JP2015153406A - tactile transmission device - Google Patents

tactile transmission device Download PDF

Info

Publication number
JP2015153406A
JP2015153406A JP2014029898A JP2014029898A JP2015153406A JP 2015153406 A JP2015153406 A JP 2015153406A JP 2014029898 A JP2014029898 A JP 2014029898A JP 2014029898 A JP2014029898 A JP 2014029898A JP 2015153406 A JP2015153406 A JP 2015153406A
Authority
JP
Japan
Prior art keywords
piezoelectric element
diaphragm
vibration
tactile sensation
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014029898A
Other languages
Japanese (ja)
Inventor
大場 佳成
Yoshinari Oba
佳成 大場
哲 山中
Satoru Yamanaka
哲 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2014029898A priority Critical patent/JP2015153406A/en
Publication of JP2015153406A publication Critical patent/JP2015153406A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tactile transmission device using a piezoelectric element allowing reduction in weight/size and cost down, and clear tactile vibration without discomfort.SOLUTION: A tactile transmission device 1 generates vibration for stimulating a user's tactile sense on a planar plate-like vibration plate 10, and includes a planar plate-like piezoelectric element 20 serving as a source for the vibration that is adhered on a front surface 12 as one principal surface of the vibration plate. The vibration plate has a rectangular planar shape, and includes an extension direction of one side (16, 17) of two sides perpendicular to each other as a lengthwise direction or a longitudinal direction and an extension direction of the other side (14, 15) as a width direction or a cross direction. The piezoelectric element has a planar shape longitudinally symmetrical in which a length L1 of the longitudinal direction is larger than a width W1 of the cross direction. The piezoelectric element is adhered to the vibration plate so as to be longitudinally symmetrical, and has a longitudinal length which is 10% or more and 40% or less of a longitudinal length L of the vibration plate.

Description

この発明は振動を用いて利用者に触感を与える触感伝達装置に関する。より詳しくは、圧電素子を用いた触感伝達装置の振動特性を向上させるための技術に関する。   The present invention relates to a tactile sensation transmission device that gives vibration to a user using vibration. More specifically, the present invention relates to a technique for improving vibration characteristics of a tactile sensation transmission device using a piezoelectric element.

例えば、利用者がタッチパネルに表示されているボタンを模した図案に触れたとき、ボタンの堅さや、ボタンを押し込んだときの感覚などの触感を出力情報として利用者に与える装置(以下、触感伝達装置)がある。周知のごとく、触感伝達装置は、タッチパネルを構成するガラス基板などを振動板として、その振動板を圧電素子や偏心モータを用いて振動させる。そして、その触感を発生させるための振動(以下、触感振動とも言う)の周波数や振幅を変えることでさまざまな触感を発生させている。なお、以下の特許文献1や非特許文献1には、触感振動に適した周波数帯域について記載されており、特許文献2には触感伝達装置の原理などが記載されている。また、特許文献3には、振動板の振幅を増幅させるための技術について記載されている。   For example, when a user touches a design imitating a button displayed on a touch panel, a device that gives the user tactile sensation such as the firmness of the button or the sensation of pressing the button (hereinafter referred to as tactile transmission) Device). As is well known, a tactile sensation transmission device uses a glass substrate or the like constituting a touch panel as a vibration plate, and vibrates the vibration plate using a piezoelectric element or an eccentric motor. Various tactile sensations are generated by changing the frequency and amplitude of vibration (hereinafter also referred to as tactile sensation) for generating the tactile sensation. The following Patent Document 1 and Non-Patent Document 1 describe frequency bands suitable for tactile vibration, and Patent Document 2 describes the principle of a tactile sensation transmission device. Patent Document 3 describes a technique for amplifying the amplitude of a diaphragm.

特開平8−254472号公報JP-A-8-254472 特開2007−122501号公報JP 2007-122501 A 特開2007−300426号公報JP 2007-300426 A

一般社団法人情報処理学会、”インタラクション2001予稿集「タッチパネルにクリック感を付加できるActiveClick」”、[online]、[平成26年1月6日検索]、インターネット<URL:http://www.interaction-ipsj.org/archives/paper2001/pdf2001/fukumoto.pdf>Information Processing Society of Japan, "Interaction 2001 Proceedings" ActiveClick that can add a touch to the touch panel "", [online], [Search January 6, 2014], Internet <URL: http: //www.interaction -ipsj.org/archives/paper2001/pdf2001/fukumoto.pdf>

触感伝達装置では、現実感を伴った触感を出力することが要求される。例えば、利用者がタッチパネルに表示されているボタンなどの「ある物」の図案に触れた瞬間にその物の立体感や手触りなどの触感を出力することが要求される。すなわち、入力信号に対して速い応答速度が必要となる。触感をより明瞭に伝えるために、大きな振幅で振動させることも必要となる。   The tactile sensation transmission device is required to output a tactile sensation with a sense of reality. For example, at the moment when the user touches a design of “something” such as a button displayed on the touch panel, it is required to output a tactile sensation such as a three-dimensional feeling or a touch of the thing. That is, a fast response speed is required for the input signal. In order to convey the tactile sensation more clearly, it is also necessary to vibrate with a large amplitude.

また触感伝達装置は、多機能携帯電話機(スマートフォン)やタブレット端末など、ユーザインタフェースの主体が実質的にタッチパネルのみの薄い平板状の情報処理端末に組み込まれる場合が多いため、触感伝達装置には、より薄くより小型であることも求められている。   In addition, the tactile sensation transmission device is often incorporated into a thin flat-plate information processing terminal that is essentially a touch panel, such as a multi-function mobile phone (smart phone) or a tablet terminal. There is also a need to be thinner and smaller.

まず、上記の高速応答性については振動の発生源(以下、振動源)を適切に選ぶ必要がある。振動源としては圧電電素子や偏心モータがあるが、偏心モータは応答速度が遅いため、触感に大きな違和感が生じる。したがって、振動源としては、圧電素子を用いることが現実的である。しかしながら、圧電素子は、偏心モータと比較するとそれ単体では大きな振幅が得られず、共振を利用して振幅を大きくする構造が必要となる。しかしながら、共振構造を採用すると触感伝達装置の小型薄型化が困難となる。例えば、特許文献2に記載されている圧電振動発生装置では、タッチパネルなどの振動対象の裏側に振動錘とそれに伴う複雑な共振構造を設けている。したがって、特別な共振構造を設けず、圧電体を電極で挟持した構造を基本とした圧電素子のみを用いてより大きな触感振動を発生させる工夫が必要となる。   First, for the high-speed response described above, it is necessary to appropriately select a vibration source (hereinafter referred to as a vibration source). The vibration source includes a piezoelectric element and an eccentric motor. However, since the eccentric motor has a slow response speed, a great sense of discomfort occurs in the tactile sensation. Therefore, it is realistic to use a piezoelectric element as the vibration source. However, the piezoelectric element alone cannot obtain a large amplitude as compared with the eccentric motor, and requires a structure for increasing the amplitude using resonance. However, when the resonance structure is employed, it is difficult to reduce the size and thickness of the tactile sensation transmission device. For example, in the piezoelectric vibration generating device described in Patent Document 2, a vibrating weight and a complicated resonance structure associated therewith are provided on the back side of a vibration target such as a touch panel. Therefore, it is necessary to devise a method for generating a larger tactile vibration using only a piezoelectric element based on a structure in which a piezoelectric body is sandwiched between electrodes without providing a special resonance structure.

