, new development methods are developed, and the characteristics of copiers and printers are satisfied by combining these developer characteristics and development methods. It has been given a function. In particular, the following techniques are known for an alternating voltage developing method that has been used as a developing method.

特許文献1には、現像スリーブに印加する交番電圧の振幅を500[V]から1000[V]とし、周波数を1[kHz]から2.5[kHz]、Duty比を40[%]から60[%]の範囲で制御することで、地カブリを抑え、かつ、色相を安定させることができる現像装置が開示されている。交番電圧の振幅、周波数、およびDuty比の制御は、温度、湿度の環境変化に追随して随時設定値を変化させる制御ではなく、所定の範囲内に収まるようにする制御であるために、簡単な制御系により達成することが可能であり、装置の構造を簡単にすることができるとしている。   In Patent Document 1, the amplitude of the alternating voltage applied to the developing sleeve is 500 [V] to 1000 [V], the frequency is 1 [kHz] to 2.5 [kHz], and the duty ratio is 40 [%] to 60 [60]. A developing device that can suppress background fogging and stabilize hue by controlling in the range of [%] is disclosed. The control of the amplitude, frequency, and duty ratio of the alternating voltage is not a control that changes the set value at any time following a change in the environment of temperature and humidity, but is a control that keeps it within a predetermined range. This can be achieved by a simple control system, and the structure of the apparatus can be simplified.

特許文献2には、二成分現像方式において、現像スリーブに印加する交番電圧の振幅を500[V]から1.1[kV]とし、周波数を5[kHz]以上12[kHz]以下、Duty比を30[%]から40[%]に設定することで、キャリア付着を防止し、かつ、ベタ画像隣接部のハーフトーン白抜けも防止できる画像形成装置が開示されている。   In Patent Document 2, in the two-component development method, the amplitude of the alternating voltage applied to the developing sleeve is changed from 500 [V] to 1.1 [kV], the frequency is 5 [kHz] to 12 [kHz], and the duty ratio. An image forming apparatus is disclosed in which carrier adhesion is prevented and halftone whiteout in a solid image adjacent portion can be prevented by setting the value from 30 [%] to 40 [%].

本出願人は、交番電圧現像方式を採用した画像形成装置における画質改善の研究過程において、エッジ再現性が悪化するという問題に直面した。エッジ再現性の悪化とは、非潜像部分と隣接する潜像部分のエッジ箇所で、トナーが付着せずに現像されない部分が発生してしまい、エッジ箇所が正確に再現されない画像が形成されることをいう。このエッジ再現性が悪化する要因として、交番電界が形成される現像領域内でトナーが往復運動することによるスキャベンジ(潜像に一旦は付着したトナーが現像材担持体側に回収されてしまう現象)の発生が影響していることを見出した。   The present applicant has faced the problem that the edge reproducibility deteriorates in the research process of the image quality improvement in the image forming apparatus adopting the alternating voltage developing method. Deterioration of edge reproducibility means that a non-latent image portion and an adjacent portion of the latent image portion are not developed due to toner adhesion, and an image in which the edge portion is not accurately reproduced is formed. That means. As a factor that deteriorates the edge reproducibility, scavenging (a phenomenon in which the toner once attached to the latent image is collected on the developer carrying member side) due to the reciprocating motion of the toner in the developing region where the alternating electric field is formed. We found outbreaks had an impact.

また、本出願人は、交番電圧を用いる現像方式でスキャベンジの発生を抑えるには、従来技術よりも高い周波数領域とすることが効果的であることを見出した。従来、交番電圧現像方式のメリットを得るためには、現像剤担持体に印加する交番電圧の周波数をある程度大きくすることが必要であることは知られていた。しかしながら、その上限はせいぜい15[kHz]程度であり、それ以上に周波数を上げても何かメリットがあるとは考えられていなかった。本出願人は、特願2013−047863号(以下「先願」という)において、ピークツウピーク電圧が300[V]以上の交番電圧で、周波数を20[kHz]よりも大きく60[kHz]以下という高い周波数に設定する現像装置を提案した。この現像装置では、ベタ埋まりや輝度につき直流電圧現像方式に対するメリットを維持しつつ、トナーの往復運動の振幅を小さくしてスキャベンジの発生を抑制し、エッジ再現性の悪化を改善できる。   In addition, the present applicant has found that a higher frequency region than that of the prior art is effective in suppressing the occurrence of scavenging in a developing method using an alternating voltage. Conventionally, it has been known that in order to obtain the merit of the alternating voltage developing method, it is necessary to increase the frequency of the alternating voltage applied to the developer carrier to some extent. However, the upper limit is about 15 [kHz] at most, and it has not been considered that there is any merit even if the frequency is increased further. In the Japanese Patent Application No. 2013-047663 (hereinafter referred to as “prior application”), the applicant of the present application is an alternating voltage having a peak-to-peak voltage of 300 [V] or more and a frequency of more than 20 [kHz] and 60 [kHz] or less. We have proposed a developing device that sets a high frequency. In this developing device, while maintaining the advantages of the DC voltage developing method with respect to solid filling and luminance, the amplitude of the reciprocating motion of the toner can be reduced to suppress the occurrence of scavenging and improve the edge reproducibility.

しかしながら、本出願人は、さらなる画質改善の研究過程において、先願の現像条件で粒状性があまり良くないケースが出てくるという問題に直面した。鋭意研究を重ねた結果、エッジ再現性の向上や、色ムラの安定性の向上などの目的により、高周波の交番電圧を用いる現像において、粒状性の向上には、周波数に対してDuty比を切り替えることが有効であることを見出した。   However, the applicant has faced a problem that the graininess is not so good under the development conditions of the prior application in the research process of further image quality improvement. As a result of intensive research, for the purpose of improving edge reproducibility and color unevenness stability, in developing using high-frequency alternating voltage, the duty ratio is switched with respect to frequency to improve graininess. Found that it was effective.

本発明は以上の背景に鑑みなされたものであり、その目的は、高周波の交番電圧を用いた現像を行う場合において、粒状性の向上を可能にする画像形成装置を提供することである。   The present invention has been made in view of the above background, and an object of the present invention is to provide an image forming apparatus capable of improving graininess when performing development using a high-frequency alternating voltage.

上記目的を達成するために、請求項1の発明は、潜像担持体に対して対向配置される現像剤担持体と、前記潜像担持体と前記現像剤担持体とが対向する現像領域に、トナーを往復運動させながら現像剤担持体側から潜像担持体側へ移動させる交番電界を形成するために、前記現像剤担持体に交番電圧を印加する交番電圧印加手段とを有する現像装置において、交番電圧の周波数の切り替えと、前記周波数に応じての前記Duty比の切り替えとを行う制御部とを備えたことを特徴とするものである。   In order to achieve the above-mentioned object, the invention of claim 1 includes a developer carrying member disposed opposite to the latent image carrying member, and a developing region where the latent image carrying member and the developer carrying member face each other. An alternating voltage applying means for applying an alternating voltage to the developer carrying member in order to form an alternating electric field for moving the toner from the developer carrying member side to the latent image carrier side while reciprocating the toner. And a control unit that performs switching of the frequency of the voltage and switching of the duty ratio according to the frequency.

本発明によれば、高周波の交番電圧を用いた現像を行う場合において、粒状性の向上を可能にするという優れた効果が得られる。   According to the present invention, when developing using a high frequency alternating voltage, an excellent effect of enabling improvement in graininess can be obtained.

本実施形態に係る画像形成装置の概略構成図。1 is a schematic configuration diagram of an image forming apparatus according to an embodiment. 同画像形成装置における現像装置の概略構成図。FIG. 2 is a schematic configuration diagram of a developing device in the image forming apparatus. 同現像装置の電源部の斜視図。The perspective view of the power supply part of the developing device. 同現像装置と同電源部の接触箇所の拡大図Enlarged view of the contact area between the development device and the power supply 同現像装置における交番電圧の波形例を示すグラフ。The graph which shows the waveform example of the alternating voltage in the developing device. 同交番電圧の他の波形例を示すグラフ。The graph which shows the other waveform example of the same alternating voltage. 同交番電圧の他の波形例を示すグラフ。The graph which shows the other waveform example of the same alternating voltage. 同交番電圧の他の波形例を示すグラフ。The graph which shows the other waveform example of the same alternating voltage. 同交番電圧の他の波形例を示すグラフ。The graph which shows the other waveform example of the same alternating voltage.

