JP2015151543A - Powder for paste extrusion molding and method for producing the same - Google Patents

Powder for paste extrusion molding and method for producing the same Download PDF

Info

Publication number
JP2015151543A
JP2015151543A JP2014029894A JP2014029894A JP2015151543A JP 2015151543 A JP2015151543 A JP 2015151543A JP 2014029894 A JP2014029894 A JP 2014029894A JP 2014029894 A JP2014029894 A JP 2014029894A JP 2015151543 A JP2015151543 A JP 2015151543A
Authority
JP
Japan
Prior art keywords
powder
ptfe
mixed
mixing
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014029894A
Other languages
Japanese (ja)
Inventor
山本 勝年
Katsutoshi Yamamoto
勝年 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankei Giken Co Ltd
Original Assignee
Sankei Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Giken Co Ltd filed Critical Sankei Giken Co Ltd
Priority to JP2014029894A priority Critical patent/JP2015151543A/en
Publication of JP2015151543A publication Critical patent/JP2015151543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide uniform mixed powder obtained by mixing polytetrafluoroethylene (PTFE) fine powder and filler powder, and a method for producing the same.SOLUTION: Provided is powder for paste extrusion molding formed by crushing and mixing an agglomerate of PTFE aggregate powder and filler powder at 10°C or less, the PTFE aggregate powder, containing aggregated emulsion polymerized particles, being obtained from an aqueous dispersion of PTFE emulsion polymerized particles by precipitation, and by granulating the mixed pulverulent body. As a means to directly cool a pulverulent body to be mixed from inside without a heat conductive wall, crushing and mixing are performed by concurrently charging the pulverulent body and dry ice (solid carbon dioxide). A size to which the PTFE aggregate powder is crushed is 20 μm or less, preferably 10 μm or less.

Description

本発明は、ポリテトラフルオロエチレン(以下、「PTFE」という。)のペースト押出成形用粉末及びその製造方法に関し、特にフィラー混合PTFEファインパウダーとその製造方法に関する。   The present invention relates to a paste extrusion molding powder of polytetrafluoroethylene (hereinafter referred to as “PTFE”) and a method for producing the same, and more particularly to a filler mixed PTFE fine powder and a method for producing the same.

PTFE単体の成形品物性は、優れた耐熱性、電気絶縁性、低摩擦係数、耐化学薬品性などに優れた樹脂である。しかし、用途により導電性付与や摩擦時の耐摩耗性向上等が求められる。そのためにカーボン、グラファイト、ガラス繊維粉末などを混合して機能を付与することが行われている。   The physical properties of the molded product of PTFE alone is a resin excellent in excellent heat resistance, electrical insulation, low friction coefficient, chemical resistance and the like. However, it is required to impart conductivity or improve wear resistance during friction depending on the application. For this purpose, carbon, graphite, glass fiber powder and the like are mixed to give a function.

一方、販売されているペースト押出成形用粉末としてのPTFEファインパウダーは、PTFE乳化重合粒子を凝集したものであって、PTFE乳化重合粒子の水性分散体から撹拌の手段で凝析によって得られた平均粒径300μm〜1000μmの粉末である。   On the other hand, the PTFE fine powder as a paste extrusion powder on the market is an aggregate of PTFE emulsion polymer particles, and is an average obtained by coagulation from an aqueous dispersion of PTFE emulsion polymer particles by means of stirring. It is a powder having a particle size of 300 μm to 1000 μm.

このようにPTFE乳化重合粒子をPTFEファインパウダーに加工する理由は、製造業者側としてはPTFEファインパウダーに加工した方が、乾燥、計量、梱包、移送などにおける取り扱い上の困難性が解消し、また、この材料を使用して成形加工する加工者側としては、PTFEファインパウダーでなければペースト押出成形における計量、助剤混合、金型充填などの工業生産上の取り扱いができないからである。   The reason why PTFE emulsion polymerized particles are processed into PTFE fine powder in this way is that, as a manufacturer, processing into PTFE fine powder eliminates difficulties in handling in drying, weighing, packaging, transport, etc. This is because, on the side of a processor who performs molding processing using this material, it is impossible to handle industrial production such as measurement, paste mixing, and mold filling in paste extrusion molding unless it is PTFE fine powder.

加工業者が市販のPTFEファインパウダーにフィラー粉末を単に混合しても機能性を発現する成形品を得ることは殆ど困難である。困難な理由はフィラー粉末の平均サイズが0.01〜20μmであるのに対して、PTFEファインパウダーの平均サイズが約500μmであり、一方、求められるフィラー粉末の配合量は多くても50%以下であるため、その配合範囲でペースト押出成形を行うと、フィラー粉末が少ない場合はフィラー粉末の分布が斑な成形品となり、フィラー粉末が多い場合は連続した押出成形品が得られないからである。つまり、極端にサイズの異なる粉末同士を単に混合しても均一な分散は得られないということである。   Even if a processor simply mixes filler powder with commercially available PTFE fine powder, it is almost difficult to obtain a molded product exhibiting functionality. The difficult reason is that the average size of the filler powder is 0.01 to 20 μm, whereas the average size of the PTFE fine powder is about 500 μm, while the required blending amount of the filler powder is at most 50% or less. Therefore, when paste extrusion molding is performed within the blending range, the filler powder distribution is uneven when the filler powder is small, and a continuous extrusion molded product cannot be obtained when the filler powder is large. . That is, even if powders having extremely different sizes are simply mixed, a uniform dispersion cannot be obtained.

そのために、PTFEの乳化重合を行う製造業者は、下記特許文献1に示されるように、PTFEに水性分散体の安定化剤を加える前に1種以上の粉末を混合することが可能であり、このような手法を使用すれば、目的とする混合PTFEファインパウダーを得ることができる。   Therefore, a manufacturer performing emulsion polymerization of PTFE can mix one or more powders before adding a stabilizer of an aqueous dispersion to PTFE, as shown in Patent Document 1 below. If such a method is used, the target mixed PTFE fine powder can be obtained.

このような特許文献1に示される手法を使えるのは、PTFEの乳化重合を行う製造業者に限定され、PTFEファインパウダーを使用して成形品を成形する加工業者が、市販のPTFEファインパウダーから容易に目的とする混合PTFEファインパウダーを得ることができなかった。   The method disclosed in Patent Document 1 can be used only by a manufacturer that performs emulsion polymerization of PTFE, and a processor that forms a molded product using PTFE fine powder can be easily manufactured from commercially available PTFE fine powder. Thus, the intended mixed PTFE fine powder could not be obtained.

また、PTFE乳化重合品の水性分散体が市販されているが、これらの水性分散体にはPTFE乳化重合粒子の密度が2.2g/cmもあり、水中での自然沈降を防ぐために、多量の複雑な界面活性剤が分散安定剤として添加されている。上記の水性分散体を用いて1種以上の混合物を得るにはこれらに含まれる多量の複雑な界面活性剤を除去しなければならないという致命的な問題があった。 Also, aqueous dispersions of PTFE emulsion polymerization products are commercially available. These aqueous dispersions have a density of PTFE emulsion polymerization particles of 2.2 g / cm 3, and in order to prevent natural sedimentation in water, These complex surfactants are added as dispersion stabilizers. In order to obtain one or more mixtures using the above-mentioned aqueous dispersion, there has been a fatal problem that a large amount of complicated surfactants contained therein must be removed.

特開昭56‐18624号JP 56-18624 A

したがって、加工業者が入手できる組成物は製造業者の組成物に限られるという課題があった。   Therefore, the composition which a processor can obtain has the subject that it is restricted to a manufacturer's composition.