そこで本発明は、圧電素子を用いた触感伝達装置において、軽量小型化、コストダウンを達成しつつ、明瞭で違和感のない触感振動が得られるようにすることを主な目的としている。   Therefore, the main object of the present invention is to provide a tactile sensation vibration that is clear and free of discomfort while achieving a reduction in weight and size and a reduction in cost in a tactile sensation transmission device using a piezoelectric element.

上記目的を達成するための本発明は、 利用者の触覚を刺激する振動を平板状の振動板に発生させる触感伝達装置であって、
前記振動板の一主面となるおもて面に前記振動の発生源となる平板状の圧電素子が貼着され、
前記振動板の平面形状は矩形であり、互いに直交する二辺の一方の辺の延長方向を長さ方向または前後方向とするとともに、他方の辺の延長方向を幅方向または左右方向とし、
前記圧電素子は、前記前後方向の長さが左右方向の幅よりも大きな前後に対称な平面形状を有するとともに、前記振動板に対して前後対称となるように貼着され、
前記圧電素子の前後長は、前記振動板の前後長の10〜40%である、
ことを特徴とする触感伝達装置としている。
The present invention for achieving the above object is a tactile sensation transmission device that generates vibrations for stimulating a user's tactile sensation in a flat diaphragm,
A plate-like piezoelectric element that is a generation source of the vibration is attached to the front surface that is one main surface of the diaphragm,
The planar shape of the diaphragm is rectangular, and the extension direction of one side of two sides orthogonal to each other is the length direction or the front-rear direction, and the extension direction of the other side is the width direction or the left-right direction,
The piezoelectric element has a planar shape that is symmetric in the front-rear direction in which the length in the front-rear direction is larger than the width in the left-right direction, and is attached so as to be symmetric with respect to the diaphragm.
The longitudinal length of the piezoelectric element is 10 to 40% of the longitudinal length of the diaphragm.
The tactile sensation transmission device is characterized by this.

前記圧電素子の平面形状が長方形である触感伝達装置、または前記圧電素子の平面形状が楕円である触感伝達装置とすれば好ましい。   A tactile sensation transmitting device in which the planar shape of the piezoelectric element is a rectangle or a tactile sensation transmitting device in which the planar shape of the piezoelectric element is an ellipse is preferable.

前記振動板が平板状の表示装置により構成され、前記圧電素子が当該表示装置による表示を妨げない領域に接着されていることを特徴とする触感伝達装置も本発明の範囲としている。   The tactile sensation transmitting device is characterized in that the diaphragm is constituted by a flat display device, and the piezoelectric element is bonded to a region that does not hinder display by the display device.

本発明の触感伝達装置によれば、軽量小型化、およびコストダウンを達成しつつ、大きな振動を発生させてより明瞭で違和感のない触感が得られる。   According to the tactile sensation transmission device of the present invention, a clearer and uncomfortable tactile sensation can be obtained by generating a large vibration while achieving a reduction in weight and size and cost.

本発明の実施例に係る触感伝達装置の概略構造を示す図である。It is a figure which shows schematic structure of the tactile sensation transmission apparatus which concerns on the Example of this invention. 上記実施例に係る触感伝達装置を構成する圧電素子の構造の一例を示す図である。It is a figure which shows an example of the structure of the piezoelectric element which comprises the tactile sense transmission apparatus which concerns on the said Example. 上記実施例に係る上記触感伝達装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the said tactile sense transmission apparatus which concerns on the said Example. 本発明の比較例に係る触感伝達装置の概略構造を示す図である。It is a figure which shows schematic structure of the tactile sensation transmission apparatus which concerns on the comparative example of this invention. 上記触感伝達装置の振動特性の測定方法を示す概略図である。It is the schematic which shows the measuring method of the vibration characteristic of the said tactile sense transmission apparatus. 上記比較例に係る触感伝達装置の振動特性を示す図である。It is a figure which shows the vibration characteristic of the tactile sensation transmission apparatus which concerns on the said comparative example. 本発明の第1の実施例に触感伝達装置の振動状態を示す図である。It is a figure which shows the vibration state of a tactile sensation transmission apparatus in the 1st Example of this invention. 本発明の第2の実施例に係る触感伝達装置が備える圧電素子の平面形状を示す図である。It is a figure which shows the planar shape of the piezoelectric element with which the tactile sense transmission apparatus which concerns on 2nd Example of this invention is provided.

本発明の実施例について、以下に添付図面を参照しつつ説明する。なお、以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。図面によっては説明に際して不要な符号を省略することもある。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that in the drawings used for the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted. In some drawings, unnecessary symbols may be omitted in the description.

===実施例===
上記特許文献1や非特許文献1などにも記載されているように、触感振動に適している周波数帯域は200〜400Hz程度であることから、触感伝達装置には、その周波数帯域でより大きな振幅が発生できる性能が求められる。また触感伝達装置には軽量小型化への要求もある。そこで本発明の実施例に係る触感伝達装置では、タッチパネルなどを想定したガラス板を振動板とし、その振動板に単体の圧電素子を直接接着した構造を採用している。そして、主に振動板と圧電素子との相対的な配置と圧電素子の形状に特徴を有して上記の触感伝達に適した周波数帯域においてより大きな振動を発生することができるようになっている。
=== Example ===
As described in Patent Document 1 and Non-Patent Document 1, the frequency band suitable for tactile vibration is about 200 to 400 Hz. Therefore, the tactile sensation transmission device has a larger amplitude in the frequency band. Performance that can generate is required. In addition, the tactile sensation transmission device is also required to be light and small. Therefore, the tactile sensation transmission device according to the embodiment of the present invention employs a structure in which a glass plate assuming a touch panel or the like is used as a vibration plate, and a single piezoelectric element is directly bonded to the vibration plate. And, it is characterized mainly by the relative arrangement of the diaphragm and the piezoelectric element and the shape of the piezoelectric element, and can generate a larger vibration in the frequency band suitable for the above-mentioned tactile transmission. .

