JP2015150472A - Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water - Google Patents

Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water Download PDF

Info

Publication number
JP2015150472A
JP2015150472A JP2014024249A JP2014024249A JP2015150472A JP 2015150472 A JP2015150472 A JP 2015150472A JP 2014024249 A JP2014024249 A JP 2014024249A JP 2014024249 A JP2014024249 A JP 2014024249A JP 2015150472 A JP2015150472 A JP 2015150472A
Authority
JP
Japan
Prior art keywords
hydrogen
water
container
pressure
connecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014024249A
Other languages
Japanese (ja)
Other versions
JP5699232B1 (en
Inventor
浩己 源平
Hiroki Genpei
浩己 源平
賢二郎 吉野
Kenjiro Yoshino
賢二郎 吉野
深井 晃
Akira Fukai
晃 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genis White Co Ltd
Original Assignee
Genis White Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52837066&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015150472(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genis White Co Ltd filed Critical Genis White Co Ltd
Priority to JP2014024249A priority Critical patent/JP5699232B1/en
Priority to TW104104552A priority patent/TWI638784B/en
Priority to KR1020167008599A priority patent/KR20160119049A/en
Priority to PCT/JP2015/053839 priority patent/WO2015122463A1/en
Application granted granted Critical
Publication of JP5699232B1 publication Critical patent/JP5699232B1/en
Publication of JP2015150472A publication Critical patent/JP2015150472A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • B01F23/2361Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages within small containers, e.g. within bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • B01F23/2362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages for aerating or carbonating within receptacles or tanks, e.g. distribution machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23764Hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/02Location of water treatment or water treatment device as part of a bottle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cosmetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing device for hydrogen water capable of efficiently manufacturing hydrogen water with a saturated concentration in a short time with a simple device, a manufacturing method of hydrogen water, and a storage method capable of maintaining high concentration.SOLUTION: The manufacturing device for hydrogen water includes a vessel which can accommodate water and can be sealed, and compression means which applies pressure to the hydrogen in a gas state accommodated in the vessel together with water at a hydrogen pressure of 1 atmosphere or higher and less than 10 atmospheres in the vessel. The compression means uses the pressure of hydrogen accommodated in a hydrogen storage vessel or a mechanical pressure of hydrogen compressed by a pump. The manufacturing device for hydrogen water includes a connection pipe which connects the hydrogen storage vessel to the vessel so as to supply hydrogen to the vessel, and further includes mixing means which mixes the water in the vessel so as to bring the water into contact with hydrogen.

Description

本発明は、水素水の製造装置及びその製造方法と保管方法に係り、より詳しくは、水素気体を加圧下で水と混合して水に水素を溶存させた水素水の製造装置及びその製造方法と保管方法に関する。   The present invention relates to a hydrogen water production apparatus, a production method thereof, and a storage method, and more particularly, a hydrogen water production apparatus in which hydrogen gas is mixed with water under pressure to dissolve hydrogen in the water, and a production method thereof. And storage methods.

健康志向が高まる中、水素を溶存させた水素水が注目されている。水素水は体内に取り込むとその還元力により、体内の活性酸素を消滅させ、アンチエイジング効果があるといわれている。水素水に溶存する水素は飲料水として経口的に摂取されるほか、洗顔や入浴、さらに化粧品を介して経皮的に摂取される。
また、水素水は還元力を有することから、電子部品の洗浄剤としての使用方法もある。電子部品を水素水で洗浄することにより、電子部品の表面を覆う酸化被膜を取り除くことができる。
As health consciousness grows, hydrogen water in which hydrogen is dissolved is drawing attention. When hydrogen water is taken into the body, it is said to have an anti-aging effect by eliminating the active oxygen in the body due to its reducing power. Hydrogen dissolved in hydrogen water is taken orally as drinking water, and is taken percutaneously through face washing, bathing, and cosmetics.
Further, since hydrogen water has a reducing power, there is a method of using it as a cleaning agent for electronic parts. By washing the electronic component with hydrogen water, the oxide film covering the surface of the electronic component can be removed.

本発明で取り扱う水素水は水素分子を水に溶解させたものであり、原子状水素(水素ラジカルやヒドリドイオン等)を溶解させたとする所謂「活性水素水」とは区別される。
水素分子を水に溶解させて水素水を製造する方法としては、水素ガスを多孔質の管を通して水中に吹き込みバブリングさせて水素ガスを溶解させる水素ガス注入法が知られている(例えば、特許文献1,2を参照)。
水素分子は常温常圧で気体であり、その水に対する溶解度は、1気圧(0.101MPa)の時で20℃の時(常温・常圧)、1.62ppm(純水1リットルに対し1.62mg)であり、これが常温常圧における飽和溶解度である。
ヘンリーの法則より気体の溶解度は圧力に比例することから、水素が水に対する溶解速度が速くなり、溶解量も増大する。しかしながら、常圧に戻すと、水に溶解していた水素は脱気して、常温常圧における飽和溶解度にまで戻る。
Hydrogen water handled in the present invention is obtained by dissolving hydrogen molecules in water, and is distinguished from so-called “active hydrogen water” in which atomic hydrogen (hydrogen radicals, hydride ions, etc.) is dissolved.
As a method for producing hydrogen water by dissolving hydrogen molecules in water, a hydrogen gas injection method is known in which hydrogen gas is blown into a water through a porous tube and bubbled to dissolve the hydrogen gas (for example, Patent Documents). 1 and 2).
Hydrogen molecule is a gas at normal temperature and pressure, and its solubility in water is 1.62 ppm (1 liter per 1 liter of pure water) at 1 atm (0.101 MPa) and 20 ° C. (normal temperature and normal pressure). 62 mg), which is the saturation solubility at normal temperature and pressure.
According to Henry's law, the solubility of a gas is proportional to the pressure, so that the dissolution rate of hydrogen in water increases and the amount of dissolution increases. However, when the pressure is returned to normal pressure, the hydrogen dissolved in water is degassed and returns to the saturation solubility at normal temperature and pressure.

一般家庭に設置される水素水製造装置として様々な製品が市販されているが、いずれも大掛かりな装置であり、価格も高い。飲食店や美容室等の業務用になるとさらに大掛かりな設備が必要になるという問題がある。
手軽に水素水を作る方法として固体セラミック法と呼ばれる方法がある。これは二酸化珪素(石英)や炭酸カルシウム(サンゴカルシウム)等に金属マグネシウムを混合した粉末をスティック状にしたもので、水を入れた容器に入れておくだけで水素水ができるというものであるが、実証データが少なく、再現性に欠けるという問題がある。
水素を発生させる入浴剤には上記の金属マグネシウムに代えて水素化マグネシウムや水素化カルシウムが混合されたものが市販されている。
いずれの方式も、常温・常圧下にて行うことから当然ながら常温・常圧条件下の飽和濃度を下回り、方式によっては極めて低濃度でしかない。
また、水素水に含まれる水素濃度は飽和濃度においても1.6ppmと極めて微量であり、水素自体は大きなコストになりえないのであるが、既存の方式の場合、方式により異なるが、電気や、使い捨ての資材等で、水素そのもののコストの数倍から数百倍のコストがかかる。
Various products are commercially available as hydrogen water production equipment installed in general households, but they are all large-scale equipment and expensive. There is a problem that larger equipment is required for business use in restaurants and beauty salons.
There is a method called a solid ceramic method as a method for easily producing hydrogen water. This is a stick made powder of metal magnesium mixed with silicon dioxide (quartz), calcium carbonate (coral calcium), etc., and hydrogen water can be produced simply by placing it in a container containing water. There is a problem that there is little demonstration data and reproducibility is lacking.
A bathing agent for generating hydrogen is commercially available in which magnesium hydride or calcium hydride is mixed in place of the above metal magnesium.
Since both methods are performed at normal temperature and normal pressure, the saturation concentration is naturally below the normal temperature and normal pressure conditions, and depending on the method, the concentration is extremely low.
In addition, the hydrogen concentration contained in the hydrogen water is as extremely small as 1.6 ppm even at the saturation concentration, and hydrogen itself cannot be a large cost. This is a disposable material and costs several to several hundred times the cost of hydrogen itself.

水素水を巡る問題点としては、さらに保存と輸送の問題がある。すなわち、水に溶解した水素は脱気しやすく、飽和状態の水素水を解放した状態に静置すると2時間で1/10の濃度に減少するといわれている(特許文献3を参照)。
ある週刊誌の調査によると、通信販売により入手したペットボトル入りの水素水の溶存水素濃度を検査したところ、検査した2銘柄ともに水素溶存濃度は0ppmであった。同時に測定を行ったアルミニウムボトルに充填された水素水3銘柄も溶存水素濃度は0.1〜0.8ppmの範囲にあった。これらの水素水は、飲料水メーカー等が工場生産したものであり、ラベル表記によれば、製造時には水素の水に対する飽和溶存量に近いものであったことから、輸送中及び保存中に溶解していた水素の90%以上の水素が失われたものである。水素水は、スーパー、コンビニ、薬局等でも購入することができる。しかしながら、通信販売を含むこれらの入手経路では高濃度な水素水を入手できないという問題がある。
Another problem with hydrogen water is storage and transportation. That is, it is said that hydrogen dissolved in water is easily degassed, and when it is allowed to stand in a state in which saturated hydrogen water is released, the concentration is reduced to 1/10 in 2 hours (see Patent Document 3).
According to a survey by a weekly magazine, when the dissolved hydrogen concentration of PET bottled hydrogen water obtained by mail order was examined, the hydrogen dissolved concentration was 0 ppm for both of the brands examined. The three hydrogen water brands filled in the aluminum bottles that were measured simultaneously also had a dissolved hydrogen concentration in the range of 0.1 to 0.8 ppm. These hydrogen waters were produced at the factory by drinking water manufacturers, etc., and according to the label notation, since they were close to the saturated dissolved amount of hydrogen in water at the time of manufacture, they were dissolved during transportation and storage. More than 90% of the hydrogen had been lost. Hydrogen water can be purchased at supermarkets, convenience stores, pharmacies and the like. However, there is a problem that high-concentration hydrogen water cannot be obtained through these channels including mail order sales.