本発明者は、加工業者が市場で入手できるPTFEファインパウダーからフィラー粉末を混合した均一な混合粉末の提供及び当該混合粉末を容易に製造できる製造方法を見出したのである。   The present inventor has found a uniform mixed powder obtained by mixing filler powder from PTFE fine powder available on the market by a processor and a manufacturing method capable of easily manufacturing the mixed powder.

本願の請求項1に係るペースト押出成形用粉末は、PTFE乳化重合粒子の水性分散体から凝析によって得られた乳化重合粒子が凝集したPTFE凝集粉末とフィラー粉末との凝集体を、10℃未満で解砕及び混合したのち、この混合粉体を造粒してなることを特徴とするものである。   The powder for paste extrusion molding according to claim 1 of the present application is an aggregate of PTFE aggregated powder obtained by agglomerating emulsion polymer particles obtained by coagulation from an aqueous dispersion of PTFE emulsion polymerized particles and a filler powder at less than 10 ° C. After pulverizing and mixing, the mixed powder is granulated.

また、本願の請求項2に係るペースト押出成形用粉末は、上記請求項1において、PTFE凝集粉末の解砕サイズは20μm以下であることを特徴とするものである。   Moreover, the paste extrusion molding powder according to claim 2 of the present application is characterized in that, in the above-mentioned claim 1, the pulverized size of the PTFE aggregated powder is 20 μm or less.

さらに、本願の請求項3に係るペースト押出成形用粉末は、上記請求項1において、PTFE凝集粉末の解砕サイズが10μm以下であることを特徴とするものである。   Furthermore, the powder for paste extrusion molding according to claim 3 of the present application is characterized in that, in the above claim 1, the pulverized size of the PTFE aggregated powder is 10 μm or less.

さらにまた、本願の請求項4に係るペースト押出成形用粉末の製造方法は、PTFE乳化重合粒子の水性分散体から凝析によって得られた乳化重合粒子が凝集したPTFE凝集粉末とフィラー粉末とドライアイスとを同時に解砕兼混合機に投入し、10℃未満で解砕・混合したのち、この混合粉体を造粒することを特徴とするものである。   Furthermore, the paste extrusion molding powder manufacturing method according to claim 4 of the present application includes PTFE aggregated powder, filler powder, and dry ice in which emulsion polymerized particles obtained by coagulation from an aqueous dispersion of PTFE emulsion polymerized particles are aggregated. Are put into a pulverizing and mixing machine at the same time, pulverized and mixed at less than 10 ° C., and then the mixed powder is granulated.

本発明に係るペースト押出成形用粉末である混合PTFEファインパウダーの製造方法は、主成分としてのPTFE凝集粉末であるPTFEファインパウダーにフィラー粉末であるフィラーパウダーを添加して、10℃以下の温度下に冷却したPTFEファインパウダーの凝集粒子を少なくともフィラーパウダーのサイズに近似したサイズに解砕して混合することを同時的に行い、フィラーパウダーをPTFEファインパウダー中に均一分散させ、さらにこの混合パウダーに湿潤する溶剤を添加して撹拌造粒することによりPTFEファインパウダーとフィラーパウダーとを均一に分散したペースト押出用粉体を得ることを特徴とするものである。   The method for producing a mixed PTFE fine powder, which is a paste extrusion powder according to the present invention, adds a filler powder, which is a filler powder, to a PTFE fine powder, which is a PTFE agglomerated powder as a main component, at a temperature of 10 ° C. or lower. The agglomerated particles of PTFE fine powder cooled to the size of the filler powder are simultaneously crushed and mixed to at least the size of the filler powder, and the filler powder is uniformly dispersed in the PTFE fine powder. By adding a wetting solvent and stirring and granulating, a powder for paste extrusion in which PTFE fine powder and filler powder are uniformly dispersed is obtained.

本発明の本質は、0.2〜0.4μmサイズの重合粒子が500μmサイズに凝集させたPTFEファインパウダーを少なくともフィラーパウダーのサイズに近似のサイズまで微細に解砕させることにある。   The essence of the present invention is to finely pulverize the PTFE fine powder in which polymer particles having a size of 0.2 to 0.4 μm are aggregated to a size of 500 μm to at least a size approximate to the size of the filler powder.

この工程において重要なことは10℃以下の温度下において行うことであり、PTFEファインパウダーがフィビリル化PTFEとも称されるようにパウダーにシェアを与えるとPTFE粒子から容易に発生する微細なフィビリルを発生させないようにすることである。   What is important in this process is that it is performed at a temperature of 10 ° C. or less. When the PTFE fine powder is also referred to as fibrillated PTFE, fine fibrils that are easily generated from the PTFE particles are generated when the powder is given a share. It is not to let you.

また、従来の乳化重合後のPTFEの水性分散体とフィラーの混合は特定の条件が必要であった。親水性のフィラーが使用できないことである、その理由はPTFE水性分散体のPTFE粒子が界面活性剤によって包まれているが、凝析という手段、撹拌およびカチオン物質たとえば水素イオンを持つ塩酸や硝酸などの添加と撹拌によりPTFE粒子の表面の界面活性剤を切り離すとPTFE粒子は疎水化して凝集体の二次粒子を形成するが親水性フィラーはいつまでも水中に残るために共凝集体はできなかった。親水性フィラー、例えばガラス繊維粉末、は表面に疎水性処理を施さねばならなかった。また、ポリイミド粒子、コークス粉粒子は親水性と疎水性の中間状態にあるために、表面疎水化処理を行ったものを使用するか、またはPTFEの水性分散粒子がゾル化した瞬間に非水溶性溶剤を投入して両者を造粒する複雑な手段が必要であった。また疎水性フィラー、例えばカーボンブラックは予め分散剤を用いて水性分散体にしておく処置が必要であった。   In addition, mixing of the aqueous PTFE dispersion and filler after conventional emulsion polymerization requires specific conditions. The reason is that a hydrophilic filler cannot be used. The reason is that PTFE particles of the PTFE aqueous dispersion are encapsulated by a surfactant, but a means of coagulation, stirring and a cationic substance such as hydrochloric acid or nitric acid having hydrogen ions, etc. When the surfactant on the surface of the PTFE particles was separated by adding and stirring, the PTFE particles became hydrophobic and formed secondary particles of aggregates, but the hydrophilic filler remained in the water forever, so a co-aggregate could not be formed. Hydrophilic fillers, such as glass fiber powder, had to be subjected to a hydrophobic treatment on the surface. In addition, since polyimide particles and coke powder particles are in an intermediate state between hydrophilicity and hydrophobicity, use those that have been subjected to surface hydrophobization treatment or water-insoluble at the moment when the aqueous dispersion particles of PTFE are solated. A complicated means of adding a solvent and granulating both was necessary. Further, a hydrophobic filler such as carbon black needs to be treated in advance with an aqueous dispersion using a dispersant.

このような性質が所以で石油系溶剤をPTFE乳化重合粒子の潤滑剤としてPTFE乳化重合粒子をほぼ細密充填状態に成形するペースト押出成形という他の高分子有機化合物の成形方法には採用されない成形方法が採られている。   Because of these properties, a molding method that is not adopted in other polymer organic compound molding methods, such as paste extrusion molding, in which a PTFE emulsion polymerized particle is molded into a nearly finely packed state using a petroleum solvent as a lubricant for PTFE emulsion polymerized particles. Has been adopted.