===触感伝達装置の概略構造===
本発明の実施例に係る触感伝達装置の特性を評価するために、振動板に形状やサイズなどが異なる圧電素子を貼着してなる触感伝達装置をサンプルとして作製した。図1は、サンプルとなる触感伝達装置1の基本的な構造を示す概略図である。図1(A)はその平面図であり図1(B)は側面図である。この図に示したように、各サンプルに対応する触感伝達装置1は、矩形平面形状を有する振動板10の一主面12に圧電素子20が貼着された構造となっている。図示した触感伝達装置1では、一つの圧電素子20が矩形平板状の振動板10における一つの短辺16に沿って接着によって貼り付けられた構造となっている。
=== Schematic structure of the tactile sensation transmission device ===
In order to evaluate the characteristics of the tactile sensation transmission device according to the example of the present invention, a tactile sensation transmission device in which piezoelectric elements having different shapes, sizes, and the like were attached to a diaphragm was produced as a sample. FIG. 1 is a schematic diagram showing a basic structure of a tactile sensation transmission device 1 as a sample. FIG. 1A is a plan view thereof, and FIG. 1B is a side view thereof. As shown in this figure, the tactile sensation transmission device 1 corresponding to each sample has a structure in which a piezoelectric element 20 is adhered to one main surface 12 of a diaphragm 10 having a rectangular planar shape. The tactile sensation transmission device 1 shown in the figure has a structure in which one piezoelectric element 20 is attached by bonding along one short side 16 of a rectangular flat diaphragm 10.

ここで振動板10の厚さt方向を上下方向とするとともに、振動板10において圧電素子20が貼着されている上記の一主面を上面(あるいはおもて面)12とし、他方の面を下面(あるいは裏面)13とする。矩形平面形状の振動板10において、互いに直交する辺(14、15と16、17)の一方の辺(16、17)の延長方向を前後方向あるいは長さ方向とし、他方の辺(14、15)の延長方向を左右方向あるいは幅方向とする。この例では振動板10の短辺(16、17)の延長方向が前後方向あるいは長さ方向とし、長辺(14、15)の延長方向を左右方向あるいは幅方向としている。なお前後左右の各方向については図中に示したように規定する。   Here, the thickness t direction of the vibration plate 10 is set as the vertical direction, and the one main surface on which the piezoelectric element 20 is attached to the vibration plate 10 is defined as an upper surface (or front surface) 12 and the other surface. Is the lower surface (or back surface) 13. In the rectangular planar diaphragm 10, the extending direction of one side (16, 17) of the sides (14, 15 and 16, 17) orthogonal to each other is defined as the front-rear direction or the length direction, and the other side (14, 15). ) Is the left-right direction or width direction. In this example, the extending direction of the short sides (16, 17) of the diaphragm 10 is the front-rear direction or the length direction, and the extending direction of the long sides (14, 15) is the left-right direction or the width direction. Note that the front, rear, left and right directions are defined as shown in the figure.

作製した各サンプルにおいて、振動板10は各サンプルに共通のものであり、板状の石英ガラスからなる。サイズは前後長L=185.7mm、左右幅W=241.2mm、厚さt=0.25mmである。圧電素子20の平面形状は長方形に限らすサンプル毎に形状(長方形、円形、楕円など)が異なっている。圧電素子20のサイズについては、前後方向の全長を長さL1とし、左右方向の全長を幅W1とすると、同じ形状でもサンプルに応じてその長さL1や幅W1が異なっている。図1では縦長(L1>W1)の長方形の圧電素子20が貼着された触感伝達装置1を示した。   In each prepared sample, the diaphragm 10 is common to each sample and is made of plate-like quartz glass. The size is a longitudinal length L = 185.7 mm, a lateral width W = 241.2 mm, and a thickness t = 0.25 mm. The planar shape of the piezoelectric element 20 is not limited to a rectangle, and the shape (rectangle, circle, ellipse, etc.) is different for each sample. Regarding the size of the piezoelectric element 20, if the total length in the front-rear direction is the length L1 and the total length in the left-right direction is the width W1, the length L1 and the width W1 are different depending on the sample even in the same shape. FIG. 1 shows the tactile sensation transmission device 1 to which a vertically long (L1> W1) rectangular piezoelectric element 20 is attached.

また触感伝達装置1は、振動板10が前後対称となるように振動するように、圧電素子20が振動板10に対して前後対称となる位置に貼着されている。すなわち、圧電素子20は、前後対称となる平面形状を有し、振動板10において対向する短辺(16、17)の中点同士を結ぶ線18によって前後に二等分される。なお、圧電素子20の左右方向の貼着位置はどの位置でもよいが、この図1に示した触感伝達装置1では、振動板10が表示装置を兼ねるタッチパネルである場合を想定している。そのため、表示装置による表示を妨げない領域として、圧電素子20を振動板10の左方の短辺(以下、左辺とも言う)16に沿うように貼着している。もちろん、振動板10の長辺(14、15)に沿うように貼着してもよい。二つの圧電素子20を互いに対向する二つの辺(16と17あるいは14と15)のそれぞれに沿って貼着してもよい。   Further, in the tactile sensation transmission device 1, the piezoelectric element 20 is attached to a position that is symmetric with respect to the vibration plate 10 so that the vibration plate 10 vibrates so as to be symmetric with respect to the vibration plate 10. That is, the piezoelectric element 20 has a planar shape that is symmetrical in the front-rear direction, and is bisected in the front-rear direction by a line 18 that connects the midpoints of the short sides (16, 17) facing each other in the diaphragm 10. In addition, although the attachment position of the left-right direction of the piezoelectric element 20 may be any position, in the tactile sensation transmission device 1 illustrated in FIG. 1, it is assumed that the diaphragm 10 is a touch panel that also serves as a display device. Therefore, the piezoelectric element 20 is adhered along the left short side (hereinafter also referred to as the left side) 16 of the diaphragm 10 as a region that does not hinder display by the display device. Of course, you may stick so that the long side (14, 15) of the diaphragm 10 may be followed. The two piezoelectric elements 20 may be attached along two sides (16 and 17 or 14 and 15) facing each other.

図2は図1に示した触感伝達装置1における圧電素子20の概略構造を示している。図2(A)は圧電素子20を上方から見たときの平面図であり、図2(B)は図1(A)におけるa−a矢視断面図である。なお図2では圧電素子20を構成部位毎に異なるハッチングで示している。圧電素子20は圧電体25の表裏両面(22、21)に電極(26、27)が形成された構造を有し、圧電体25に対して上下方向に電界が印加されるようになっている。圧電素子の厚さt1は、圧電体25と電極(26、27)を含めた厚さであり、各サンプルで一律にt1=0.3mmとなっている。また圧電体25は、電界方向に対して直交する方向に振動するように分極させており、電極(26、27)に電気信号を印加すると振動板10が面内方向に伸縮する。なお、上述したように各サンプルは圧電素子20の平面形状やサイズが異なっており、電極(26、27)の平面形状は、各サンプルの圧電素子20の平面形状に一致するように形成されている。   FIG. 2 shows a schematic structure of the piezoelectric element 20 in the tactile sensation transmitting device 1 shown in FIG. 2A is a plan view of the piezoelectric element 20 as viewed from above, and FIG. 2B is a cross-sectional view taken along the line aa in FIG. In FIG. 2, the piezoelectric element 20 is indicated by different hatching for each component. The piezoelectric element 20 has a structure in which electrodes (26, 27) are formed on both front and back surfaces (22, 21) of the piezoelectric body 25, and an electric field is applied to the piezoelectric body 25 in the vertical direction. . The thickness t1 of the piezoelectric element is a thickness including the piezoelectric body 25 and the electrodes (26, 27), and is uniformly t1 = 0.3 mm in each sample. The piezoelectric body 25 is polarized so as to vibrate in a direction orthogonal to the electric field direction. When an electric signal is applied to the electrodes (26, 27), the diaphragm 10 expands and contracts in the in-plane direction. As described above, each sample has a different planar shape and size of the piezoelectric element 20, and the planar shape of the electrodes (26, 27) is formed to match the planar shape of the piezoelectric element 20 of each sample. Yes.

