JP2015152566A - Method for analyzing concentrations of elements in vitrified waste - Google Patents

Method for analyzing concentrations of elements in vitrified waste Download PDF

Info

Publication number
JP2015152566A
JP2015152566A JP2014029623A JP2014029623A JP2015152566A JP 2015152566 A JP2015152566 A JP 2015152566A JP 2014029623 A JP2014029623 A JP 2014029623A JP 2014029623 A JP2014029623 A JP 2014029623A JP 2015152566 A JP2015152566 A JP 2015152566A
Authority
JP
Japan
Prior art keywords
glass
vitrified
laser
analyzed
element concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029623A
Other languages
Japanese (ja)
Other versions
JP6217025B2 (en
Inventor
代治 西澤
Daiji Nishizawa
代治 西澤
毅彦 猪瀬
Takehiko Inose
毅彦 猪瀬
孝一 大山
Koichi Oyama
孝一 大山
厚志 宮内
Atsushi Miyauchi
厚志 宮内
崇之 永井
Takayuki Nagai
崇之 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2014029623A priority Critical patent/JP6217025B2/en
Publication of JP2015152566A publication Critical patent/JP2015152566A/en
Application granted granted Critical
Publication of JP6217025B2 publication Critical patent/JP6217025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser ablation inductively coupled plasma atomic emission spectroscopy, capable of simply, promptly and accurately measuring concentrations of elements in vitrified waste.SOLUTION: There is provided a method for analyzing concentrations of elements in vitrified waste using a YAG laser as a laser beam source, which includes the steps of: preparing calibration curves of standard glass samples; and analyzing concentrations of elements in analysis target vitrified waste by using the calibration curves. There is also provided a method for analyzing concentrations of elements in vitrified waste which includes the step in which aerosol generated by irradiating analysis target vitrified waste with a YAG laser beam having a sample scan speed of 100 μm/s or more, a pulse rate of 20 Hz or more and a laser beam pulse energy intensity of 5 J/cmor more, is temporarily stored in a buffer container to be averaged. Then, average concentrations of platinum group elements and/or foreign matters unevenly distributed in the analysis target vitrified waste are quantified.

Description

本発明は、YAGレーザ第5高調波光(YAG−5ωレーザ、波長λ≒213nm)を光源として用いるレーザアブレーション法誘導結合プラズマ発光分光分析法(LA法ICP−AES)により、ガラス固化体の元素濃度分析を行う方法に関する。   The present invention uses a laser ablation method inductively coupled plasma emission spectroscopy (LA method ICP-AES) using a YAG laser fifth harmonic light (YAG-5ω laser, wavelength λ≈213 nm) as a light source, and the element concentration of the vitrified body. It relates to the method of performing the analysis.

原子力発電所から搬出される使用済み核燃料を再処理すると、高濃度の放射性物質を含む廃液(高レベル放射性廃液)が生ずる。高レベル放射性廃液は、再処理施設のガラス固化設備のガラス溶融炉にて溶融するホウケイ酸塩ガラスと混合され、キャニスタ中に流下され、次いで冷却されると、高レベルの放射性物質はガラス中に固定され、ガラス固化体が得られる。ガラス固化体は廃棄物管理施設で保管され、最終的に地層中に処分される。   Reprocessing spent nuclear fuel transported from nuclear power plants produces waste liquids containing high concentrations of radioactive material (high level radioactive liquid waste). The high-level radioactive liquid waste is mixed with borosilicate glass that melts in the glass melting furnace of the reprocessing facility's vitrification facility, flows down into the canister, and then cools down so that the high-level radioactive material is contained in the glass. Fixed and a vitrified body is obtained. The vitrified body is stored in a waste management facility and finally disposed of in the formation.

ガラス溶融炉の開発及びガラス固化体作製方法の確立は難しく、開発過程では、通常、モックアップガラス溶融炉(モックアップ溶融炉)を用いて、放射能を有しない模擬高レベル放射性廃液(模擬廃液)をガラス固化する試験方法が用いられる。モックアップ溶融炉により作製されるガラス固化体が模擬ガラス固化体である。   Development of a glass melting furnace and establishment of a method for producing a glass solidified body are difficult. In the development process, a mock-up glass melting furnace (mock-up melting furnace) is usually used to simulate a high-level radioactive waste liquid without a radioactivity (simulated waste liquid). ) Is vitrified. The vitrified body produced by the mock-up melting furnace is a simulated vitrified body.