特開2005−177724号公報JP 2005-177724 A 特開2007−283280号公報JP 2007-283280 A 世界知的所有権機関国際事務局 国際公開 第2008/015867号World Intellectual Property Organization International Secretariat International Publication No. 2008/015867

本発明は、かかる問題を解決するためになされたものであって、その目的とするところは、様々な規模のオンサイトでも利用可能な簡単な装置で効率よく短時間に飽和濃度の水素水を製造することができる水素水製造装置及びその製造方法を提供することにある。
また、他の目的とするところは、工場内で生産した場合の水素水の保管方法を提供することにある。
The present invention has been made to solve such a problem, and the object of the present invention is to efficiently and efficiently saturate hydrogen water in a short time with a simple device that can be used on-site at various scales. An object of the present invention is to provide a hydrogen water production apparatus and a production method thereof that can be produced.
Another object is to provide a method for storing hydrogen water when produced in a factory.

上記目的を達成するための、本発明の水素水の製造装置は、水を収容して密閉可能な容器と、水とともに容器内に収容された気体状態の水素を容器内の水素圧力として1気圧以上かつ10気圧未満に加圧する加圧手段とを有し、加圧手段は、水素貯蔵容器に収容された水素の圧力又はポンプで水素を圧縮した機械的圧力であり、水素貯蔵容器とを容器を連結し、容器に水素を供給する連結管を有する水素水の製造装置であって、容器内の水を混合して水と水素を接触させる混合手段をさらに有することを特徴とする。   In order to achieve the above object, an apparatus for producing hydrogen water according to the present invention includes a container that can contain water and can be sealed, and hydrogen in a gaseous state that is contained in the container together with water as a hydrogen pressure in the container. And pressurizing means for pressurizing to less than 10 atm. The pressurizing means is a pressure of hydrogen stored in a hydrogen storage container or a mechanical pressure obtained by compressing hydrogen with a pump. Is a hydrogen water production apparatus having a connecting pipe for supplying hydrogen to the container, further comprising mixing means for mixing the water in the container and bringing the water into contact with hydrogen.

上記の混合手段は、振り混ぜ又は水への水素の吹き込みであることが好ましい。
本発明の一つの態様によると、水と水素を収容する容器がペットボトル、アルミニウムボトル及びスチールボトルから選ばれた1種であり、混合手段が振り混ぜであるとすることができる。
本発明の別の態様によると、水と水素を収容する容器が反応タンクであり、混合手段が水への水素の吹き込みであるとすることができる。
水と水素を収容する容器がペットボトル、アルミニウムボトル及びスチールボトルから選ばれた1種である時、連結管は耐圧性のフレキシブルチューブであり、容器と連結管との間には、連結管を着脱可能に接続する接続部を有し、容器を密閉できるキャップをさらに有することが好ましい。
The mixing means is preferably shaking or blowing hydrogen into water.
According to one aspect of the present invention, the container for storing water and hydrogen may be one selected from a PET bottle, an aluminum bottle, and a steel bottle, and the mixing means may be shake mixing.
According to another aspect of the present invention, the container containing water and hydrogen can be a reaction tank, and the mixing means can be hydrogen blowing into water.
When the container containing water and hydrogen is one selected from PET bottles, aluminum bottles, and steel bottles, the connecting pipe is a pressure-resistant flexible tube, and there is no connecting pipe between the container and the connecting pipe. It is preferable to further have a cap that has a connection part that is detachably connected and can seal the container.

上記目的を達成するための、本発明の水素水の製造方法は、水を収容して密閉可能な容器と、水とともに容器内に収容された気体状態の水素とを加圧する加圧手段を有し、加圧手段は、水素貯蔵容器に収容された水素の圧力又はポンプで水素を圧縮した機械的圧力であって、水素貯蔵容器と容器を連結し、容器に水素を供給する連結管を有し、加圧手段により、容器内の水素圧力を1気圧以上、10気圧未満とし、容器を振り混ぜる、又は水に水素を吹き込むことにより水と水素とを接触させて水に水素を溶存させることを特徴とする。
水と水素を収容する容器がペットボトル、アルミニウムボトル及びスチールボトルより選ばれた1種であり、水と水素を接触させる方法は、振り混ぜであるとすることができる。
In order to achieve the above object, a method for producing hydrogen water according to the present invention comprises a container that can contain water and can be sealed, and a pressurizing means that pressurizes hydrogen in a gaseous state contained in the container together with water. The pressurizing means is a pressure of hydrogen stored in the hydrogen storage container or a mechanical pressure obtained by compressing hydrogen with a pump, and has a connecting pipe for connecting the hydrogen storage container and the container and supplying hydrogen to the container. Then, the hydrogen pressure in the container is set to 1 atm or more and less than 10 atm by pressurizing means, and the container is shaken or mixed, or hydrogen is blown into water to bring water into contact with hydrogen and dissolve hydrogen in water. It is characterized by.
The container containing water and hydrogen is one selected from PET bottles, aluminum bottles, and steel bottles, and the method of bringing water into contact with hydrogen can be said to be shaking.

本発明によれば、高圧下の溶解度の高い状態で常温・常圧の飽和濃度以上の水素水を作り、減圧によって飽和濃度にまで戻ることにはなるが、飽和濃度を担保することができる。極めて簡単な装置と操作で、短時間で水素水を製造することができ、必要な時に直ちに水素水を摂取することができる。また、大量に水素水を製造する場合にも、簡単な装置と操作で製造することができ、必要なランニングコストも溶解させる水素のみとなるため、安価な水素水を供給することができる。
また、保管する場合は、減圧後飽和濃度に戻るまでの間、速やかに密封することで、水素自体が発泡することで再度高圧となり、保管時高圧を維持することで高濃度も維持することが可能となる。
According to the present invention, hydrogen water having a saturation concentration equal to or higher than normal temperature and normal pressure is produced in a state of high solubility under high pressure, and the saturated concentration can be ensured by returning to the saturation concentration by depressurization. With very simple equipment and operation, hydrogen water can be produced in a short time, and hydrogen water can be taken immediately when necessary. In addition, even when a large amount of hydrogen water is produced, it can be produced with a simple apparatus and operation, and since only the hydrogen that dissolves the necessary running cost is obtained, inexpensive hydrogen water can be supplied.
In addition, when storing it, it is possible to maintain the high concentration by maintaining the high pressure at the time of storage by maintaining the high pressure when the hydrogen itself is foamed by sealing it quickly until it returns to the saturated concentration after decompression. It becomes possible.

本発明の実施例1に係るペットボトルを用いた水素水の製造設備の側面図である。It is a side view of the hydrogen water manufacturing equipment using the PET bottle concerning Example 1 of the present invention. 本発明の実施例2に係る反応タンクを用いた水素水の製造設備の側面図である。It is a side view of the hydrogen water manufacturing equipment using the reaction tank concerning Example 2 of the present invention.

本発明は、水素水を製造する装置及びその製造方法に関するものである。
図1及び図2に、水素水を製造するための水素水の製造設備の側面図を示した。
本発明は、水を収容して密閉可能な容器と、水とともに容器内に収容された気体状態の水素を容器内の水素圧力として1気圧以上かつ10気圧未満に加圧する加圧手段を有し、加圧手段は、水素貯蔵容器に収容された水素の圧力又はポンプで水素を圧縮した機械的圧力であり、水素貯蔵容器と容器を連結し、水を入れた容器に水素を供給する連結管を有する水素水の製造装置であって、容器内の水を混合して水と水素を接触させる混合手段をさらに有する。
また、本発明の水素水の製造方法は、水を収容して密閉可能な容器と、水とともに容器内に収容された気体状態の水素とを加圧する加圧手段を有し、加圧手段は水素貯蔵容器内の水素圧力又はポンプで水素を圧縮した機械的圧力であって、水素貯蔵容器と水を入れた容器を連結し、容器に水素を供給する連結管を有し、加圧手段により、容器内の水素圧力を1気圧以上、10気圧未満とし、容器を振り混ぜる、又は水に水素を吹き込むことによって水と水素とを接触させて水に水素を溶存させるものである。
The present invention relates to an apparatus for producing hydrogen water and a method for producing the same.
1 and 2 show side views of hydrogen water production equipment for producing hydrogen water.
The present invention has a container that can contain water and can be sealed, and a pressurizing unit that pressurizes hydrogen in a gas state contained in the container together with water to 1 atm or more and less than 10 atm as hydrogen pressure in the container. The pressurizing means is a pressure of hydrogen stored in a hydrogen storage container or a mechanical pressure obtained by compressing hydrogen with a pump, and connects the hydrogen storage container and the container and supplies hydrogen to the container containing water. The apparatus further comprises a mixing means for mixing the water in the container and bringing the water into contact with hydrogen.
Further, the method for producing hydrogen water of the present invention includes a container that can store water and can be sealed, and a pressurizing unit that pressurizes hydrogen in a gas state that is contained in the container together with water, Hydrogen pressure in a hydrogen storage container or mechanical pressure obtained by compressing hydrogen with a pump, connecting a hydrogen storage container and a container containing water, and having a connecting pipe for supplying hydrogen to the container, The hydrogen pressure in the container is set to 1 atm or more and less than 10 atm, and the container is shaken or mixed, or hydrogen is blown into water to bring water and hydrogen into contact with each other to dissolve hydrogen in water.