図3は触感伝達装置1の振動原理を示す図である。当該図3では振動板を左辺16側から見たときの側面図が示されている。この図に示したように、圧電素子20の圧電体(図2、符号25)に電界が印加されると、圧電素子20はその電界の方向に応じて面内方向(図中、矢印60)に伸縮運動する。その結果、振動板10が撓む。したがって、振動板10は、その撓みの大きさを振幅として、その振幅が時間的に変化することで振動する。なお、振幅は振動板10の各位置で異なる。また振動板10も、側面から見たときに波状に撓むなど、図3に示したような単純な弓状に撓まない場合もある。   FIG. 3 is a diagram illustrating the vibration principle of the tactile sensation transmission device 1. FIG. 3 shows a side view of the diaphragm as viewed from the left side 16 side. As shown in this figure, when an electric field is applied to the piezoelectric body (FIG. 2, reference numeral 25) of the piezoelectric element 20, the piezoelectric element 20 is in an in-plane direction (arrow 60 in the figure) according to the direction of the electric field. Telescopic movement. As a result, the diaphragm 10 is bent. Therefore, the vibration plate 10 vibrates as the amplitude changes with time, with the magnitude of the deflection as the amplitude. The amplitude differs at each position of the diaphragm 10. Further, the diaphragm 10 may not be bent in a simple bow shape as shown in FIG.

===比較例===
実施例に係る触覚伝達装置を評価するための比較例として、まず、図4に示したように、円形平面形状を有する圧電素子20を振動板10の左辺16に沿って貼着した触覚伝達装置1をサンプルとして作製した。
=== Comparative Example ===
As a comparative example for evaluating the tactile transmission device according to the embodiment, first, as shown in FIG. 4, a tactile transmission device in which a piezoelectric element 20 having a circular planar shape is adhered along the left side 16 of the diaphragm 10. 1 was produced as a sample.

以下の表1に比較例となるサンプルに用いた圧電素子20のサイズを示した。   Table 1 below shows the size of the piezoelectric element 20 used in the sample as a comparative example.

Figure 2015153406
表1に示したサンプル1〜3は、圧電素子20の形状がともに円形であるものの、その直径φ(=L1=W1)が異なっている。すなわち各サンプル1〜3は、形状が同じで表面積がそれぞれ異なっている。そして、これらのサンプル1〜3の圧電素子20を所定の周波数帯域で振動させて振動板10の上下方向の最大振幅を測定し、当該サンプル1〜3の振動特性を評価した。概略的には、図1(A)にも示したように、圧電素子20は、振動板10が前後対称に振動するように、短辺(16、17)の中点同士を結ぶ線18に対して前後対称に貼着されていることから、図5に示したように、振動板10の前方半分の領域で、図中黒丸「●」印で示した15点における最大振幅を測定し、その各点での最大振幅の平均値(以下、変位量とも言う)によって各サンプル1〜3の振動特性を評価した。
Figure 2015153406
Samples 1 to 3 shown in Table 1 are different in diameter φ (= L1 = W1) although the shape of the piezoelectric element 20 is circular. That is, the samples 1 to 3 have the same shape and different surface areas. Then, the piezoelectric elements 20 of the samples 1 to 3 were vibrated in a predetermined frequency band, the maximum amplitude in the vertical direction of the diaphragm 10 was measured, and the vibration characteristics of the samples 1 to 3 were evaluated. Schematically, as shown in FIG. 1A, the piezoelectric element 20 has a line 18 connecting the midpoints of the short sides (16, 17) so that the diaphragm 10 vibrates in the longitudinal direction. Since it is affixed symmetrically to the front and rear, as shown in FIG. 5, the maximum amplitude at 15 points indicated by black circles “●” in the figure is measured in the front half region of the diaphragm 10, The vibration characteristics of the samples 1 to 3 were evaluated by the average value of the maximum amplitude at each point (hereinafter also referred to as the displacement amount).

図6にサンプル1〜3における変位量の周波数特性を示した。この図6に示したように変位量の大きさは、測定した周波数帯域の全領域でサンプル1、2、3の順で大きくなっていく。すなわち圧電素子20の面積が大きいほど変位量が大きくなっていることがわかる。また特定の周波数において変位量が増大するピークPが見られる。ここで、触感振動に適した200〜400Hzの周波数帯域(以下、触感周波数帯域とも言う)における変移量のピークP1を見ると、200Hz未満の低周波領域に現れるピークP0に対して激減し、面積が最も大きな圧電素子20を貼着したサンプル3でも当該触感周波数帯域における各ピークP1の変位量が2μm未満であることがわかる。   FIG. 6 shows the frequency characteristics of the displacement amount in Samples 1 to 3. As shown in FIG. 6, the magnitude of the displacement increases in the order of samples 1, 2, and 3 in the entire region of the measured frequency band. That is, it can be seen that the displacement amount increases as the area of the piezoelectric element 20 increases. Further, a peak P in which the amount of displacement increases at a specific frequency is seen. Here, when a peak P1 of the shift amount in a frequency band of 200 to 400 Hz suitable for tactile vibration (hereinafter also referred to as a tactile frequency band) is seen, the area is drastically reduced with respect to the peak P0 appearing in a low frequency region below 200 Hz. It can be seen that the displacement amount of each peak P1 in the tactile frequency band is less than 2 μm even in sample 3 to which the largest piezoelectric element 20 is attached.

以下の表2に、サンプル1〜3における触感周波数帯域での変位量を示した。   Table 2 below shows the amount of displacement in the tactile frequency band in Samples 1 to 3.

Figure 2015153406
上記表2では、触感周波数帯域に現れる複数のピークP1のうち、最も大きなピークP1の変位量(以下、極大変位量)が示されており、この表2から圧電素子20の面積が大きいほど触感振動の振幅も大きくなる傾向が確認できる。その一方で、サンプル1〜3のいすれも十分な極大変位量が得られていないことがわかる。これは、図4に示した振動原理からも推測されるように、円形の圧電素子20が前後方向と左右方向に均等に伸縮するため、振動板10の撓みが前後左右の各方向に分散されて振動板10を効率よく撓ませることができなかったためと思われる。
Figure 2015153406
Table 2 shows the displacement amount (hereinafter referred to as the maximum displacement amount) of the largest peak P1 among the plurality of peaks P1 appearing in the tactile frequency band. From Table 2, the larger the area of the piezoelectric element 20, the greater the tactile sensation. It can be confirmed that the vibration amplitude tends to increase. On the other hand, it can be seen that any of Samples 1 to 3 does not have a sufficient maximum displacement. As estimated from the vibration principle shown in FIG. 4, since the circular piezoelectric element 20 expands and contracts equally in the front-rear direction and the left-right direction, the bending of the diaphragm 10 is dispersed in the front-rear, left-right directions. This is probably because the diaphragm 10 could not be bent efficiently.