以下、本発明を、画像形成装置としての複写機に適用した一実施形態について説明する。
図1は、本実施形態の複写機500の概略構成図である。
複写機500は、複写装置本体(以下「プリンタ部」という。)100、給紙テーブル(以下「給紙部」という。)200及びプリンタ部100上に取り付けるスキャナ(以下「スキャナ部」という。)300から構成される。
Hereinafter, an embodiment in which the present invention is applied to a copying machine as an image forming apparatus will be described.
FIG. 1 is a schematic configuration diagram of a copying machine 500 according to the present embodiment.
The copying machine 500 includes a copying apparatus main body (hereinafter referred to as “printer unit”) 100, a paper feed table (hereinafter referred to as “paper feed unit”) 200, and a scanner mounted on the printer unit 100 (hereinafter referred to as “scanner unit”). 300.

プリンタ部100は、4つのプロセスユニットとしてのプロセスカートリッジ1Y,1M,1C,1K、複数の張架ローラに張架されて図1中の矢印A方向に移動する中間転写体としての中間転写ベルト7、露光手段としての露光装置6、定着手段としての定着装置12等を備えている。4つのプロセスカートリッジ1の、符号の後に付されたY、M、C、Kという添字は、イエロー、マゼンタ、シアン、黒用の仕様であることを示している。4つのプロセスカートリッジ1Y,1M,1C,1Kは、それぞれ使用するトナーの色が異なる他はほぼ同様の構成になっているので、以下、K、Y、M、Cという添字を省略して説明する。   The printer unit 100 includes process cartridges 1Y, 1M, 1C, and 1K as four process units, and an intermediate transfer belt 7 as an intermediate transfer member that is stretched by a plurality of stretching rollers and moves in the direction of arrow A in FIG. , An exposure device 6 as exposure means, a fixing device 12 as fixing means, and the like. The suffixes Y, M, C, and K attached to the four process cartridges 1 indicate that the specifications are for yellow, magenta, cyan, and black. The four process cartridges 1Y, 1M, 1C, and 1K have substantially the same configuration except that the colors of the toners to be used are different from each other. Therefore, the subscripts K, Y, M, and C are omitted in the following description. .

プロセスカートリッジ1は、潜像担持体である感光体2、帯電手段である帯電部材3、現像手段である現像装置4、及び、クリーニング手段である感光体クリーニング装置5を一体的に支持してユニット状とした構成となっている。各プロセスカートリッジ1は、それぞれの不図示のストッパーを解除することにより、複写機500本体に対して着脱可能となっている。   The process cartridge 1 is a unit that integrally supports a photosensitive member 2 as a latent image carrier, a charging member 3 as a charging unit, a developing device 4 as a developing unit, and a photosensitive member cleaning device 5 as a cleaning unit. The configuration is shaped like Each process cartridge 1 can be attached to and detached from the copying machine 500 main body by releasing a stopper (not shown).

感光体2は、図中の矢印で示すように、図中の時計周り方向に回転する。帯電部材3は、ローラ状の帯電ローラであり、感光体2の表面に圧接されており、感光体2の回転により従動回転する。作像時には、帯電部材3には図示しない高圧電源により所定のバイアスが印加され、感光体2の表面を帯電する。本実施形態のプロセスカートリッジ1は、帯電手段として、感光体2の表面に接触するローラ状の帯電部材3を用いているが、帯電手段としてはこれに限るものではなく、コロナ帯電などの非接触帯電方式を用いてもよい。   The photoconductor 2 rotates in the clockwise direction in the figure as indicated by the arrow in the figure. The charging member 3 is a roller-shaped charging roller, is in pressure contact with the surface of the photoconductor 2, and is rotated by the rotation of the photoconductor 2. At the time of image formation, a predetermined bias is applied to the charging member 3 by a high voltage power source (not shown) to charge the surface of the photoreceptor 2. In the process cartridge 1 of the present embodiment, the roller-shaped charging member 3 that contacts the surface of the photoreceptor 2 is used as the charging unit, but the charging unit is not limited to this, and non-contact such as corona charging. A charging method may be used.

露光装置6は、潜像形成手段として機能し、スキャナ部300で読み込んだ原稿画像の画像情報またはパーソナルコンピュータ等の外部装置から入力される画像情報に基づいて、感光体2の表面に対して露光し、感光体2の表面に静電潜像を形成する。プリンタ部100が備える露光装置6は、レーザーダイオードを用いたレーザービームスキャナ方式を用いているが、露光手段としてはLEDアレイを用いるものなど他の構成でも良い。感光体クリーニング装置5は、中間転写ベルト7と対向する位置を通過した感光体2の表面上に残留する転写残トナーのクリーニングを行う。   The exposure device 6 functions as a latent image forming unit, and exposes the surface of the photoreceptor 2 based on image information of an original image read by the scanner unit 300 or image information input from an external device such as a personal computer. Then, an electrostatic latent image is formed on the surface of the photoreceptor 2. The exposure device 6 provided in the printer unit 100 uses a laser beam scanner system using a laser diode, but may have other configurations such as an exposure unit using an LED array. The photoconductor cleaning device 5 cleans the transfer residual toner remaining on the surface of the photoconductor 2 that has passed the position facing the intermediate transfer belt 7.

4つのプロセスカートリッジ1は、それぞれイエロー、シアン、マゼンタ、ブラックの各色のトナー像を感光体2上に形成する。4つのプロセスカートリッジ1は、中間転写ベルト7の表面移動方向に並列に配設され、それぞれの感光体2上に形成されたトナー像を中間転写ベルト7に順に重ね合わせるように転写し、中間転写ベルト7上に可視像を形成する。   The four process cartridges 1 form yellow, cyan, magenta, and black toner images on the photoreceptor 2, respectively. The four process cartridges 1 are arranged in parallel in the surface movement direction of the intermediate transfer belt 7, and transfer the toner images formed on the respective photoreceptors 2 in order to be superimposed on the intermediate transfer belt 7 in order. A visible image is formed on the belt 7.

図1において、各感光体2に対して中間転写ベルト7を挟んで対向する位置には一次転写手段としての一次転写ローラ8が配置されている。一次転写ローラ8には不図示の高圧電源により一次転写バイアスが印加され、感光体2との間で一次転写電界を形成する。感光体2と一次転写ローラ8との間で一次転写電界が形成されることにより、感光体2の表面上に形成されたトナー像が中間転写ベルト7の表面に転写される。中間転写ベルト7を張架する複数の張架ローラのうちの1つが不図示の駆動モータによって回転することによって中間転写ベルト7が図中の矢印A方向に表面移動する。表面移動する中間転写ベルト7の表面上に各色のトナー像が順次重ねて転写されることによって、中間転写ベルト7の表面上にフルカラー画像が形成される。   In FIG. 1, a primary transfer roller 8 serving as a primary transfer unit is disposed at a position facing each photoconductor 2 across the intermediate transfer belt 7. A primary transfer bias is applied to the primary transfer roller 8 by a high voltage power source (not shown) to form a primary transfer electric field with the photosensitive member 2. By forming a primary transfer electric field between the photosensitive member 2 and the primary transfer roller 8, the toner image formed on the surface of the photosensitive member 2 is transferred to the surface of the intermediate transfer belt 7. One of a plurality of stretching rollers that stretch the intermediate transfer belt 7 is rotated by a drive motor (not shown), so that the intermediate transfer belt 7 moves in the direction of arrow A in the drawing. A full color image is formed on the surface of the intermediate transfer belt 7 by sequentially transferring the toner images of the respective colors on the surface of the intermediate transfer belt 7 moving on the surface.