本発明に使用される密閉容器は、内部に水が収容でき、大気圧以上の水素が収容できるものであれば、その形状、大きさ、材質に特に制限はないが、手に持って容器内の水素水を飲める大きさの容器であれば、プラスチックボトルやプラスチックバッグ、ガラスビン、陶製の器、金属製の容器であってよい。
中でも、容器内を高圧にした場合も気密性が維持できる捩じり止めのできるスクリュートップ式のキャップがセットになっているプラスチックボトル、プラスチックバッグ、ガラスビン、金属製のボトルが好ましく利用できる。
The sealed container used in the present invention is not particularly limited in its shape, size, and material as long as it can store water inside and can store hydrogen above atmospheric pressure. If it is a container of the size which can drink hydrogen water, it may be a plastic bottle, a plastic bag, a glass bottle, a ceramic container, or a metal container.
Among them, a plastic bottle, a plastic bag, a glass bottle, and a metal bottle in which a screw-top type cap capable of preventing torsion can be maintained even when the inside of the container is set to a high pressure can be preferably used.

プラスチックボトルに使用されるプラスチックとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン樹脂、アクリロニトリルスチレン樹脂、アクリル樹脂、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエステル、ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの熱可塑性樹脂を挙げることができる。中でも、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタレートは価格も安く、強度に優れることから好ましく利用できる。特に、ポリエチレンテレフタレートのボトルはペットボトルの愛称で広く普及していることから好ましく利用できる。   Plastics used in plastic bottles include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, acrylonitrile butadiene styrene resin, acrylonitrile styrene resin, acrylic resin, polyamide, nylon, polyacetal. And thermoplastic resins such as polycarbonate, modified polyphenylene ether, polyester, polybutylene terephthalate, and polyethylene terephthalate. Among these, polyethylene, polypropylene, polyvinyl chloride, and polyethylene terephthalate are preferably used because of their low price and excellent strength. In particular, polyethylene terephthalate bottles can be preferably used because they are widely used as pet bottles.

プラスチックバッグに使用されるプラスチックとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン樹脂、アクリロニトリルスチレン樹脂、アクリル樹脂、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエステル、ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの熱可塑性樹脂が挙げられる。
中でも、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタレートは価格も安く、強度に優れることから好ましく利用できる。これらのプラスチックバックはさらにアルミニウムの薄いフィルムをラミネートした多層構造ものであることが好ましい。アルミニウムフィルムをラミネートすることにより、水素水から水素の脱気を遅らせることができる。
Plastics used in plastic bags include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, acrylonitrile butadiene styrene resin, acrylonitrile styrene resin, acrylic resin, polyamide, nylon, polyacetal. And thermoplastic resins such as polycarbonate, modified polyphenylene ether, polyester, polybutylene terephthalate, and polyethylene terephthalate.
Among these, polyethylene, polypropylene, polyvinyl chloride, and polyethylene terephthalate are preferably used because of their low price and excellent strength. These plastic bags preferably have a multilayer structure in which a thin film of aluminum is laminated. By laminating the aluminum film, degassing of hydrogen from hydrogen water can be delayed.

水素水を製造するガラスビンとしては、その口をスクリューキャップで密閉でき、10MPaの容器内圧力に耐えるものであれば、形状や材質や色調に制限はない。ワインや炭酸水の容器として使用されているものを好ましく利用できる。
金属製のボトルに使用される金属としては、アルミニウム、スチール又はチタン等がある。中でもアルミニウム及びスチール製のボトルは炭酸飲料やコーヒー等の飲料容器として流通していることから入手が容易であり、これらを好ましく使用できる。
As a glass bottle for producing hydrogen water, the shape, material and color tone are not limited as long as the mouth can be sealed with a screw cap and can withstand the pressure in the container of 10 MPa. What is used as a container of wine or carbonated water can be utilized preferably.
Examples of the metal used for the metal bottle include aluminum, steel, and titanium. Among them, aluminum and steel bottles are easily available because they are distributed as beverage containers for carbonated drinks and coffee, and these can be preferably used.

一方、飲食店、美容室、銭湯、病院等の大容量の水素水を必要とする施設で水素水を製造する場合には、大型の密閉容器での製造が必要である。
大型の密閉容器としては、牛乳輸送管、ドラム缶、各種サイズの反応用タンク等を挙げることができる。形状は円筒形であることが一般的であり、材質は金属が好ましく使用される。
大型容器に使用される金属としては鉄、銅、アルミニウム等があるが、ステンレススチールや真鍮などの合金であってもよい。また、グラスライニング加工、又はホウロウコーティングを施したもの、さらに、メッキ加工、塗装などの表面処理がなされたものも好ましく使用できる。
On the other hand, when producing hydrogen water in a facility that requires a large volume of hydrogen water, such as a restaurant, beauty salon, public bath, hospital, etc., it is necessary to produce it in a large sealed container.
Examples of large sealed containers include milk transport pipes, drum cans, reaction tanks of various sizes, and the like. The shape is generally cylindrical, and a metal is preferably used as the material.
Examples of the metal used for the large container include iron, copper, and aluminum, but may be an alloy such as stainless steel or brass. In addition, glass lining or enamel coating, and surface treatment such as plating or painting can be preferably used.

これらの容器は、市販されている既存商品を利用して簡単な加工を施すことにより水素水の製造装置を組み立てることができる。
これら容器に収容される水は、飲料水して使用できるものであれば特に制限はなく、硬度が0〜100の軟水、100〜300の中硬水、300以上の硬水であってもよい。また、果汁や乳成分等の添加物を含むものであってもよい。
容器に収容する水の量は水と水素の接触効率を考慮して容器の容量の50〜80%とすることがよい。50%以下では1回の作業でできる水素水の量が少なく非効率であり、80%以上では混合したとき水と水素の接触面積が極端に少なくなり、水素水製造に時間がかかる恐れがある。
These containers can be assembled into a hydrogen water production device by performing simple processing using existing commercial products.
The water stored in these containers is not particularly limited as long as it can be used as drinking water, and may be soft water having a hardness of 0 to 100, medium-hard water of 100 to 300, or hard water of 300 or more. Moreover, you may contain additives, such as fruit juice and a milk component.
The amount of water stored in the container is preferably 50 to 80% of the capacity of the container in consideration of the contact efficiency between water and hydrogen. If it is 50% or less, the amount of hydrogen water that can be produced in one operation is small and inefficient, and if it is 80% or more, the contact area between water and hydrogen is extremely small when mixed, and hydrogen water production may take a long time. .

本発明の水素水に溶解される水素の製造方法には様々な方法があるが、一例を挙げると、(イ)鉄を始めとする金属に硫酸等の酸を加えて水素を発生させる方法、(ロ)アルミニウム(Al)、亜鉛(Zn)、スズ(Sn)、鉛(Pb)等の両性金属にアルカリ性の水を加える方法、(ハ)水素化カルシウム、水素化マグネシウム、水素化ホウ素ナトリウム等の還元剤に水を加える方法、(ニ)水を電気分解する方法等があげられる。
これらのいずれの方法で製造された水素も水素水の原料として使用できるが、工業的に作られる金属と酸の反応によって得られた水素を圧縮するか、又は水素吸蔵合金に吸収させ、水素貯蔵容器に充填したものが入手も簡単で使いやすい。
There are various methods for producing hydrogen dissolved in hydrogen water of the present invention. For example, (i) a method of generating hydrogen by adding an acid such as sulfuric acid to a metal such as iron, (B) A method of adding alkaline water to an amphoteric metal such as aluminum (Al), zinc (Zn), tin (Sn), lead (Pb), (c) calcium hydride, magnesium hydride, sodium borohydride, etc. And (d) a method of electrolyzing water.
Hydrogen produced by any of these methods can be used as a raw material for hydrogen water, but hydrogen produced by the reaction between industrially produced metals and acids is compressed or absorbed by hydrogen storage alloys to store hydrogen. The one filled in the container is easy to obtain and easy to use.