高レベル放射性廃液をガラス溶融炉実機でガラス固化させる時と同様に、模擬廃液をモックアップ溶融炉でガラス固化させる時も、模擬廃液中の白金族元素(Pd、Rh、Ru等)、また溶融ガラス中に落下した溶融炉天井レンガ成分、溶融ガラス中に溶損した溶融炉接液部レンガ成分等の異物は、比較的大きな固まりになって溶融ガラス中で偏在しやすく、モックアップ溶融炉の出口ノズルを閉塞させるため、溶融ガラスのキャニスタ内への流下不調が生じやすい。
従って、ガラス固化体中の白金族元素、また溶融炉天井レンガ成分や溶融炉接液部レンガ成分等の異物の元素濃度分析の実施は、ガラス溶融炉の開発及びガラス固化体作製方法の確立にとって極めて重要である。
In the same way as when solidifying high-level radioactive waste liquid in a glass melting furnace, when the simulated waste liquid is vitrified in a mock-up melting furnace, the platinum group elements (Pd, Rh, Ru, etc.) in the simulated waste liquid are also melted. Foreign materials such as melting furnace ceiling brick components dropped into glass and melting furnace wetted parts brick components melted down into molten glass tend to become a relatively large mass and are unevenly distributed in molten glass. Since the outlet nozzle is closed, a malfunction of the molten glass flowing into the canister tends to occur.
Therefore, the element concentration analysis of foreign substances such as platinum group elements in glass solidified bodies, melting furnace ceiling brick components and melting furnace wetted parts brick components, etc. is important for the development of glass melting furnaces and the establishment of glass solidified body preparation methods. Very important.

従来より、(1)溶液法誘導結合プラズマ発光分光分析法(溶液法ICP−AES)及び(2)蛍光X線分析法(XRF)が、ガラス固化体(以下、模擬ガラス固化体を含む総称として用いる。)の元素濃度分析方法として用いられている。また、(3)目視確認も、天井レンガ成分等の異物検出のために、従来より用いられている。
しかし、従来技術(1)及び(2)は、ガラス固化体の元素濃度分析を行うまでの前処理に非常に多くの労力と時間、更にコストを要する。
(1)溶液法ICP−AESは、試料溶液の調製(ガラス固化体の一部を採取し、酸に溶解させ、測定用溶液を作製する)に多くの時間と労力を必要とする。更に、酸の使用は2次廃棄物(塩酸廃液、硝酸廃液)を発生させ、その処理コストを要する。
(2)XRFは、ガラス固化体を粉砕・微細化して測定用試料を作製する工程を要し、当該工程は多くの時間と労力を必要とする。
(3)目視確認は、流下ガラス中の天井レンガ成分等の異物の混入の認定を可能とするが、異物の元素濃度を定量分析できないという欠点を有する。
Conventionally, (1) solution method inductively coupled plasma optical emission spectrometry (solution method ICP-AES) and (2) fluorescent X-ray analysis (XRF) are generally referred to as glass solids (hereinafter referred to as simulated glass solids). Used) as an element concentration analysis method. Further, (3) visual confirmation is also conventionally used for detecting foreign matters such as ceiling brick components.
However, the prior arts (1) and (2) require a great deal of labor, time, and cost for pretreatment until the element concentration analysis of the vitrified body is performed.
(1) Solution method ICP-AES requires a lot of time and labor to prepare a sample solution (collect a part of a glass solid and dissolve it in an acid to prepare a measurement solution). Furthermore, the use of an acid generates secondary waste (hydrochloric acid waste liquid, nitric acid waste liquid), which requires a treatment cost.
(2) XRF requires a step of pulverizing and refining a vitrified glass to produce a measurement sample, and this step requires a lot of time and labor.
(3) Although visual confirmation enables recognition of foreign matters such as ceiling brick components in the falling glass, it has a drawback that the elemental concentration of the foreign matter cannot be quantitatively analyzed.

ところで、LA法ICP−AESによる貴金属(白金族元素、金及び銀)の分析法が検討された(例えば、特許文献1参照)。また、赤外線レーザが光源として用いられるLA法ICP−AESによる金属やガラス等の固体試料の元素濃度分析方法が検討された(例えば、特許文献2参照)。しかし、上記のLA法ICP−AESによりガラス固化体の元素濃度分析はできない。   By the way, an analysis method of noble metals (platinum group elements, gold and silver) by LA method ICP-AES has been studied (for example, see Patent Document 1). Further, an element concentration analysis method for a solid sample such as metal or glass by LA method ICP-AES in which an infrared laser is used as a light source has been studied (for example, see Patent Document 2). However, element concentration analysis of the vitrified body cannot be performed by the LA method ICP-AES.

なお、誘導結合プラズマ(Inductively Coupled Plasma、略称ICP)は、気体に高電圧が印加されて発生するプラズマの内部に、高周波の変動磁場によって渦電流によるジュール熱を発生させて得られる高温のプラズマである。
発光分光分析(Atomic Emission Spectrometry、略称AES)は、原子化・熱励起された試料が基底状態に戻る際の発光スペクトルを測定する、元素の定性・定量分析法であり、原子吸光法と異なり、一度に複数の元素が分析される。
Note that inductively coupled plasma (abbreviated as ICP) is a high-temperature plasma obtained by generating Joule heat due to eddy currents in a plasma generated when a high voltage is applied to a gas. is there.
Atomic Emission Spectrometry (AES) is an elemental qualitative / quantitative analysis method that measures the emission spectrum when an atomized / thermally excited sample returns to the ground state. Unlike atomic absorption spectrometry, Several elements are analyzed at once.

特開2011−106961号公報JP2011-106961A 特開平5−107186号公報JP-A-5-107186

近年、簡単、迅速、正確なガラス固化体の元素濃度分析方法が求められていたが、このような分析方法は実現されていなかった。
本発明が解決しようとする課題は、簡単、迅速、正確なガラス固化体の元素濃度分析方法の提供である。
In recent years, there has been a demand for a simple, rapid and accurate element concentration analysis method for vitrified bodies, but such an analysis method has not been realized.
The problem to be solved by the present invention is to provide a simple, rapid and accurate element concentration analysis method for vitrified bodies.