4つのプロセスカートリッジ1が中間転写ベルト7と対向する位置に対して、中間転写ベルト7の表面移動方向下流側には、張架ローラの1つである二次転写対向ローラ9aに対して中間転写ベルト7を挟んで対向する位置に二次転写ローラ9が配置され、中間転写ベルト7との間で二次転写ニップを形成する。二次転写ローラ9と二次転写対向ローラ9aとの間に所定の電圧を印加して二次転写電界を形成する。給紙部200から給紙され、図1中の矢印S方向に搬送される記録材である記録紙Pが二次転写ニップを通過する際に、中間転写ベルト7の表面上に形成されたフルカラー画像が、二次転写ローラ9と二次転写対向ローラ9aとの間に形成された二次転写電界によって記録紙Pに転写される。   With respect to the position where the four process cartridges 1 face the intermediate transfer belt 7, intermediate transfer is performed on the downstream side in the surface movement direction of the intermediate transfer belt 7 with respect to the secondary transfer counter roller 9 a that is one of the stretching rollers. A secondary transfer roller 9 is disposed at a position opposed to the belt 7 and forms a secondary transfer nip with the intermediate transfer belt 7. A predetermined voltage is applied between the secondary transfer roller 9 and the secondary transfer counter roller 9a to form a secondary transfer electric field. A full color formed on the surface of the intermediate transfer belt 7 when the recording paper P, which is a recording material fed from the paper supply unit 200 and conveyed in the direction of arrow S in FIG. 1, passes through the secondary transfer nip. The image is transferred onto the recording paper P by a secondary transfer electric field formed between the secondary transfer roller 9 and the secondary transfer counter roller 9a.

二次転写ニップに対して記録紙Pの搬送方向下流側に、定着装置12が配置されている。二次転写ニップを通過した記録紙Pは定着装置12に到達し、定着装置12における加熱及び加圧によって記録紙P上に転写されたフルカラー画像が定着され、画像が定着された記録紙Pは複写機500の装置外に出力される。一方、二次転写ニップで記録紙Pに転写されず中間転写ベルト7の表面上に残留したトナーは、転写ベルトクリーニング装置11によって回収される。   A fixing device 12 is disposed downstream of the secondary transfer nip in the conveyance direction of the recording paper P. The recording paper P that has passed through the secondary transfer nip reaches the fixing device 12, the full color image transferred onto the recording paper P is fixed by heating and pressurization in the fixing device 12, and the recording paper P on which the image is fixed is The data is output outside the copying machine 500. On the other hand, the toner remaining on the surface of the intermediate transfer belt 7 without being transferred to the recording paper P at the secondary transfer nip is collected by the transfer belt cleaning device 11.

図1に示すように、中間転写ベルト7の上方には、各色トナーを収容するトナーボトル400Y,400M,400C,400Kが複写機500本体に対して着脱可能に配置されている。各色トナーボトル400に収容されたトナーは、各色に対応する不図示のトナー補給装置によって、各色の現像装置4に供給される。   As shown in FIG. 1, above the intermediate transfer belt 7, toner bottles 400Y, 400M, 400C, and 400K that store toners of various colors are detachably disposed on the copying machine 500 main body. The toner stored in each color toner bottle 400 is supplied to each color developing device 4 by a toner replenishing device (not shown) corresponding to each color.

図2は、本実施形態の現像装置4の概略構成を示す図であり、図1中の紙面奥側から見た断面図である。現像装置4には、現像剤担持体としての2つの現像ローラ42A,42Bと、ドクタブレード45、攪拌パドル46、搬送スクリュー48、トナー濃度センサ49等が設けられている。これらの構成部材を収容する現像ケース41は、感光体2と対向する箇所が開口しており、その開口を介して、感光体2の表面と2つの現像ローラ42A,42Bとが対向するように構成されている。現像ケース41内に収容されている現像剤43として、トナーとキャリアからなる二成分現像剤を用いているが、トナーからなる一成分現像剤を用いてもよい。現像ケース41内の現像剤43は、攪拌パドル46や搬送スクリュー48によって攪拌される。   FIG. 2 is a diagram showing a schematic configuration of the developing device 4 of the present embodiment, and is a cross-sectional view seen from the back side of the paper in FIG. The developing device 4 is provided with two developing rollers 42A and 42B as developer carriers, a doctor blade 45, a stirring paddle 46, a conveying screw 48, a toner concentration sensor 49, and the like. The developing case 41 that accommodates these components has an opening at a position facing the photoreceptor 2 so that the surface of the photoreceptor 2 and the two developing rollers 42A and 42B face each other through the opening. It is configured. As the developer 43 accommodated in the developing case 41, a two-component developer composed of toner and carrier is used, but a one-component developer composed of toner may be used. The developer 43 in the developing case 41 is stirred by the stirring paddle 46 and the conveying screw 48.

図3は、現像装置4と複写機500本体に設けられる電源部510とを示す斜視図である。現像ケース41内の現像剤43は、現像ローラ42A,42Bの内部に設置されている磁界発生手段としてのマグネットローラの磁力によって表面に担持され、各現像ローラ42A,42Bの回転駆動により、各現像ローラと感光体2とが対向して現像処理が行われるそれぞれの現像領域へ搬送される。第1現像ローラ42A上の現像剤43は、ドクタブレード45によって所定量に規制された後に第1現像領域へ搬送され、現像処理に用いられる。その後、現像領域を通過した第1現像ローラ42A上の現像剤43は、第1現像ローラ42Aと第2現像ローラ42Bとが対向する箇所で第2現像ローラ42B側へ受け渡される。そして、第2現像ローラ42Bの回転駆動により第2現像領域へ搬送され、再び現像処理に用いられる。   FIG. 3 is a perspective view showing the developing device 4 and the power supply unit 510 provided in the copying machine 500 main body. The developer 43 in the developing case 41 is carried on the surface by the magnetic force of a magnet roller serving as a magnetic field generating means installed inside the developing rollers 42A and 42B, and each developing roller 42A and 42B is driven to rotate to develop each developer. The roller and the photosensitive member 2 face each other and are conveyed to respective development areas where development processing is performed. The developer 43 on the first developing roller 42A is regulated to a predetermined amount by the doctor blade 45 and then transported to the first developing area and used for the developing process. Thereafter, the developer 43 on the first developing roller 42A that has passed through the developing area is delivered to the second developing roller 42B side at a location where the first developing roller 42A and the second developing roller 42B face each other. Then, it is transported to the second development area by the rotational drive of the second development roller 42B, and is used again for development processing.

図3に示すように、電源部510にはAC電源515が接続されており、AC電源515には制御ボックス516が付加されている。制御ボックス516では、交番電圧の周波数の切り替え信号を受けて周波数を切り替えるとともに、切り替え後の周波数に応じて交番電圧のDuty比が最適になるようにDuty比も切り替える制御を行う。周波数の切り替えは、例えば、画像形成モードが速度を優先するモードか、あるいは画質を優先するモードを使用する際に、感光体2の線速が異なり画像形成スピードが互いに異なる画像形成モードの切り替えに応じて自動で行ってもよいし、速度優先モードと画質優先モードの組み合わせを実施するために、操作パネルの操作により手動で行ってもよい。制御ボックス516から出力される制御信号により、AC電源515から出力される交流電圧の波形を変化させ、所望の交番電圧の波形とすることができる。   As shown in FIG. 3, an AC power source 515 is connected to the power source unit 510, and a control box 516 is added to the AC power source 515. In the control box 516, the frequency is switched in response to the switching signal of the frequency of the alternating voltage, and the duty ratio is also switched so that the duty ratio of the alternating voltage is optimized according to the frequency after switching. For example, when the image forming mode uses a mode that prioritizes speed or a mode that prioritizes image quality, the frequency is switched to an image forming mode in which the linear speed of the photosensitive member 2 is different and the image forming speeds are different from each other. Accordingly, it may be performed automatically, or may be performed manually by operating the operation panel in order to implement a combination of the speed priority mode and the image quality priority mode. The waveform of the alternating voltage output from the AC power source 515 can be changed by the control signal output from the control box 516 to obtain a desired alternating voltage waveform.

