JP2015145518A - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
JP2015145518A
JP2015145518A JP2014018285A JP2014018285A JP2015145518A JP 2015145518 A JP2015145518 A JP 2015145518A JP 2014018285 A JP2014018285 A JP 2014018285A JP 2014018285 A JP2014018285 A JP 2014018285A JP 2015145518 A JP2015145518 A JP 2015145518A
Authority
JP
Japan
Prior art keywords
mass
strength
less
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018285A
Other languages
English (en)
Other versions
JP6225733B2 (ja
Inventor
金晴 奥田
Kaneharu Okuda
金晴 奥田
由康 川崎
Yoshiyasu Kawasaki
由康 川崎
芳恵 椎森
Yoshie Shiimori
芳恵 椎森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014018285A priority Critical patent/JP6225733B2/ja
Publication of JP2015145518A publication Critical patent/JP2015145518A/ja
Application granted granted Critical
Publication of JP6225733B2 publication Critical patent/JP6225733B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】980MPa以上の高い強度と優れた延性を併せ持つ高強度熱延鋼板およびその製造方法を提案する。
【解決手段】C:0.15〜0.30mass%、Si:0.5〜2.0mass%、Mn:1.8〜3.5mass%、P:0.080mass%以下、S:0.03mass%以下、Al:0.01〜2.0mass%、N:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、体積分率で8%以上20%以下のフェライト相を含み、更にマルテンサイト相、ベイナイト相、残留オーステナイト相からなる金属組織を有し、かつ、引張強さ(TS)と全伸び(El)の積(TS×El)が28,000MPa・%以上であることを特徴とする高強度熱延鋼板。
【選択図】図1

Description

本発明は、高い強度と優れた加工性が要求される自動車用鋼板等に用いて好適な、引張強さが980MPa以上で延性に優れる高強度熱延鋼板およびその製造方法に関するものである。
近年、地球環境を保護する観点から、二酸化炭素の排出量を削減するため、自動車の燃費改善が強く求められている。また、衝突時の乗員の安全を確保する観点から、自動車車体の衝突特性を中心とした安全性の向上も強く求められている。自動車の燃費改善と安全性向上の要求を同時に満たすためには、剛性を阻害しない範囲で車体部品の素材を高強度化し、板厚を低減することが効果的である。そのため、自動車車体への高強度鋼板の適用が積極的に進められている。
自動車部品の軽量化効果は、使用する素材鋼板が高強度であるほど大きくなる。そのため、自動車業界では、車体用鋼板として、より高強度の鋼板を使用する動向にあり、例えば、骨格構造用としては、引張強さ(以下、TSと称することもある)が780MPa以上、さらには980MPa以上の高強度鋼板が使用されるようになってきている。
一方、自動車部品の多くは、プレス加工によって成形されるため、素材となる鋼板には、高強度であるだけでなく、優れたプレス成形性を有していることが要求される。一般に、鋼板の延性は、高強度化するのに伴って低下するため、高強度鋼板は、プレス時に延性不足に起因して割れが発生し易くなる。
この問題に対応する技術の一つに、残留オーステナイト相を活用して変態誘起塑性(TRIP:Transformation Induced Plasticity、以下、TRIPと称することもある)を起こさせ、延性の向上を図った低合金TRIP鋼板が開発されている。この鋼板は、加工時に蓄積された歪みによって残留オーステナイト相がマルテンサイト変態することによって、高強度と高延性を達成するものである。
例えば、特許文献1には、質量%でC:0.07〜0.12%、Si:0.5〜2.0%、Mn:1.0〜2.5%を含有する冷延鋼板を750〜900℃の二相共存温度域で焼鈍し、体積分率が3%以上の残留オーステナイト相と、フェライト相およびベイナイト相を含有する組織からなる成形性に優れる高強度鋼板を得る技術が開示されている。
また、特許文献2には、質量%でCを0.08%以下、Siを0.5%以下、Mn:0.5〜3.0%、P:0.01%以上、Al:0.3%以下含有している熱延鋼板を550〜800℃の温度域でアンモニアを含む雰囲気中で処理し、N:0.03〜2.0%を含有し、残留オーステナイト相の体積率が3〜20%である加工性に優れた高強度鋼板を得る技術が開示されている。