ペースト押出は、PTFE乳化重合粒子の流動によって押出物が形成されるが、微細なフィビリルが発生したPTFE粒子は押出時の流動がスムースに行われず、PTFEの細密充填を抑制し、ときには乱流状態になり、さらには連続物にならない等の結果を招くのである。   In paste extrusion, extrudates are formed by the flow of PTFE emulsion polymer particles, but the PTFE particles with fine fibrils are not smoothly flowed during extrusion, suppressing the fine filling of PTFE, sometimes in a turbulent state In addition, the result of not becoming a continuous material is caused.

500μmサイズに凝集しているPTFEファインパウダーを微細粒子の状態に戻すことは容易ではないが、本発明者は、このPTFEファインパウダーが、19℃〜21℃にあるPTFEの転移点以下ではPTFE粒子表面からフィビリルが発生しにくいことを活用して、フィラー粉末と共に前記の転移点以下の温度状態で微細に解砕することと解砕後に湿潤溶剤で再造粒することによって従来からのペースト押出成形に展開できることを見出し、混合PTFEファインパウダーとそれを製造する方法を開発した。   Although it is not easy to return the PTFE fine powder agglomerated to a size of 500 μm to a fine particle state, the present inventor believes that the PTFE fine powder is below the transition point of PTFE at 19 ° C. to 21 ° C. Utilizing the fact that fibrils are unlikely to be generated from the surface, conventional paste extrusion molding by finely crushing with filler powder at a temperature below the above transition point and re-granulating with a wet solvent after crushing And developed a mixed PTFE fine powder and a method for producing the same.

本発明の効果はフィラーの種類・組成が自由に採用できることにある。   The effect of the present invention is that the type and composition of the filler can be freely adopted.

本発明はPTFEファインパウダーと混合されるフィラーの種類・組成は特に限定がないことで優れるとともに、表面処理など事前の処理の必要がないために経済的メリットが存在するのである。フィラーの種類としては同類の分子量・変性の状態が異なるファインパウダーおよびモールディングパウダー粒子も含まれる。   The present invention is excellent in that the type and composition of the filler mixed with the PTFE fine powder are not particularly limited, and there is an economic merit because there is no need for prior treatment such as surface treatment. The types of fillers include fine powders and molding powder particles having the same molecular weight and modified state.

実施例1において、ペースト押出方法でストランドの押出成形を行う状態を示す写真である。In Example 1, it is a photograph which shows the state which extrudes strand by the paste extrusion method. スムースに押し出されたストランドを示す写真である。It is a photograph which shows the strand pushed out smoothly. 押出乱流によりスムースに押し出されなかったストランドを示す写真である。It is a photograph which shows the strand which was not extruded smoothly by the turbulent flow of extrusion. 混合粉末をレーザ回析/散乱式粒子径分布測定装置で測定した結果を示すグラフである。It is a graph which shows the result of having measured mixed powder with the laser diffraction / scattering type particle size distribution measuring apparatus.

「PTFEファインパウダーの解砕」
市販のPTFE乳化重合粒子が凝集して約500μmになっている粒子を微細に解砕するうえにおいて重要なことはPTFE乳化重合粒子から小繊維であるフィビリルを発現させないことである。
“Disintegration of PTFE fine powder”
What is important in finely pulverizing particles in which commercially available PTFE emulsion-polymerized particles are aggregated to about 500 μm is to prevent the fibrils that are fibrils from appearing from the PTFE emulsion-polymerized particles.

このためにPTFEの結晶転移点の19〜21℃(室温転移点と呼ばれる)以下で解砕しなければならないことである。解砕のためにカッターミキサーやヘンシェルミキサーを使用すると翼の回転による流動抵抗によってパウダーの温度は必ず上昇する。したがって、回転が停止するまでパウダーの温度は室温転移点に達してはならないこと、及びそのために回転開始温度は室温転移点より遥かに低くなければならない。また、ミキサー槽内には滞留部分あり、局部的に温度が上昇することにも注意しなければならない。   For this purpose, it must be crushed below the crystal transition point of PTFE at 19-21 ° C. (called the room temperature transition point). When a cutter mixer or Henschel mixer is used for crushing, the temperature of the powder always rises due to the flow resistance caused by the rotation of the blades. Therefore, the temperature of the powder must not reach the room temperature transition point until rotation stops, and for that reason the rotation start temperature must be much lower than the room temperature transition point. It should also be noted that there is a stagnant part in the mixer tank and the temperature rises locally.

また、ここで重要なことは、解砕混合粉体を混合機の外部ジャケットから冷却して行う方法は、内部パウダーの流動抵抗や解砕抵抗による昇温速度に冷却速度が追い付かず、PTFE乳化重合粒子が局部的あるいは全的に室温転移点を上回り、PTFE乳化重合粒子が小繊維を発現する確率が高い。このPTFE乳化重合粒子が小繊維を発現する現象を確実に抑制する必要がある。   What is important here is that the method of cooling the pulverized mixed powder from the outer jacket of the mixer does not keep up with the temperature rise rate due to the flow resistance or pulverization resistance of the internal powder, and PTFE emulsification. There is a high probability that the polymer particles locally or entirely exceed the room temperature transition point, and the PTFE emulsion polymer particles exhibit fibrils. It is necessary to surely suppress the phenomenon that the PTFE emulsion polymerized particles develop fibrils.

本発明者はこれを確実に行うために、混合される粉体を熱伝導壁なしに、内部から直接冷却する手段として、粉体と共にドライアイス(固体の炭酸ガス)を同時的に投入して解砕と混合を行うことでPTFE乳化重合粒子が小繊維を発現する現象を確実に抑制する手段を見出したのである。   In order to ensure this, the present inventor simultaneously put dry ice (solid carbon dioxide gas) together with the powder as a means for directly cooling the powder to be mixed without heat conduction walls from the inside. The present inventors have found a means for reliably suppressing the phenomenon that PTFE emulsion-polymerized particles develop fibrils by crushing and mixing.

なお、カッターミキサーやヘンシェルミキサーの蓋に、ドライアイスが気化して発生する炭酸ガスを放出するベントフィルターを設置することが必要である。   In addition, it is necessary to install the vent filter which discharge | releases the carbon dioxide gas which vaporizes when dry ice vaporizes in the lid | cover of a cutter mixer or a Henschel mixer.

PTFEファインパウダーの解砕サイズの程度は、混合するフィラーパウダーのサイズと同等レベルが望ましいが、フィラーパウダーがPTFE乳化重合粒子より小さい場合は10μm以下でよい、またフィラーパウダーが10μmより大きい場合は20μm以下でよい。   The degree of pulverization size of the PTFE fine powder is desirably the same level as the size of the filler powder to be mixed. However, when the filler powder is smaller than the PTFE emulsion polymerized particles, it may be 10 μm or less, and when the filler powder is larger than 10 μm, 20 μm. The following is acceptable.

「解砕混合した微粉末の造粒」
解砕混合した微細な粉末は、その状態では工業的な製品を加工する工程で用いることが出来ないので約500μm以上の粒径に仕上げなければならない。
"Granulation of finely ground powder"
The fine powder that has been pulverized and mixed cannot be used in the process of processing an industrial product in that state, so it must be finished to a particle size of about 500 μm or more.

