JP2015153490A - air battery - Google Patents

air battery Download PDF

Info

Publication number
JP2015153490A
JP2015153490A JP2014024126A JP2014024126A JP2015153490A JP 2015153490 A JP2015153490 A JP 2015153490A JP 2014024126 A JP2014024126 A JP 2014024126A JP 2014024126 A JP2014024126 A JP 2014024126A JP 2015153490 A JP2015153490 A JP 2015153490A
Authority
JP
Japan
Prior art keywords
negative electrode
metal
battery
air
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014024126A
Other languages
Japanese (ja)
Inventor
健久 小西
Takehisa Konishi
健久 小西
昌平 澤田
Shohei Sawada
昌平 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ion Technology Co Ltd
Original Assignee
SEN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEN Corp filed Critical SEN Corp
Priority to JP2014024126A priority Critical patent/JP2015153490A/en
Publication of JP2015153490A publication Critical patent/JP2015153490A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-quality, high-capacity, compact and lightweight air battery for offering an intended voltage, which is arranged by laminating, electrically in series, cells each making a smallest unit capable of forming a primary element serving as a metal air battery so that an electrolytic solution is allowed to infiltrate into lamination parts of the laminated cells, and stabilized in output by preventing the occurrence of a galvanic corrosion or gap corrosion in the lamination parts.SOLUTION: A high-quality, high-capacity, compact and lightweight air battery comprises: unit cells laminated electrically in series so as to form parts which enables the offering of an intended voltage. Each unit cell is arranged by putting a negative electrode metal 100, a separator 200 and an air electrode layer 300 making a reaction layer of a positive electrode in close contact together with the separator 200 sandwiched between the air electrode layer 300 and the negative electrode metal 100. The negative electrode metal 100 of each unit cell having a lamination face on the negative electrode side is covered with a conductive material 110 on the side of the lamination face, so water or electrolytic solution is prevented from touching the surface of the negative electrode metal 100 on the lamination face side, thereby preventing the occurrence of a counter electromotive voltage at the contact faces of the adjacent unit cells.

Description

本発明は金属空気電池単体を複数積層して所望の電圧にする空気電池において、出力の安定性を増す為の積層構造をとることを特徴とした空気電池に関する。 The present invention relates to an air battery having a laminated structure for increasing output stability in an air battery in which a plurality of metal air batteries are stacked to obtain a desired voltage.

マグネシウムは海水中に大量に含まれ、地球上で八番目に多い金属で比重も1.74と金属の中で一番軽い。このマグネシウムを使用したマグネシウム空気電池はエネルギー密度が高く、電解液を注入しないで未使用のままでの保存期間は数十年の可能性がある。マグネシウム空気電池は正極活物質として空気中の酸素、負極活物質としてマグネシウムあるいはマグネシウム合金(以下マグネシウムあるいはマグネシウム合金の両者を総称してマグネシウムと称することがある)を利用した電池で、正極活物質の酸素を含む空気は必要に応じ大気中から取り込めるため正極活物質を電池容器内に有する他の電池に比べ大幅に小型軽量化できる。 Magnesium is abundant in seawater, the eighth most abundant metal on earth, and its specific gravity is 1.74, the lightest of all metals. This magnesium air battery using magnesium has a high energy density, and there is a possibility that the storage period without using an electrolyte is unused for several decades. A magnesium-air battery is a battery using oxygen in the air as a positive electrode active material and magnesium or a magnesium alloy (hereinafter, both magnesium and magnesium alloy may be collectively referred to as magnesium) as a negative electrode active material. Since oxygen-containing air can be taken in from the atmosphere as necessary, it can be significantly reduced in size and weight as compared with other batteries having a positive electrode active material in the battery container.

マグネシウムは比重が小さいことと地球上に豊富に存在することから電池としての利用価値が高く、マグネシウムと空気中の酸素を使用する省資源型のマグネシウム空気電池を実用化するための多くの試みがなされているが、現状はいまだ十分な成果を上げているとはいえない。 Magnesium has high specific value as a battery because of its low specific gravity and abundance on the earth, and many attempts have been made to commercialize resource-saving magnesium-air batteries that use magnesium and oxygen in the air. It has been done, but the current situation is still not satisfactory.

常に携帯あるいは保存し災害時や応急対策時などの緊急に必要な時に、あるいは災害の想定される場所へ身に着けていくというような時に軽い、小さい、長期保存が可能、安全性が高い、水分があればどこでも活用できるという観点からマグネシウム空気電池は総合的に非常に優れた能力を発揮しうる。 Always carry or store and save light, small, long-term storage, high safety when urgently needed in the event of a disaster or emergency response, or when wearing in a place where a disaster is expected From the standpoint that it can be used anywhere if there is moisture, the magnesium-air battery can exhibit a very good overall capacity.

このような背景のもと近年マグネシウム空気電池の研究も盛んになってきており、多くの特許が出されている。特許の内容は正極での反応速度を上げるための導電材料、導電助剤、触媒や構造、酸素の供給方法、反応部分の面積の拡大方法、温度管理、酸素の供給方法などとなっており、負極側としては負極での反応の持続性や安定性の向上を図るための電解質成分や合金成分に関するものが主たる内容となっている。 Against this background, research on magnesium-air batteries has recently become active, and many patents have been issued. The contents of the patent are conductive materials for increasing the reaction rate at the positive electrode, conductive assistant, catalyst and structure, oxygen supply method, reaction area expansion method, temperature control, oxygen supply method, etc. The main content of the negative electrode is related to an electrolyte component and an alloy component for improving the sustainability and stability of the reaction at the negative electrode.

負極活物質であるマグネシウム表面の反応に関しては持続的電解を可能にするための水系電解液に多価カルボン酸水溶液を用いることが特開2010−182435に、負極材の自己放電を防止するとともに、長時間にわたって電気を流すことのできるマグネシウム合金の合金成分に関して特許WO2012144301A1に開示されている。 Regarding the reaction on the magnesium surface which is the negative electrode active material, Japanese Patent Application Laid-Open No. 2010-182435 uses a polycarboxylic acid aqueous solution as an aqueous electrolyte for enabling continuous electrolysis, and prevents self-discharge of the negative electrode material, Patent document WO2012144301A1 discloses an alloy component of a magnesium alloy that allows electricity to flow for a long time.

正極反応の改善に関しては、電解液にフッ素含有化合物を用い電解液の酸素溶解性を高めることで空気極表面での酸素の授受速度を上げて出力特性を上げることが特開2009−252637に、空気極触媒に適する改質カーボンナノチューブを提供する内容が特開2012−164492に、鉛筆で固体表面を塗りつぶし、得られる金属フリーのグラフェンが空気極触媒として有効であることが特開2012−182052に空気極の触媒に磁石を含有させて触媒の機能を上げることが特開2012−174655に開示されている。 Regarding the improvement of the positive electrode reaction, JP 2009-252637 discloses that a fluorine-containing compound is used as an electrolytic solution to increase the oxygen solubility of the electrolytic solution, thereby increasing the oxygen transfer rate at the air electrode surface and improving the output characteristics. The content of providing modified carbon nanotubes suitable for an air electrode catalyst is disclosed in Japanese Patent Application Laid-Open No. 2012-164492, and the solid surface is painted with a pencil, and the obtained metal-free graphene is effective as an air electrode catalyst in Japanese Patent Application Laid-Open No. 2012-182052. Japanese Patent Application Laid-Open No. 2012-174655 discloses that the air electrode catalyst contains a magnet to improve the function of the catalyst.