水素貯蔵容器としては、1〜35MPaの水素を圧縮して貯蔵する圧縮水素貯蔵ボンベ、超低温の断熱容器を使用する液体水素貯蔵タンク、常温・常圧で水素を貯蔵できる水素吸蔵合金ボンベ、高圧容器と水素吸蔵合金による貯蔵を組み合わせたハイブリッドボンベがある。いずれの水素貯蔵容器も本願発明の水素供給源として使用が可能であるが、中でも、価格の点では圧縮水素貯蔵ボンベによる貯蔵が有利であり、安全性の面からは常温常圧で取り扱い可能な水素吸蔵合金ボンベが有利である。
水素貯蔵容器と密閉容器との間は耐圧性の連結管で連結することにより、水素貯蔵容器の水素を密閉容器内の水に水素を供給することができる。
圧縮水素貯蔵ボンベを使用する場合には、水素ボンベには圧力計と圧力調整器がセットになったレギュレーターが付属されることがよい。密閉容器が例えばペットボトルである場合、水素を減圧して供給できるため、水素ボンベと密閉容器とを連結する連結管にはプラスチック製又はゴム製の耐圧性フレキシブルパイプを用いることができ、水素ボンベと密閉容器とを連結管で連結した状態のまま振り混ぜ混合して水素水を製造することができる。
As hydrogen storage containers, compressed hydrogen storage cylinders that compress and store 1 to 35 MPa of hydrogen, liquid hydrogen storage tanks that use ultra-low temperature heat insulation containers, hydrogen storage alloy cylinders that can store hydrogen at room temperature and normal pressure, and high-pressure containers And hybrid cylinders that combine storage with hydrogen storage alloys. Any hydrogen storage container can be used as the hydrogen supply source of the present invention, but among these, storage by a compressed hydrogen storage cylinder is advantageous in terms of price, and it can be handled at normal temperature and pressure from the viewpoint of safety. Hydrogen storage alloy cylinders are advantageous.
By connecting the hydrogen storage container and the sealed container with a pressure-resistant connecting pipe, hydrogen in the hydrogen storage container can be supplied to the water in the sealed container.
When a compressed hydrogen storage cylinder is used, it is preferable that a regulator including a pressure gauge and a pressure regulator is attached to the hydrogen cylinder. For example, when the sealed container is a PET bottle, hydrogen can be supplied under reduced pressure. Therefore, a pressure-resistant flexible pipe made of plastic or rubber can be used as a connecting pipe that connects the hydrogen cylinder and the sealed container. Hydrogen water can be produced by shaking and mixing in a state where the airtight container and the airtight container are connected with a connecting pipe.

水素貯蔵容器として水素吸蔵合金ボンベを使用する場合には、水素を安定して取り出すために、水素吸蔵ボンベに加温装置が取り付けられてもよい。また、水素貯蔵容器と密閉容器との間を連結する連結管には水素を圧縮するコンプレッサが設置されてもよい。コンプレッサを設置することにより、圧縮水素貯蔵ボンベの圧力が低下したとき、及び水素吸蔵合金ボンベからの水素の供給が遅い時にも1気圧から10気圧の水素を供給することができる。
水素吸蔵合金は様々なものが開発されている。代表的なものとして、AB型のLaNi、AB型のTiFe、Mg系のMgNi等が知られている。本発明には水素を吸蔵し、必要に応じて水素を放出するものであれば、いずれの吸蔵合金でも使用が可能である。
When a hydrogen storage alloy cylinder is used as the hydrogen storage container, a heating device may be attached to the hydrogen storage cylinder in order to stably extract hydrogen. In addition, a compressor that compresses hydrogen may be installed in a connecting pipe that connects the hydrogen storage container and the sealed container. By installing the compressor, it is possible to supply 1 to 10 atmospheres of hydrogen even when the pressure of the compressed hydrogen storage cylinder is reduced and when the supply of hydrogen from the hydrogen storage alloy cylinder is slow.
Various hydrogen storage alloys have been developed. Typical examples, AB 5 type LaNi 5, AB type TiFe, Mg-based Mg 2 Ni or the like is known. Any occlusion alloy can be used in the present invention as long as it occludes hydrogen and releases hydrogen as necessary.

水素ボンベを使用する場合には、水素ボンベと密閉容器とを耐圧の連結管で連結すればよい。例えば、反応タンクで水素水を製造する場合には、連結管には、ステンレススチールや真鍮製の金属製の管が用いられることがよい。また、金属製の連結管に代えてポリオレフィン、ポリアミド、ポリテトラフルオロエチレン等の合成樹脂の管を用いてもよい。
水素貯蔵容器と連結管、反応タンクと連結管を強固に連結するために、連結管の両端部にはエンドコネクタが付設される。
一方、例えば、密閉容器がペットボトルである場合、連結管は取り外しが容易なフレキシブルな連結管の利便性が高い。フレキシブルな連結管を用いた場合、連結管を結合した状態で振り混ぜることもできるため水素を供給しながら水素水を製造することができる。
When a hydrogen cylinder is used, the hydrogen cylinder and the sealed container may be connected with a pressure-resistant connecting pipe. For example, when hydrogen water is produced in a reaction tank, a metal pipe made of stainless steel or brass is preferably used for the connecting pipe. Further, instead of a metal connecting pipe, a synthetic resin pipe such as polyolefin, polyamide, or polytetrafluoroethylene may be used.
In order to firmly connect the hydrogen storage container and the connecting pipe and the reaction tank and the connecting pipe, end connectors are attached to both ends of the connecting pipe.
On the other hand, for example, when the sealed container is a PET bottle, the connection pipe is highly convenient because it is easy to remove. When a flexible connecting pipe is used, it can be shaken with the connecting pipe connected, so that hydrogen water can be produced while supplying hydrogen.

例えばペットボトルを密閉容器として用いる場合、水素ボンベから繋がるフレキシブルパイプとペットボトルを結合する接続部が必要である。接続部はペットボトルの蓋の中央から外に延びた筒状突起であり、その先端が差し込み口となって、耐圧パイプの一端に差込まれて水素ボンベと連通できる。
連結管の末端にはこの接続部に連結するためのエンドコネクタが付設される。フレキシブルパイプの末端に付設されたエンドコネクタと、接続部に付設されたエンドコネクタの接続は螺号又は嵌合によっておこなわれることがよい。フレキシブルパイプの末端に付設されたエンドコネクタと、接続部に付設されたエンドコネクタが接続することにより水素ガスの圧力に耐える強固な連結になる。
For example, when a PET bottle is used as an airtight container, a connecting portion for connecting the flexible pipe connected from the hydrogen cylinder and the PET bottle is necessary. The connecting portion is a cylindrical protrusion extending outward from the center of the lid of the PET bottle, and the tip of the connecting portion serves as an insertion port, which can be inserted into one end of the pressure-resistant pipe to communicate with the hydrogen cylinder.
An end connector for connecting to the connecting portion is attached to the end of the connecting pipe. The connection between the end connector attached to the end of the flexible pipe and the end connector attached to the connecting portion may be made by screwing or fitting. By connecting the end connector attached to the end of the flexible pipe and the end connector attached to the connecting portion, the connection is strong enough to withstand the pressure of hydrogen gas.

この接続部には逆止弁が設けられることが好ましい。逆止弁を設けることにより、接続部から連結管を取り外しても容器内の圧力を維持することができる。容器内の水素圧力を高い状態に維持して振り混ぜることにより、水に水素を溶解させた水素水を製造することができる。
逆止弁の種類としては、弁の一端を蝶番形式にして開閉するスイングチェックバルブ、流路がS字状になるリフトチェックバルブ、バネの力を利用して開閉するディスク式チェックバルブ等があるがこれらの弁のいずれも接続部の逆止弁として使用することが可能である。また、ディスク式チェックバルブの開閉をシリコンゴムの力で行うスーパーバルブは、コンパクトであることから好ましく利用できる。
逆止弁に代えて、この接続部は先端と蓋部の間に二方コックを設けてもよい。水素を充填した後にコックを閉め、フレキシブルパイプを外した状態で、ボトルを振って水と水素を振り混ぜることができる。
This connection part is preferably provided with a check valve. By providing the check valve, the pressure in the container can be maintained even when the connecting pipe is removed from the connecting portion. Hydrogen water in which hydrogen is dissolved in water can be produced by maintaining the hydrogen pressure in the container at a high level and shaking the mixture.
Check valve types include a swing check valve that opens and closes with one end of the valve hinged, a lift check valve with a S-shaped flow path, and a disk check valve that opens and closes using the force of a spring. However, any of these valves can be used as a check valve for the connection. A super valve that opens and closes a disk type check valve by the force of silicon rubber can be preferably used because it is compact.
Instead of the check valve, this connecting portion may be provided with a two-way cock between the tip and the lid. After filling with hydrogen, with the cock closed and the flexible pipe removed, the bottle can be shaken to mix water and hydrogen.

例えばペットボトルを密閉容器として用いる場合、容器を密閉するキャップが準備される。キャップは容器となるペットボトルとセットになっていたものを利用して、本発明のキャップに加工できる。キャップの頂部(又は底部)の中央に接続部が挿入される孔を穿ち、その孔に逆止弁の一部である接続部を貫入させて接着剤等で固定すればよい。密閉性を高めるため、接続部の外周部にキャップの側部と接着するフランジを設けてもよい。むろん、キャップを別途作成することもできる。
逆止弁付きの接続部を有するキャップ、及び二方コックを含む接続部を有するキャップは、雌ねじの溝を有する蓋部とともに押出し成形により一体に成形することもできる。
For example, when using a PET bottle as an airtight container, the cap which seals a container is prepared. The cap can be processed into the cap of the present invention by using a cap that has been set with a plastic bottle as a container. A hole into which the connecting portion is inserted is formed in the center of the top (or bottom) of the cap, and the connecting portion that is a part of the check valve is inserted into the hole and fixed with an adhesive or the like. In order to enhance the sealing performance, a flange that adheres to the side portion of the cap may be provided on the outer peripheral portion of the connection portion. Of course, you can create a cap separately.
A cap having a connection portion with a check valve and a cap having a connection portion including a two-way cock can be integrally formed by extrusion molding together with a lid portion having a groove of a female screw.