その理由はPTFE乳化重合粒子をPTFEファインパウダーに加工するのと同じように、製造業者側としては、PTFEファインパウダーに加工した方が、乾燥、計量、梱包、移送などにおける取り扱い上の困難性が解消し、この材料を使用して成形加工する加工者側としては、PTFEファインパウダーに加工しなければペースト押出成形における計量、助剤混合、金型充填などの工業生産上の取り扱いができないからである。   The reason for this is that, like the processing of PTFE emulsion polymerized particles into PTFE fine powder, it is difficult for the manufacturer to handle PTFE fine powder in drying, weighing, packing, transporting, etc. The processing side that uses this material to solve the problem, because it can not be handled in industrial production, such as weighing in paste extrusion molding, mixing of auxiliaries, filling molds, etc., unless it is processed into PTFE fine powder. is there.

造粒の方法は微細粉の20〜30%重量の溶剤で湿潤させ、その状態で泡立て器(ホイッパー)で撹拌することで微粉末を丸めて造粒することができる。各種の造粒機が販売されているが、あまりせん断力が作用しないものが好ましい。また、造粒工程での温度も室温転移点以下で行うのが最も好ましい。造粒サイズは平均粒径で300μm〜2000μmにするのが好ましい。湿潤溶剤の種類は150℃以下程度で全量が気化乾燥できることとPTFEとフィラーを同時に湿潤できるものであればよい、この点で水分が40%未満のイソプロピルアルコールが使用することができる。湿潤溶剤は気化乾燥されてペースト押出用粉末となる。   In the granulation method, the fine powder can be rounded and granulated by wetting with a solvent of 20 to 30% by weight of the fine powder and stirring with a whisk in that state. Various types of granulators are on the market, but those that do not have much shearing force are preferred. Moreover, it is most preferable to perform the temperature in the granulation step at or below the room temperature transition point. The granulation size is preferably 300 μm to 2000 μm in terms of average particle size. Any type of wet solvent may be used as long as it can vaporize and dry at about 150 ° C. or less, and can wet PTFE and the filler simultaneously. In this respect, isopropyl alcohol having a water content of less than 40% can be used. The wet solvent is vaporized and dried to form a paste extruding powder.

グラファイト混合粉と成形品の作製
1.混合粉の作製
「予備混合」
主成分としてのPTFEファインパウダーグレードF−106(ダイキン工業株式会社製、平均粒径が約500μm、嵩比重が450g/リットル)840gと、黒鉛粉末グレード青P(日本黒鉛工業株式会社製、平均粒径10μm)360gと、ハンマーで1〜3cmサイズに砕いたドライアイス600gを、ポリエチレン袋内で手持ちで軽く混ぜた。
Production of graphite mixed powder and molded product 1. Preparation of mixed powder "Preliminary mixing"
PTFE fine powder grade F-106 (Daikin Kogyo Co., Ltd., average particle size of about 500 μm, bulk specific gravity 450 g / liter) 840 g and graphite powder grade Blue P (Nippon Graphite Industries Co., Ltd., average particle) 360 g (diameter 10 μm) and 600 g of dry ice crushed to a size of 1 to 3 cm with a hammer were gently mixed by hand in a polyethylene bag.

「混合機への投入」
次にこのポリエチレン袋の内容物をカッターミキサー(DITO SAMA製 Food Processor Cutter Mixer 3.5LT−2Speed)の容器内に移した。
“Introducing into the blender”
Next, the contents of the polyethylene bag were transferred into a container of a cutter mixer (Food Processor Cutter Mixer 3.5LT-2Speed manufactured by DITO SAMA).

「低速撹拌混合」
混合機への投入後カッターの回転を低速撹拌の1500rpmで30秒間撹拌を行った。回転停止後の粉体温度をアルコール温度計で測定した。温度は−15℃であった。
"Low speed mixing"
After feeding into the mixer, the cutter was stirred for 30 seconds at 1500 rpm with low speed stirring. The powder temperature after the rotation was stopped was measured with an alcohol thermometer. The temperature was -15 ° C.

「高速撹拌混合一回目」
次にカッターの回転を高速撹拌の3000rpmで30秒間撹拌を行った。回転停止後の粉体温度は−5℃であった。
"High-speed stirring mixing first"
Next, the rotation of the cutter was performed at 3000 rpm, which is high-speed stirring, for 30 seconds. The powder temperature after the rotation stopped was -5 ° C.

「二回目の高速撹拌混合」
混ざり具合を均一にするために、二回目の高速撹拌を30秒間行った。回転停止後の粉体温度は2℃であった。
"Second high-speed stirring and mixing"
In order to make the mixing condition uniform, the second high-speed stirring was performed for 30 seconds. The powder temperature after the rotation stopped was 2 ° C.

「三回目の高速撹拌混合」
混ざり具合をさらに均一にするために、砕いたドライアイス250gを追加して、低速撹拌で5秒程の回転後に、続いて三回目の高速撹拌を30秒間行った。回転停止後の粉体温度は−5℃であった。
"The third high-speed stirring and mixing"
In order to make the mixing even more uniform, 250 g of crushed dry ice was added, and after about 5 seconds of rotation with low speed stirring, the third high speed stirring was performed for 30 seconds. The powder temperature after the rotation stopped was -5 ° C.

得られた混合粉の性状は流動性に欠けた無定形状粉であった。嵩比重は約380g/リットルであった。   The property of the obtained mixed powder was an amorphous powder lacking fluidity. The bulk specific gravity was about 380 g / liter.

混合粉末をレーザ回析/散乱式粒子径分布測定装置で測定した結果、90%以上がグラファイト公称径の20μm以下であった。   As a result of measuring the mixed powder with a laser diffraction / scattering particle size distribution measuring apparatus, 90% or more was 20 μm or less of the nominal graphite diameter.

2.混合粉の造粒
ミキサー内の混合粉1.2kgを5リットルの丸底の容器に移し、70%イソプロピルアルコール(IPA)水を300cc添加して電動の泡立て器(ホイッパー)で撹拌して大凡1〜2mmの大きさに造粒した段階で撹拌を停止した。
2. Granulation of the mixed powder Transfer 1.2kg of the mixed powder in the mixer to a 5 liter round bottom container, add 300cc of 70% isopropyl alcohol (IPA) water, and stir it with an electric whisk (whipper). Stirring was stopped at the stage of granulation to a size of ˜2 mm.

続いて、IPA水で湿った造粒粉を120℃の乾燥器に入れ水分がなくなるまで乾燥した。   Subsequently, the granulated powder moistened with IPA water was placed in a dryer at 120 ° C. and dried until there was no moisture.

造粒品の粒径は約0.5〜2mmであった、嵩比重は約550g/リットルであった。   The granulated product had a particle size of about 0.5 to 2 mm and a bulk specific gravity of about 550 g / liter.

3.RR100−2.5φストランド成形性評価
250ccの広口ポリエチレン瓶に造粒粉100gを入れ、そこに石油溶剤アイソパーH(エクソン社製)23gを加えて40℃の保温箱に15時間放置した。
3. Evaluation of RR100-2.5φ strand moldability 100 g of granulated powder was put in a 250 cc wide-mouth polyethylene bottle, 23 g of petroleum solvent Isopar H (manufactured by Exxon) was added thereto, and the mixture was left in a heat-retaining box at 40 ° C. for 15 hours.