長寿命化と高出力化を目的にマグネシウムを中心にその両面に正極を配し、空気の導入のために正極集電体に凹凸をつける等を行った構造が特開2012−256547に、負極の正極との対抗面以外を絶縁物で覆い負極活物質表面の均一な電解反応を実現させる構造が特開2011−181382に開示されている。 Japanese Patent Application Laid-Open No. 2012-256547 discloses a structure in which a positive electrode is arranged on both sides of magnesium for the purpose of extending the life and output, and the positive electrode current collector is uneven for introducing air. Japanese Patent Application Laid-Open No. 2011-181382 discloses a structure in which a surface other than the surface facing the positive electrode is covered with an insulator to realize a uniform electrolytic reaction on the surface of the negative electrode active material.

正極と負極がセパレータを介して配置されている電極体を複数積層して単位体積当たりの容量を増やし、積層した際に空気の導入不足より生じる電池性能への悪影響を防止するための構造が特開2013−45684に開示されている。 A structure that increases the capacity per unit volume by stacking a plurality of electrode bodies in which the positive electrode and the negative electrode are arranged via separators, and prevents adverse effects on battery performance caused by insufficient introduction of air when stacked. No. 2013-45684.

負極活物質であるマグネシウム、セパレータ、空気極層、空気極集電体の4体を積層してなる基本電池セルを複数積層してなる電池において、隣り合う基本電池セル間に絶縁部材を挿入しガルバニックコロージョンや隙間腐食の発生を防止する構造が公開特許WO2013018769A1に開示されている。 In a battery formed by stacking a plurality of basic battery cells formed by stacking four negative electrode active materials, magnesium, separator, air electrode layer, and air electrode current collector, an insulating member is inserted between adjacent basic battery cells. A structure for preventing the occurrence of galvanic corrosion and crevice corrosion is disclosed in published patent WO2013018769A1.

以上のように金属空気電池に関しては高密度化や高容量化および高出力化のために多くの研究がなされているが、その研究の中心は正極および負極の反応の改善が中心となっており、反応面積を大きくする方法に関してもいくつかの文献が公開されているが、電池の構成の改善による高出力、高品質化に関する新規な方法は見当たらない。 As described above, many studies have been made on metal-air batteries in order to achieve higher density, higher capacity, and higher output, but the main focus of the research is on improving the reaction between the positive and negative electrodes. Some literatures have also been published regarding methods for increasing the reaction area, but no new method for high output and high quality by improving the battery configuration has been found.

複数の電池を積層し、空間を効率的に使用して高容量化する方法に関しても先に述べたように特開2013−45684や公開特許WO2013018769A1に記述されているが、特開2013−45684には電極体の積層部分、つまり電極体の正極と負極の接触部分についての詳細記述はなく、少なくとも接触部分には電解液は存在しえない。 As described above, a method of stacking a plurality of batteries and increasing the capacity by efficiently using a space is described in JP2013-45684A and published patent WO2013018769A1, but in JP2013-45684A, There is no detailed description of the laminated portion of the electrode body, that is, the contact portion between the positive electrode and the negative electrode of the electrode body, and at least the contact portion cannot contain an electrolyte.

また公開特許WO2013018769A1では請求項13に記載されている負極、セパレータ、正極触媒層、正極集電体の4つの部材で構成する基本電池セル(以下該4つの部材で構成する1単位の電池を「基本電池セル」と呼ぶことがある)電池を複数個直線状重ねた電池においては、基本電池セルの間に絶縁物を挟んで直線状に重ねている。公開特許WO2013018769A1の明細書の記載内容から明らかなように、既存技術では積層する電池の間に絶縁物を入れて電池と電池が直接接触すること避けることでガルバニック腐食や隙間腐食の発生を防止する唯一の方法であった。 In the published patent application WO2013018769A1, a basic battery cell (hereinafter referred to as one unit battery consisting of four members) composed of four members of a negative electrode, a separator, a positive electrode catalyst layer, and a positive electrode current collector described in claim 13. In a battery in which a plurality of batteries are stacked in a straight line (sometimes referred to as a “basic battery cell”), the battery is stacked in a straight line with an insulator sandwiched between the basic battery cells. As is clear from the description in the specification of the published patent WO20130181769A1, in the existing technology, an insulator is placed between the stacked batteries to prevent direct contact between the batteries and the galvanic corrosion or crevice corrosion is prevented. It was the only way.

公開特許WO2013018769A1は、互いに隣接する基本電池セルの間に水あるいは電解液が入ることを想定しており、水や電解液が入った場合のガルバニック腐食や隙間腐食の発生を防止する目的で絶縁物を挿入しているのである。 The published patent WO2013018769A1 assumes that water or electrolyte enters between adjacent basic battery cells, and an insulator for the purpose of preventing the occurrence of galvanic corrosion and crevice corrosion when water or electrolyte enters. Is inserted.

公開特許WO2013018769A1の場合は、例えば正極とリード、負極とリードを溶接などの方法で接合した上で取出し、全ての隣り合う基本電池セル同士に対し、隣り合う一方の基本電池セルの正極から取り出したリードと、もう一方の基本電池セルの負極から取り出したリードとを電気的に接続するという複雑な工程をとって電気的接続部への電解液の侵入を防ぎ、ガルバニック腐食や隙間腐食へ対処しなければならない。 In the case of the published patent WO2013018769A1, for example, the positive electrode and the lead, and the negative electrode and the lead are taken out after being joined by a method such as welding and taken out from the positive electrode of one of the neighboring basic battery cells with respect to all the neighboring basic battery cells. A complicated process of electrically connecting the lead and the lead taken out from the negative electrode of the other basic battery cell prevents the entry of electrolyte into the electrical connection part, and copes with galvanic corrosion and crevice corrosion. There must be.

上記のようにマグネシウム空気電池を含む金属空気電池においては負極部での反応や正極での反応あるいは高密度化に関し引用した技術文献以外にも様々な技術が検討されている。しかしながら複数の基本電池セルを直接電気的に直列に接続する構造では、隣接する電池の正極と負極の間への水や電解液の浸入を前提とした有効な技術が存在しない。 In the metal-air battery including the magnesium-air battery as described above, various techniques other than the technical literature cited for the reaction at the negative electrode part, the reaction at the positive electrode, or the densification have been studied. However, in a structure in which a plurality of basic battery cells are directly and electrically connected in series, there is no effective technique on the premise that water or an electrolyte enters between the positive electrode and the negative electrode of adjacent batteries.