図4は、図3中符号Aで示す現像装置4と電源部510との接続箇所を拡大した拡大視図である。プロセスカートリッジ1の複写機500本体への装着に伴い、そのプロセスカートリッジ1内の現像装置4の電源入力端子44A,44Bは、複写機500本体における電源部510の各端子孔511A,511Bに挿入される。これにより、現像装置4の電源入力端子44A,44Bは、複写機500本体の電源部510の電源出力端子512に接触し、電気的に接続される。この電源出力端子512には、電源ケーブル513を介して、直流電圧印加用のDC電源514及び交流電圧印加用のAC電源515が接続されている。   FIG. 4 is an enlarged view in which a connecting portion between the developing device 4 and the power supply unit 510 indicated by a symbol A in FIG. 3 is enlarged. As the process cartridge 1 is attached to the copying machine 500 main body, the power input terminals 44A and 44B of the developing device 4 in the process cartridge 1 are inserted into the terminal holes 511A and 511B of the power supply unit 510 in the copying machine 500 main body. The As a result, the power input terminals 44A and 44B of the developing device 4 are in contact with and electrically connected to the power output terminal 512 of the power supply unit 510 of the copying machine 500 main body. A DC power supply 514 for applying a DC voltage and an AC power supply 515 for applying an AC voltage are connected to the power output terminal 512 via a power cable 513.

印加する交番電圧において、Duty比の切り替えは、具体的には、周波数が10[kHz]以上20[kHz]未満のときはDuty比が4[%]以上8[%]未満、周波数20[kHz]以上40[kHz]未満のときはDuty比が8[%]以上15[%]未満、周波数40[kHz]以上60[kHz]未満のときはDuty比が16[%]以上30[%]未満、周波数60[kHz]以上80[kHz]未満のときはDuty比が31[%]以上45[%]未満、周波数80[kHz]のときはDuty比が45[%]以上71[%]未満の範囲となるようにする。   In the alternating voltage to be applied, the duty ratio is specifically switched when the frequency is 10 [kHz] or more and less than 20 [kHz], and the duty ratio is 4 [%] or more and less than 8 [%], and the frequency 20 [kHz]. ] When the frequency is 40 [kHz] or less, the duty ratio is 8 [%] or more and less than 15 [%]. When the frequency is 40 [kHz] or more and less than 60 [kHz], the duty ratio is 16 [%] or more and 30 [%]. When the frequency is 60 [kHz] or more and less than 80 [kHz], the duty ratio is 31 [%] or more and less than 45 [%], and when the frequency is 80 [kHz], the duty ratio is 45 [%] or more and 71 [%]. The range should be less than

[実験例]
交番電圧の周波数に応じて、Duty比を最適範囲となるように切り替えることが、粒状性の向上には有効であることを確認した実験について説明する。
この実験では図3の装置を用いた。制御ボックス516としては、任意の周波数と波形を持った交流電圧信号を生成することのできる電気計測器を用いた。ここでは、振幅はいずれも1000[V]に固定している。
本実験における、現像条件と評価結果を表1に示す。
[Experimental example]
An experiment will be described in which it is confirmed that switching the duty ratio so as to be in the optimum range according to the frequency of the alternating voltage is effective in improving the graininess.
In this experiment, the apparatus shown in FIG. 3 was used. As the control box 516, an electric measuring instrument capable of generating an AC voltage signal having an arbitrary frequency and waveform was used. Here, both amplitudes are fixed at 1000 [V].
Table 1 shows development conditions and evaluation results in this experiment.

Figure 2015155941
Figure 2015155941

表1中の実施条件1〜10は、周波数に応じてDuty比を最適化した現像条件である。また、比較条件1〜10は、実施条件1〜10との比較のための現像条件である。それぞれの現像条件について、感光体上に直径40μmのドットを、40μmの等間隔で縦に10列、横に10列、合計100個のパターンで現像した。現像した画像は、顕微鏡を用いた解析によりその画質を評価した。
粒状性は、小径のドット形状が揃っているか否かによって判断できることから、円形度、ドット面積標準偏差、地汚れの3つのパラメータを代替特性として評価することができる。また、濃度ムラ(同じ色で塗るべきところに濃淡が出る現象)は、一律に同じ大きさでドットが現像されていれば、ハーフトーンなどで濃度ムラが発生しないが、ドットの大きさが異なると濃度ムラが発生することから、ドット面積標準偏差を代替特性として評価することができる。加えて、ドット面積標準偏差が良好で、かつ、円形度が良好であれば、エッジ再現性についても凡そ良好であると判断することができる。よって、本実験では、表1中にある円形度、ドット面積標準偏差、地汚れの各パラメータについて画像解析を行い、それらの結果について総合評価を行った。評価における判断基準は次のとおりである。
Implementation conditions 1 to 10 in Table 1 are development conditions in which the duty ratio is optimized according to the frequency. Comparative conditions 1 to 10 are development conditions for comparison with execution conditions 1 to 10. Under each development condition, dots having a diameter of 40 μm were developed on the photoconductor in a total of 100 patterns of 10 rows vertically and 10 rows horizontally at equal intervals of 40 μm. The image quality of the developed image was evaluated by analysis using a microscope.
Since the graininess can be determined based on whether or not the small-diameter dot shapes are aligned, three parameters of circularity, dot area standard deviation, and background stain can be evaluated as alternative characteristics. In addition, density unevenness (a phenomenon in which shading occurs where the same color should be applied) does not occur in halftone if the dots are developed with the same size, but the dot sizes are different. Therefore, the dot area standard deviation can be evaluated as an alternative characteristic. In addition, if the dot area standard deviation is good and the circularity is good, it can be determined that the edge reproducibility is also good. Therefore, in this experiment, image analysis was performed for each parameter of the circularity, the dot area standard deviation, and the background contamination in Table 1, and the results were comprehensively evaluated. The criteria for evaluation are as follows.

円形度は、物体の形状の複雑さを示す値であり、例えば、1であれば真円、0.79であれば正方形、0.6であれば正三角形、0.35であれば長方形である。表1において円形度の評価基準として、円形度の平均値が0.6以上であれば良好として「○」、0.35以上0.6未満であれば実使用可能として「△」、0.35未満であれば使用不可能として「×」とした。   The circularity is a value indicating the complexity of the shape of the object. For example, the roundness is 1 if it is 1, a square if 0.79, a regular triangle if 0.6, and a rectangle if 0.35. is there. In Table 1, as an evaluation standard of circularity, “◯” is good when the average value of circularity is 0.6 or more, “Δ” when the average value is 0.35 or more and less than 0.6. If it was less than 35, it was marked as “x” because it was not usable.

ドット面積標準偏差は、感光体上に現像されたドット面積の標準偏差である。ドット面積標準偏差の評価基準として、ドット面積標準偏差が250[μm]以下であれば良好として「○」、250を超えて350[μm]以下であれば実使用可能として「△」、350[μm]を超える場合は実使用不可能として「×」とした。 The dot area standard deviation is the standard deviation of the dot area developed on the photoreceptor. As an evaluation standard of the dot area standard deviation, if the dot area standard deviation is 250 [μm 2 ] or less, it is “good”, and if it exceeds 250 and 350 [μm 2 ] or less, “Δ” When it exceeded 350 [μm 2 ], it was marked “x” because it could not be used.

地汚れは、ドットの現像されていない領域に付着したトナーの数である。表1において地汚れの評価基準として、ドットが現像されていない領域1[mm]中に、付着したトナーの数が10個未満であれば良好として「○」、10個以上、20個未満であれば実使用可能として「△」、20個以上であれば紙面上で目視観察可能なレベルで実使用不可能として「×」とした。 The background smudge is the number of toners attached to the undeveloped area of the dots. In Table 1, as an evaluation standard for soiling, if the number of adhered toner is less than 10 in an area 1 [mm 2 ] where dots are not developed, “Good” is good, 10 or more, and less than 20 If it is 20 or more, it is marked as “Δ”, and if it is 20 or more, it is marked as “x” as it is impossible to actually use on the paper surface.