本発明は、YAG−5ωレーザが光源として用いられるLA法ICP−AESによりガラス固化体の元素濃度が分析される方法であって、検量線作成用標準ガラス試料が、分析対象のガラス固化体の化学組成に類似させられて作製され検量線が作成される工程、上記検量線が使用され、分析対象のガラス固化体の元素濃度が分析される工程を含むガラス固化体の元素濃度分析方法である。   The present invention is a method in which the elemental concentration of a glass solid is analyzed by LA method ICP-AES in which a YAG-5ω laser is used as a light source, and a standard glass sample for preparing a calibration curve is used for analyzing the glass solid to be analyzed. A method for analyzing the concentration of an element in a vitrified body, comprising a step of making a calibration curve similar to a chemical composition, and a step of analyzing the element concentration of the glass solid to be analyzed by using the calibration curve. .

好ましくは、パルス繰返し数が20Hz以上、試料スキャン速度が100μm/s以上、レーザパルスエネルギー強度(レーザ強度Ip)が5J/cm2以上のYAG−5ωレーザが分析対象のガラス固化体に照射される。本発明は、また、レーザアブレーション(LA)により発生するエアロゾルが、ICP−AES装置へ輸送されるライン中に組み込まれたバッファ容器で一時蓄積され、平均化される工程を更に含む。 Preferably, the glass solid to be analyzed is irradiated with a YAG-5ω laser having a pulse repetition rate of 20 Hz or more, a sample scanning speed of 100 μm / s or more, and a laser pulse energy intensity (laser intensity Ip) of 5 J / cm 2 or more. . The present invention also further includes a step in which aerosol generated by laser ablation (LA) is temporarily stored and averaged in a buffer container incorporated in a line transported to the ICP-AES device.

本発明は、YAG−5ωレーザが光源として用いられるLA法ICP−AESによりガラス固化体の元素濃度が分析される方法であって、試料スキャン速度が100μm/s以上にて、パルス繰返し数が20Hz以上、レーザパルスエネルギー強度が5J/cm2以上のYAG−5ωレーザが分析対象のガラス固化体に照射され、分析対象のガラス固化体中に偏在する白金族元素(Pd、Rh、Ru等)及び/又は異物(溶融炉天井レンガ成分、溶融炉接液部レンガ成分等)の平均濃度が定量される工程を含む、ガラス固化体の元素濃度分析方法である。 The present invention is a method in which the element concentration of a vitrified body is analyzed by LA method ICP-AES in which a YAG-5ω laser is used as a light source, and the sample scanning speed is 100 μm / s or more and the pulse repetition rate is 20 Hz. As described above, a YAG-5ω laser having a laser pulse energy intensity of 5 J / cm 2 or more is irradiated on the glass solid body to be analyzed, and platinum group elements (Pd, Rh, Ru, etc.) unevenly distributed in the glass solid body to be analyzed and This is an element concentration analysis method for vitrified solids, including a step in which the average concentration of foreign matters (melting furnace ceiling brick component, melting furnace wetted part brick component, etc.) is quantified.

本発明は、好ましくは、レーザアブレーション(LA)装置を用いたアブレーションにより発生するエアロゾルが、ICP−AES装置へ輸送されるライン中に組み込まれたバッファ容器で一時蓄積され、平均化される工程を更に含む。   The present invention preferably includes a process in which aerosol generated by ablation using a laser ablation (LA) apparatus is temporarily accumulated and buffered in a buffer container incorporated in a line transported to an ICP-AES apparatus. In addition.

本発明のガラス固化体の元素濃度分析方法は、簡単、迅速、正確な分析方法を可能にする。   The vitrified element concentration analysis method of the present invention enables a simple, quick and accurate analysis method.