特開2010−182435JP2010-182435 公開特許WO2012144301A1Published patent WO2012144301A1 特開2009−252637JP2009-252637 特開2012−164492JP2012-164492 特開2012−182052JP2012-182052 特開2012−174655JP2012-174655 特開2012−256547JP2012-256547 特開2011−181382JP2011-181382A 特開2013−45684JP 2013-45684 A 公開特許WO2013018769A1Published patent WO2013018769A1

本発明は上記のようなマグネシウム空気電池を含む金属空気電池全般の現状の技術に鑑みなされたもので、最も基本となる最小単位の空気電池を電解液が積層部へ侵入することを前提とした上で複数積層して目的の電圧を得るための積層式金属空気電池(以下「積層電池」ともいう)に関するものであり、ガルバニック腐食や隙間腐食と積層部での逆起電力の発生を防止して品質の安定化を図るとともに、余分な部品や加工を排除して小型軽量という金属空気電池の本来の特徴をより高めて高出力、高容量の金属空気電池を実現し、製造方法も簡易化しようとするものである。 The present invention has been made in view of the current state-of-the-art technology of metal-air batteries in general including the magnesium-air battery as described above, and is based on the premise that the electrolyte enters the most basic air battery unit. This is related to a laminated metal-air battery (hereinafter also referred to as “laminated battery”) for obtaining a desired voltage by stacking a plurality of layers, and prevents the occurrence of galvanic corrosion and crevice corrosion and back electromotive force in the laminated part. In addition to stabilizing the quality of the product, the extra features and features of the metal-air battery are eliminated, eliminating the need for extra parts and processing, realizing a high-output, high-capacity metal-air battery, and simplifying the manufacturing method. It is something to try.

平板状の部材からなる最も基本となる最小単位の金属空気電池(以後「単電池」という)を複数電気的に直列に積層して目的の電圧の電池とする積層電池において、特許請求の範囲の請求項1に示したように、単電池の負極側が積層面となる全ての単電池の負極側の面を導電性材料により被覆することにより、該単電池の負極金属の積層面側の表面への水や電解液の直接接触を防止して積層することで、積層部分での逆起電力の発生を防ぎ、ガルバニック腐食や隙間腐食の発生を抑制して高出力で高容量の積層電池を実現する。単電池とは空気と金属により起電力を発生しうる機能を有する最低限の集合体ともいえる。 A laminated battery in which a plurality of metal air batteries (hereinafter referred to as “single cells”), which are the most basic units composed of flat plate members, are electrically stacked in series to form a battery having a desired voltage. As described in claim 1, by covering the negative electrode side surface of all the unit cells whose negative electrode side is a laminate surface with a conductive material, the negative electrode metal surface of the unit cell on the laminate surface side is covered. By preventing the direct contact of water and electrolyte solution, it is possible to prevent the generation of counter electromotive force in the layered portion, and to suppress the occurrence of galvanic corrosion and crevice corrosion, realizing a high output and high capacity stacked battery. To do. A cell can be said to be a minimum assembly having a function capable of generating electromotive force by air and metal.

以下本発明の詳細を説明していくが、特に近年は金属空気電池について多くの研究がなされ、多くの特許が出願されている。電池の基本構成は正極となる空気極、電解液、負極となる金属極に加え、正極と負極の間に配するセパレータを有した構造となっているが、その部品名の詳細については微妙に表現が異なっているので本発明で使用する用語は意味を明確にしながら説明を行っていく。 The details of the present invention will be described below. In particular, in recent years, many studies have been made on metal-air batteries, and many patents have been filed. The basic structure of the battery is a structure that has a separator placed between the positive electrode and the negative electrode, in addition to the air electrode that serves as the positive electrode, the electrolyte, and the metal electrode that serves as the negative electrode. Since the expressions are different, the terms used in the present invention will be explained while clarifying their meanings.

本発明における最も基本となる最小単位の電池(先に「単電池」としたもの)は、特許請求の範囲の請求項1にも示したように、正極活物質である空気中の酸素の反応場である空気極層と負極活物質である金属とをセパレータを挟んで積層することで構成する。該単電池は使用時にセパレータに電解液を保持させてなる電池であり、酸素の反応場である空気極層、電解液を保持させるためのセパレータ、負極活物質(以後「負極金属」ということがある)の電池に必要な最低限の3部材で構成する最も基本となる電池で、未使用状態を前提としており、以下の説明でも構成要素に水や電解液は含まないものとする。 The most basic minimum unit battery according to the present invention (previously referred to as “single cell”) is a reaction of oxygen in the air as the positive electrode active material, as shown in claim 1 of the claims. It is configured by laminating an air electrode layer as a field and a metal as a negative electrode active material with a separator interposed therebetween. The unit cell is a battery in which an electrolyte is held in a separator when in use, an air electrode layer that is an oxygen reaction field, a separator for holding an electrolyte, a negative electrode active material (hereinafter referred to as “negative electrode metal”). It is the most basic battery composed of the minimum three members necessary for a certain battery, and is assumed to be unused, and in the following description, it is assumed that water and electrolyte are not included in the constituent elements.

先行技術文献に示された空気電池は、以降に述べるように空気極層に正極集電体を含む場合と含まない場合があるが、本発明の空気極層に相当する反応層が正極集電体と一体であるとみなされる場合は、本発明ではいずれの場合も空気極層に含めるものとする。 The air battery shown in the prior art document may or may not include the positive electrode current collector in the air electrode layer as described below, but the reaction layer corresponding to the air electrode layer of the present invention has a positive electrode current collector. In the case of being regarded as being integral with the body, the present invention includes both cases in the air electrode layer.

セパレータは先に述べた多くの先行技術文献に示されたものと同等の目的のもので、空気極層と負極金属の短絡を防止するとともに水や電解質の保持の役割を担う。材料としては先行技術文献に示されたような多くの材料があげられるがコーヒー用フィルターや濾紙、天然素材やポリエチレンを始めとする各種樹脂製の不織布、各種樹脂製の繊維、ガラス繊維等を用いることができる。 The separator has the same purpose as that described in many of the prior art documents described above, and prevents the short-circuit between the air electrode layer and the negative electrode metal, and plays a role of retaining water and electrolyte. As materials, there are many materials as shown in the prior art documents, but coffee filters and filter papers, natural materials and nonwoven fabrics made of various resins such as polyethylene, fibers made of various resins, glass fibers, etc. are used. be able to.

開示されている金属空気電池には一次電池、二次電池があり、電解液に関しては水系電解液と非水系電解液が使用されている。しかしながら基本構成は類似しており、特に正極の反応層と負極に関してはほとんど類似するものと考えてよい。また本発明の対象とする電池の構成部材は、基本的には各部材とも平板状で、この平板の平面部分を重ね合わせ電池としており、平板同士の密着を妨げない範囲で所定の曲率を有していてもよい。 The disclosed metal-air battery includes a primary battery and a secondary battery, and an aqueous electrolyte and a non-aqueous electrolyte are used as the electrolyte. However, the basic configuration is similar, and it may be considered that the reaction layer of the positive electrode and the negative electrode are almost similar. In addition, the constituent members of the battery that is the subject of the present invention are basically flat members, and the flat portions of the flat plates are used as overlapping batteries, and have a predetermined curvature within a range that does not hinder the close contact between the flat plates. You may do it.

本発明は携帯に便利で、必要な時に水分を加えることで簡単に作動する電池に対するものであり、緊急時や電気のないところで照明や充電に利用することを目的としたマグネシウム空気一次電池で、未使用の間は電池内部には電解液を保持していない電池である。しかしながら本発明はマグネシウム以外の金属を用いた一般的な金属空気一次電池や二次電池にも活用できる。 The present invention is convenient for carrying and is for a battery that can be easily operated by adding moisture when necessary, and is a magnesium air primary battery intended to be used for lighting or charging in an emergency or without electricity, When not in use, the battery does not hold the electrolyte inside. However, the present invention can also be used for general metal-air primary batteries and secondary batteries using metals other than magnesium.