例えば、密閉容器がガラスビン又はアルミニウムボトルの場合、容器を密閉するキャップはアルミニウム製であることが一般的である。この場合にも、キャップの頂部(又は底部)の中央に接続部が挿入される孔を穿ち、その孔に逆止弁を有する接続部を貫入させて固定すればよい。密閉性を高めるため、接続部の外周部にキャップの側部と接着するフランジを設けてもよい。さらに、キャップと容器の密閉性を確保するために、キャップの底部にパッキンを設置してもよい。
例えば、密閉容器がスチールボトルの場合もアルミニウムボトルと同様にキャップを準備すればよい、
For example, when the sealed container is a glass bottle or an aluminum bottle, the cap for sealing the container is generally made of aluminum. Also in this case, a hole into which the connecting portion is inserted is formed at the center of the top (or bottom) of the cap, and the connecting portion having a check valve is inserted into the hole and fixed. In order to enhance the sealing performance, a flange that adheres to the side portion of the cap may be provided on the outer peripheral portion of the connection portion. Furthermore, in order to ensure the sealing between the cap and the container, a packing may be installed at the bottom of the cap.
For example, when the sealed container is a steel bottle, a cap may be prepared in the same manner as an aluminum bottle.

密閉容器に収納する水素の充填量は、高圧にするほど水素の溶解速度は速くなり短時間で水素水を製造できるが、例えば、ペットボトルを使用した場合、内部圧力に容器が耐えられる内部圧力の限界が10気圧程度であることから、水素の充填気圧は1〜10気圧(0.1〜1MPa)であり、好ましくは2〜8気圧(0.2〜0.8MPa)であり、より好ましくは3〜5気圧(0.3〜0.5MPa)である。
水と水素を接触させる方法としては、(イ)水と水素を密封した容器を手に持ち、腕の上下又は左右の運動により、振り混ぜる方法、(ロ)密閉容器を水平に反復運動するシェイカーに固定し、振り混ぜる方法、(ハ)密閉容器を超音波振動器に入れ超音波振動を与える方法、(ニ)水を攪拌装置を用いて攪拌する方法、(ホ)水の中にノズルを挿入し高圧の水素ガスを吹き込む方法、(ヘ)容器内に充填した高圧の水素に霧状にした水を吹き込む法等多くの方法が考えられる。
As the filling amount of hydrogen stored in a sealed container increases, the higher the pressure, the faster the hydrogen dissolution rate and the shorter the time it can produce hydrogen water.For example, when a PET bottle is used, the internal pressure can withstand the internal pressure of the container. Is about 10 atmospheres, the hydrogen filling pressure is 1 to 10 atmospheres (0.1 to 1 MPa), preferably 2 to 8 atmospheres (0.2 to 0.8 MPa), and more preferably. Is 3-5 atmospheres (0.3-0.5 MPa).
As a method of bringing water and hydrogen into contact, (b) a method in which a container sealed with water and hydrogen is held in the hand and shaken by movement of the arm up and down or left and right, and (b) a shaker that repeatedly moves the sealed container horizontally. (C) A method in which an airtight container is placed in an ultrasonic vibrator to give ultrasonic vibration, (d) A method in which water is stirred using a stirrer, (e) A nozzle in water Many methods are conceivable, such as a method of inserting and blowing high-pressure hydrogen gas, or a method of blowing water atomized into high-pressure hydrogen filled in a container.

手に持ったボトル容器で水と水素を接触させる場合には、(イ)の腕の上下又は左右の運動による振り混ぜが最も簡便な方法である。水素貯蔵容器と耐圧性の連結管と接続部を有する専用のボトルキャップがあれば、いつでも何処でも水素水が作ることができる。
容器内部圧力の高い状態で、水と混合することにより、1気圧下における飽和溶存濃度以上に水素を溶存させることが可能であり、常圧に戻した際、過剰の溶存水素は細かい泡となって脱気し、常気圧における飽和溶存濃度となる。
水素を溶存した水素水を保存する場合には、容器内部圧力が高い状態のまま保存することで、ある程度の長期間、水素を高濃度に溶存させた状態が維持できるため、この期間は飽和溶存濃度の水素水を供給することができる。
In the case where water and hydrogen are brought into contact with each other in a bottle container held in the hand, shaking by (1) arm up / down or left / right movement is the simplest method. If there is a dedicated bottle cap that has a hydrogen storage container, a pressure-resistant connecting pipe, and a connecting portion, hydrogen water can be produced anytime and anywhere.
By mixing with water at a high pressure inside the container, it is possible to dissolve hydrogen above the saturated dissolved concentration under 1 atm. When the pressure is returned to normal pressure, excess dissolved hydrogen becomes fine bubbles. To deaerate to a saturated dissolved concentration at atmospheric pressure.
When storing hydrogen water in which hydrogen is dissolved, it is possible to maintain a state in which hydrogen is dissolved at a high concentration for a certain long period of time by storing the container with the internal pressure kept high. Concentrated hydrogen water can be supplied.

一方、中型から大型の密閉容器で水素水を作るが場合にも(ロ)密閉容器を水平に反復運動するシェイカーに固定し、振り混ぜる方法、(ハ)密閉容器を超音波振動器に入れ超音波振動を与える方法、(ニ)水を攪拌装置を用いて攪拌する方法、(ホ)水の中にノズルを挿入し高圧の水素ガスを吹き込む方法、(ヘ)容器内に充填した高圧の水素に霧状にした水を吹き込む法等多くの方法が考えられる。
中型から大型の密閉容器で水素水を製造する場合には、密閉容器内に収容した水の底に近い部分から水素を高圧で吹き込めばよい。この場合、吹き込む水素の気泡は細かい程、また気泡の数が多いほど水素と水との接触面積が広くなり、水素が水に溶解する速度が速くなる。また、気泡によって水が攪拌されることから製造効率が上昇する。
On the other hand, even when hydrogen water is produced in a medium-sized to large-sized sealed container, (b) a method in which the sealed container is fixed to a shaker that repeatedly moves horizontally and shaken, and (c) the sealed container is placed in an ultrasonic vibrator. A method of applying sonic vibration, (d) a method of stirring water using a stirrer, (e) a method of inserting a nozzle into water and blowing high-pressure hydrogen gas, and (f) high-pressure hydrogen filled in a container. Many methods are conceivable, such as a method of blowing mist-like water.
In the case of producing hydrogen water from a medium size to a large sealed container, hydrogen may be blown at a high pressure from a portion close to the bottom of the water contained in the sealed container. In this case, the finer the bubbles of hydrogen that are blown, and the larger the number of bubbles, the larger the contact area between hydrogen and water, and the faster the hydrogen is dissolved in water. Further, since the water is agitated by the bubbles, the production efficiency is increased.

別の態様で、例えば、中型の牛乳缶で水素水を製造する場合には缶の内部に棒状の磁石をテトラフルオロエチレンに封入した回転子を入れ、容器の外から回転する別の磁石が回転する装置を近づけることにより牛乳缶内部の水を攪拌し、水素と接触させることも可能である。
さらに別の態様で、例えば、大型の反応容器で水素水を製造する場合には攪拌機を容器の上部に設け水を攪拌すればよい。この時、攪拌羽を回転させるモータは容器の外側上部に設けられるか、又は、容器内部の空間に設けられてもよい。
In another embodiment, for example, when producing hydrogen water in a medium-sized milk can, a rotor in which a rod-shaped magnet is sealed in tetrafluoroethylene is placed inside the can, and another magnet that rotates from the outside of the container rotates. It is also possible to agitate the water inside the milk can and bring it into contact with hydrogen by bringing the device to close.
In another aspect, for example, when hydrogen water is produced in a large reaction vessel, a stirrer may be provided at the top of the vessel to stir the water. At this time, the motor for rotating the stirring blades may be provided on the outer upper part of the container, or may be provided in a space inside the container.