図1は、ガラス固化体の元素濃度分析装置の模式図である。FIG. 1 is a schematic view of a vitrified element concentration analyzer. 図2は、異なる濃度のCeO2とNd23をN10ガラスビーズに添加して作製した5つの標準ガラス試料(N10+Ce/Nd標準ガラス試料)にYAG−5ωレーザを照射し、LAで生じたエアロゾルをICP−AESにより分析して得たCeの検量線(Ce酸化物濃度とICP発光強度の相関)を示す。FIG. 2 shows that five standard glass samples (N10 + Ce / Nd standard glass samples) prepared by adding different concentrations of CeO 2 and Nd 2 O 3 to N10 glass beads were irradiated with a YAG-5ω laser and produced in LA The calibration curve of Ce obtained by analyzing aerosol by ICP-AES (correlation between Ce oxide concentration and ICP emission intensity) is shown. 図3は、異なる濃度のCeO2とNd23をN10ガラスビーズに添加して作製した5つのN10+Ce/Nd標準ガラス試料にYAG−5ωレーザを照射し、LAで生じたエアロゾルをICP−AESにより分析して得たNdの検量線(Nd酸化物濃度とICP発光強度の相関)を示す。FIG. 3 shows that five N10 + Ce / Nd standard glass samples prepared by adding different concentrations of CeO 2 and Nd 2 O 3 to N10 glass beads were irradiated with a YAG-5ω laser, and the aerosol generated in LA was subjected to ICP-AES. 2 shows a calibration curve of Nd obtained by analysis (correlation between Nd oxide concentration and ICP emission intensity). 図4は、異なる濃度のCeO2とNd23を白金族元素を含まない低模擬廃液のガラス固化体に添加して作製した4つの標準ガラス試料(低模擬標準ガラス試料)にYAG−5ωレーザを照射し、LAで生じたエアロゾルをICP−AESにより分析して得たCeの検量線(Ce酸化物濃度とICP発光強度の相関)を示す。図4のCeの検量線は、図2のCeの検量線に比べて、相関係数R2が良いのが明らかである。FIG. 4 shows four standard glass samples (low simulated standard glass samples) prepared by adding different concentrations of CeO 2 and Nd 2 O 3 to a glass solid of low simulated waste liquid not containing platinum group elements. A calibration curve of Ce (correlation between Ce oxide concentration and ICP emission intensity) obtained by laser irradiation and analyzing the aerosol generated in LA by ICP-AES is shown. It is apparent that the Ce calibration curve in FIG. 4 has a better correlation coefficient R 2 than the Ce calibration curve in FIG. 図5は、異なる濃度のCeO2とNd23を白金族元素を含まない低模擬廃液のガラス固化体に添加して作製した4つの低模擬標準ガラス試料にYAG−5ωレーザを照射し、LAで生じたエアロゾルをICP−AESにより分析して得たNdの検量線(Nd酸化物濃度とICP発光強度の相関)を示す。図5のNdの検量線は、図3のNdの検量線に比べて、相関係数R2が良いのが明らかである。FIG. 5 shows that four low simulated standard glass samples prepared by adding different concentrations of CeO 2 and Nd 2 O 3 to a glass solid of a low simulated waste liquid not containing platinum group elements are irradiated with a YAG-5ω laser. 2 shows a calibration curve of Nd (correlation between Nd oxide concentration and ICP emission intensity) obtained by analyzing the aerosol generated in LA by ICP-AES. It is apparent that the Nd calibration curve in FIG. 5 has a better correlation coefficient R 2 than the Nd calibration curve in FIG.

本発明のガラス固化体の元素濃度分析方法の原理を図1を用いて説明する。LA装置により、YAG−5ωレーザ(非線形光学効果を用いて発生させるYAGレーザ第5高調波光)が固体試料である低模擬標準ガラス試料に照射され、エアロゾルが発生する。当該エアロゾルがICP−AES装置のトーチに送られ、低模擬標準ガラス試料を構成する元素濃度が分析される。   The principle of the element concentration analysis method for vitrified glass of the present invention will be described with reference to FIG. The LA apparatus irradiates a YAG-5ω laser (YAG laser fifth harmonic light generated using a nonlinear optical effect) onto a low-simulation standard glass sample, which is a solid sample, and generates aerosol. The aerosol is sent to the torch of the ICP-AES apparatus, and the concentration of elements constituting the low simulation standard glass sample is analyzed.

次に、測定対象元素の濃度が異なる残りの低模擬標準ガラス試料について、この作業を繰り返す。   Next, this operation is repeated for the remaining low simulated standard glass samples having different concentrations of the element to be measured.

同様に、YAG−5ωレーザが元素濃度分析対象のガラス固化体に照射され、エアロゾルが発生する。当該エアロゾルが、ICP−AES装置のトーチに送られ、ガラス固化体を構成する元素濃度が分析される。好ましいYAG−5ωレーザの試料スキャン速度は100μm/s以上、パルス繰返し数は20Hz以上、レーザパルスエネルギー強度は5J/cm2以上である。 Similarly, a YAG-5ω laser is irradiated onto the vitrified material to be analyzed for element concentration, and aerosol is generated. The aerosol is sent to the torch of the ICP-AES apparatus, and the concentration of elements constituting the vitrified body is analyzed. The sample scanning speed of a preferable YAG-5ω laser is 100 μm / s or more, the pulse repetition rate is 20 Hz or more, and the laser pulse energy intensity is 5 J / cm 2 or more.

元素濃度分析対象のガラス固化体が、ガラス固化体中に偏在し易い白金族元素及び/又はレンガ成分等の異物を含む場合、試料スキャン速度が100μm/s以上にて、パルス繰返し数が20Hz以上、レーザパルスエネルギー強度が5J/cm2以上のYAG−5ωレーザが分析対象のガラス固化体に照射され、分析対象のガラス固化体中に偏在する白金族元素及び/又は異物の平均濃度が定量される。 When the vitrified body subject to element concentration analysis contains foreign substances such as platinum group elements and / or brick components that are likely to be unevenly distributed in the vitrified body, the sample scan speed is 100 μm / s or more and the pulse repetition rate is 20 Hz or more. A YAG-5ω laser having a laser pulse energy intensity of 5 J / cm 2 or more is irradiated onto the glass solid body to be analyzed, and the average concentration of platinum group elements and / or foreign matters unevenly distributed in the glass solid body to be analyzed is quantified. The

YAG−5ωレーザの照射により発生するエアロゾルは、バッファ容器に一時的に蓄積された後、ICP−AES装置のトーチに送られ、元素濃度分析に付され得る。   The aerosol generated by the irradiation of the YAG-5ω laser is temporarily accumulated in the buffer container, and then sent to the torch of the ICP-AES apparatus, where it can be subjected to element concentration analysis.