続いて助剤混合した混合粉をRR100ストランド成形テスト金型(内径25mmφのシリンダー部と先端ダイオリフィス2.5mmφ)内に充填してラム速度20mm/分で内填物を押出、いわゆるペースト押出方法でストランドの押出成形をおこなった。図1に示すように、ストランドはスムースに押出することができた。図2はスムースに押し出されたストランドを示し、図3は押出乱流によりスムースに押し出されなかったストランドを示す。   Subsequently, the mixed powder mixed with the auxiliary agent is filled into an RR100 strand molding test mold (cylinder portion with an inner diameter of 25 mmφ and a tip die orifice of 2.5 mmφ), and the inner material is extruded at a ram speed of 20 mm / min. The strand was extruded. As shown in FIG. 1, the strand could be smoothly extruded. FIG. 2 shows strands that are smoothly extruded, and FIG. 3 shows strands that are not smoothly extruded due to extrusion turbulence.

4.150幅シート押出成形性評価
2リットルの広口ポリエチ瓶に造粒粉500gを入れ、そこに石油溶剤アイソパーH(エクソン社製)23gを加えて40℃の保温箱に15時間放置した。
4. Evaluation of 150-width sheet extrusion moldability 500 g of granulated powder was put into a 2 liter wide-mouthed polyethylene bottle, 23 g of petroleum solvent Isopar H (manufactured by Exxon) was added thereto, and the mixture was left in a heat-retaining box at 40 ° C. for 15 hours.

続いて助剤混合した混合粉を、断面が1辺50mmの正方形のシリンダー部と先端のダイ出口が150mm幅に広がり、厚みが2mmに絞られる構造の金型内に充填してラム速度25mm/分で内填物を押出し、いわゆるペースト押出を行い、幅150mm、厚み2mmのシートをスムースに成形することができた。   Subsequently, the mixed powder mixed with the auxiliary agent is filled into a mold having a structure in which a square cylinder portion having a cross section of 50 mm on one side and a die outlet at the front end is widened to 150 mm and the thickness is reduced to 2 mm, and the ram speed is 25 mm / The inner material was extruded in minutes, and so-called paste extrusion was performed, and a sheet having a width of 150 mm and a thickness of 2 mm could be smoothly formed.

さらに、圧延ロールで150μmのシートに圧延し、370℃の電気炉で焼結した。   Further, it was rolled into a 150 μm sheet with a rolling roll and sintered in an electric furnace at 370 ° C.

焼結シートをテスターで抵抗を測定したところ2〜5Ωと導電性を示した。   When the resistance of the sintered sheet was measured with a tester, it showed conductivity of 2 to 5Ω.

(弁柄)顔料混合粉と成形品の作製
1.混合粉の作製
「予備混合」
主成分としてのPTFEファインパウダーグレードF−106(ダイキン工業株式会社製、平均粒径が約500μm、嵩比重が450g/リットル)1000gと、弁柄グレードNSR−500(森下弁柄工業株式会社製、)4gと、ハンマーで1〜3cmサイズに砕いたドライアイス400gをポリエチレン袋内で手持ちで軽く混ぜた。
(Valve) Preparation of pigment mixed powder and molded product Preparation of mixed powder "Preliminary mixing"
PTFE fine powder grade F-106 (Daikin Kogyo Co., Ltd., average particle size of about 500 μm, bulk specific gravity 450 g / liter) 1000 g as a main component, and petal grade NSR-500 (Morishita Valve Co., Ltd., ) 4 g and 400 g of dry ice crushed to a size of 1 to 3 cm with a hammer were gently mixed by hand in a polyethylene bag.

「混合機への投入」
次にこのポリエチレン袋の内容物をカッターミキサー(DITO SAMA製 Food Processor Cutter Mixer 3.5LT−2Speed)の容器内に移した。
“Introducing into the blender”
Next, the contents of the polyethylene bag were transferred into a container of a cutter mixer (Food Processor Cutter Mixer 3.5LT-2Speed manufactured by DITO SAMA).

「低速撹拌混合」
混合機への投入後、カッターの回転を低速撹拌の1500rpmで30秒間撹拌を行った。回転停止後の粉体温度をアルコール温度計で測定した。温度は−5℃であった。
"Low speed mixing"
After feeding into the mixer, the cutter was stirred for 30 seconds at 1500 rpm with low speed stirring. The powder temperature after the rotation was stopped was measured with an alcohol thermometer. The temperature was -5 ° C.

「高速撹拌混合一回目」
予備混合の終了温度がやや高いので、ドライアイス300gを追加してから低速撹拌で5秒間撹拌の回転後、カッターの回転を高速撹拌の3000rpmで30秒間撹拌を行った。回転停止後の粉体温度は−15℃であった。
"High-speed stirring mixing first"
Since the end temperature of the preliminary mixing was slightly high, 300 g of dry ice was added, and after stirring for 5 seconds with low speed stirring, the rotation of the cutter was stirred for 30 seconds at 3000 rpm with high speed stirring. The powder temperature after the rotation stopped was -15 ° C.

「二回目の高速撹拌混合」
混ざり具合を均一にするために、二回目の高速撹拌を30秒間行った。回転停止後の粉体温度は−5℃であった。
"Second high-speed stirring and mixing"
In order to make the mixing condition uniform, the second high-speed stirring was performed for 30 seconds. The powder temperature after the rotation stopped was -5 ° C.

「三回目の高速撹拌混合」
混ざり具合をさらに均一にするために三回目の高速撹拌を30秒間行った。回転停止後の粉体温度は5℃であった。
"The third high-speed stirring and mixing"
In order to make the mixing condition even more uniform, the third high-speed stirring was performed for 30 seconds. The powder temperature after stopping the rotation was 5 ° C.

得られた混合粉の性状は流動性に欠けた無定形状粉であった。嵩密度は約350g/リットルであった。   The property of the obtained mixed powder was an amorphous powder lacking fluidity. The bulk density was about 350 g / liter.

混合粉末100gをJIS標準篩580メッシュ(目開き22μm)上に置き、IPAのシャワ−で粉末を繰り返し濾過した。濾過物のIPAを乾燥除去した濾過固形分は99gであった。   100 g of the mixed powder was placed on a JIS standard sieve 580 mesh (aperture 22 μm), and the powder was repeatedly filtered with an IPA shower. The filtered solid content obtained by drying and removing IPA of the filtrate was 99 g.

2.混合粉の造粒
ミキサー内の混合粉1kgを5リットルの丸底の容器に移し、70%イソプロピルアルコール(IPA)水を250CC添加して電動の泡立て器(ホイッパー)で撹拌して大凡1〜2mmの大きさに造粒した段階で撹拌を停止した。
2. Granulation of the mixed powder Transfer 1kg of the mixed powder in the mixer to a 5 liter round bottom container, add 250CC of 70% isopropyl alcohol (IPA) water, and stir it with an electric frother (whipper). Stirring was stopped at the stage of granulation to the size of.

続いて、IPA水で湿った造粒粉を120℃の乾燥器に入れ水分がなくなるまで乾燥した。   Subsequently, the granulated powder moistened with IPA water was placed in a dryer at 120 ° C. and dried until there was no moisture.

造粒品の粒径は約0.5〜2mmであった、嵩比重は約550g/リットルであった。   The granulated product had a particle size of about 0.5 to 2 mm and a bulk specific gravity of about 550 g / liter.

3.RR100−2.5φストランド成形性評価
250ccの広口ポリエチレン瓶に造粒粉100gを入れ、そこに石油溶剤アイソパーH(エクソン社製)23gを加えて40℃の保温箱に15時間放置した。
3. Evaluation of RR100-2.5φ strand moldability 100 g of granulated powder was put in a 250 cc wide-mouth polyethylene bottle, 23 g of petroleum solvent Isopar H (manufactured by Exxon) was added thereto, and the mixture was left in a heat-retaining box at 40 ° C. for 15 hours.