総合評価は、評価パラメータのうち○が二つ以上であれば「◎」、評価パラメータのいずれか一つが△で残り二つが○であれば「○」、評価パラメータのいずれか一つが○で残り二つが△であれば「△」、評価パラメータの1つでも×がある場合は「×」とした。   Comprehensive evaluation is “◎” if two or more of the evaluation parameters are ○, “○” if one of the evaluation parameters is △ and the remaining two are ○, and one of the evaluation parameters is ○ If two are Δ, “Δ”, and if one of the evaluation parameters has “X”, it is “X”.

表1中の実施条件1と実施条件2、および比較条件1と比較条件2は、交番電圧の周波数10[kHz]について評価したものである。Duty比については、実施条件1では4[%]、実験条件2では7[%]、比較条件1では3[%]、比較条件2では8[%]に設定した。
図5に、実施条件1における交番電圧の波形を例として示す。DC電源514及びAC電源515によって印加される交番電圧の周波数は10[kHz]、振幅1000[V]、Duty比4[%]である。図中、0[s]から96[μs]までは交番電圧は−500[V]であり、この間に現像が行わる。また、96[μs]から100[μs]までは交番電圧は+500[V]であり、この間はトナーは感光体から現像ローラ側に移動し現像は行われない状態(以下、非現像と呼ぶ)となる。以降、これが繰り返される。
Implementation condition 1 and implementation condition 2, and comparison condition 1 and comparison condition 2 in Table 1 are evaluated for a frequency of 10 [kHz] of the alternating voltage. The duty ratio was set to 4 [%] in the implementation condition 1, 7 [%] in the experimental condition 2, 3 [%] in the comparison condition 1, and 8 [%] in the comparison condition 2.
In FIG. 5, the waveform of the alternating voltage in the implementation condition 1 is shown as an example. The frequency of the alternating voltage applied by the DC power supply 514 and the AC power supply 515 is 10 [kHz], the amplitude is 1000 [V], and the duty ratio is 4 [%]. In the figure, the alternating voltage is −500 [V] from 0 [s] to 96 [μs], and development is performed during this time. Further, the alternating voltage is +500 [V] from 96 [μs] to 100 [μs], and during this time, the toner moves from the photoreceptor to the developing roller side and development is not performed (hereinafter referred to as non-development). It becomes. Thereafter, this is repeated.

表1中の実施条件1と実験条件2、および比較条件1と比較条件2の評価結果は次のとおりである。
Duty比を4[%]に設定した実施条件1では、円形度が△、ドット面積標準偏差が○、地汚れが△で、総合評価が△となった。これに対し、Duty比を3[%]に設定した比較条件1では、円形度が×、ドット面積標準偏差が△、地汚れが×で、総合評価が×となった。
また、Duty比を7[%]に設定した実施条件2では、円形度が△、ドット面積標準偏差が○、地汚れが△で、総合評価が△となった。これに対し、Duty比を8[%]に設定した比較条件2では、円形度が×、ドット面積標準偏差が△、地汚れが×で、総合評価が×となった。
The evaluation results of implementation condition 1 and experimental condition 2 and comparative condition 1 and comparative condition 2 in Table 1 are as follows.
In the implementation condition 1 in which the duty ratio was set to 4 [%], the circularity was Δ, the dot area standard deviation was ○, the background stain was Δ, and the overall evaluation was Δ. On the other hand, in comparative condition 1 in which the duty ratio was set to 3 [%], the circularity was x, the dot area standard deviation was Δ, the background stain was x, and the overall evaluation was x.
In the implementation condition 2 in which the duty ratio was set to 7 [%], the circularity was Δ, the dot area standard deviation was ○, the background stain was Δ, and the overall evaluation was Δ. On the other hand, in comparative condition 2 in which the duty ratio was set to 8 [%], the circularity was x, the dot area standard deviation was Δ, the background stain was x, and the overall evaluation was x.

表1中の実施条件3と実施条件4、および比較条件3と比較条件4は、交番電圧の周波数20[kHz]について評価したものである。Duty比については、実施条件3では8[%]、実験条件4では15[%]、比較条件3では7[%]、比較条件4では16[%]に設定した。
図6に、実験条件3における交番電圧の波形を例として示す。DC電源514及びAC電源515によって印加される交番電圧の周波数は20[kHz]、振幅1000[V]、Duty比8[%]である。図中、0[s]から約46[μs]までは交番電圧は−500[V]であり、この間に現像が行わる。また、約46[μs]から約50[μs]までは交番電圧は+500[V]であり、この間は非現像となる。以降、これが繰り返される。
Implementation condition 3 and implementation condition 4, and comparison condition 3 and comparison condition 4 in Table 1 were evaluated with respect to an alternating voltage frequency of 20 [kHz]. The duty ratio was set to 8 [%] in the implementation condition 3, 15 [%] in the experimental condition 4, 7 [%] in the comparison condition 3, and 16 [%] in the comparison condition 4.
FIG. 6 shows an example of the waveform of the alternating voltage under the experimental condition 3. The frequency of the alternating voltage applied by the DC power source 514 and the AC power source 515 is 20 [kHz], the amplitude is 1000 [V], and the duty ratio is 8 [%]. In the figure, the alternating voltage is −500 [V] from 0 [s] to about 46 [μs], and development is performed during this time. Further, the alternating voltage is +500 [V] from about 46 [μs] to about 50 [μs], and during this time, no development is performed. Thereafter, this is repeated.

表1中の実施条件3と実験条件4、および比較条件3と比較条件4の評価結果は次のとおりである。
Duty比を8[%]に設定した実施条件3では、円形度が○、ドット面積標準偏差が○、地汚れが○で、総合評価が◎となった。これに対し、Duty比を7[%]に設定した比較条件3では、円形度が△、ドット面積標準偏差が○、地汚れが×で、総合評価が×となった。
また、Duty比を15[%]に設定した実施条件4では、円形度が○、ドット面積標準偏差が○、地汚れが○で、総合評価が◎となった。これに対し、Duty比を16[%]に設定した比較条件4では、円形度が△、ドット面積標準偏差が○、地汚れが×で、総合評価が×となった。
The evaluation results of implementation condition 3 and experimental condition 4 and comparative condition 3 and comparative condition 4 in Table 1 are as follows.
In the implementation condition 3 in which the duty ratio was set to 8 [%], the circularity was ◯, the dot area standard deviation was ◯, the background stain was ◯, and the overall evaluation was ◎. On the other hand, in comparative condition 3 in which the duty ratio was set to 7 [%], the circularity was Δ, the dot area standard deviation was ◯, the background stain was x, and the overall evaluation was x.
In the implementation condition 4 in which the duty ratio was set to 15 [%], the circularity was ◯, the dot area standard deviation was ◯, the background stain was ◯, and the overall evaluation was ◎. On the other hand, in comparative condition 4 in which the duty ratio was set to 16 [%], the circularity was Δ, the dot area standard deviation was ◯, the background stain was x, and the overall evaluation was x.

表1中の実施条件5と実験条件6、および比較条件5と比較条件6は、交番電圧の周波数40[kHz]について評価したものである。Duty比については、実施条件5では16[%]、実験条件6では30[%]、比較条件5では15[%]、比較条件6では31[%]に設定した。
図7に、実験条件5における交番電圧の波形を例として示す。DC電源514及びAC電源515によって印加される交番電圧の周波数は40[kHz]、振幅1000[V]、Duty比16[%]である。図中、0[s]から約21[μs]までは交番電圧は−500[V]であり、この間に現像が行わる。また、約21[μs]から約25[μs]までは交番電圧は+500[V]であり、この間は非現像となる。以降、これが繰り返される。
Implementation condition 5 and experimental condition 6 and comparative condition 5 and comparative condition 6 in Table 1 are evaluated with respect to a frequency 40 [kHz] of the alternating voltage. The duty ratio was set to 16 [%] in the implementation condition 5, 30 [%] in the experiment condition 6, 15 [%] in the comparison condition 5, and 31 [%] in the comparison condition 6.
FIG. 7 shows an example of the waveform of the alternating voltage under the experimental condition 5. The frequency of the alternating voltage applied by the DC power supply 514 and the AC power supply 515 is 40 [kHz], the amplitude is 1000 [V], and the duty ratio is 16 [%]. In the figure, the alternating voltage is −500 [V] from 0 [s] to about 21 [μs], and development is performed during this time. Further, the alternating voltage is +500 [V] from about 21 [μs] to about 25 [μs], and during this time, no development is performed. Thereafter, this is repeated.