本発明の実施の形態について、実施例に基づいて詳細に説明する。酸化還元電位の測定は、東亜ディーケーケー株式会社製ポータブルORP計RM−30Pで行った。
図1に本発明の実施例1であるペットボトルで水素水を造るための装置を示した。符号10は500mL容のペットボトルである。日本茶の飲料水用容器として市販されていたものを使用した。符号20は水素吸蔵合金ボンベ(FC−R&D社製、高充填密度水素吸蔵ボンベ、型番:FCMH−20)である。水素吸蔵合金ボンベ20にはマイクロレギュレーター(FC−R&D社製、型番:FCMR−S)22を取り付けた。水素吸蔵合金ボンベ20のマイクロレギュレーター22とペットボトル10とは耐圧チューブ(株式会社日本ピスコ社製、商品名;ポリオレフィンチューブ:外形4mm、内径2.5mm)30で連結され、耐圧チューブの中間にはボタンを押すことにより通路を開閉できる手動弁(株式会社日本ピスコ社製、商品名;ストップフィティング、型番:PSC4−M5M;図中白矢印)とメカニカルバルブ(株式会社日本ピスコ社製、ピン式、型番:MVP42)50を取り付けた。ペットボトル10には、耐圧チューブと接続する接合部42を有するキャップ(ステンレス製)40が取り付けられた。キャップ40は旋盤加工した雌ねじを有するねじ締め式のボトルキャップ40で上部中央を貫通して孔が開けられ、そこにポリプロピレン製の逆止弁(株式会社日本ピスコ社製、商品名:チェックバルブストレートフィティング、モデル番号:CVC4−M5B)の入口側パイプを貫通して取り付け、接合部42としたものであり、その上端部は耐圧チューブ30とワンタッチで着脱可能であった。接合部42の下部は逆止弁になっており、耐圧チューブ30が脱着したとき、容器内の圧力を維持することができるようにした。
Embodiments of the present invention will be described in detail based on examples. The redox potential was measured with a portable ORP meter RM-30P manufactured by Toa DKK Corporation.
FIG. 1 shows an apparatus for producing hydrogen water using a PET bottle that is Embodiment 1 of the present invention. Reference numeral 10 denotes a 500 mL plastic bottle. What was marketed as a drinking water container for Japanese tea was used. Reference numeral 20 denotes a hydrogen storage alloy cylinder (manufactured by FC-R & D, high filling density hydrogen storage cylinder, model number: FCMH-20). A microregulator (manufactured by FC-R & D, model number: FCMR-S) 22 was attached to the hydrogen storage alloy cylinder 20. The micro-regulator 22 and the PET bottle 10 of the hydrogen storage alloy cylinder 20 are connected by a pressure-resistant tube (manufactured by Nippon Pisco Co., Ltd., trade name; polyolefin tube: outer diameter 4 mm, inner diameter 2.5 mm) 30. Manual valve (Nippon Pisco Co., Ltd., trade name; stop fitting, model number: PSC4-M5M; white arrow in the figure) and mechanical valve (Pin type) , Model No .: MVP42) 50 was attached. A cap (made of stainless steel) 40 having a joint portion 42 connected to the pressure tube is attached to the PET bottle 10. The cap 40 is a screw-tight bottle cap 40 having a lathe-processed female screw, and a hole is made through the center of the upper portion. A polypropylene check valve (manufactured by Nippon Pisco Co., Ltd., trade name: check valve straight) Fitting, model number: CVC4-M5B) was inserted through the inlet side pipe to form a joint portion 42, and the upper end portion thereof was detachable from the pressure tube 30 with one touch. A lower part of the joint portion 42 is a check valve, and when the pressure-resistant tube 30 is detached, the pressure in the container can be maintained.

本実施例1では、ペットボトル10に水道の蛇口に取り付けた浄水器で浄化した水道水を250mL入れ、逆止弁を備えた接合部42を有するキャップ40を装着した。接合部42と水素吸蔵合金ボンベ20とを耐圧チューブ30で連結した。マイクロレギュレーター22により、水素圧を0.3MPaに調整した後、手動弁を押してメッカニカルバブル50を解放し、ペットボトル10と水素吸蔵合金ボンベ20を連通させた。ペットボトルが膨張して内部の水素分圧が高い状態にあることを確認した後、接合部42から耐圧チューブ30を切り離した。
ペットボトル30を上下左右に激しく1分間振とうを続けた後、振とうを止め、キャップを緩めて減圧すると、ボトル内の水から細かな泡が出て、水中の水素濃度は常気圧での飽和水素濃度の1.6ppmとなった。
In the first embodiment, 250 mL of tap water purified by a water purifier attached to a tap is placed in the PET bottle 10 and a cap 40 having a joint 42 equipped with a check valve is attached. The joint 42 and the hydrogen storage alloy cylinder 20 were connected by the pressure-resistant tube 30. After adjusting the hydrogen pressure to 0.3 MPa by the micro regulator 22, the manual valve was pushed to release the mechanical bubble 50, and the PET bottle 10 and the hydrogen storage alloy cylinder 20 were connected. After confirming that the PET bottle was expanded and the internal hydrogen partial pressure was high, the pressure-resistant tube 30 was disconnected from the joint portion 42.
After shaking the PET bottle 30 vigorously up and down and left and right for 1 minute, stop shaking, loosen the cap and depressurize, fine bubbles come out from the water in the bottle, the hydrogen concentration in the water is at atmospheric pressure The saturated hydrogen concentration was 1.6 ppm.

図2に本発明の実施例2の水素水の製造設備の側面図を示した。
本発明の水素水の製造設備100は、内径34cm、高さ150cmの有底円筒形状の反応タンク(ハイドロ フエル デベロップメント社製 ステンレス製)110を有し、底の反対側の解放された部分には蓋140を取り付けるためのフランジが設けられた。反応タンク110は底を接地させた状態で垂直に設置された。底部より7.5cmの位置に対向するように給水口と水素の吹き込み口が設けられ、給水口にはステンレス製の給水管160を、水素の吹き込み口にはステンレス製の連結管130を接続した。給水管160の他端は水源に接続されているが、水源と反応タンク110との間に給水ポンプ(株式会社荏原製作所製、40×32EHM42G353.OA 200V)162を設置した。一方、連結管130の一端を結合した水素の吹き込み口には、水素の泡を細かくするためのポリウレタン製の多孔質素材で製造したノズルが結合され、連結管130の多端にはレギュレーター(ヤマト産業株式会社製、小型圧力調整器、(型式)YR−90F)122を介して圧縮水素ボンベ(40L型)120を連結した。レギュレーター122と反応タンク110の間の連結管130には、連結管130の開閉を行う電磁弁(エスエムシー社製、VDW10)124を設けた。
FIG. 2 shows a side view of the hydrogen water production facility of Example 2 of the present invention.
The hydrogen water production facility 100 of the present invention has a bottomed cylindrical reaction tank (made of stainless steel made by Hydro Fuel Development Co.) 110 having an inner diameter of 34 cm and a height of 150 cm. A flange for attaching the lid 140 was provided. The reaction tank 110 was installed vertically with the bottom grounded. A water supply port and a hydrogen blowing port are provided so as to face a position 7.5 cm from the bottom, and a stainless steel water supply pipe 160 is connected to the water supply port, and a stainless steel connecting tube 130 is connected to the hydrogen blowing port. . The other end of the water supply pipe 160 is connected to a water source, but a water supply pump (40 × 32EHM42G353.OA 200V, manufactured by Ebara Corporation) was installed between the water source and the reaction tank 110. On the other hand, a nozzle made of a polyurethane porous material for making hydrogen bubbles fine is connected to a hydrogen blowing port connected to one end of the connecting pipe 130, and a regulator (Yamato Sangyo Co., Ltd.) is connected to the multi-end of the connecting pipe 130. A compressed hydrogen cylinder (40L type) 120 was connected via a small pressure regulator manufactured by Co., Ltd. (model) YR-90F) 122. The connecting pipe 130 between the regulator 122 and the reaction tank 110 is provided with an electromagnetic valve (VDW10, manufactured by SMC) that opens and closes the connecting pipe 130.

反応タンク110の底から92cmの位置には反応タンク110で製造した水素水を取り出す水素水取り出し口を設け、ステンレス製の配水管170を連結した。反応タンク110の解放された上部は蓋140によって密閉され、フランジに固定された。蓋140には圧力ゲージ(株式会社高島計器製、密閉型圧力計、WT75)と水素を循環させるための水素循環パイプ132が設置された。水素循環パイプ132は水素循環ポンプ(共立精巧株式会社製、ダイヤフラムポンプ、(型式)E100V型)150を介して連結管130に接続された。   A hydrogen water outlet for taking out hydrogen water produced in the reaction tank 110 was provided at a position 92 cm from the bottom of the reaction tank 110, and a stainless steel water pipe 170 was connected thereto. The opened upper part of the reaction tank 110 was sealed with a lid 140 and fixed to the flange. The lid 140 was provided with a pressure gauge (manufactured by Takashima Keiki Co., Ltd., sealed pressure gauge, WT75) and a hydrogen circulation pipe 132 for circulating hydrogen. The hydrogen circulation pipe 132 was connected to the connecting pipe 130 via a hydrogen circulation pump (manufactured by Kyoritsu Seiki Co., Ltd., diaphragm pump, (model) E100V type) 150.

給水ポンプ162を作動させ、反応タンク110に給水した。水面が水素水取り出し口に達したことを確認後、配水管170に設けられたコックを締め、連結管130に設けた電磁弁124を解放した。水素吸蔵合金ボンベ120に結合したレギュレーター122により、ボンベ圧力を0.8MPaとしたところ、反応タンク内の圧力が0.5MPaとなった。配水管170のコックを解放し、水素水を取り出すとともに、水素循環ポンプ150を作動させ、吸収されなかった水素を水素吹き込み口より反応タンク110に導入した。
その結果、酸化還元電位が+400〜+745mVの原水から、酸化還元電位が−220〜−253mVの水素水を時間当たり2500リットル採取できた。
The water supply pump 162 was operated to supply water to the reaction tank 110. After confirming that the water surface reached the hydrogen water outlet, the cock provided in the water distribution pipe 170 was tightened, and the electromagnetic valve 124 provided in the connection pipe 130 was released. When the cylinder pressure was set to 0.8 MPa by the regulator 122 coupled to the hydrogen storage alloy cylinder 120, the pressure in the reaction tank became 0.5 MPa. The cock of the water distribution pipe 170 was released to take out the hydrogen water, and the hydrogen circulation pump 150 was operated to introduce hydrogen that was not absorbed into the reaction tank 110 through the hydrogen inlet.
As a result, 2500 liters of hydrogen water having an oxidation-reduction potential of −220 to −253 mV could be collected from raw water having an oxidation-reduction potential of +400 to +745 mV per hour.

本発明の実施例1に係る水素水の製造装置は、簡単な装置でありながら、いつでもどこでも1.6ppmの水素を溶存した水素水を製造することができるため、水素水の製造装置として好適である。
本発明の実施例2に係る水素水の製造装置は、簡単な装置でありながら、水素を飽和状態で溶存した水素水を大量に製造することができるため、大量の水素水の製造する装置として好適である。
The apparatus for producing hydrogen water according to Example 1 of the present invention is a simple apparatus, but can produce hydrogen water in which 1.6 ppm of hydrogen is dissolved anytime and anywhere, and is therefore suitable as a hydrogen water production apparatus. is there.
The apparatus for producing hydrogen water according to Embodiment 2 of the present invention is a simple apparatus, but can produce a large amount of hydrogen water in which hydrogen is dissolved in a saturated state. Is preferred.