続いて助剤混合した混合粉を内径25mmφのシリンダー部と先端ダイオリフィス2.5mmφの金型内に充填してラム速度20mm/分で内填物を押出し、いわゆるペースト押出により、ストランドの押出成形をおこなった。ストランドは実施例1と同様にスムースに押出することができた。   Subsequently, the mixed powder mixed with the auxiliary agent is filled into a cylinder portion having an inner diameter of 25 mmφ and a die having a tip die orifice of 2.5 mmφ, and the inner material is extruded at a ram speed of 20 mm / min. I did it. The strand could be smoothly extruded as in Example 1.

4.150幅シート押出成形評価と薄膜圧延による顔料着色のバラツキの検査
2リットルの広口ポリエチ瓶に造粒粉500gを入れ、そこに石油溶剤アイソパーH(エクソン社製)115gを加えて40℃の保温箱に15時間放置した。
4. Evaluation of 150-width sheet extrusion molding and variation in pigmentation by thin film rolling Put 500 g of granulated powder into a 2 liter wide-mouthed polyethylene bottle, add 115 g of petroleum solvent Isopar H (manufactured by Exxon) to 40 ° C. It was left in a heat insulation box for 15 hours.

続いて助剤混合した混合粉を、断面が1辺50mmの正方形のシリンダー部と先端のダイ出口が150mm幅に広がり、厚みが2mmに絞られる構造の金型内に充填してラム速度25mm/分で内填物を押出し、いわゆるペースト押出を行い、幅150mm、厚み2mmのシートをスムースに成形することができた。   Subsequently, the mixed powder mixed with the auxiliary agent is filled into a mold having a structure in which a square cylinder portion having a cross section of 50 mm on one side and a die outlet at the front end is widened to 150 mm and the thickness is reduced to 2 mm, and the ram speed is 25 mm / The inner material was extruded in minutes, and so-called paste extrusion was performed, and a sheet having a width of 150 mm and a thickness of 2 mm could be smoothly formed.

さらに、圧延ロールで100μmのフィルムに圧延した。助剤を乾燥したシートは肉眼で見て色ムラのバラツキがない均一な着色フィルムであった。   Further, the film was rolled into a 100 μm film with a rolling roll. The sheet dried from the auxiliary agent was a uniform colored film with no unevenness in color when viewed with the naked eye.

熱伝導性に優れた炭化ケイ素との混合粉と成形品の作製
1.混合粉の作製
混合粉は主成分としてのPTFEファインパウダーグレードF−106(ダイキン工業株式会社製、平均粒径が約500μm、嵩比重が450g/リットル)720gと、炭化ケイ素GC20000(ライオン株式会社製平均粒径0.5μmのSiC)480gの重量比と、ハンマーで1〜3cmサイズに砕いたドライアイス400gをポリエチレン袋内で手持ちで軽く混ぜた。その後の撹拌混合工程は実施例2と同様に行った。
Preparation of powder mixture and molded product of silicon carbide with excellent thermal conductivity Preparation of mixed powder The mixed powder is PTFE fine powder grade F-106 (manufactured by Daikin Industries, Ltd., average particle size is about 500 μm, bulk specific gravity is 450 g / liter) as a main component, and silicon carbide GC20000 (manufactured by Lion Corporation). A weight ratio of 480 g of SiC having an average particle diameter of 0.5 μm and 400 g of dry ice crushed to a size of 1 to 3 cm with a hammer were gently mixed by hand in a polyethylene bag. The subsequent stirring and mixing step was performed in the same manner as in Example 2.

撹拌終了後の温度は殆ど同じであった。   The temperature after completion of stirring was almost the same.

混合粉末をレーザ回析/散乱式粒子径分布測定装置で測定した結果、最小粒子径0.339μm以上、最大粒子径12μm以下で平均粒径が3.1μmであった。図4に測定結果を示す。   As a result of measuring the mixed powder with a laser diffraction / scattering particle size distribution measuring apparatus, the minimum particle size was 0.339 μm or more, the maximum particle size was 12 μm or less, and the average particle size was 3.1 μm. FIG. 4 shows the measurement results.

2.混合粉の造粒
ミキサー内の混合粉1Kgをボール(5リットルの丸底の容器)に移し、イソプロピルアルコール(IPA)を250CC添加して電動の泡立て器(ホイッパー)で撹拌して大凡1〜2mmの大きさに造粒した段階で撹拌を停止した。
2. Granulation of the mixed powder Transfer 1kg of the mixed powder in the mixer to a bowl (5 liter round bottom container), add 250 CC of isopropyl alcohol (IPA), and stir it with an electric whisk (whipper). Stirring was stopped at the stage of granulation to the size of.

続いて、IPAで湿った造粒粉を120℃の乾燥器で乾燥した。   Subsequently, the granulated powder moistened with IPA was dried with a drier at 120 ° C.

造粒品の粒径は約0.5〜3mmであった。嵩比重は約550g/リットルであった。   The particle size of the granulated product was about 0.5-3 mm. The bulk specific gravity was about 550 g / liter.

3.造粒粉によるシートのペースト押出成形と圧延フィルムの作製
2リットルの広口ポリエチ瓶に造粒粉500gを入れ、そこに石油溶剤アイソパーH(エクソン社製)125gを加えて40℃の保温箱に15時間放置した。
3. Sheet extrusion with granulated powder and production of rolled film Put 500 g of granulated powder into a 2 liter wide-mouthed polyethylene bottle, add 125 g of petroleum solvent Isopar H (manufactured by Exxon), and add 15 Left for hours.

続いて助剤混合した混合粉を、断面が1辺50mmの正方形のシリンダー部と先端のダイ出口が150mm幅に広がり、厚みが2mmに絞られる構造の金型内に充填してラム速度25mm/分で内填物を押出し、いわゆるペースト押出を行い幅150mm、厚み2mmのシートをスムースに成形することができた。   Subsequently, the mixed powder mixed with the auxiliary agent is filled into a mold having a structure in which a square cylinder portion having a cross section of 50 mm on one side and a die outlet at the front end is widened to 150 mm and the thickness is reduced to 2 mm, and the ram speed is 25 mm / The insert was extruded in minutes, and so-called paste extrusion was carried out to smoothly form a sheet having a width of 150 mm and a thickness of 2 mm.

さらに、圧延ロールで100μmのフィルムに圧延した。   Further, the film was rolled into a 100 μm film with a rolling roll.

続いてPTFEの融点を超える370℃の電気炉で焼結して熱伝導性フィルムを作製した。   Subsequently, it was sintered in an electric furnace at 370 ° C. exceeding the melting point of PTFE to produce a heat conductive film.

比較例1Comparative Example 1

3リットルの広口ポリエチレン瓶に実施例1と同じ割合でPTFEファインパウダーグレードF−106(ダイキン工業株式会社製、平均粒径が約500μm、嵩比重が450g/リットル)840gを入れ、続いて黒鉛粉末グレード青P(日本黒鉛工業株式会社製、平均粒径10μm)360gを加え、蓋をして5分間程ハンドシェークで両粉末を混合した。   840 g of PTFE fine powder grade F-106 (manufactured by Daikin Industries, Ltd., average particle diameter of about 500 μm, bulk specific gravity of 450 g / liter) is put in a 3 liter wide-mouth polyethylene bottle at the same ratio as in Example 1, followed by graphite powder 360 g of grade blue P (manufactured by Nippon Graphite Industry Co., Ltd., average particle size 10 μm) was added, and the powder was mixed by handshaking for about 5 minutes.