表1中の実施条件5と実験条件6、および比較条件5と比較条件6の評価結果は次のとおりである。
Duty比を16[%]に設定した実施条件5では、円形度が○、ドット面積標準偏差が○、地汚れが○で、総合評価が◎となった。これに対し、Duty比は15[%]に設定した比較条件5では、円形度が△、ドット面積標準偏差が○、地汚れが×で、総合評価が×となった。
また、Duty比を30[%]に設定した実施条件6では、円形度が○、ドット面積標準偏差が○、地汚れが○で、総合評価が◎となった。これに対し、Duty比を31[%]に設定した比較条件6では、円形度が△、ドット面積標準偏差が○、地汚れが×で、総合評価が×となった。
The evaluation results of implementation condition 5 and experimental condition 6 and comparative condition 5 and comparative condition 6 in Table 1 are as follows.
In the implementation condition 5 in which the duty ratio was set to 16 [%], the circularity was ◯, the dot area standard deviation was ◯, the background stain was ◯, and the overall evaluation was ◎. On the other hand, under comparative condition 5 in which the duty ratio was set to 15 [%], the circularity was Δ, the dot area standard deviation was ◯, the background stain was x, and the overall evaluation was x.
In the implementation condition 6 in which the duty ratio was set to 30 [%], the circularity was ◯, the dot area standard deviation was ◯, the background stain was ◯, and the overall evaluation was ◎. On the other hand, in comparative condition 6 in which the duty ratio was set to 31 [%], the circularity was Δ, the dot area standard deviation was ◯, the background stain was x, and the overall evaluation was x.

表1中の実施条件7と実験条件8、および比較条件7と比較条件8は、交番電圧の周波数60[kHz]について評価したものである。Duty比については、実施条件7では31[%]、実験条件8では45[%]、比較条件7では30[%]、比較条件8では46[%]に設定した。
図8に、実験条件7における交番電圧の波形を例として示す。DC電源514及びAC電源515によって印加される交番電圧の周波数は60[kHz]、振幅1000[V]、Duty比31[%]である。図中、0[s]から約12[μs]までは交番電圧は−500[V]であり、この間に現像が行わる。また、約12[μs]から約17[μs]までは交番電圧は+500[V]であり、この間は非現像となる。以降、これが繰り返される。
Implementation condition 7 and experimental condition 8 and comparative condition 7 and comparative condition 8 in Table 1 are evaluated with respect to a frequency 60 [kHz] of the alternating voltage. The duty ratio was set to 31 [%] in the implementation condition 7, 45 [%] in the experimental condition 8, 30 [%] in the comparison condition 7, and 46 [%] in the comparison condition 8.
FIG. 8 shows an example of the waveform of the alternating voltage under the experimental condition 7. The frequency of the alternating voltage applied by the DC power source 514 and the AC power source 515 is 60 [kHz], the amplitude is 1000 [V], and the duty ratio is 31 [%]. In the figure, the alternating voltage is −500 [V] from 0 [s] to about 12 [μs], and development is performed during this time. Further, the alternating voltage is +500 [V] from about 12 [μs] to about 17 [μs], and no development is performed during this time. Thereafter, this is repeated.

表1中の実施条件7と実験条件8、および比較条件7と比較条件8の評価結果は次のとおりである。
Duty比を31[%]に設定した実施条件7では、円形度が△、ドット面積標準偏差が○、地汚れが○で、総合評価が○となった。これに対し、Duty比を30[%]に設定した比較条件7では、円形度が×、ドット面積標準偏差が△、地汚れが×で、総合評価が×となった。
また、Duty比を45[%]に設定した実施条件8では、円形度が△、ドット面積標準偏差が○、地汚れが○で、総合評価が○となった。これに対し、Duty比を46[%]に設定した比較条件8では、円形度が×、ドット面積標準偏差が△、地汚れが×で、総合評価が×となった。
The evaluation results of implementation condition 7 and experimental condition 8 and comparative condition 7 and comparative condition 8 in Table 1 are as follows.
In the implementation condition 7 in which the duty ratio was set to 31 [%], the circularity was Δ, the dot area standard deviation was ◯, the background stain was ◯, and the overall evaluation was ◯. On the other hand, in comparative condition 7 in which the duty ratio was set to 30 [%], the circularity was x, the dot area standard deviation was Δ, the background stain was x, and the overall evaluation was x.
In the implementation condition 8 in which the duty ratio was set to 45 [%], the circularity was Δ, the dot area standard deviation was ◯, the background stain was ◯, and the overall evaluation was ◯. On the other hand, in comparative condition 8 in which the duty ratio was set to 46 [%], the circularity was x, the dot area standard deviation was Δ, the background stain was x, and the overall evaluation was x.

表1中の実施条件9と実施条件10、および比較条件9と比較条件10は、交番電圧の周波数80[kHz]について評価したものである。Duty比については、実施条件9では46[%]、実験条件10では70[%]、比較条件9では45[%]、比較条件10では71[%]に設定した。
図9に、実験条件9における交番電圧の波形を例として示す。DC電源514及びAC電源515によって印加される交番電圧の周波数は80[kHz]、振幅1000[V]、Duty比46[%]である。図中、0[s]から約7[μs]までは交番電圧は−500[V]であり、この間に現像が行わる。また、約7[μs]から約13[μs]までは交番電圧は+500[V]であり、この間は非現像となる。以降、これが繰り返される。
Implementation condition 9 and implementation condition 10, and comparison condition 9 and comparison condition 10 in Table 1 were evaluated for an alternating voltage frequency of 80 [kHz]. The duty ratio was set to 46 [%] in the execution condition 9, 70 [%] in the experiment condition 10, 45 [%] in the comparison condition 9, and 71 [%] in the comparison condition 10.
In FIG. 9, the waveform of the alternating voltage in the experimental condition 9 is shown as an example. The frequency of the alternating voltage applied by the DC power supply 514 and the AC power supply 515 is 80 [kHz], the amplitude is 1000 [V], and the duty ratio is 46 [%]. In the figure, the alternating voltage is −500 [V] from 0 [s] to about 7 [μs], and development is performed during this time. Further, the alternating voltage is +500 [V] from about 7 [μs] to about 13 [μs], and during this time, no development is performed. Thereafter, this is repeated.

表1中の実施条件9と実験条件10、および比較条件9と比較条件10の評価結果は次のとおりである。
Duty比を46[%]に設定した実施条件9では、円形度が△、ドット面積標準偏差が△、地汚れが○で、総合評価は△となった。これに対し、Duty比を45[%]に設定した比較条件9では、円形度が×、ドット面積標準偏差が△、地汚れが×で、総合評価が×となった。
また、Duty比を70[%]に設定した実施条件10では、円形度が△、ドット面積標準偏差が△、地汚れが○で、総合評価が△となった。これに対し、Duty比を71[%]に設定した比較条件10では、円形度が×、ドット面積標準偏差が×、地汚れが×で、総合評価が×となった。
The evaluation results of the implementation condition 9 and the experiment condition 10 and the comparison condition 9 and the comparison condition 10 in Table 1 are as follows.
In the execution condition 9 in which the duty ratio was set to 46 [%], the circularity was Δ, the dot area standard deviation was Δ, the background stain was ○, and the overall evaluation was Δ. On the other hand, in comparative condition 9 in which the duty ratio was set to 45 [%], the circularity was x, the dot area standard deviation was Δ, the background stain was x, and the overall evaluation was x.
Further, in the implementation condition 10 in which the duty ratio is set to 70 [%], the circularity is Δ, the dot area standard deviation is Δ, the background stain is ○, and the overall evaluation is Δ. On the other hand, in comparative condition 10 in which the duty ratio was set to 71 [%], the circularity was x, the dot area standard deviation was x, the background stain was x, and the overall evaluation was x.