LA装置及びICP−AES装置は市販されている。市販されているLA装置の具体例はesi社製NWR213である。市販されているICP−AES装置の具体例は、PerkinElmer社製Optima 7300DVである。   LA devices and ICP-AES devices are commercially available. A specific example of a commercially available LA device is NWR213 manufactured by esi. A specific example of a commercially available ICP-AES apparatus is Optima 7300 DV manufactured by PerkinElmer.

LA法ICP−AESは、ICPの発光強度は、トーチに届くエアロゾル量に比例し、測定対象元素のエアロゾル量は、試料(ガラス固化体)中の元素濃度に比例するという原理を用いる元素濃度分析方法である。従って、レーザ出力(レーザエネルギー)はアブレーションだけに消費される(エネルギーが熱変形、破砕片の発生等に消費されない)ことが理想的である。よって、レーザのエネルギーが非熱プロセスで専ら照射対象の固体の化学結合切断に消費され易い、短波長のパルスUVレーザが、LAの光源として適しているとされる。現状、YAG−5ωレーザは、扱いが容易で且つハロゲンガス等の2次廃棄物を発生させない固体レーザにて、実効的なパルスUVレーザ出力を取り出せる最短波長のレーザである。   LA method ICP-AES is an element concentration analysis that uses the principle that the emission intensity of ICP is proportional to the amount of aerosol reaching the torch, and the amount of aerosol of the element to be measured is proportional to the element concentration in the sample (solidified glass). Is the method. Therefore, it is ideal that the laser output (laser energy) is consumed only for ablation (energy is not consumed for thermal deformation, generation of fragments, etc.). Therefore, a short-wavelength pulsed UV laser, in which the laser energy is easily consumed by the chemical bond breakage of the solid to be irradiated in a non-thermal process, is considered suitable as the LA light source. At present, the YAG-5ω laser is a short-wavelength laser that can be easily handled and can produce an effective pulsed UV laser output with a solid-state laser that does not generate secondary waste such as halogen gas.

本発明の発明者らは、検量線作成用の標準ガラス試料と分析対象のガラス固化体(模擬ガラス固化体)の化学組成(構造)が大きく異なると、LA法ICP−AESにより同じ元素の濃度分析を行っても、正確な値が得られないことを見出した。本発明の発明者らは、化学結合の結合エネルギーが大きく異なると、同じ元素でもLAにより生ずるエアロゾル量が大きく異なるためと推察している。更に、本発明の発明者らは、検量線作成用標準ガラス試料の化学組成を測定対象のガラス固化体の化学組成に近づけると、内部構造が類似し、その結果、結合エネルギーが近似し、上記されるLA法ICP−AESの原理に基づき、正確な元素濃度が測定されると推察している。なお、検量線作成用標準ガラス試料の化学組成と分析対象のガラス固化体の化学組成は同一でなくてよい。   When the chemical composition (structure) of the standard glass sample for preparing a calibration curve and the glass solid to be analyzed (simulated glass solid) is greatly different, the inventors of the present invention have the same elemental concentration by LA method ICP-AES. It was found that an accurate value could not be obtained even after analysis. The inventors of the present invention have inferred that when the bond energy of a chemical bond is greatly different, the amount of aerosol produced by LA is greatly different even for the same element. Furthermore, when the inventors of the present invention bring the chemical composition of the standard glass sample for preparing a calibration curve close to the chemical composition of the glass solid to be measured, the internal structure is similar, and as a result, the binding energy approximates, Based on the principle of LA method ICP-AES, it is assumed that the accurate element concentration is measured. Note that the chemical composition of the standard glass sample for preparing the calibration curve and the chemical composition of the glass solid to be analyzed need not be the same.

廃液、従ってガラス固化体に含まれる成分を構成する元素の具体例は、Si、B、Ca、Al、Zn、Li、Na、P、Cr、Fe、Ni、K、Mn、Co、Cs、Ba、La、Pr、Sm、Ru、Rh、Pd等である。当該成分の具体例は、これらの元素の酸化物や単体である。   Specific examples of the elements constituting the waste liquid and thus the components contained in the vitrified body are Si, B, Ca, Al, Zn, Li, Na, P, Cr, Fe, Ni, K, Mn, Co, Cs, Ba La, Pr, Sm, Ru, Rh, Pd and the like. Specific examples of the component are oxides or simple substances of these elements.