===第1の実施例===
上述したように、円形の圧電素子20を用いた比較例に係る触感伝達装置1では大きな触覚振動が得られなかった。そこで、圧電素子20を左右方向よりも前後方向に大きく伸縮させることを考え、図1に示した触感振動装置1のように、圧電素子20の平面形状をL1>W1となる長方形とした。そして、面積をサンプル2と同等で一定としつつ前後方向の全長L1と左右方向の全幅W1との比(以下、縦横比とも言う)が異なる各種圧電素子20を振動板10に貼着した各種触感伝達装置1をサンプルとして作製し、各サンプルについての触感周波数帯域における振動特性(以下、触感振動特性とも言う)を評価した。なお当該評価に際しては、表2に示した比較例に係るサンプル1〜3において、面積がサンプル2よりも約70%大きなサンプル3の極大変位量が1.86μmであったことから、2μm以上の極大変位量を実用上の目安とした。
=== First Embodiment ===
As described above, the tactile sensation transmission device 1 according to the comparative example using the circular piezoelectric element 20 could not obtain a large tactile vibration. Therefore, considering that the piezoelectric element 20 is greatly expanded and contracted in the front-rear direction rather than the left-right direction, the planar shape of the piezoelectric element 20 is a rectangle that satisfies L1> W1, as in the tactile vibration device 1 shown in FIG. Various tactile sensations in which various piezoelectric elements 20 having the same area as sample 2 and a constant ratio of the total length L1 in the front-rear direction and the total width W1 in the left-right direction (hereinafter also referred to as aspect ratio) are attached to the diaphragm 10 are attached. The transmission device 1 was produced as a sample, and vibration characteristics (hereinafter also referred to as tactile vibration characteristics) in the tactile frequency band of each sample were evaluated. In the evaluation, in samples 1 to 3 according to the comparative example shown in Table 2, the maximum displacement amount of sample 3 whose area is about 70% larger than that of sample 2 was 1.86 μm. The maximum displacement was used as a practical guide.

表3に長方形の圧電素子20を貼着したサンプルにおける圧電素子20のサイズと極大変移量を示した。   Table 3 shows the size of the piezoelectric element 20 and the extremely large amount of transfer in the sample in which the rectangular piezoelectric element 20 was attached.

Figure 2015153406
表3では極大変位量とともに圧電素子20の前後方向の全長L1、左右方向の幅W1、および縦横比が示されている。サンプル13の圧電素子20は、縦横比が1に近くほぼ正方形に近い形状であり、他のサンプル4〜12は、縦横比が大きく「縦長」である。そして、各サンプル4〜13のうち、縦横比が1〜3番目に大きなサンプル4〜6と、縦横比が最も小さく正方形に近いサンプル13では極大変位量が2μm以下となった。このことから、圧電素子20の縦横比には一見すると適正な範囲が存在するように見える。
Figure 2015153406
Table 3 shows the total displacement L1 in the front-rear direction, the width W1 in the left-right direction, and the aspect ratio of the piezoelectric element 20 along with the maximum displacement. The piezoelectric element 20 of the sample 13 has a shape in which the aspect ratio is close to 1 and is almost square, and the other samples 4 to 12 have a large aspect ratio and are “long”. Among the samples 4 to 13, the samples 4 to 6 having the largest aspect ratio and the sample 13 having the smallest aspect ratio and the shape close to a square had a maximum displacement of 2 μm or less. From this, it seems that an appropriate range exists in the aspect ratio of the piezoelectric element 20 at first glance.

しかしながら、各サンプル4〜13における圧電素子20は同じサイズの振動板10に貼着されていることから、本発明者は、各サンプル4〜13における振動板10と圧電素子20との相対的なサイズ、およびその相対的なサイズと圧電素子20の振動に伴う振動板10の撓みの状態との関係についても検討する必要があると考えた。そして、縦長の圧電素子20では圧電振動に伴う伸縮量が大きくなる方向、すなわち振動板10における縦(長さ)方向に定常波を発生させれば、振動板10の変移量が大きくなるのではないかと推測した。   However, since the piezoelectric element 20 in each sample 4 to 13 is attached to the diaphragm 10 of the same size, the inventor has a relative relationship between the diaphragm 10 and the piezoelectric element 20 in each sample 4 to 13. It was considered necessary to examine the size and the relationship between the relative size and the state of bending of the diaphragm 10 accompanying the vibration of the piezoelectric element 20. In the longitudinally long piezoelectric element 20, if a standing wave is generated in the direction in which the expansion / contraction amount due to piezoelectric vibration increases, that is, in the longitudinal (length) direction of the diaphragm 10, the amount of displacement of the diaphragm 10 does not increase. I guessed.

概念的には、振動板10の長さ方向の辺である短辺(16、17)の両端が節となり、中央が腹となる振動モードの定在波、言い換えれば、長さ方向の波数が1/2となる定在波を発生させれば大きな触感振動が得られると考えた。図7に長さ方向の端数が1/2となるときの振動板10の短辺(16、17)と圧電素子20の長さL1との関係を示した。当該図7では触感伝達装置1を左辺16方向から見たときの側面図を示している。この図7に示したように、圧電素子20の長さL1が振動板の長さLの1/3(=L/3)であるときに最も効率良く振動していると予想される。そこで、表3の結果を振動板10の長さLと圧電素子20の長さL1との比(以下、前後長比)α=L1/Lの関係に着目して整理してみた。   Conceptually, both ends of the short sides (16, 17) that are the lengthwise sides of the diaphragm 10 are nodes, and the standing wave of the vibration mode in which the center is an antinode, in other words, the wave number in the length direction is It was considered that a large tactile vibration could be obtained if a standing wave of 1/2 was generated. FIG. 7 shows the relationship between the short side (16, 17) of the diaphragm 10 and the length L1 of the piezoelectric element 20 when the fraction in the length direction is halved. FIG. 7 shows a side view of the tactile sensation transmission device 1 when viewed from the left side 16 direction. As shown in FIG. 7, it is expected that the piezoelectric element 20 vibrates most efficiently when the length L1 of the piezoelectric element 20 is 1/3 (= L / 3) of the length L of the diaphragm. Therefore, the results in Table 3 were organized by focusing on the relationship of the ratio of the length L of the diaphragm 10 and the length L1 of the piezoelectric element 20 (hereinafter referred to as the longitudinal length ratio) α = L1 / L.

表4にサンプル4〜13における前後長比αと極大変位量との関係を示した。   Table 4 shows the relationship between the longitudinal length ratio α and the maximum displacement amount in Samples 4 to 13.