上述の評価結果より、交番電圧の周波数に応じて、Duty比を最適範囲となるように切り替えることが、粒状性の向上、濃度ムラ発生の抑制には有効であることが確認された。
また、交番電圧の周波数に対してDuty比を、
周波数10[kHz]以上20[kHz]未満ではDuty比を4[%]以上8[%]未満、
周波数20[kHz]以上40[kHz]未満ではDuty比を8[%]以上15[%]未満、
周波数40[kHz]以上60[kHz]未満ではDuty比を16[%]以上30[%]未満、
周波数60[kHz]以上80[kHz]未満ではDuty比を31[%]以上45[%]未満、
周波数80[kHz]ではDuty比を45[%]以上71[%]未満、
の範囲で切り替えることが好ましいことが分かった。
From the above evaluation results, it was confirmed that switching the duty ratio so as to be within the optimum range according to the frequency of the alternating voltage is effective for improving the graininess and suppressing the occurrence of density unevenness.
Also, the duty ratio with respect to the frequency of the alternating voltage is
When the frequency is 10 kHz or more and less than 20 kHz, the duty ratio is 4% or more and less than 8%.
When the frequency is 20 [kHz] or more and less than 40 [kHz], the duty ratio is 8 [%] or more and less than 15 [%].
When the frequency is 40 [kHz] or more and less than 60 [kHz], the duty ratio is 16 [%] or more and less than 30 [%].
When the frequency is 60 [kHz] or more and less than 80 [kHz], the duty ratio is 31 [%] or more and less than 45 [%].
At a frequency of 80 [kHz], the duty ratio is 45% or more and less than 71%.
It was found that switching in the range of

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様1)
感光体2等の潜像担持体に対して対向配置される現像ローラ42A、42B等の現像剤担持体と、前記潜像担持体と前記現像剤担持体とが対向する現像領域に、トナーを往復運動させながら現像剤担持体側から潜像担持体側へ移動させる交番電界を形成するために、前記現像剤担持体に交番電圧を印加する電源部510等の交番電圧印加手段とを有する現像装置4において、交番電圧の周波数の切り替えと、前記周波数に応じて前記Duty比の切り替えとを行う制御ボックス516等の制御部を備えたことを特徴とする。
これによれば、高周波の交番電圧を用いた現像を行う場合において、粒状性の向上、濃度ムラ発生の抑制を可能にするという効果が得られる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect 1)
Toner is applied to a developer carrying member such as developing rollers 42A and 42B disposed opposite to a latent image carrying member such as the photosensitive member 2 and a developing region where the latent image carrying member and the developer carrying member face each other. A developing device 4 having an alternating voltage applying means such as a power supply unit 510 for applying an alternating voltage to the developer carrying member in order to form an alternating electric field that moves from the developer carrying member side to the latent image carrying member side while reciprocating. The control unit includes a control unit such as a control box 516 that performs switching of the frequency of the alternating voltage and switching of the duty ratio according to the frequency.
According to this, in the case of performing development using a high frequency alternating voltage, it is possible to improve the graininess and to suppress the occurrence of density unevenness.

(態様2)
前記態様1の現像装置において、前記交番電圧は、周波数が10[kHz]以上20[kHz]未満では、Duty比が4[%]以上8[%]未満であることを特徴とする。
これによれば、周波数を多少高くした範囲(10[kHz]以上20[kHz]未満の範囲)でも、粒状性の向上、濃度ムラ発生の抑制を可能にするという効果が得られる。
(Aspect 2)
In the developing device according to Aspect 1, the alternating voltage has a duty ratio of 4% or more and less than 8% when the frequency is 10 kHz or more and less than 20 kHz.
According to this, even in a range where the frequency is slightly increased (range of 10 [kHz] or more and less than 20 [kHz]), it is possible to improve the graininess and suppress the occurrence of density unevenness.

(態様3)
前記態様1の現像装置において、前記交番電圧は、周波数が20[kHz]以上40[kHz]未満では、Duty比が4[%]以上8[%]未満であることを特徴とする。
これによれば、周波数を多少高くした範囲(20[kHz]以上40[kHz]未満の範囲)でも、粒状性の向上、濃度ムラ発生の抑制を可能にするという効果が得られる。
(Aspect 3)
In the developing device according to Aspect 1, the alternating voltage has a duty ratio of 4 [%] or more and less than 8 [%] when the frequency is 20 [kHz] or more and less than 40 [kHz].
According to this, even in a range where the frequency is slightly increased (range of 20 [kHz] or more and less than 40 [kHz]), it is possible to obtain the effect of improving the graininess and suppressing the occurrence of density unevenness.

(態様4)
前記態様1の現像装置において、前記交番電圧は、周波数が40[kHz]以上60[kHz]未満では、Duty比が16[%]以上31[%]未満であることを特徴とする。
これによれば、周波数を多少高くした範囲(40[kHz]以上60[kHz]未満の範囲)でも、粒状性の向上、濃度ムラ発生の抑制を可能にするという効果が得られる。
(Aspect 4)
In the developing device according to Aspect 1, the alternating voltage has a duty ratio of 16 [%] or more and less than 31 [%] when the frequency is 40 [kHz] or more and less than 60 [kHz].
According to this, even in a range where the frequency is slightly increased (a range of 40 [kHz] or more and less than 60 [kHz]), it is possible to improve the graininess and to suppress the occurrence of density unevenness.

(態様5)
前記態様1の現像装置において、前記交番電圧は、周波数が60[kHz]以上80[kHz]未満では、Dutyが31[%]以上46[%]未満であることを特徴とする。
これによれば、周波数を多少高くした範囲(60[kHz]以上80[kHz]未満の範囲)でも、粒状性の向上、濃度ムラ発生の抑制を可能にするという効果が得られる。
(Aspect 5)
In the developing device of the first aspect, the alternating voltage has a duty of 31 [%] or more and less than 46 [%] when the frequency is 60 [kHz] or more and less than 80 [kHz].
According to this, even in a range where the frequency is slightly increased (range of 60 [kHz] or more and less than 80 [kHz]), it is possible to improve the graininess and suppress the occurrence of density unevenness.

(態様6)
前記態様1の現像装置において、前記交番電圧は、周波数が80[kHz]では、Dutyが46[%]以上70[%]以下であることを特徴とする。
これによれば、周波数80[kHz]の範囲でも、粒状性の向上、濃度ムラ発生の抑制を可能にするという効果が得られる。
(Aspect 6)
In the developing device according to Aspect 1, the alternating voltage has a duty of 46 [%] to 70 [%] at a frequency of 80 [kHz].
According to this, even in the frequency range of 80 [kHz], it is possible to improve the graininess and suppress the occurrence of density unevenness.

(態様7)
潜像担持体と、該潜像担持体上に潜像を形成する潜像形成手段と、該潜像担持体上の潜像にトナーを付着させる現像処理を行う現像手段とを有し、該現像処理によって該潜像担持体上に形成されたトナー像を最終的に記録材へ転移させて、該記録材上に画像を形成する画像形成装置において、前記現像手段として、前記態様1〜7のいずれかの態様に係る現像装置4を用いたことを特徴とする。
これによれば、粒状性を向上し、濃度ムラ発生を抑制した良好な画像の形成を可能にするという効果が得られる。
(Aspect 7)
A latent image carrier, a latent image forming unit for forming a latent image on the latent image carrier, and a developing unit for performing a development process for attaching toner to the latent image on the latent image carrier, In the image forming apparatus for finally transferring the toner image formed on the latent image carrier by the development process to a recording material and forming an image on the recording material, the above-described aspects 1 to 7 are used as the developing unit. The developing device 4 according to any one of the above aspects is used.
According to this, the effect of improving the graininess and enabling the formation of a good image with suppressed density unevenness can be obtained.