測定対象となる元素の検量線は、検量線作成用標準ガラス試料(例えば、低模擬標準ガラス試料)により作成される。その後、分析対象のガラス固化体中の測定対象元素の発光スペクトルがLA法ICP−AESにより測定され、検量線が利用されて、ガラス固化体中の当該元素濃度が求められる。今回、本発明の発明者らは、Ce、Ndを対象として、YAG−5ωレーザを用いるLA法ICP−AESによりガラス固化体の元素濃度分析を行うことを実証したが、Ce、Ndにとどまらず、Si、B、Ca、Al、Zn、Li、Na、P、Cr、Fe、Ni、K、Mn、Co、Cs、Ba、La、Pr、Sm、Ru、Rh、Pd等も測定対象(濃度定量対象)となる。   A calibration curve for the element to be measured is created from a standard glass sample for creating a calibration curve (for example, a low simulation standard glass sample). Thereafter, the emission spectrum of the element to be measured in the glass solid to be analyzed is measured by LA method ICP-AES, and the calibration curve is used to determine the concentration of the element in the glass solid. This time, the inventors of the present invention have demonstrated that LA and ICP-AES using a YAG-5ω laser for elemental concentration analysis of a vitrified body for Ce and Nd, but not limited to Ce and Nd. , Si, B, Ca, Al, Zn, Li, Na, P, Cr, Fe, Ni, K, Mn, Co, Cs, Ba, La, Pr, Sm, Ru, Rh, Pd, etc. Subject to quantification).

以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

比較例1
CeO2(和光純薬(株)製、純度99.9質量%以上)とNd23((株)レアメタリック製、純度99.9質量%以上)が質量比3.3:1.4で混合されている混合物が、表1に示される組成のN10ガラスビーズに各々0.5、1、2、5、10質量%含有されるように添加され、5つのN10+Ce/Nd標準ガラス試料が作製された。
その後、YAG−5ωレーザが、LA装置(esi社製NWR213)により、ビーム径110μm、パルス繰返し数20Hz、試料スキャン速度100μm/s、Heガス(キャリアガス)流速400ml/minで、レーザ強度(Ip)が変化させられて上記N10+Ce/Nd標準ガラス試料に照射され、発生するエアロゾルがICP−AES装置(PerkinElmer社製Optima 7300DV)に送られて、Ce酸化物濃度、Nd酸化物濃度と発光強度の相関が測定された。結果が図2及び図3に示されている。
Comparative Example 1
CeO 2 (Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) and Nd 2 O 3 (Rare Metallic, purity 99.9% by mass or more) have a mass ratio of 3.3: 1.4. The N10 glass beads having the composition shown in Table 1 were added so as to contain 0.5, 1, 2, 5, 10% by mass, respectively, and five N10 + Ce / Nd standard glass samples were added. It was made.
Thereafter, the YAG-5ω laser was measured with a LA device (NWR 213 manufactured by esi) at a beam diameter of 110 μm, a pulse repetition rate of 20 Hz, a sample scanning speed of 100 μm / s, and a He gas (carrier gas) flow rate of 400 ml / min. ) Is changed and irradiated to the N10 + Ce / Nd standard glass sample, and the generated aerosol is sent to an ICP-AES apparatus (Optima 7300DV manufactured by PerkinElmer), where the Ce oxide concentration, Nd oxide concentration and emission intensity are measured. Correlation was measured. The results are shown in FIGS.

Figure 2015152566
Figure 2015152566

実施例1
上記CeO2と上記Nd23が質量比1:1で混合されている混合物が、上記N10ガラスビーズに各種酸化物が添加されている表2に示される組成の模擬ガラス固化体(模擬流下ガラス)に各々1、2、5、7質量%含有されるように添加され、4つの低模擬標準ガラス試料が作製された。従って、これらの低模擬標準ガラス試料の組成は、模擬ガラス固化体(模擬流下ガラス)の組成に類似しており、通常、分析対象のガラス固化体一般の組成にも類似する。
その後、Ce酸化物濃度、Nd酸化物濃度と発光強度の相関が、比較例1と同様の条件で測定された。結果が図4及び図5に示されている。
Example 1
A mixture in which CeO 2 and Nd 2 O 3 are mixed at a mass ratio of 1: 1 is a simulated vitrified body (simulated flow down) having the composition shown in Table 2 in which various oxides are added to the N10 glass beads. Glass) was added so as to contain 1, 2, 5, and 7% by mass, respectively, and four low-simulation standard glass samples were produced. Therefore, the composition of these low simulated standard glass samples is similar to the composition of the simulated vitrified body (simulated falling glass), and is generally similar to the composition of the general vitrified object to be analyzed.
Thereafter, the correlation between the Ce oxide concentration, the Nd oxide concentration and the emission intensity was measured under the same conditions as in Comparative Example 1. The results are shown in FIGS.

Figure 2015152566
Figure 2015152566

上記N10+Ce/Nd標準ガラス試料に含まれるCeO2濃度、Nd23濃度と発光強度の相関はどのレーザ強度でも低く(相関係数R2は0.999未満)、CeO2とNd23がN10ガラスビーズに添加されて作製されるN10+Ce/Nd標準試料が用いられる検量線は、LA法ICP−AESによる分析対象のガラス固化体中のCe、Ndの濃度定量分析に適していなかった。
一方、上記低模擬標準ガラス試料に含まれるCeO2濃度、Nd23濃度と発光強度の相関はどのレーザ強度でも高く(相関係数R2は0.999以上)、CeO2とNd23が各種酸化物と共にN10ガラスビーズに添加されて作製される低模擬標準ガラス試料が用いられる検量線は、LA法ICP−AESによる分析対象のガラス固化体中のCe、Ndの濃度定量分析に適していた。
The correlation between CeO 2 concentration, Nd 2 O 3 concentration and emission intensity contained in the N10 + Ce / Nd standard glass sample is low at any laser intensity (correlation coefficient R 2 is less than 0.999), and CeO 2 and Nd 2 O 3 The calibration curve using the N10 + Ce / Nd standard sample prepared by adding N10 to the N10 glass beads was not suitable for quantitative determination of the concentration of Ce and Nd in the glass solid to be analyzed by LA method ICP-AES.
On the other hand, the correlation between CeO 2 concentration, Nd 2 O 3 concentration and emission intensity contained in the low simulated standard glass sample is high at any laser intensity (correlation coefficient R 2 is 0.999 or more). CeO 2 and Nd 2 O A calibration curve using a low-simulated standard glass sample prepared by adding 3 to various N10 glass beads together with various oxides is used for quantitative analysis of Ce and Nd in a glass solid to be analyzed by LA method ICP-AES. It was suitable.