一般に金属空気電池の正極は、正極集電体、正極活物質である空気中の酸素と水との反応を促進するための触媒、反応に必要な電子を供給するための導電体、導電助剤とバインダーとで正極反応層を形成し、多くの反応場を得るために正極反応層(以下に「空気極層」ともいう)に使用する触媒と導電体および導電助剤の3つの素材には粉末を使用することが多く、該粉末の間に空気と水が入りやすい網目状の空間を保ちながらバインダーで結着することで比表面積を可能な限り大きくしている。 Generally, the positive electrode of a metal-air battery is a positive electrode current collector, a catalyst for promoting the reaction between oxygen in the air, which is a positive electrode active material, and water, a conductor for supplying electrons necessary for the reaction, and a conductive auxiliary agent. And a binder to form a positive electrode reaction layer, and in order to obtain a large number of reaction fields, there are three materials: a catalyst, a conductor, and a conductive auxiliary agent used in the positive electrode reaction layer (hereinafter also referred to as “air electrode layer”). In many cases, powder is used, and the specific surface area is made as large as possible by binding with a binder while maintaining a mesh-like space where air and water easily enter between the powders.

粉末を板状にするために多くの場合多孔質シートが使用されており、多孔質シートの両面もしくは表面に触媒、導電体、導電助剤の主に3種類の粉末を混練、バインダーの中に3種類の粉末を均等分散させて結着して板状にしている。該多孔質シートは導電体でも非導電体でもよいが導電体の場合には該多孔質シートを正極集電体とする場合もある。 In many cases, a porous sheet is used to make the powder into a plate shape, and three types of powders of catalyst, conductor, and conductive auxiliary agent are kneaded on both sides or the surface of the porous sheet, and in a binder. Three types of powders are uniformly dispersed and bound to form a plate. The porous sheet may be a conductor or a non-conductor, but in the case of a conductor, the porous sheet may be used as a positive electrode current collector.

空気極層の導電体は導電性物質であれば金属でも良いが、導電助剤と共に各種炭素材料粉末を使用される事が多く、触媒としては二酸化マンガンや白金などの貴金属と共に最近効果が明らかにされてきたグラフェンやフェラーレン等の炭素材料があげられる。炭素材料の粉末にはグラフェン等の触媒効果をもつものが製造工程中に自然に混入されてしまっているものもあるため3種類の粉末といっても一つの炭素材料で代用することもできる。   The conductor of the air electrode layer may be a metal as long as it is a conductive substance. However, various carbon material powders are often used together with a conductive additive, and as a catalyst, the effect has recently been clarified along with noble metals such as manganese dioxide and platinum. Carbon materials such as graphene and feralene that have been used are listed. Since some carbon material powders having a catalytic effect such as graphene are naturally mixed during the production process, three types of powders can be substituted with one carbon material.

多孔質シートを利用して粉末を板状に結着した結合層を本発明では空気極層と呼ぶこととし該3種類の粉末を混練して正極集電体の両面もしくは片面に結着し空気極層と一体としたものを含める。 In the present invention, a bonding layer in which powder is bound in a plate shape using a porous sheet is referred to as an air electrode layer. The three types of powders are kneaded and bound on both surfaces or one surface of the positive electrode current collector. Include one integrated with the extreme layers.

多孔質シートを使用する理由としては空気極層の内部全体に空気と水が容易に侵入できるようにして多くの反応場を提供しようとするものであるが、孔のない板状の正極集電体の表面へ空気極層をそのまま結着している場合もある。 The reason for using a porous sheet is to provide a large number of reaction fields by allowing air and water to easily enter the entire inside of the air electrode layer. In some cases, the air electrode layer is directly attached to the surface of the body.

正極集電体の機能は、空気極層の面全体にわたり、できうる限り全面くまなく電子を供給するためのものであるので積層面と平行方向の電気抵抗の少ない材料が好ましい。したかって多くの場合正極集電体としては金属材料が使用される。炭素材料等を使用する場合は積層面と平行方向の抵抗を減らすために高密度で板厚の厚い材料が好ましい。 Since the function of the positive electrode current collector is to supply electrons over the entire surface of the air electrode layer as much as possible, a material having a small electric resistance in the direction parallel to the laminated surface is preferable. Therefore, in many cases, a metal material is used as the positive electrode current collector. In the case of using a carbon material or the like, a material having a high density and a large thickness is preferable in order to reduce the resistance in the direction parallel to the laminated surface.

負極集電体を使用する目的もその求める機能は正極集電体と同様で、負極活物質の全面から効率よく電子を集電するためのものであり、積層面と平行方向の導電率の高い材料が好ましい。したがって負極集電体を使用する場合も金属材料が好ましい。 The purpose of using the negative electrode current collector is the same as the positive electrode current collector, and is intended to efficiently collect electrons from the entire surface of the negative electrode active material, and has high conductivity in the direction parallel to the laminated surface. Material is preferred. Therefore, a metal material is also preferable when using a negative electrode current collector.

以上述べてきたように正極に関しては大きく分類して3種類あり、第一番目は空気極層の内部に正極集電体が存在するもの、第二番目は正極集電体の片面に空気極層を接合したもの、第三番目は空気極層に正極集電体を押圧し密着させたもので、いずれに対しても本発明は有効に機能する。 As described above, the positive electrode is roughly classified into three types, the first having the positive electrode current collector inside the air electrode layer, and the second having the air electrode layer on one side of the positive electrode current collector. The third is the one in which the positive electrode current collector is pressed and adhered to the air electrode layer, and the present invention functions effectively for both.

本発明をより詳しく説明すると、第一番目に求める機能は、特許請求の範囲の請求項1に示したように、隣接する二つの単電池のうちの一方の単電池の負極金属が隣の単電池の正極との当接面側に位置する場合に、該負極金属の隣接する単電池との接触面側に導電性材料を被覆して、該負極金属の該接触面側の表面に水や電解液が直接触れないようにすることで単電池間の接触面での逆起電圧の発生を抑制することである。 The present invention will be described in more detail. The first required function is that the negative electrode metal of one of the two adjacent unit cells is adjacent to the adjacent unit cell, as shown in claim 1 of the claims. When the battery is located on the contact surface side with the positive electrode, a conductive material is coated on the contact surface side of the negative electrode metal with the adjacent unit cell, and the surface of the negative electrode metal on the contact surface side with water or By preventing the electrolytic solution from directly touching, it is possible to suppress the generation of a counter electromotive voltage at the contact surface between the single cells.

二番目に求める機能は、隣接する単電池のうちの一方の単電池の負極活物質ともう一方の単電池の正極の直接接触を防止し、水や電解液が注入された際にガルバニック腐食や隙間腐食を発生させないことである。 The second required function is to prevent direct contact between the negative electrode active material of one of the adjacent unit cells and the positive electrode of the other unit cell, and when galvanic corrosion and water are injected. It does not cause crevice corrosion.