Figure 2015153406
表4では前後長比αを百分率で示している。予想したように、前後長比αが1/3に近いα=32.9%となるサンプル9において4μm近い大きな極大変位量が得られた。またこの表4から、圧電素子20の形状が長方形であれば、前後長比αが約10%乃至約43%とすると2μm以上の極大変位量が得られることがわった。
Figure 2015153406
Table 4 shows the longitudinal length ratio α as a percentage. As expected, a large maximum displacement amount of about 4 μm was obtained in Sample 9 in which the longitudinal length ratio α was α = 32.9%, which was close to 1/3. Table 4 also indicates that if the piezoelectric element 20 has a rectangular shape, a maximum displacement of 2 μm or more can be obtained when the longitudinal length ratio α is about 10% to about 43%.

なお、長方形以外の形状の圧電素子20も考慮して前後長比αの上記数値範囲の上限に関して検討すると、前後長比αが大きいと振動板10に接着されている圧電素子20自体の剛性によって振動板10の撓みも抑制されてしまうため、上限は40%程度とすることが妥当であると思われる。一方、下限については、振動板10を長さ方向に撓ませる駆動力が不足して変位量は小さくなるが、面積が一定であれば幅方向への駆動力が増加するため変位量は維持されると考えられる。したがって、前後長比αの下限についてはα=10%でよい。すなわち、第1の実施例を含め、本発明の実施例に係る触感振動装置1は、前後長比αを10%≦α≦40%とすることが望ましい。   Considering the upper limit of the numerical range of the longitudinal length ratio α in consideration of the piezoelectric element 20 having a shape other than the rectangle, if the longitudinal length ratio α is large, the rigidity of the piezoelectric element 20 itself bonded to the diaphragm 10 is large. Since the bending of the diaphragm 10 is also suppressed, it seems appropriate that the upper limit is about 40%. On the other hand, as for the lower limit, the amount of displacement is small because the driving force for bending the diaphragm 10 in the length direction is insufficient, but the amount of displacement is maintained because the driving force in the width direction increases if the area is constant. It is thought. Accordingly, the lower limit of the longitudinal length ratio α may be α = 10%. That is, it is desirable that the tactile sensation vibration device 1 according to the embodiment of the present invention including the first embodiment has a longitudinal length ratio α of 10% ≦ α ≦ 40%.

さらに、円形の圧電素子20を用いた先のサンプル1〜3のうち、サンプル2と3は前後長比αがそれぞれ10.45%と13.57%であり、上記の前後長比αの適正範囲10%≦α≦40%に含まれているが、サンプル2や3では、同等の前後長比αを有するサンプル12や11と比較すると極大変移量が極めて小さい。このことから、圧電素子20の縦横比についても条件が存在し、その条件は縦横比が1よりも大きい、ということになる。すなわち本発明の実施例に係る触感振動装置1では、前後方向の長さL1が左右方向の幅W1よりも大きいことも条件となる。   Further, among the samples 1 to 3 using the circular piezoelectric element 20, the samples 2 and 3 have the longitudinal length ratio α of 10.45% and 13.57%, respectively. Although it is included in the range 10% ≦ α ≦ 40%, the samples 2 and 3 have a very small amount of displacement as compared with the samples 12 and 11 having the same longitudinal length ratio α. Therefore, there is a condition for the aspect ratio of the piezoelectric element 20, and the condition is that the aspect ratio is larger than 1. That is, in the tactile vibration device 1 according to the embodiment of the present invention, the length L1 in the front-rear direction is also larger than the width W1 in the left-right direction.

===第2の実施例===
上記第1の実施例は、圧電素子20の形状が縦長の長方形であり、かつ前後長比αが10%≦α≦40となる触感伝達装置1であった。つぎに、縦横比が1よりも大きく、かつ前後長比αの範囲が10%≦α≦40であることを条件としつつ、長方形以外の形状の圧電素子20を用いた各種触感伝達装置1をサンプルとして作製し、それらの触感振動特性について評価した。
=== Second Embodiment ===
The first embodiment is the tactile sensation transmission device 1 in which the shape of the piezoelectric element 20 is a vertically long rectangle and the longitudinal length ratio α is 10% ≦ α ≦ 40. Next, the various tactile sensation transmission devices 1 using the piezoelectric elements 20 having shapes other than the rectangle are provided on condition that the aspect ratio is greater than 1 and the range of the longitudinal length ratio α is 10% ≦ α ≦ 40. Samples were prepared and their tactile vibration characteristics were evaluated.

図8に長方形以外の圧電素子の形状を示した。図8(A)は十字形であり、縦長の長方形の前後および左右に矩形の突辺部(31、32)を連結した形状で、前後方向の長さL1、左右方向の幅W1、左右の突辺部32の辺の長さ(以下、突辺長)L2、前後の突辺部31の辺の幅(以下、突辺幅)W2が異なる圧電素子20を用いてサンプルを作製した。図8(B)は楕円であり、長軸φ1方向を前後(長さ、縦)方向、短軸φ2方向を左右(幅、横)方向として長さL1、幅W1が異なる圧電素子を用いてサンプルを作製した。   FIG. 8 shows the shape of a piezoelectric element other than a rectangle. FIG. 8A shows a cross shape, in which a rectangular protrusion (31, 32) is connected to the front and rear of the vertically long rectangle and to the left and right, the length L1 in the front-rear direction, the width W1 in the left-right direction, Samples were prepared using piezoelectric elements 20 having different side lengths (hereinafter referred to as projecting side lengths) L2 of the projecting side portions 32 and widths (hereinafter referred to as projecting side widths) W2 of the front and rear projecting side portions 31. FIG. 8B shows an ellipse, using piezoelectric elements having different lengths L1 and W1 with the major axis φ1 direction being the front-rear (length, longitudinal) direction and the minor axis φ2 direction being the left-right (width, lateral) direction. A sample was made.

表5に十字形および楕円形の圧電素子を備えたサンプルについて、その圧電素子のサイズを示した。   Table 5 shows the size of the piezoelectric element with respect to the sample including the cross-shaped and elliptical piezoelectric elements.

Figure 2015153406
表5に示したように、サンプル14〜21は、面積が長方形の圧電素子を備えたサンプル4〜13と同程度としている。その上で、形状と前後長比が異なっている。
Figure 2015153406
As shown in Table 5, Samples 14 to 21 have the same size as Samples 4 to 13 each having a piezoelectric element having a rectangular area. In addition, the shape and the longitudinal length ratio are different.

以下の表6にサンプル14〜21における前後長比αと極大変位量との関係を示した。   Table 6 below shows the relationship between the longitudinal length ratio α and the maximum displacement amount in Samples 14 to 21.

Figure 2015153406
表6に示したように、前後長比αが上記の数値範囲10%≦α≦40にある十字形および楕円形の圧電素子20を備えたサンプル14〜21ではいずれも2μm以上の極大変位量が得られ、当該数値範囲が妥当であったことが確認できた。また同程度の前後長比であれば、十字形よりも楕円形の圧電素子20の方がより大きな極大変位量が得られることもわかった。そして、楕円形の圧電素子20を用いたサンプル20、21では前後長比αが1/3により近いα=31.34のサンプル21において3.72μmの大きな極大変位量が得られ、第1の実施例に係る触感振動装置1と同じ傾向の触感振動特性を有することも確認できた。
Figure 2015153406
As shown in Table 6, in the samples 14 to 21 including the cross-shaped and elliptical piezoelectric elements 20 having the longitudinal length ratio α in the numerical range 10% ≦ α ≦ 40, the maximum displacement amount is 2 μm or more. It was confirmed that the numerical range was appropriate. It has also been found that if the longitudinal length ratio is comparable, the elliptical piezoelectric element 20 can obtain a larger maximum displacement than the cross shape. In the samples 20 and 21 using the elliptical piezoelectric element 20, a large maximum displacement amount of 3.72 μm is obtained in the sample 21 in which the longitudinal length ratio α is closer to 1/3, α = 31.34. It has also been confirmed that the tactile sensation vibration characteristic has the same tendency as the tactile sensation vibration apparatus 1 according to the example.