本発明のガラス固化体の元素濃度分析方法は、モックアップ溶融炉を用いるガラス固化試験における流下ガラスの元素分析、レンガ成分等の異物の検知、及び実機ガラス溶融炉で作製したガラス固化体の製造品質検査に係る元素分析に好適である。   The element concentration analysis method of the vitrified body of the present invention is the element analysis of the falling glass in the vitrification test using a mock-up melting furnace, the detection of foreign matters such as brick components, and the production of the vitrified body produced in the actual glass melting furnace It is suitable for elemental analysis related to quality inspection.

Claims (5)

YAGレーザ第5高調波光が光源として用いられるレーザアブレーション法誘導結合プラズマ発光分光分析法によりガラス固化体の元素濃度が分析される方法であって、
検量線作成用標準ガラス試料が、分析対象のガラス固化体の化学組成に類似させられて作製され検量線が作成される工程、
上記検量線が使用され、分析対象のガラス固化体の元素濃度が分析される工程、を含むガラス固化体の元素濃度分析方法。
A method in which the element concentration of a vitrified body is analyzed by a laser ablation method inductively coupled plasma emission spectroscopy using a YAG laser fifth harmonic light as a light source,
A process in which a standard glass sample for creating a calibration curve is made to be similar to the chemical composition of the glass solid to be analyzed and a calibration curve is created,
A method for analyzing the concentration of an element in a vitrified body, comprising the step of using the calibration curve and analyzing the element concentration of the vitrified body to be analyzed.
試料スキャン速度が100μm/s以上にて、パルス繰返し数が20Hz以上、レーザパルスエネルギー強度が5J/cm2以上のYAGレーザ第5高調波光が分析対象のガラス固化体に照射される、請求項1に記載されるガラス固化体の元素濃度分析方法。 The glass solid to be analyzed is irradiated with a YAG laser fifth harmonic light having a sample scanning speed of 100 μm / s or more, a pulse repetition rate of 20 Hz or more, and a laser pulse energy intensity of 5 J / cm 2 or more. The element concentration analysis method of the vitrified body described in 1. レーザアブレーションにより発生するエアロゾルが、誘導結合プラズマ発光分光分析装置へ輸送されるライン中に組み込まれたバッファ容器で一時蓄積され、平均化される工程を含む、請求項1又は2に記載されているガラス固化体の元素濃度分析方法。   The aerosol generated by laser ablation is temporarily accumulated in a buffer container incorporated in a line transported to an inductively coupled plasma optical emission spectrometer, and includes an averaging process. Element concentration analysis method for vitrified material. YAGレーザ第5高調波光が光源として用いられるレーザアブレーション法誘導結合プラズマ発光分光分析法によりガラス固化体の元素濃度が分析される方法であって、
試料スキャン速度が100μm/s以上にて、パルス繰返し数が20Hz以上、レーザパルスエネルギー強度が5J/cm2以上のYAGレーザ第5高調波光が分析対象のガラス固化体に照射され、分析対象のガラス固化体中に偏在する白金族元素及び/又は異物の平均濃度が定量される工程を含む、ガラス固化体の元素濃度分析方法。
A method in which the element concentration of a vitrified body is analyzed by a laser ablation method inductively coupled plasma emission spectroscopy using a YAG laser fifth harmonic light as a light source,
When the sample scan speed is 100 μm / s or higher, the YAG laser fifth harmonic light having the pulse repetition rate of 20 Hz or higher and the laser pulse energy intensity of 5 J / cm 2 or higher is irradiated to the glass solid to be analyzed, and the glass to be analyzed An element concentration analysis method for vitrified glass, comprising a step of quantifying an average concentration of platinum group elements and / or foreign matters unevenly distributed in the solidified body.
レーザアブレーションにより発生するエアロゾルが、誘導結合プラズマ発光分光分析装置へ輸送されるライン中に組み込まれたバッファ容器で一時蓄積され、平均化される工程を含む、請求項4に記載されているガラス固化体の元素濃度分析方法。   5. The vitrification according to claim 4, comprising the step of temporarily storing and averaging the aerosol generated by laser ablation in a buffer container incorporated in a line transported to an inductively coupled plasma optical emission spectrometer. Body element concentration analysis method.
JP2014029623A 2014-02-19 2014-02-19 Element concentration analysis method for glass solids Active JP6217025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029623A JP6217025B2 (en) 2014-02-19 2014-02-19 Element concentration analysis method for glass solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029623A JP6217025B2 (en) 2014-02-19 2014-02-19 Element concentration analysis method for glass solids