負極金属に導電性材料の被覆を行った単電池は、負極金属の二つの面のうちの導電性材料による被覆のない面をセパレータとの接触面側に配し、セパレータを挟んで空気極層と対向させて密着することにより構成した電池となる。本発明は、導電性材料で被覆した面を接触面として隣接する単電池と密着させて、目的の電圧を確保するに必要な数量の単電池を積層してなる積層電池といえる。 A unit cell in which a negative electrode metal is coated with a conductive material is arranged such that one of the two surfaces of the negative electrode metal that is not coated with a conductive material is disposed on the contact surface side with the separator, and the air electrode layer is sandwiched between the separators. The battery is configured to be in close contact with each other. The present invention can be said to be a laminated battery in which the number of single cells necessary for securing a target voltage is laminated by using a surface coated with a conductive material as a contact surface to be in close contact with the adjacent single cells.

正極集電体を有しない単電池を積層するという本発明の効果を説明する。正極集電体のない単電池は、単電池自体では空気極層の全面にくまなく電子を供給しえるとは言えないために電池としての機能は著しく低くなる。正極集電体を有しない電池は実用化されていなが、単電池を積層してなる積層電池においては正極集電体を有しない単電池が有効となる。 The effect of the present invention of stacking unit cells that do not have a positive electrode current collector will be described. The unit cell without the positive electrode current collector cannot be supplied with electrons all over the entire surface of the air electrode layer. A battery that does not have a positive electrode current collector has not been put into practical use, but a single battery that does not have a positive electrode current collector is effective in a laminated battery that is formed by stacking single cells.

正極集電体を有しない単電池を本発明の積層電池として機能させるためには、積層電池の最も高電位側の単電池には空気極層に接触させて正極集電体を設けなければ電池としての機能が著しく低くなる。 In order for a single battery not having a positive electrode current collector to function as the laminated battery of the present invention, the single cell on the highest potential side of the laminated battery must be in contact with the air electrode layer and provided with no positive electrode current collector. As a result, the function is significantly reduced.

単電池内部の空気極層も負極金属も酸化還元反応が全面にわたって均一に進行することはないため、可能な限り反応を均一に行わせるために積層電池を構成する全ての単電池に正極集電体は必要であり、腐食防止方法に対する新規の発想と共に、本発明は一つの単電池の正極集電体の機能を隣接する単電池の負極金属に担わせるという新規の発想に基づきなされたものである。 In both the air electrode layer and the negative electrode inside the unit cell, the redox reaction does not proceed uniformly over the entire surface. Therefore, in order to make the reaction as uniform as possible, all the unit cells constituting the stacked cell have a positive current collector. The present invention is based on the new idea that the function of the positive electrode current collector of one unit cell is assigned to the negative electrode metal of the adjacent unit cell, together with a new idea for the corrosion prevention method. is there.

負極金属は導電率の高い金属が多く、反応が進んで消耗部分が増加し、金属部分が薄くなっても集電体として十分機能するため、負極活物質として機能するとともに隣接する単電池の正極としても機能する。   The negative electrode metal is often a metal with high conductivity, the reaction proceeds and the consumable part increases, and even if the metal part becomes thin, it functions sufficiently as a current collector. Also works.

このような積層電池に対して、従来は空気極層に正極集電体を密着して一つの基本電池セルとしたものを積層しようとしたため、正極集電体である金属と負極活物質である金属の接触部分に電解液が入った際にカルバニック腐食や隙間腐食を起こした。 In contrast to such a laminated battery, conventionally, an attempt has been made to laminate a basic battery cell by adhering a positive electrode current collector to an air electrode layer, so that a metal that is a positive electrode current collector and a negative electrode active material. Carbanic corrosion and crevice corrosion occurred when the electrolyte entered the metal contact area.

積層電池の品質を安定させるためには基本電池セルを直接積層することができず、公開特許WO2013018769A1にあるように隣り合う基本電池セルの間に絶縁物を入れて直線状に積層する等の工夫がなされてきた。 In order to stabilize the quality of the laminated battery, the basic battery cells cannot be directly laminated, and as disclosed in the published patent WO2013018769A1, an insulative material is inserted between adjacent basic battery cells so as to form a straight line. Has been made.

基本電池セルを直接積層した電池も実在するが、積層面に発生する腐食層の影響で出力が不安定になり、寿命もバラツキが大きく、腐食層の影響を少なくするための製造方法も煩雑になる。   Batteries with direct stacking of basic battery cells also exist, but the output is unstable due to the influence of the corrosive layer generated on the laminated surface, the life varies greatly, and the manufacturing method for reducing the influence of the corrosive layer is complicated. Become.

積層電池の最も低電位側の単電池の負極金属には他の単電池の接触がないため、この非接触面側には必ずしも水や電解質の接触を防止するための導電性材料の被覆の必要はない。ただし、最も低電位側の単電池の負極金属に負極集電体を密着させる場合や電子を取り出すためのリード端子を該負極金属に密着させる場合は、該負極金属の負極集電体やリード端子との接触面に被覆を行うことが望ましい。 Since the negative electrode metal of the cell on the lowest potential side of the laminated battery has no contact with other cells, this non-contact surface must always be coated with a conductive material to prevent contact with water and electrolyte There is no. However, when the negative electrode current collector is brought into close contact with the negative electrode metal of the unit cell on the lowest potential side, or when the lead terminal for taking out electrons is brought into close contact with the negative electrode metal, the negative electrode current collector or lead terminal of the negative electrode metal It is desirable to coat the contact surface.

負極金属の表面を被覆する導電性材料としては液の透過を防ぐという点で各種導電性樹脂の使用が有効であるが、炭素材料を導電体として使用したコーティング剤であれば当接する空気極層に炭素材料が使われることが多いことや正極集電体が空気極層と一体となった構造で金属面が露出している場合などでも金属同士の接触が起きないという点から好ましい材料といえる。   The use of various conductive resins is effective as a conductive material that covers the surface of the negative electrode metal in terms of preventing the permeation of the liquid. This is a preferred material because it often uses carbon materials, and when the positive electrode current collector is integrated with the air electrode layer and the metal surface is exposed, metal-to-metal contact does not occur. .

その他の被覆方法としては金属メッキ、特に銅メッキや銅クラッド材の活用なども挙げられる。また普通の樹脂のように導電率の低い樹脂でも、膜厚をナノメートルオーダやミクロンメートルオーダの薄い被膜で被覆できるものであれば導電性材料として使用できる。   Other coating methods include metal plating, particularly copper plating and the use of copper clad materials. Further, even a resin having a low conductivity such as an ordinary resin can be used as a conductive material as long as it can be coated with a thin film having a thickness of nanometer order or micrometer order.

空気極層に大気中の空気を取り入れ易くするためには負極金属の被覆面が撥水性を有することも有効で、被覆材の隣接する単電池との接触面を撥水処理するか、導電性と液体を通さない性質とを有する撥水性樹脂を負極金属の被覆材として利用することも有効な方法である。   In order to make it easy to take air in the air into the air electrode layer, it is also effective that the coating surface of the negative electrode metal has water repellency. It is also an effective method to use a water-repellent resin having a property of impervious to liquid and liquid as a coating material for the negative electrode metal.