1、100 水素水の製造装置
10 容器
20、120 水素貯蔵容器(水素吸蔵合金ボンベ)
22、122 レギュレーター
30、130 連結管、耐圧チューブ
40 キャップ
42 接合部
50 メカニカルバルブ
110 反応タンク
124 電磁弁
132 水素循環パイプ
140 蓋
142 圧力計
150 水素循環ポンプ(ダイヤフラムポンプ)
160 給水管
162 給水ポンプ
170 配水管

1,100 Hydrogen water production apparatus 10 Container 20, 120 Hydrogen storage container (hydrogen storage alloy cylinder)
22, 122 Regulator 30, 130 Connecting pipe, pressure-resistant tube 40 Cap 42 Joint 50 Mechanical valve 110 Reaction tank 124 Solenoid valve 132 Hydrogen circulation pipe
140 Lid 142 Pressure gauge 150 Hydrogen circulation pump (diaphragm pump)
160 Water supply pipe
162 Water supply pump 170 Water distribution pipe

Claims (8)

水を収容して密閉可能な容器と、
前記水とともに前記容器内に収容された気体状態の水素を前記容器内の水素圧力として1気圧以上かつ10気圧未満に加圧する加圧手段と、を有し、
前記加圧手段は、水素貯蔵容器に収容された水素の圧力又はポンプで水素を圧縮した機械的圧力であり、
前記水素貯蔵容器と前記容器を連結し、前記容器に水素を供給する連結管を有する水素水の製造装置であって、
前記容器内の水を混合して水と水素を接触させる混合手段をさらに有することを特徴とする水素水の製造装置。
A container that contains water and can be sealed;
Pressurizing means for pressurizing hydrogen in the container together with the water to a pressure of 1 atm or more and less than 10 atm as a hydrogen pressure in the container,
The pressurizing means is a pressure of hydrogen stored in a hydrogen storage container or a mechanical pressure obtained by compressing hydrogen with a pump,
An apparatus for producing hydrogen water having a connecting pipe for connecting the hydrogen storage container and the container and supplying hydrogen to the container,
An apparatus for producing hydrogen water, further comprising mixing means for mixing water in the container and bringing water into contact with hydrogen.
前記混合手段は、振り混ぜ又は水への水素の吹き込みであること特徴とする請求項1に記載の水素水の製造装置。   The apparatus for producing hydrogen water according to claim 1, wherein the mixing means is shaking or blowing hydrogen into water. 上記の水と水素を収容する容器がペットボトル、アルミニウムボトル及びスチールボトルから選ばれた1種であり、
前記混合手段が、振り混ぜであること特徴とする請求項1又は2に記載の水素水の製造装置。
The container containing the water and hydrogen is one selected from PET bottles, aluminum bottles and steel bottles,
The apparatus for producing hydrogen water according to claim 1 or 2, wherein the mixing means is shake mixing.
上記の水と水素を収容する容器が反応タンクであり、
前記混合手段が、水素の吹き込みであること特徴とする請求項1又は2に記載の水素水の製造装置。
The container containing the above water and hydrogen is a reaction tank,
The apparatus for producing hydrogen water according to claim 1 or 2, wherein the mixing means is hydrogen blowing.
上記の水と水素を収容する容器がペットボトル、アルミニウムボトル及びスチールボトルから選ばれた1種である時、
前記連結管は耐圧性のフレキシブルチューブであり、
前記容器と前記連結管との間には、
前記連結管を着脱可能に接続する接続部を有し、
前記容器を密閉できるキャップをさらに有することを特徴とする請求項1乃至3のいずれか1項に記載の水素水の製造装置。
When the container containing water and hydrogen is one selected from PET bottles, aluminum bottles and steel bottles,
The connecting pipe is a pressure-resistant flexible tube,
Between the container and the connecting pipe,
Having a connecting part for detachably connecting the connecting pipe;
The apparatus for producing hydrogen water according to claim 1, further comprising a cap capable of sealing the container.
水を収容して密閉可能な容器と、
前記水とともに前記容器内に収容された気体状態の水素とを加圧する加圧手段、
を有し、
前記加圧手段は、水素貯蔵容器に収容された水素の圧力又はポンプで水素を圧縮した機械的圧力であって、
前記水素貯蔵容器と前記容器を連結し、前記容器に水素を供給する連結管を有し、
前記加圧手段により、前記容器内の水素圧力を1気圧以上、10気圧未満とし、
容器を振り混ぜる、又は水に水素を吹き込むことにより、水と水素とを接触させて水に水素を溶存させることを特徴とする水素水の製造方法。
A container that contains water and can be sealed;
Pressurizing means for pressurizing hydrogen in a gaseous state accommodated in the container together with the water;
Have
The pressurizing means is a pressure of hydrogen stored in a hydrogen storage container or a mechanical pressure obtained by compressing hydrogen with a pump,
Connecting the hydrogen storage container and the container, and having a connecting pipe for supplying hydrogen to the container;
With the pressurizing means, the hydrogen pressure in the container is set to 1 atm or more and less than 10 atm,
A method for producing hydrogen water, wherein water is dissolved in water by bringing the container into contact with water or blowing hydrogen into the water to bring the water into contact with hydrogen.
上記の水と水素を収容する容器がペットボトル、アルミニウムボトル及びスチールボトルより選ばれた1種であり、水と水素を接触させる方法は、振り混ぜであることを特徴とする請求項6に記載の水素水の製造方法。   The container for storing water and hydrogen is one selected from a PET bottle, an aluminum bottle, and a steel bottle, and the method of bringing water into contact with hydrogen is shaking and mixing. Method for producing hydrogen water. 飽和濃度以上の水素水が飽和濃度に戻る際に自分から発生する水素、又は別手段にて密閉容器に吹き込んだ水素ガス等を利用し、保管容器を高圧力に保つことで水素水の高濃度を保持することを特徴とする保管方法。   High concentration of hydrogen water by keeping the storage container at a high pressure by using hydrogen generated from itself when hydrogen water above the saturation concentration returns to the saturation concentration, or hydrogen gas blown into the sealed container by another means A storage method characterized by holding.
JP2014024249A 2014-02-12 2014-02-12 Hydrogen water production apparatus and production method and storage method thereof Active JP5699232B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014024249A JP5699232B1 (en) 2014-02-12 2014-02-12 Hydrogen water production apparatus and production method and storage method thereof
TW104104552A TWI638784B (en) 2014-02-12 2015-02-11 Hydrogen water manufacturing device, manufacturing method thereof and storage method
KR1020167008599A KR20160119049A (en) 2014-02-12 2015-02-12 Hydrogen water production device, and production method and storage method for hydrogen water
PCT/JP2015/053839 WO2015122463A1 (en) 2014-02-12 2015-02-12 Hydrogen water production device, and production method and storage method for hydrogen water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024249A JP5699232B1 (en) 2014-02-12 2014-02-12 Hydrogen water production apparatus and production method and storage method thereof

Publications (2)

Publication Number Publication Date
JP5699232B1 JP5699232B1 (en) 2015-04-08
JP2015150472A true JP2015150472A (en) 2015-08-24

Family

ID=52837066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024249A Active JP5699232B1 (en) 2014-02-12 2014-02-12 Hydrogen water production apparatus and production method and storage method thereof

Country Status (4)

Country Link
JP (1) JP5699232B1 (en)
KR (1) KR20160119049A (en)
TW (1) TWI638784B (en)
WO (1) WO2015122463A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018058A (en) * 2015-07-14 2017-01-26 光騰光電股▲ふん▼有限公司 Bottled hydrogen-rich water beverage, production system and method for bottled hydrogen-rich water beverage
WO2018123033A1 (en) * 2016-12-28 2018-07-05 直之 矢田 Method for producing hydrogen water
CN109020006A (en) * 2018-08-13 2018-12-18 宋冬梅 High stable medical sterilization saturation hydrogen water and preparation method thereof under normal temperature and pressure
JP2019128006A (en) * 2018-01-25 2019-08-01 Meet株式会社 Hydrogen gas supply unit
WO2020217567A1 (en) * 2019-04-23 2020-10-29 株式会社ドクターズ・マン Hydrogen gas dissolution method and hydrogen gas dissolution device
WO2020217575A1 (en) * 2019-04-23 2020-10-29 学校法人慶應義塾 Method for generating hydrogen-containing organ preservation solution, and hydrogen-containing organ preservation solution