一方、十字形の圧電素子20を用いたサンプル14〜19では、前後長比αが1/3により近いα=32.31のサンプル14やα=35.00のサンプ15よりも、α=25.04のサンプル17の方が極大変位量が大きかった。これは、圧電素子20の平面形状において、左右の突辺32がない領域と無い領域との境界で、圧電振動に伴う前後方向と左右方向の伸縮量が不連続になることに起因しているものと推測される。いずれにしても、前後長比αが上記適正範囲内であれば2μm以上の極大変位量が得られることがわかった。そして圧電素子20の形状は、周囲に凹凸がない長方形あるいは楕円であればより好ましいということもわかった。   On the other hand, in the samples 14 to 19 using the cross-shaped piezoelectric element 20, α = 25, compared to the sample 14 with α = 32.23 and the sump 15 with α = 35.00, whose front-to-back length ratio α is closer to 1/3. .04 sample 17 had a larger maximum displacement. This is because, in the planar shape of the piezoelectric element 20, the expansion and contraction amount in the front-rear direction and the left-right direction due to the piezoelectric vibration is discontinuous at the boundary between the region where the left and right protrusions 32 are not present and the region where the left and right protrusions 32 are absent. Presumed to be. In any case, it was found that a maximum displacement amount of 2 μm or more can be obtained if the longitudinal length ratio α is within the above-mentioned appropriate range. It has also been found that the shape of the piezoelectric element 20 is more preferably a rectangle or an ellipse with no irregularities around it.

===その他の実施例===
比較例も含め、サンプルとして作製した触感伝達装置1は、圧電体25を電極(26、27)で挟持した最も簡素な構成の圧電素子20を振動板10に貼着したものであり、圧電素子20自体の振幅が小さい。しかし、振動板10の長さLと圧電素子の長さL1との比を最適化することで大きな触感振動が得られることがわかった。そのため、圧電素子20を周知のユニモルフ構造やバイモルフ構造としたり、複数の圧電体を積層したりして圧電素子自体の振幅を大きくすれば、当然のことながら、さらに大きな触感振動が得られることになる。したがって、実用に際しては用途などに応じて適宜な構造の圧電素子を採用すればよい。
=== Other Embodiments ===
A tactile sensation transmission device 1 manufactured as a sample including a comparative example is obtained by sticking a piezoelectric element 20 having the simplest structure in which a piezoelectric body 25 is sandwiched between electrodes (26, 27) to a vibration plate 10. The amplitude of 20 itself is small. However, it has been found that a great tactile vibration can be obtained by optimizing the ratio between the length L of the diaphragm 10 and the length L1 of the piezoelectric element. Therefore, if the piezoelectric element 20 has a well-known unimorph structure or bimorph structure, or a plurality of piezoelectric bodies are stacked to increase the amplitude of the piezoelectric element itself, naturally, a larger tactile vibration can be obtained. Become. Therefore, in practical use, a piezoelectric element having an appropriate structure may be employed depending on the application.

上述したように、サンプルとして作製した触感伝達装置1では、矩形でかつ長方形の平面形状を有する振動板10を用い、その長方形の短辺(16、17)の延長方向を長さ方向あるいは縦方向として定義していた。もちろん長辺(14、15)の延長方向を長さ(縦)方向としてもよい。振動板10は正方形であってもよい。いずれにしても、矩形の振動板10において直交する二辺(14、15と16と17)の一方の延長方向を長さ方向あるいは縦方向とし、他方を幅方向あるいは横方向として上記の縦横比や前後長比を満足する圧電素子20をその振動板10に貼着すればよい。   As described above, in the tactile sensation transmission device 1 manufactured as a sample, the diaphragm 10 having a rectangular shape and a rectangular planar shape is used, and the extension direction of the short side (16, 17) of the rectangle is the length direction or the vertical direction. Was defined as Of course, the extending direction of the long sides (14, 15) may be the length (vertical) direction. The diaphragm 10 may be square. In any case, the above-described aspect ratio is set such that one extending direction of two orthogonal sides (14, 15, 16 and 17) in the rectangular diaphragm 10 is a length direction or a vertical direction and the other is a width direction or a horizontal direction. Alternatively, the piezoelectric element 20 that satisfies the longitudinal ratio may be attached to the diaphragm 10.

本発明は、例えば、タッチパネルを備えた各種情報処理端末(多機能携帯電話機、タブレット端末など)に適用することができる。   The present invention can be applied to, for example, various information processing terminals (multifunctional mobile phones, tablet terminals, etc.) provided with a touch panel.

1 触感伝達装置、10 振動板、12 振動板の上面、14,15 振動板の長辺、
16,17 振動板の短辺、20 圧電素子、25 圧電体 26,27 電極、
L 振動板の長さ、L1 圧電素子の長さ、W 振動板の幅、
W1 圧電素子の幅


1 tactile sensation transmission device, 10 diaphragm, 12 upper surface of diaphragm, 14, 15 long side of diaphragm,
16, 17 Short side of diaphragm, 20 piezoelectric element, 25 piezoelectric body 26, 27 electrode,
L length of diaphragm, L1 length of piezoelectric element, width of diaphragm W,
W1 Piezoelectric element width


Claims (4)