混合後にアイソパーHを276g注入して、また5分間程ハンドシェークで混合した後、 実施例1と同様にRR100−2.5mmφのストランド成形と150mm幅シート押出成形を行ったがいずれも連続した成形物を得ることができなかった。   After mixing, 276 g of Isopar H was injected and mixed by handshaking for about 5 minutes, and then RR100-2.5 mmφ strand molding and 150 mm width sheet extrusion molding were carried out in the same manner as in Example 1, but both were continuous moldings. Could not get.

比較例2Comparative Example 2

実施例1と同様の品種と組成のPTFEファインパウダーとグラファイト粉末とをポリエチレン袋内で手持ちで軽く混ぜた。   PTFE fine powder and graphite powder having the same varieties and compositions as in Example 1 were lightly mixed by hand in a polyethylene bag.

この最初の温度は23℃であった。   This initial temperature was 23 ° C.

ドライアイスを用いず実施例1の手順で混合粉の作製をした。   The mixed powder was prepared according to the procedure of Example 1 without using dry ice.

「混合機への投入」
次にこのポリエチレン袋の内容物をカッターミキサー(DITO SAMA製 Food Processor Cutter Mixer 3.5LT−2Speed)の容器内に移した。
“Introducing into the blender”
Next, the contents of the polyethylene bag were transferred into a container of a cutter mixer (Food Processor Cutter Mixer 3.5LT-2Speed manufactured by DITO SAMA).

「低速撹拌混合」
混合機への投入後、カッターの回転を低速撹拌の1500rpmで30秒間撹拌を行った。回転停止後の粉体温度をアルコール温度計で測定した。温度は27℃であった。
"Low speed mixing"
After feeding into the mixer, the cutter was stirred for 30 seconds at 1500 rpm with low speed stirring. The powder temperature after the rotation was stopped was measured with an alcohol thermometer. The temperature was 27 ° C.

「高速撹拌混合一回目」
次にカッターの回転を高速撹拌の3000rpmで30秒間撹拌を行った。回転停止後の粉体温度は55℃であった。
"High-speed stirring mixing first"
Next, the rotation of the cutter was performed at 3000 rpm, which is high-speed stirring, for 30 seconds. The powder temperature after stopping the rotation was 55 ° C.

「二回目の高速撹拌混合」
混ざり具合を均一にするために、二回目の高速撹拌を30秒間行った。回転停止後の粉体温度は80℃であった。
"Second high-speed stirring and mixing"
In order to make the mixing condition uniform, the second high-speed stirring was performed for 30 seconds. The powder temperature after stopping the rotation was 80 ° C.

「三回目の高速撹拌混合」
混ざり具合をさらに均一にするために、三回目の高速撹拌を30秒間行った。回転停止後の粉体温度は100℃であった。
"The third high-speed stirring and mixing"
In order to make the mixing even more uniform, the third high-speed stirring was performed for 30 seconds. The powder temperature after the rotation stopped was 100 ° C.

得られた混合粉の性状は流動性が全くなく、粉末とは呼べない粘りのある様相であった。   The properties of the obtained mixed powder had no fluidity and had a sticky appearance that could not be called a powder.

250ccの広口瓶内では塊化して助剤が混ぜられないものであった。 In the 250 cc wide-mouthed bottle, it was agglomerated and the auxiliary could not be mixed.

比較例3Comparative Example 3

3リットルの広口ポリエチレン瓶に実施例2と同じ割合でPTFEファインパウダーF−106を1000g入れ、続いて弁柄グレードNSR−500を4g入れ、蓋をして5分間程ハンドシェークで両物を混合した。   Place 1000 g of PTFE fine powder F-106 in the same proportion as in Example 2 in a 3 liter wide-mouth polyethylene bottle, then add 4 g of petal grade NSR-500, cover and mix both items by handshaking for about 5 minutes. .

混合後にアイソパーHを230g注入して、また5分間程ハンドシェークで混合した後、実施例2と同様に150mm幅のシート押出成形を行って連続した成形物を得ることができた。さらに圧延ロールで100μmのフィルムにしたが、肉眼で着色部と非着色部が濃淡として明白に存在した。   After mixing, 230 g of Isopar H was injected, and after mixing by handshaking for about 5 minutes, a 150 mm width sheet extrusion was performed in the same manner as in Example 2 to obtain a continuous molded product. Furthermore, although it was set as the film of 100 micrometers with the rolling roll, the colored part and the non-colored part existed clearly as light and dark with the naked eye.

均一な混合は得られなかった。   Uniform mixing was not obtained.

比較例4Comparative Example 4

3リットルの広口ポリエチレン瓶に実施例3と同じ割合でPTFEファインパウダーグレードF−106 720gと炭化ケイ素480gを入れて比較例1と同様に混合した。   720 g of PTFE fine powder grade F-106 and 480 g of silicon carbide were put in a 3 liter wide-mouth polyethylene bottle at the same ratio as in Example 3, and mixed in the same manner as in Comparative Example 1.

また、混合後にアイソパーH 300g注入して、また5分間程ハンドシェークで混合した後、比較例2と同様に150mm幅シート押出成形を行ったが連続した成形物を得ることができなかった。   After mixing, 300 g of Isopar H was injected, and after mixing by handshaking for about 5 minutes, 150 mm width sheet extrusion was performed as in Comparative Example 2, but a continuous molded product could not be obtained.

Claims (4)

ポリテトラフルオロエチレン乳化重合粒子の水性分散体から凝析によって得られた乳化重合粒子が凝集したポリテトラフルオロエチレン凝集粉末とフィラー粉末との凝集体を、10℃未満で解砕及び混合したのち、この混合粉体を造粒してなることを特徴とするペースト押出成形用粉末。   After crushing and mixing the aggregate of the polytetrafluoroethylene aggregated powder and the filler powder in which the emulsion polymerized particles obtained by coagulation from the aqueous dispersion of the polytetrafluoroethylene emulsion polymerized particles are aggregated at less than 10 ° C, A powder for paste extrusion molding characterized by granulating this mixed powder. ポリテトラフルオロエチレン凝集粉末の解砕サイズは20μm以下であることを特徴とする請求項1記載のペースト押出成形用粉末。   The paste extrusion molding powder according to claim 1, wherein the pulverized size of the polytetrafluoroethylene aggregated powder is 20 µm or less. ポリテトラフルオロエチレン凝集粉末の解砕サイズが10μm以下であることを特徴とする請求項1記載のペースト押出成形用粉末。   The paste extrusion molding powder according to claim 1, wherein the pulverized size of the polytetrafluoroethylene aggregated powder is 10 µm or less. ポリテトラフルオロエチレン乳化重合粒子の水性分散体から凝析によって得られた乳化重合粒子が凝集したポリテトラフルオロエチレン凝集粉末とフィラー粉末とドライアイスとを同時に解砕兼混合機に投入し、10℃未満で解砕・混合したのち、この混合粉体を造粒する
ことを特徴とするペースト押出成形用粉末の製造方法。
The polytetrafluoroethylene agglomerated powder obtained by agglomeration from the aqueous dispersion of polytetrafluoroethylene emulsion polymerized particles, agglomerated polytetrafluoroethylene agglomerated powder, filler powder and dry ice are simultaneously put into a crushing and mixing machine, and 10 ° C. A method for producing a powder for paste extrusion molding, characterized by granulating the mixed powder after pulverizing and mixing in less.
JP2014029894A 2014-02-19 2014-02-19 Powder for paste extrusion molding and method for producing the same Pending JP2015151543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029894A JP2015151543A (en) 2014-02-19 2014-02-19 Powder for paste extrusion molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029894A JP2015151543A (en) 2014-02-19 2014-02-19 Powder for paste extrusion molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2015151543A true JP2015151543A (en) 2015-08-24