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129848B2 (en) 2017-08-08 2021-09-28 Perricone Hydrogen Water Company, Llc Medication enhancement using hydrogen
JP7219894B2 (en) * 2019-02-28 2023-02-09 岩谷産業株式会社 Hydrogen-dissolved liquid manufacturing device and hydrogen-dissolved liquid manufacturing method
KR102072337B1 (en) * 2019-09-27 2020-01-31 주식회사 디에스정공 Hydrogen water production device
US11123365B2 (en) 2019-11-18 2021-09-21 Perricone Hydrogen Water Company, Llc Compositions comprising palmitoylethanolamide and hydrogen water, and methods thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890342B2 (en) * 1994-08-23 1999-05-10 熊本県 Reducing hydrogen water for foods and the like, and method and apparatus for producing the same
JP2000354696A (en) * 1999-06-15 2000-12-26 Joho Kagaku Kenkyusho:Kk Equipment for continuous supply of hydrogen saturated water in great quantity to washing water, bath water, etc.
JP2002301483A (en) * 2001-04-06 2002-10-15 Shigemi Iida Hydrogen water making apparatus
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2004237271A (en) * 2003-02-05 2004-08-26 Fukuda Sangyo:Kk Oxygen water making method and oxygen water making container
JP2004290870A (en) * 2003-03-27 2004-10-21 Mori Kikai Seisakusho:Kk Reduction potential adjusting process and apparatus for the same
JP2004344862A (en) * 2003-05-19 2004-12-09 Wataru Murota Reducing soft drink and its production method
JP2005013825A (en) * 2003-06-24 2005-01-20 Kenji Yamazaki Reductive hydrogen water and apparatus for making the same
JP2005013833A (en) * 2003-06-25 2005-01-20 Eko Japan Kk Reductive hydrogen water and manufacturing apparatus therefor
JP2006021163A (en) * 2004-07-09 2006-01-26 Teikoku Electric Mfg Co Ltd Reaction apparatus
JP2007229695A (en) * 2006-02-27 2007-09-13 Techno 21:Kk Manufacturing method of hydrogen-bonded water and manufacturing apparatus of hydrogen-bonded water
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2010124808A (en) * 2008-12-01 2010-06-10 Naoyuki Yada Apparatus for producing and dispensing hydrogen-containing drink, and method for producing hydrogen-containing drink
JP2010137181A (en) * 2008-12-12 2010-06-24 Makiura Keisuke Apparatus for producing oxygen water
JP2012020962A (en) * 2010-07-14 2012-02-02 Mizu Kk Device for selectively hydrogenating biocompatible solution
JP2013022567A (en) * 2011-07-25 2013-02-04 Bio Coke Lab Co Ltd Hydrogen water manufacturing device and hydrogen water manufacturing method
JP2013188668A (en) * 2012-03-13 2013-09-26 Eureka Lab Inc Gas-dissolved water purifier
JP2014042894A (en) * 2012-08-28 2014-03-13 Ashitamiraizu:Kk Hydrogen injector, and hydrogen injection system equipped with the same
JP5462426B1 (en) * 2013-08-26 2014-04-02 浩章 皆川 Portable hydrogen water generation pot
JP2014208337A (en) * 2013-03-29 2014-11-06 アンティバック インターナショナル カンパニー リミテッドAntibac International Co., Ltd. Hydrogen water generator and hydrogen water generation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000568B2 (en) 2003-12-16 2007-10-31 広島化成株式会社 Equipment for producing hydrogen water
JP3606466B1 (en) * 2004-04-12 2005-01-05 株式会社ティーイーディー Method for producing hydrogen reduced water
JP2007283280A (en) 2006-04-14 2007-11-01 Hiroshima Kasei Ltd Production method of hydrogen-containing water
JP4950352B1 (en) * 2011-07-15 2012-06-13 ミズ株式会社 Selective hydrogenation device for biological fluids
JP5416246B2 (en) * 2011-11-15 2014-02-12 株式会社ヒロマイト Hydrogen water raw water method

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890342B2 (en) * 1994-08-23 1999-05-10 熊本県 Reducing hydrogen water for foods and the like, and method and apparatus for producing the same
JP2000354696A (en) * 1999-06-15 2000-12-26 Joho Kagaku Kenkyusho:Kk Equipment for continuous supply of hydrogen saturated water in great quantity to washing water, bath water, etc.
JP2002301483A (en) * 2001-04-06 2002-10-15 Shigemi Iida Hydrogen water making apparatus
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2004237271A (en) * 2003-02-05 2004-08-26 Fukuda Sangyo:Kk Oxygen water making method and oxygen water making container
JP2004290870A (en) * 2003-03-27 2004-10-21 Mori Kikai Seisakusho:Kk Reduction potential adjusting process and apparatus for the same
JP2004344862A (en) * 2003-05-19 2004-12-09 Wataru Murota Reducing soft drink and its production method
JP2005013825A (en) * 2003-06-24 2005-01-20 Kenji Yamazaki Reductive hydrogen water and apparatus for making the same
JP2005013833A (en) * 2003-06-25 2005-01-20 Eko Japan Kk Reductive hydrogen water and manufacturing apparatus therefor
JP2006021163A (en) * 2004-07-09 2006-01-26 Teikoku Electric Mfg Co Ltd Reaction apparatus
JP2007229695A (en) * 2006-02-27 2007-09-13 Techno 21:Kk Manufacturing method of hydrogen-bonded water and manufacturing apparatus of hydrogen-bonded water
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2010124808A (en) * 2008-12-01 2010-06-10 Naoyuki Yada Apparatus for producing and dispensing hydrogen-containing drink, and method for producing hydrogen-containing drink
JP2010137181A (en) * 2008-12-12 2010-06-24 Makiura Keisuke Apparatus for producing oxygen water
JP2012020962A (en) * 2010-07-14 2012-02-02 Mizu Kk Device for selectively hydrogenating biocompatible solution
JP2013022567A (en) * 2011-07-25 2013-02-04 Bio Coke Lab Co Ltd Hydrogen water manufacturing device and hydrogen water manufacturing method
JP2013188668A (en) * 2012-03-13 2013-09-26 Eureka Lab Inc Gas-dissolved water purifier
JP2014042894A (en) * 2012-08-28 2014-03-13 Ashitamiraizu:Kk Hydrogen injector, and hydrogen injection system equipped with the same
JP2014208337A (en) * 2013-03-29 2014-11-06 アンティバック インターナショナル カンパニー リミテッドAntibac International Co., Ltd. Hydrogen water generator and hydrogen water generation method
JP5462426B1 (en) * 2013-08-26 2014-04-02 浩章 皆川 Portable hydrogen water generation pot

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018058A (en) * 2015-07-14 2017-01-26 光騰光電股▲ふん▼有限公司 Bottled hydrogen-rich water beverage, production system and method for bottled hydrogen-rich water beverage
WO2018123033A1 (en) * 2016-12-28 2018-07-05 直之 矢田 Method for producing hydrogen water
JP2019128006A (en) * 2018-01-25 2019-08-01 Meet株式会社 Hydrogen gas supply unit
CN109020006A (en) * 2018-08-13 2018-12-18 宋冬梅 High stable medical sterilization saturation hydrogen water and preparation method thereof under normal temperature and pressure
CN109020006B (en) * 2018-08-13 2021-04-02 宋冬梅 High-stability medical sterilizing saturated hydrogen water at normal temperature and normal pressure and preparation method thereof
WO2020217567A1 (en) * 2019-04-23 2020-10-29 株式会社ドクターズ・マン Hydrogen gas dissolution method and hydrogen gas dissolution device
JP2020175355A (en) * 2019-04-23 2020-10-29 株式会社ドクターズ・マン Hydrogen gas dissolution method and hydrogen gas dissolution device
WO2020217575A1 (en) * 2019-04-23 2020-10-29 学校法人慶應義塾 Method for generating hydrogen-containing organ preservation solution, and hydrogen-containing organ preservation solution

Also Published As

Publication number Publication date
WO2015122463A1 (en) 2015-08-20
JP5699232B1 (en) 2015-04-08
TW201544461A (en) 2015-12-01
KR20160119049A (en) 2016-10-12
TWI638784B (en) 2018-10-21

Similar Documents

Publication Publication Date Title
JP5699232B1 (en) Hydrogen water production apparatus and production method and storage method thereof
CN102712510B (en) Device for selectively hydrogenating biocompatible solution
CN104016470A (en) Method and apparatus to produce hydrogen-rich materials
US9700852B2 (en) System, method and capsules for producing sparkling drinks
US9745214B2 (en) Portable hydrogen-water generating pot
JP2017018058A (en) Bottled hydrogen-rich water beverage, production system and method for bottled hydrogen-rich water beverage
KR101004850B1 (en) Method and apparatus for producing oxygen-containing reducing aqueous beverage
CN102803156A (en) Instrument for selective hydrogenation of liquid for biological use
US20140374443A1 (en) Carbonated Beverage Storage, Transportation, and Dispensing System
JP2013126650A (en) Method and apparatus for making hydrogen-dissolved water
JP2013128882A (en) Hydrogen water producing apparatus
WO2018133495A1 (en) Solute and liquid mixing container, and production method
JP2020512954A (en) Beverage dispensing system, beverage dispensing assembly, method of operating beverage dispensing system, and pressure housing
CN107021451A (en) Generating means, generation external member and the generation method of hydrogeneous liquid
TWI618676B (en) Bottling hydrogen-rich water, preparation system thereof, and method of preparing the same
CN217377423U (en) Hydrogen liquid cup matched with external hydrogen source
GB2547303A (en) Apparatus and method for generating hydrogen-containing liquid
WO2015178440A1 (en) Hydrogen adding system and liquid container used in said system
CN208130901U (en) Container is mixed in hydrogen water
CN110655168A (en) Portable hydrogen-rich water preparation device and preparation method
CN204803013U (en) CO2 generator
CN1107653C (en) High oxygen drinking water device
RU2778684C2 (en) System for purification and regulation of the physico-chemical composition of water and the use of the resulting water
CN109907202B (en) Method for making beverage products
KR101272746B1 (en) Apparatus For Producing Beverage

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5699232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250