本発明は隣接する二つの単電池のうちの一方の単電池の負極金属が、隣の単電池の正極との接触面側に位置する場合に、該負極金属の隣接する単電池との接触面側に導電性材料を被覆して、該負極金属の該接触面側の表面に水や電解液が触れない構造としたものである。水や電解液が該接触部へ浸入しても該負極金属の表面に触れないため、隣接する電池の空気極層との間で生じる逆起電圧の発生が阻止されるとともに、空気極層との接触部でのガルバニック腐食や隙間腐食を防止できる。更に一方の単電池の負極金属が、隣接する単電池の正極集電体の役割を兼ねることにより、組み立てる部材数の少ない、単純な構造の出力電圧の安定した高容量で、所望の電圧を容易に確保できる空気電池を得ることができる。   In the present invention, when the negative electrode metal of one of the two adjacent unit cells is located on the contact surface side with the positive electrode of the adjacent unit cell, the contact surface of the negative electrode with the adjacent unit cell A conductive material is coated on the side of the negative electrode metal so that water or an electrolyte does not touch the surface of the negative electrode metal on the contact surface side. Even when water or an electrolyte enters the contact portion, the surface of the negative electrode metal is not touched, so that generation of a counter electromotive voltage between adjacent air electrode layers of the battery is prevented, and the air electrode layer Can prevent galvanic corrosion and crevice corrosion at the contact area. Furthermore, the negative electrode metal of one unit cell also serves as the positive electrode current collector of the adjacent unit cell, so that the desired voltage can be easily obtained with a stable output voltage of a simple structure with a small number of parts to assemble. It is possible to obtain an air battery that can be secured to

図1は本発明の1実施例で、4つの単電池を電気的に直列に接続した積層電池の積層状態を示した説明図である。板状の矩形の部材の平面同士を密着させてなる電池の板厚と長さが見える図となっている。なお寸法については実物とは比例関係にない。(実施例1)FIG. 1 is an explanatory view showing a stacked state of a stacked battery in which four unit cells are electrically connected in series according to one embodiment of the present invention. It is the figure which can see the plate | board thickness and length of a battery which adhere | attach the planes of a plate-shaped rectangular member. The dimensions are not proportional to the actual product. (Example 1)

本発明は板状の空気極層、セパレータ、負極金属の3部材を重ね合わせ一つの単電池とし、単電池を電気的に直列に接続して高い電圧を得ようとするもので、図1は4つの単電池を接続した積層電池の積層状態を示している。図1に基づいて本発明の積層電池の説明を行う。   In the present invention, a plate-like air electrode layer, a separator, and a negative electrode metal are stacked to form a single cell, and the cells are electrically connected in series to obtain a high voltage. The lamination | stacking state of the laminated battery which connected the 4 cell was shown. The laminated battery of the present invention will be described based on FIG.

積層電池を構成する負極金属100、セパレータ200、空気極層300、正極集電体400の4つの部材は全て長さと幅が等しい寸法の平板状の部材で、いずれも平板状の負極金属100とセパレータ200と空気極層300の平面部を密着して単電池とし、単電池を重ねて積層電池を構成している。従って図1は積層電池の全ての部材の積層状態を側面からみたもので積層されている部材の厚さが見える図となっている。ただし上述した様に寸法については比例関係にない。   The four members of the negative electrode metal 100, the separator 200, the air electrode layer 300, and the positive electrode current collector 400 constituting the laminated battery are all flat plate members having the same length and width. The flat portions of the separator 200 and the air electrode layer 300 are in close contact to form a single cell, and the single cells are stacked to constitute a laminated battery. Therefore, FIG. 1 is a view showing the thickness of the members laminated by viewing the laminated state of all the members of the laminated battery from the side. However, as described above, the dimensions are not proportional.

4つの単電池の構成を分かりやすくするために、図1の上部にそれぞれの単電池の構成部材をまとめて波括弧でくくり単電池1、単電池2、単電池3、単電池4と表示した。   In order to make the configuration of the four unit cells easy to understand, the constituent members of each unit cell are collectively shown in curly brackets at the top of FIG. 1 and displayed as unit cell 1, unit cell 2, unit cell 3, unit cell 4. .

単電池の基本構成は負極金属100、セパレータ200、空気極層300の3つの平板で、単電池2,単電池3,単電池4については負極金属100の表面100aを導電性材料110で被覆し、単電池2,単電池3,単電池4の負極金属100の表面100aへの水や電解液の浸透を防止している。   The basic configuration of the unit cell is three flat plates of the negative electrode metal 100, the separator 200, and the air electrode layer 300. For the single cell 2, the single cell 3, and the single cell 4, the surface 100a of the negative electrode metal 100 is covered with the conductive material 110. Further, the penetration of water and electrolyte into the surface 100a of the negative electrode metal 100 of the unit cell 2, the unit cell 3, and the unit cell 4 is prevented.

実施例1では負極材料100として厚さ0.6mm、幅25mm、長さ50mmのマグネシウム合金AZ31B、導電性材料110は銅メッキ、セパレータ200として植物繊維系不織布、空気極層300としては樹脂製の多孔質不織布の両面に触媒を含む炭素材料粉末を結着剤で塗布したものを使用して良好な結果を得た。   In Example 1, the magnesium material AZ31B having a thickness of 0.6 mm, a width of 25 mm, and a length of 50 mm as the negative electrode material 100, the conductive material 110 is copper-plated, the vegetable fiber-based nonwoven fabric as the separator 200, and the resin as the air electrode layer 300 Good results were obtained using a porous nonwoven fabric coated with a carbon material powder containing a catalyst with a binder.

導電性材料110は水や電解液を通さない材料であることと負極金属100への良好な密着性が求められるが、正極集電体としての機能は必要ない。従って導電性材料110は密着面と平行方向の導電性は必要なく、厚さは出来るだけ薄い方が良い。   The conductive material 110 is a material that does not allow water or an electrolyte to pass therethrough and good adhesion to the negative electrode metal 100, but does not need a function as a positive electrode current collector. Therefore, the conductive material 110 does not need to be conductive in the direction parallel to the contact surface, and the thickness should be as thin as possible.

導電性材料110は厚さが薄ければ薄いほど密着面に垂直な方向の電気抵抗が少なくなるのでの導電性材料110の被覆層を貫通しての電子の移動が容易になる。 The thinner the conductive material 110 is, the easier it is to move electrons through the coating layer of the conductive material 110 because the electric resistance in the direction perpendicular to the adhesion surface decreases.

図1の単電池1と単電池2により正極集電体の機能について説明する。空気電池では空気極層内部も負極金属表面も表面から見て必ずしも全面一様には反応しない。特に空気極層に関しては全面に渡って必要な部分に必要な量の電子を容易に分配する必要がある。   The function of the positive electrode current collector will be described with the single battery 1 and the single battery 2 of FIG. In an air battery, the inside of the air electrode layer and the surface of the negative electrode metal do not always react uniformly as viewed from the surface. In particular, regarding the air electrode layer, it is necessary to easily distribute a necessary amount of electrons to necessary portions over the entire surface.

電子を容易に収集、分配することが集電体の役割であり、集電体には積層面と平行方向への抵抗の少ない材料が求められ、特に金属材料が適しているのである。 It is the role of the current collector to easily collect and distribute electrons. The current collector is required to be made of a material having low resistance in the direction parallel to the laminated surface, and a metal material is particularly suitable.

図1の単電池1と単電池2により正極集電体の機能について説明する。単電池2の負極金属100のセパレータ200に面する表面での反応で発生した電子は導電性材料110の中を積層面と垂直な方向へ移動して単電池1の空気極層300へ移動する。 The function of the positive electrode current collector will be described with the single battery 1 and the single battery 2 of FIG. Electrons generated by the reaction on the surface of the negative electrode metal 100 of the unit cell 2 facing the separator 200 move in the conductive material 110 in the direction perpendicular to the stacking surface and move to the air electrode layer 300 of the unit cell 1. .