利用者の触覚を刺激する振動を平板状の振動板に発生させる触感伝達装置であって、
前記振動板の一主面となるおもて面に前記振動の発生源となる平板状の圧電素子が貼着され、
前記振動板の平面形状は矩形であり、互いに直交する二辺の一方の辺の延長方向を長さ方向または前後方向とするとともに、他方の辺の延長方向を幅方向または左右方向とし、
前記圧電素子は、前記前後方向の長さが左右方向の幅よりも大きな前後に対称な平面形状を有するとともに、前記振動板に対して前後対称となるように貼着され、
前記圧電素子の前後長は、前記振動板の前後長の10%以上40%以下である、
ことを特徴とする触感伝達装置。
A tactile sensation transmission device that generates vibrations for stimulating a user's tactile sensation on a flat diaphragm,
A plate-like piezoelectric element that is a generation source of the vibration is attached to the front surface that is one main surface of the diaphragm,
The planar shape of the diaphragm is rectangular, and the extension direction of one side of two sides orthogonal to each other is the length direction or the front-rear direction, and the extension direction of the other side is the width direction or the left-right direction,
The piezoelectric element has a planar shape that is symmetric in the front-rear direction in which the length in the front-rear direction is larger than the width in the left-right direction, and is attached so as to be symmetric in the front-rear direction with respect to the diaphragm.
The longitudinal length of the piezoelectric element is 10% to 40% of the longitudinal length of the diaphragm.
A tactile sensation transmission device characterized by that.
請求項1において、前記圧電素子の平面形状が長方形であることを特徴とする触感伝達装置。   The tactile sensation transmission device according to claim 1, wherein the piezoelectric element has a rectangular planar shape. 請求項1において、前記圧電素子の平面形状が楕円であることを特徴とする触感伝達装置。   The tactile sensation transmission device according to claim 1, wherein a planar shape of the piezoelectric element is an ellipse. 請求項1〜3のいずれかにおいて、前記振動板が平板状の表示装置により構成され、前記圧電素子が当該表示装置による表示を妨げない領域に接着されていることを特徴とする触感伝達装置。   4. The tactile sensation transmission device according to claim 1, wherein the diaphragm is configured by a flat display device, and the piezoelectric element is bonded to a region that does not hinder display by the display device.
JP2014029898A 2014-02-19 2014-02-19 tactile transmission device Pending JP2015153406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029898A JP2015153406A (en) 2014-02-19 2014-02-19 tactile transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029898A JP2015153406A (en) 2014-02-19 2014-02-19 tactile transmission device

Publications (1)

Publication Number Publication Date
JP2015153406A true JP2015153406A (en) 2015-08-24

Family

ID=53895516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029898A Pending JP2015153406A (en) 2014-02-19 2014-02-19 tactile transmission device

Country Status (1)

Country Link
JP (1) JP2015153406A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512813A (en) * 2016-09-21 2019-05-16 アップル インコーポレイテッドApple Inc. Tactile structure for providing local haptic output
WO2019187182A1 (en) * 2018-03-24 2019-10-03 Smk株式会社 Tactile sensation presentation device and operation input device
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10809805B2 (en) 2016-03-31 2020-10-20 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US11043088B2 (en) 2009-09-30 2021-06-22 Apple Inc. Self adapting haptic device
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11402911B2 (en) 2015-04-17 2022-08-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065507A (en) * 2004-08-25 2006-03-09 Sony Corp Vibration transmission mechanism, method for creating vibration waveform data, input device with touch function, and electronic device
JP2010152888A (en) * 2008-12-23 2010-07-08 Research In Motion Ltd Portable electronic device and method of control
JP2011175519A (en) * 2010-02-25 2011-09-08 Kyocera Corp Touch panel device
WO2012053202A1 (en) * 2010-10-21 2012-04-26 京セラ株式会社 Touch panel device
US20120242593A1 (en) * 2011-03-23 2012-09-27 Samsung Electro-Mechanics Co.,Ltd. Piezoelectric vibration module and touch screen using the same
JP2012198582A (en) * 2009-06-23 2012-10-18 Murata Mfg Co Ltd Electronic apparatus
JP2012203895A (en) * 2011-03-28 2012-10-22 Taiyo Yuden Co Ltd Touch panel device and electronic apparatus
JP2013093006A (en) * 2011-10-24 2013-05-16 Chief Land Electronic Co Ltd Tactile feedback module
JP2013205952A (en) * 2012-03-27 2013-10-07 Kyocera Corp Panel device
JP2013242809A (en) * 2012-05-22 2013-12-05 Kyocera Corp Panel device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065507A (en) * 2004-08-25 2006-03-09 Sony Corp Vibration transmission mechanism, method for creating vibration waveform data, input device with touch function, and electronic device
JP2010152888A (en) * 2008-12-23 2010-07-08 Research In Motion Ltd Portable electronic device and method of control
JP2012198582A (en) * 2009-06-23 2012-10-18 Murata Mfg Co Ltd Electronic apparatus
JP2011175519A (en) * 2010-02-25 2011-09-08 Kyocera Corp Touch panel device
WO2012053202A1 (en) * 2010-10-21 2012-04-26 京セラ株式会社 Touch panel device
US20120242593A1 (en) * 2011-03-23 2012-09-27 Samsung Electro-Mechanics Co.,Ltd. Piezoelectric vibration module and touch screen using the same
JP2012203895A (en) * 2011-03-28 2012-10-22 Taiyo Yuden Co Ltd Touch panel device and electronic apparatus
JP2013093006A (en) * 2011-10-24 2013-05-16 Chief Land Electronic Co Ltd Tactile feedback module
JP2013205952A (en) * 2012-03-27 2013-10-07 Kyocera Corp Panel device
JP2013242809A (en) * 2012-05-22 2013-12-05 Kyocera Corp Panel device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605273B2 (en) 2009-09-30 2023-03-14 Apple Inc. Self-adapting electronic device
US11043088B2 (en) 2009-09-30 2021-06-22 Apple Inc. Self adapting haptic device
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US11402911B2 (en) 2015-04-17 2022-08-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10809805B2 (en) 2016-03-31 2020-10-20 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US11150734B2 (en) 2016-09-21 2021-10-19 Apple Inc. Haptic structure for providing localized haptic output
CN114371783A (en) * 2016-09-21 2022-04-19 苹果公司 Haptic structures for providing localized haptic output
JP2019512813A (en) * 2016-09-21 2019-05-16 アップル インコーポレイテッドApple Inc. Tactile structure for providing local haptic output
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
WO2019187182A1 (en) * 2018-03-24 2019-10-03 Smk株式会社 Tactile sensation presentation device and operation input device
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11763971B2 (en) 2019-09-24 2023-09-19 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device

Similar Documents

Publication Publication Date Title
JP2015153406A (en) tactile transmission device
JP5820846B2 (en) Vibrating device and electronic device using the same
JP5558577B2 (en) Piezoelectric vibration device and portable terminal using the same
JP5597583B2 (en) Touch panel device and electronic device
JP5409925B2 (en) Piezoelectric vibration device and portable terminal using the same
US8917009B2 (en) Vibration generator and electronic device including the same
US20120242593A1 (en) Piezoelectric vibration module and touch screen using the same
KR20120105785A (en) Piezoelectric device
Halim et al. Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact
JP5677639B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
CN105375900B (en) Piezo-electric device and the electronic device for including the piezo-electric device
JP2005303937A (en) Supporting structure of piezoelectric bimorph element
JP6128284B2 (en) Vibrating body and tactile display keyboard
JP6335626B2 (en) Tactile transmission device
JP6228820B2 (en) Tactile transmission device
JP6137415B2 (en) Tactile presentation device
JP7313799B2 (en) vibration transmission device
KR20140142799A (en) piezo-electric vibrator
JP7370190B2 (en) Panels and electronic equipment
US20110241489A1 (en) Piezoelectric vibrator and electronic device using same
JP6962348B2 (en) Vibration device
KR101544124B1 (en) Piezoelectric vibrating device
Kang et al. Preliminary study for smoother vibrotactile flow generation on thin plates by using piezoelectric actuators
JP2010245842A (en) Bending vibration actuator
KR20160062660A (en) Piezoelectric vibrating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180925