Publications (2)

Publication Number Publication Date
JP2015152566A true JP2015152566A (en) 2015-08-24
JP6217025B2 JP6217025B2 (en) 2017-10-25

Family

ID=53894958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029623A Active JP6217025B2 (en) 2014-02-19 2014-02-19 Element concentration analysis method for glass solids

Country Status (1)

Country Link
JP (1) JP6217025B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534287A (en) * 1991-07-26 1993-02-09 Power Reactor & Nuclear Fuel Dev Corp Quantometer of radioactive glass
JP2003270208A (en) * 2002-03-14 2003-09-25 Tdk Corp Sample holder, apparatus and method for laser ablation and for analyzing sample, and holding base for sample holder
JP2004301573A (en) * 2003-03-28 2004-10-28 Kajima Corp Method and apparatus for measuring sample using laser ablation
US20090073586A1 (en) * 2007-09-14 2009-03-19 Fry Robert C Analytical laser ablation of solid samples for ICP, ICP-MS, and FAG-MS analysis
JP2009288067A (en) * 2008-05-29 2009-12-10 Toshiba Corp Analyzing method and analyzer
JP2011106961A (en) * 2009-11-17 2011-06-02 Jx Nippon Mining & Metals Corp Analysis method of noble metal using laser ablation icp analysis method
JP2011117728A (en) * 2009-08-10 2011-06-16 Nobuaki Hattori Method of detecting harmful substance to environment, detector, and detection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534287A (en) * 1991-07-26 1993-02-09 Power Reactor & Nuclear Fuel Dev Corp Quantometer of radioactive glass
JP2003270208A (en) * 2002-03-14 2003-09-25 Tdk Corp Sample holder, apparatus and method for laser ablation and for analyzing sample, and holding base for sample holder
JP2004301573A (en) * 2003-03-28 2004-10-28 Kajima Corp Method and apparatus for measuring sample using laser ablation
US20090073586A1 (en) * 2007-09-14 2009-03-19 Fry Robert C Analytical laser ablation of solid samples for ICP, ICP-MS, and FAG-MS analysis
JP2009288067A (en) * 2008-05-29 2009-12-10 Toshiba Corp Analyzing method and analyzer
JP2011117728A (en) * 2009-08-10 2011-06-16 Nobuaki Hattori Method of detecting harmful substance to environment, detector, and detection system
JP2011106961A (en) * 2009-11-17 2011-06-02 Jx Nippon Mining & Metals Corp Analysis method of noble metal using laser ablation icp analysis method

Also Published As

Publication number Publication date
JP6217025B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
US5751416A (en) Analytical method using laser-induced breakdown spectroscopy
Yueh et al. Laser‐Induced Breakdown Spectroscopy, Elemental Analysis
Borisova et al. Multi‐elemental analysis of ATHO‐G rhyolitic glass (MPI‐DING reference material) by femtosecond and nanosecond LA‐ICP‐MS: Evidence for significant heterogeneity of B, V, Zn, Mo, Sn, Sb, Cs, W, Pt and Pb at the millimetre scale
Hohreiter et al. Plasma− particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy
Jung et al. Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy
He et al. A flux‐free fusion technique for rapid determination of major and trace elements in silicate rocks by LA‐ICP‐MS
Dutouquet et al. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS
Horňáčková et al. Calibration-free laser induced breakdown spectroscopy as an alternative method for found meteorite fragments analysis
He et al. Lithium ion detection in liquid with low detection limit by laser-induced breakdown spectroscopy
Liezers et al. The formation of trinitite-like surrogate nuclear explosion debris (SNED) and extreme thermal fractionation of SRM-612 glass induced by high power CW CO 2 laser irradiation
JP2017129350A (en) Devices for tailoring materials
Xiao et al. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy
Khalil et al. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy
Oh et al. Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples
JPS6061657A (en) Method and device for analyzing material
Choi et al. Isotope analysis of iron on structural materials of nuclear power plants using double-pulse laser ablation molecular isotopic spectrometry
Dwivedi et al. CF-LIBS study of pure Ta, and WTa+ D coating as fusion-relevant materials: a step towards future in situ compositional quantification at atmospheric pressure
JP6217025B2 (en) Element concentration analysis method for glass solids
Roldan et al. Quantification of hydrogen isotopes by CF-LIBS in a W-based material (WZr) at atmospheric pressure: from ns towards ps
Palásti et al. Laser-induced breakdown spectroscopy signal enhancement effect for argon caused by the presence of gold nanoparticles
Campbell et al. Synthesis and characterization of surrogate nuclear explosion debris: urban glass matrix
Dan et al. Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy
Claverie Laser ablation
Israr et al. Analysis of Carbon Contents and Heavy Metals in Coal Samples Using Calibration‐free LIBS Technique
Carvalho et al. Comparison of Fused Glass Beads and Pressed Powder Pellets for the Quantitative Measurement of Al, Fe, Si and Ti in Bauxite by Laser‐Induced Breakdown Spectroscopy

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6217025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250