単電池1の空気極層300の内部での反応に応じて、空気極層300の平面内の必要な部分に必要な量の電子を供給するには、単電池2で発生した電子を積層面と平行方向へ容易に移動し得る正極集電体に相当する物質が必要で、本構成の電池では単電池2の負極金属100が正極集電体の役割を果たすことになる。 In order to supply a necessary amount of electrons to a necessary portion in the plane of the air electrode layer 300 in accordance with a reaction inside the air electrode layer 300 of the unit cell 1, electrons generated in the unit cell 2 are stacked on the laminated surface. A material corresponding to a positive electrode current collector that can easily move in a parallel direction is required, and in the battery of this configuration, the negative electrode metal 100 of the unit cell 2 serves as the positive electrode current collector.

更に単電池2の負極金属100の単電池2のセパレータ200に接する表面での反応は全面一様とは言えず、反応により発生した電子は容易に積層面と平行方向へ移動できなければならない。   Furthermore, the reaction on the surface of the negative electrode metal 100 of the unit cell 2 in contact with the separator 200 of the unit cell 2 cannot be said to be uniform, and electrons generated by the reaction must be able to easily move in the direction parallel to the laminated surface.

単電池2の負極金属100は自己の表面で発生した電子を内部へ取込み、積層面と平行方向へ容易に移動させる負極集電体の役割も果たしている。ただし負極金属100が粉末で構成されている場合は別途負極集電体が必要となるが、考え方は同じで負極集電体が正極集電体の役割を果たすことになる。 The negative electrode metal 100 of the unit cell 2 also functions as a negative electrode current collector that takes in electrons generated on its surface and moves them easily in a direction parallel to the laminated surface. However, when the negative electrode metal 100 is made of powder, a separate negative electrode current collector is required, but the concept is the same and the negative electrode current collector plays the role of the positive electrode current collector.

単電池2の負極金属100の反応が進んで厚さが薄くなると積層面と平行方向の抵抗が増えるものの、板が消耗し尽くさない限り集電体としての機能は有効に維持する。   As the reaction of the negative electrode metal 100 of the unit cell 2 progresses and the thickness decreases, the resistance in the direction parallel to the laminated surface increases, but the function as a current collector is effectively maintained unless the plate is exhausted.

単電池2の負極金属100が集電体としての機能を失った時点が本構成の電池の寿命となるが、正極集電体を備えた金属空気電池の寿命も本発明の電池と大差ない。 The point of time when the negative electrode metal 100 of the unit cell 2 loses its function as a current collector is the life of the battery of this configuration, but the life of the metal-air battery provided with the positive electrode current collector is not much different from that of the battery of the present invention.

正極集電体を備えた電池においても負極金属の反応は全面に渡り一様でなく、最終段階では部分的に負極金属が消耗し尽くすために、この時点で電池としての機能は本来の機能より著しく劣化し電池自体の寿命となると考えて良いからである。   Even in a battery equipped with a positive electrode current collector, the reaction of the negative electrode metal is not uniform over the entire surface, and the negative electrode metal is partially consumed at the final stage. This is because it may be considered that the battery deteriorates significantly and the life of the battery itself is reached.

単電池1と単電池2の接触部分を例に正極集電体に関して説明を行ったが、単電池2と単電池3の接触部分、単電池3と単電池4の接触部分での負極金属100が正極集電体として果たす機能は単電池1と単電池2との接触部分と同様である。   The positive electrode current collector has been described by taking the contact portion between the unit cell 1 and the unit cell 2 as an example, but the negative electrode metal 100 at the contact portion between the unit cell 2 and the unit cell 3 and at the contact portion between the unit cell 3 and the unit cell 4 is described. The function of the positive electrode current collector is the same as the contact portion between the single cell 1 and the single cell 2.

導電性材料110としては、空気極層300を構成する炭素材料と自然電極電位が近い材料が望ましく、銅などのように導電性の良い材料であれば薄くても厚くても機能する。銅の場合などはメッキや負極材料100と銅とのクラッド材料が使用できる。ただし厚さは省資源の観点からも薄い方が望ましく、薄くできる点が本発明の特長でもある。   The conductive material 110 is preferably a material having a natural electrode potential close to that of the carbon material forming the air electrode layer 300, and functions as long as it is thin or thick as long as it has good conductivity such as copper. In the case of copper, plating or a clad material of the negative electrode material 100 and copper can be used. However, it is desirable that the thickness is thin from the viewpoint of resource saving, and the feature of the present invention is that the thickness can be reduced.

導電性材料110が導電性素材を含む樹脂の場合には、含有導電性素材としては炭素材料が好ましい。炭素材料であれば隣接する単電池の空気極層300を構成する炭素材料と自然電極電位が近いため、局部電池の形成も少なく良好な電池となりえる。   When the conductive material 110 is a resin containing a conductive material, the contained conductive material is preferably a carbon material. If it is a carbon material, since the natural electrode potential is close to the carbon material constituting the air electrode layer 300 of the adjacent unit cell, a good battery can be obtained with little formation of local batteries.

図1の単電池1の負極金属100の上部にマイナス記号で示したように、今回の実施例1では積層電池全体としては単電池1の負極金属100をそのまま負極集電体として活用している。別途負極集電体やリード線の端子を密着する場合などは単電池1も単電池2、単電池3,単電池4と同様に負極金属100に導電性材料110を被覆したものを使用した方が良い。   As indicated by a minus sign above the negative electrode metal 100 of the unit cell 1 in FIG. 1, in the present Example 1, the negative electrode metal 100 of the unit cell 1 is used as it is as a negative electrode current collector as the whole laminated battery. . When the negative electrode current collector or the lead wire terminal is in close contact with each other, the unit cell 1 is also made by using the negative electrode metal 100 coated with the conductive material 110 in the same manner as the unit cell 2, unit cell 3 and unit cell 4. Is good.

電池全体としては電圧を発生する部分を4つの単電池で構成し、単電池4の空気極層300に正極集電体400を密着し、この正極集電体400が積層電池全体の正極端子取付部材又は正極集電体400自体を正極部端子として、積層方式の空気電池を構成することになる。実施例1では正極集電体400としてステンレス鋼を用いたが、その他の炭素材料と自然電極電位の近い金属で良い。   As a whole battery, the voltage generating part is composed of four single cells, and the positive electrode current collector 400 is closely attached to the air electrode layer 300 of the single cell 4, and this positive electrode current collector 400 is attached to the positive electrode terminal of the entire laminated battery. A laminate type air battery is configured using the member or the positive electrode current collector 400 itself as a positive electrode terminal. In Example 1, stainless steel was used as the positive electrode current collector 400, but other carbon materials and metals having a natural electrode potential may be used.

図1の電池を実際に使用する際には、図1に示した電池の長さL方向の極めてわずかな長さの部分を水に浸漬することによりセパレータ200が水を吸い上げて保持し、長寿命の電池として機能する。   When the battery of FIG. 1 is actually used, the separator 200 sucks up and holds the water by immersing the extremely small length portion of the battery shown in FIG. Functions as a battery with a lifetime.