1 プロセスカートリッジ
2 感光体
3 帯電部材
4 現像装置
5 感光体クリーニング装置
6 露光装置
7 中間転写ベルト
8 一次転写ローラ
9 二次転写ローラ
12 定着装置
41 現像ケース
42A,42B,642 現像ローラ
43 現像剤
44A,44B 電源入力端子
100 プリンタ部
200 給紙部
300 スキャナ部
400 トナーボトル
500 複写機
510 電源部
511A,511B 端子孔
512 電源出力端子
513 電源ケーブル
514 DC電源
515 AC電源
516 制御ボックス
DESCRIPTION OF SYMBOLS 1 Process cartridge 2 Photoconductor 3 Charging member 4 Developing device 5 Photoconductor cleaning device 6 Exposure device 7 Intermediate transfer belt 8 Primary transfer roller 9 Secondary transfer roller 12 Fixing device 41 Developing case 42A, 42B, 642 Developing roller 43 Developer 44A , 44B Power input terminal 100 Printer unit 200 Paper feed unit 300 Scanner unit 400 Toner bottle 500 Copier 510 Power unit 511A, 511B Terminal hole 512 Power output terminal 513 Power cable 514 DC power source 515 AC power source 516 Control box

特開平11−65270号公報JP-A-11-65270 特開2004−101640号公報JP 2004-101640 A

Claims (7)

潜像担持体に対して対向配置される現像剤担持体と、
前記潜像担持体と前記現像剤担持体とが対向する現像領域に、トナーを往復運動させながら現像剤担持体側から潜像担持体側へ移動させる交番電界を形成するために、前記現像剤担持体に交番電圧を印加する交番電圧印加手段とを有する現像装置において、
交番電圧の周波数の切り替えと、前記周波数に応じて前記Duty比の切り替えとを行う制御部を備えたことを特徴とする現像装置。
A developer carrier disposed opposite to the latent image carrier;
In order to form an alternating electric field for moving the toner from the developer carrier side to the latent image carrier side while reciprocating the toner in a development region where the latent image carrier and the developer carrier face each other, the developer carrier A developing device having an alternating voltage applying means for applying an alternating voltage to
A developing device comprising: a control unit that switches a frequency of an alternating voltage and switches the duty ratio according to the frequency.
請求項1の現像装置において、前記交番電圧は、周波数が10[kHz]以上20[kHz]未満では、Duty比が4[%]以上8[%]未満であることを特徴とする現像装置。   2. The developing device according to claim 1, wherein the alternating voltage has a duty ratio of 4% or more and less than 8% when the frequency is 10 kHz or more and less than 20 kHz. 請求項1の現像装置において、前記交番電圧は、周波数が20[kHz]以上40[kHz]未満では、Duty比が8[%]以上16[%]未満であることを特徴とする現像装置。   2. The developing device according to claim 1, wherein the alternating voltage has a duty ratio of not less than 8 [%] and less than 16 [%] when the frequency is not less than 20 [kHz] and less than 40 [kHz]. 請求項1の現像装置において、前記交番電圧は、周波数が40[kHz]以上60[kHz]未満では、Duty比が16[%]以上31[%]未満であることを特徴とする現像装置。   2. The developing device according to claim 1, wherein the alternating voltage has a duty ratio of 16 [%] or more and less than 31 [%] when the frequency is 40 [kHz] or more and less than 60 [kHz]. 請求項1の現像装置において、前記交番電圧は、周波数が60[kHz]以上80[kHz]未満では、Dutyが31[%]以上46[%]未満であることを特徴とする現像装置。   2. The developing device according to claim 1, wherein the alternating voltage has a duty of 31 [%] or more and less than 46 [%] when the frequency is 60 [kHz] or more and less than 80 [kHz]. 請求項1の現像装置において、前記交番電圧は、周波数が80[kHz]では、Dutyが46[%]以上70[%]以下であることを特徴とする現像装置。   2. The developing device according to claim 1, wherein the alternating voltage has a duty of 46 [%] to 70 [%] at a frequency of 80 [kHz]. 潜像担持体と、該潜像担持体上に潜像を形成する潜像形成手段と、該潜像担持体上の潜像にトナーを付着させる現像処理を行う現像手段とを有し、該現像処理によって該潜像担持体上に形成されたトナー像を最終的に記録材へ転移させて、該記録材上に画像を形成する画像形成装置において、
前記現像手段として、請求項1乃至6のいずれか1項に記載の現像装置を用いたことを特徴とする画像形成装置。
A latent image carrier, a latent image forming unit for forming a latent image on the latent image carrier, and a developing unit for performing a development process for attaching toner to the latent image on the latent image carrier, In an image forming apparatus for finally transferring a toner image formed on the latent image carrier by development processing to a recording material and forming an image on the recording material,
An image forming apparatus using the developing device according to claim 1 as the developing unit.
JP2014030276A 2014-02-20 2014-02-20 Developing device and image forming apparatus having the same Active JP6278260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030276A JP6278260B2 (en) 2014-02-20 2014-02-20 Developing device and image forming apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030276A JP6278260B2 (en) 2014-02-20 2014-02-20 Developing device and image forming apparatus having the same

Publications (3)

Publication Number Publication Date
JP2015155941A true JP2015155941A (en) 2015-08-27
JP2015155941A5 JP2015155941A5 (en) 2017-03-02
JP6278260B2 JP6278260B2 (en) 2018-02-14

Family

ID=54775286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030276A Active JP6278260B2 (en) 2014-02-20 2014-02-20 Developing device and image forming apparatus having the same

Country Status (1)

Country Link
JP (1) JP6278260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146670A (en) * 2017-03-02 2018-09-20 シャープ株式会社 Developing device, image forming apparatus, and image processing apparatus, and image forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231247A (en) * 1999-02-10 2000-08-22 Konica Corp Development-bias application device and non-contact developing device
JP2002182457A (en) * 2000-12-11 2002-06-26 Canon Inc Developing device and image forming device
JP2008164878A (en) * 2006-12-28 2008-07-17 Kyocera Mita Corp Image forming apparatus
JP2009294546A (en) * 2008-06-06 2009-12-17 Sharp Corp Image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231247A (en) * 1999-02-10 2000-08-22 Konica Corp Development-bias application device and non-contact developing device
JP2002182457A (en) * 2000-12-11 2002-06-26 Canon Inc Developing device and image forming device
JP2008164878A (en) * 2006-12-28 2008-07-17 Kyocera Mita Corp Image forming apparatus
JP2009294546A (en) * 2008-06-06 2009-12-17 Sharp Corp Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146670A (en) * 2017-03-02 2018-09-20 シャープ株式会社 Developing device, image forming apparatus, and image processing apparatus, and image forming method

Also Published As

Publication number Publication date
JP6278260B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP4850928B2 (en) Transfer device and image forming apparatus
JP4508678B2 (en) Image forming apparatus
JP2015165291A (en) Transfer device and image forming apparatus
JP2010020281A (en) Image forming apparatus
JP2011028086A (en) Image forming apparatus
JP2010002785A (en) Image forming apparatus
JP2007086312A (en) Developing device and image forming apparatus
JP2006337605A (en) Image forming apparatus
JP6278260B2 (en) Developing device and image forming apparatus having the same
JP2006220967A (en) Developing device and image forming apparatus
JP5283878B2 (en) Image forming apparatus
JP2016014721A (en) Image forming apparatus
JP2008292847A (en) Developing device and image forming apparatus
JP2008152233A5 (en)
JP5294899B2 (en) Image forming apparatus
JP2008233702A (en) Image forming apparatus
JP2008145959A (en) Developing method and image forming apparatus
JP2020144335A (en) Image forming apparatus
JP2009294546A (en) Image forming apparatus
JP6381250B2 (en) Image forming apparatus
JP2006293161A (en) Image forming apparatus and its control program
JP2016090713A (en) Developing device and image forming apparatus
JP2005173228A (en) Image forming apparatus
JP6249278B2 (en) Developing device and image forming apparatus having the same
US20200110348A1 (en) Image forming apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180104

R151 Written notification of patent or utility model registration

Ref document number: 6278260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151