Family

ID=53894149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029894A Pending JP2015151543A (en) 2014-02-19 2014-02-19 Powder for paste extrusion molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2015151543A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004235A1 (en) 2017-06-28 2019-01-03 大陽日酸株式会社 Composite resin particle production method, resin molded article, and composite resin particles
JP2020019894A (en) * 2018-08-01 2020-02-06 大陽日酸株式会社 Method for producing composite resin particles and composite resin particles
WO2020114419A1 (en) 2018-12-04 2020-06-11 大金氟化工(中国)有限公司 Preparation method for polytetrafluoroethylene composition, polytetrafluoroethylene composition, forming product, conductive pipe, heat conduction film, and substrate ccl
KR20210099067A (en) 2018-12-04 2021-08-11 다이킨 플루오로케미컬즈 (차이나) 컴퍼니, 리미티드 Method for producing polytetrafluoroethylene composition, polytetrafluoroethylene composition, molded article, conductive tube, thermally conductive film and substrate for CCL
WO2022061048A1 (en) 2020-09-18 2022-03-24 The Chemours Company Fc, Llc Compression molding composition, method for producing the same, and molded product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237254A (en) * 1997-02-26 1998-09-08 Polyplastics Co Method for mixing thermoplastic resin with fluoro resin and method for producing fluoro-resin-containing thermoplastic resin composition
JP2007191563A (en) * 2006-01-18 2007-08-02 Yamakatsu Labo:Kk Method for producing mixed polytetrafluoroethylene fine powder and mixed polytetrafluoroethylene fine powder obtained by the method for production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237254A (en) * 1997-02-26 1998-09-08 Polyplastics Co Method for mixing thermoplastic resin with fluoro resin and method for producing fluoro-resin-containing thermoplastic resin composition
JP2007191563A (en) * 2006-01-18 2007-08-02 Yamakatsu Labo:Kk Method for producing mixed polytetrafluoroethylene fine powder and mixed polytetrafluoroethylene fine powder obtained by the method for production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200022382A (en) 2017-06-28 2020-03-03 다이요 닛산 가부시키가이샤 Method for producing composite resin particles, resin molded body and composite resin particles
US11149121B2 (en) 2017-06-28 2021-10-19 Taiyo Nippon Sanso Corporation Method for producing composite resin particles, resin molded article, and composite resin particles
WO2019004235A1 (en) 2017-06-28 2019-01-03 大陽日酸株式会社 Composite resin particle production method, resin molded article, and composite resin particles
CN112739749A (en) * 2018-08-01 2021-04-30 大阳日酸株式会社 Method for producing composite resin particle, and composite resin particle
KR20210038543A (en) 2018-08-01 2021-04-07 다이요 닛산 가부시키가이샤 Method for producing composite resin particles and composite resin particles
WO2020026938A1 (en) 2018-08-01 2020-02-06 大陽日酸株式会社 Production method for composite resin particles, and composite resin particles
JP2020019894A (en) * 2018-08-01 2020-02-06 大陽日酸株式会社 Method for producing composite resin particles and composite resin particles
JP7050617B2 (en) 2018-08-01 2022-04-08 大陽日酸株式会社 Manufacturing method of composite resin particles, composite resin particles
WO2020114419A1 (en) 2018-12-04 2020-06-11 大金氟化工(中国)有限公司 Preparation method for polytetrafluoroethylene composition, polytetrafluoroethylene composition, forming product, conductive pipe, heat conduction film, and substrate ccl
KR20210099067A (en) 2018-12-04 2021-08-11 다이킨 플루오로케미컬즈 (차이나) 컴퍼니, 리미티드 Method for producing polytetrafluoroethylene composition, polytetrafluoroethylene composition, molded article, conductive tube, thermally conductive film and substrate for CCL
JP2022510017A (en) * 2018-12-04 2022-01-25 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド Manufacturing method of polytetrafluoroethylene composition, polytetrafluoroethylene composition, molded product, conductive tube, heat conductive film and substrate for CCL
EP3892681A4 (en) * 2018-12-04 2022-08-24 Daikin Fluorochemicals (China) Co., Ltd. Preparation method for polytetrafluoroethylene composition, polytetrafluoroethylene composition, forming product, conductive pipe, heat conduction film, and substrate ccl
JP7304949B2 (en) 2018-12-04 2023-07-07 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド Method for producing polytetrafluoroethylene composition, polytetrafluoroethylene composition, molded article, conductive tube, thermally conductive film, and substrate for CCL
KR102566214B1 (en) 2018-12-04 2023-08-14 다이킨 플루오로케미컬즈 (차이나) 컴퍼니, 리미티드 Method for producing polytetrafluoroethylene composition, polytetrafluoroethylene composition, molded article, conductive tube, thermal conductive film and substrate for CCL
WO2022061048A1 (en) 2020-09-18 2022-03-24 The Chemours Company Fc, Llc Compression molding composition, method for producing the same, and molded product

Similar Documents

Publication Publication Date Title
JP2015151543A (en) Powder for paste extrusion molding and method for producing the same
Banerjee et al. Conducting polyaniline nanoparticle blends with extremely low percolation thresholds
US20180251609A1 (en) Methods of making an elastomer composite reinforced with silica and products containing same
CN106082309A (en) The manufacture method of Zinc oxide particles, heat-releasing filler, resin combination, heat-dissipating grease and heat-dissipating coating composition
KR920000377B1 (en) A process for the production of tack-free pourable fuller containing elastomer powder
WO2010058673A1 (en) Master batch for coloring synthetic resin
US7148285B2 (en) Coated carbon black pellets and methods of making same
EP2173793B1 (en) Masterbatch preparation process
US20070210474A1 (en) Divided Solid Compositions With A High Talc Content, Which Are Intended To Be Incorporated In A Thermoplastic Material
CN106366420A (en) Nano-plastic masterbatch and preparation method thereof
WO1997015611A1 (en) Granular powder of filled polytetrafluoroethylene and process for the production thereof
WO1998047950A1 (en) Granular polytetrafluoroethylene powders and process for producing the same
WO1997017392A1 (en) Granulated powder of filled polytetrafluoroethylene for molding and process for the production thereof
JPS5958047A (en) Granular stabilizer for chlorine-containing polymer and its preparation
EP0770107B1 (en) Dispersible carbon black pellets
Huang et al. Chemical modification of carbon black by a simple non-liquid-phase approach
US11479657B2 (en) System and method for fabricating nanoparticle filler material dispersions and producing improved compounds containing hydrophobic plastic polymers
TW201938652A (en) Method for producing carbon-nanotube-rich rubber granules
JP2011032373A (en) Manufacturing method for wet master batch
JP2014019784A (en) Surface-treated ground calcium carbonate, process for producing the same and resin composition comprising calcium carbonate
JP4452317B1 (en) Manufacturing method of wet masterbatch
JPH09241387A (en) Process for granulating particulate polytetrafluoroethylene powder
Carneiro et al. Preparation and characterization of acrylic polymer nanocomposite films obtained from aqueous dispersions
JP2010229329A (en) Method for producing wet master batch, and vulcanized rubber obtained by using the wet master batch
JP5367957B2 (en) Method for producing powder cosmetics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328