実施例1では図1のように4つの単電池を積層した積層電池としているが、単電池の積層数は2つから可能で、より高い電圧を得るには積層数を4つ以上にすればよい。また積層した平板に関しても矩形以外の形状にしても良い。   In Example 1, a stacked battery in which four single cells are stacked as shown in FIG. 1 is used. However, the number of stacked single cells is possible from two. To obtain a higher voltage, the number of stacked layers is increased to four or more. Good. Further, the laminated flat plates may have a shape other than a rectangle.

負極金属の隣接する電池と密着する側の面を導電性材料で被覆することにより、単電池を直列に接続し接触部に水や電解液の浸入があっても、単電池同士の接触部における逆起電力の発生とガルバニック腐食や隙間腐食の発生とを防止できる。腐食の発生の防止により、不均一な酸化被膜が基で生じる、電位や内部抵抗や寿命のバラツキが減少して出力が安定化するとともに、積層部での逆起電力の発生も防げるため、小型、軽量、高出力、高容量、高品質の積層電池が実現されて、緊急時等への対応用として安心できる空気電池を供給し得るようになる。特に本発明の空気電池は未使用状態での長期保存用電池として有効である。   By covering the surface of the negative electrode metal that is in close contact with the adjacent battery with a conductive material, even if the cells are connected in series and water or electrolyte enters the contact portion, Generation of counter electromotive force and occurrence of galvanic corrosion and crevice corrosion can be prevented. By preventing the occurrence of corrosion, the variation in potential, internal resistance and life caused by uneven oxide film is reduced, the output is stabilized, and the back electromotive force is prevented from occurring in the laminated part. A lightweight, high-power, high-capacity, high-quality laminated battery can be realized, and an air battery that can be used safely in an emergency or the like can be supplied. In particular, the air battery of the present invention is effective as a battery for long-term storage in an unused state.

100 負極金属
110 導電性材料
200 セパレータ
300 空気極層
100a 負極金属面
100 negative electrode metal 110 conductive material 200 separator 300 air electrode layer 100a negative electrode metal surface

Claims (4)

正極活性物質である空気中の酸素の反応場である空気極層と、負極活性物質である金属とをセパレータを挟んで積層した単位電池ユニット(単電池)があり、その単位電池ユニットを複数積層した構成であり、積層する一方の単位電池ユニットの空気極層と、積層する他方の単位電池ユニットの金属とが互いに隣接する空気電池において、その隣接する前記負極活物質である金属の表面に、次の各条件を充足する被膜を形成した空気電池
(1)前記空気極層と前記金属との間に電子が移動しうる特性を持つこと。
(2)前記金属を空気電池のための電解液から保護、遮断すること。
There is a unit cell unit (unit cell) in which an air electrode layer, which is a reaction field for oxygen in the air, which is a positive electrode active material, and a metal, which is a negative electrode active material, are stacked with a separator in between. In the air battery in which the air electrode layer of one unit battery unit to be stacked and the metal of the other unit battery unit to be stacked are adjacent to each other, on the surface of the metal that is the adjacent negative electrode active material, An air battery in which a film satisfying the following conditions is formed. (1) It has a characteristic that electrons can move between the air electrode layer and the metal.
(2) Protect and shield the metal from the electrolyte for the air battery.
前記負極活物質である金属は、マグネシウム、アルミニウム、リチウム、あるいはそれらの各合金の一つである請求項1に記載の空気電池。 The air battery according to claim 1, wherein the metal that is the negative electrode active material is one of magnesium, aluminum, lithium, or an alloy thereof. 前記負極活物質である金属の表面を被覆する被膜は、その被膜自体が導電性を持つ材料から構成されている、請求項1あるいは2に記載の空気電池。 The air battery according to claim 1 or 2, wherein the coating film covering the surface of the metal that is the negative electrode active material is made of a material having conductivity. 前記負極活物質である金属の表面を被覆する被膜は、高分子樹脂材料からなり、その厚さが、前記(1)の条件を充足するだけの薄さである、請求項1あるいは2に記載の空気電池。 The coating film covering the surface of the metal as the negative electrode active material is made of a polymer resin material, and the thickness thereof is thin enough to satisfy the condition (1). Air battery.
JP2014024126A 2014-02-12 2014-02-12 air battery Pending JP2015153490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024126A JP2015153490A (en) 2014-02-12 2014-02-12 air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024126A JP2015153490A (en) 2014-02-12 2014-02-12 air battery

Publications (1)

Publication Number Publication Date
JP2015153490A true JP2015153490A (en) 2015-08-24

Family

ID=53895568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024126A Pending JP2015153490A (en) 2014-02-12 2014-02-12 air battery

Country Status (1)

Country Link
JP (1) JP2015153490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428970A (en) * 2018-04-18 2018-08-21 北京颐源新能源科技有限公司 A kind of micro metal air cell
CN111564626A (en) * 2019-02-14 2020-08-21 丰田自动车株式会社 Air battery, air battery system, and vehicle equipped with air battery system
CN113745526A (en) * 2020-05-28 2021-12-03 夏普株式会社 Metal-air battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428970A (en) * 2018-04-18 2018-08-21 北京颐源新能源科技有限公司 A kind of micro metal air cell
CN111564626A (en) * 2019-02-14 2020-08-21 丰田自动车株式会社 Air battery, air battery system, and vehicle equipped with air battery system
CN111564626B (en) * 2019-02-14 2023-05-23 丰田自动车株式会社 Air battery, air battery system, and vehicle equipped with air battery system
CN113745526A (en) * 2020-05-28 2021-12-03 夏普株式会社 Metal-air battery

Similar Documents

Publication Publication Date Title
JP5510458B2 (en) battery
US9293796B2 (en) Metal-air battery with dual electrode anode
CN108511199B (en) Electrochemical device
KR101757511B1 (en) Molten salt battery
US11121410B2 (en) Secondary energy storage element having a reference electrode
JP5896244B2 (en) Secondary battery including electrode lead including protective layer for preventing corrosion
WO2016161587A1 (en) Electrode material and energy storage apparatus
US20040126654A1 (en) Electrochemical cell laminate for alkali metal polymer batteries and method for making same
US9825301B2 (en) Electrode with improvement of biased movement and secondary battery comprising the same
US8524389B2 (en) Plate for a bipolar battery and a bipolar battery
JP2011009182A (en) Unit cell for secondary battery equipped with conductive sheet layer and lithium ion secondary battery using the same
JP2011181382A (en) Magnesium air cell
CN112331927B (en) Battery lamination electricity core and battery
JP2019169292A (en) Secondary battery, battery pack, vehicle, and stationary power supply
JP2017124951A (en) Water barrier sodium ion conductive film and sodium battery
KR20120123309A (en) Electricity-storage device
JP2015153490A (en) air battery
KR20180004407A (en) Manufacture method and its structure for lithium-air batteries using metal foam
CN110635175A (en) Internal serial-type battery cell and internal serial-type battery
CN103531757A (en) High-rate pulse discharge zinc-silver battery electrode composite material
JP2011146668A (en) Electric double layer capacitor
EP2048727A2 (en) Battery electrode assembly
US20210151836A1 (en) Battery cell with anode layer protrusion and/or cathode layer protrusion contacted on the separator side and/or on the front side
WO2018101224A1 (en) Bipolar electrode for nickel-hydrogen storage battery and nickel-hydrogen storage battery
US20190051945A1 (en) Stack-type nonaqueous electrolyte secondary battery