特許文献3には、Alを活用したTRIP鋼板が開示されている。この技術は、微細粒組織を有し、高強度でありながら加工性に優れた冷延鋼板、熱延鋼板を提供するものであり、具体的には、質量%でC:0.06〜0.25mass%、Si:0.01〜2.0mass%、Mn:0.5〜2.0mass%、Al:0.01〜2.0mass%を含有し、さらに、Ti:0.20mass%以下、Nb:0.10mass%以下の1種または2種を含有し、(Si+Al)および(Ti+Nb)を所定量含有し、かつ、体積%でフェライト相を70%以上および残留オーステナイト相を3%以上含み、残部がベイナイト相およびマルテンサイト相とからなる鋼組織を有するものである。
特開2001−329340号公報 特開2002−012948号公報 特開2011−149066号公報
しかしながら、上記特許文献1〜3に開示された鋼板における強度と伸びの関係は、例えば、特許文献1、2の鋼板では、引張強さが590〜690MPa級で全伸びが31〜39%、特許文献3の鋼板では、引張強さ(TS)が676〜898MPaで強度と延性のバランス(TS×El)が22,000〜27,800MPa・%でしかなく、高強度化による板厚低減効果を十分に享受できる強度と延性のバランス(以下、強度と延性の積またはTS×Elと称することもある)を有するものではなく、全伸び(El)に優れる鋼板の開発が望まれている。さらに冷延工程を経ずに、熱延板で高加工性鋼板を得ることがコストの観点からも望まれている。
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、複雑な組織の造り込みや複雑な製造方法を必要とすることがなく、980MPa以上の高い強度と優れた延性を併せ持つ高強度熱延鋼板およびその製造方法を提案することにある。
発明者らは、上記の課題を解決するべく鋭意検討を重ねた。その結果、鋼の成分組成で決まる変態点に応じた温度で仕上げ圧延を行うことで、通常の圧延温度では、硬質相の存在比率の高いため、延性に乏しかった強度が高い鋼でも、高強度かつ強度と延性のバランスに優れる熱延鋼板が得られることを見出し、本発明を完成するに至った。
上記知見に基く本発明の要旨は、以下のとおりである。
(1)C:0.15〜0.30mass%、Si:0.5〜2.0mass%、Mn:1.8〜3.5mass%、P:0.080mass%以下、S:0.03mass%以下、Al:0.01〜2.0mass%およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、体積分率で8%以上20%以下のフェライト相を含み、更にマルテンサイト相、ベイナイト相、残留オーステナイト相からなる金属組織を有し、かつ、引張強さ(TS)と全伸び(El)の積(TS×El)が28,000MPa・%以上であることを特徴とする高強度熱延鋼板。
(2)前記成分組成に加えてさらに、Nb:0.4mass%以下、Ti:0.4mass%以下のうちから選ばれる1種または2種を含有することを特徴とする上記(1)に記載の高強度熱延鋼板。
(3)上記(1)または(2)に記載の高強度熱延鋼板の製造方法であって、鋼素材を、仕上圧延終了温度が(A3点−X−85)℃以上(A3点−X+85)℃以下、最終3パスの合計圧下率が25%以上で熱間圧延し、350℃〜450℃の温度域で100秒以上滞留させることを特徴とする高強度熱延鋼板の製造方法。
但し、X=300−135[Al]、([Al]はAlの含有量(mass%)を示す。)
なお、本発明において、高強度熱延鋼板とは、引張強度(TS)が980MPa以上の熱延鋼板である。
本発明によれば、高強度かつ高延性の鋼板を、冷延―焼鈍工程を経ずに提供することができる。したがって、本発明の鋼板を自動車車体に適用した場合には、従来、プレス成形が困難であった部位への高強度材の適用が可能となるので、これまで以上に自動車車体の軽量化や衝突安全性の向上を安価に図ることが可能となる。
強度と延性の積(TS×El)と仕上圧延終了温度との関係を示した説明図である。 仕上圧延終了温度を変化させた場合のミクロ組織である。
まず、本発明の基本的な技術思想について説明する。
本発明は、後述するように成分組成を最適化した鋼を用いて、仕上圧延終了温度が(A3点−X−85)℃以上(A3点−X+85)℃以下で最終3パスの合計圧延率が25%以上で熱間圧延し、その後に350℃〜450℃の温度域で100秒以上滞留させることによって、軟質なフェライト相と、残留オーステナイト相(以下、「残留γ相」と称することもある)を含む硬質な第2相(マルテンサイト相、ベイナイト相、残留オーステナイト相)からなる金属組織を形成する。このような金属組織を有することで、従来鋼よりも優れた強度と延性のバランス(TS×El)を有する高強度熱延鋼板を得ることができる。ここで、上記XはAl添加量の関数であり、
X=300−135[Al]である。但し、[Al]はAlの含有量(mass%)を示す。
A3点はオーステナイト−フェライト変態における平衡変態点であり、たとえばthermo-Calcなどの熱力学計算ソフトにより計算できる。実際の圧延においては平衡変態点よりも低い温度でオーステナイト相からフェライト相に変態する。変態前のオーステナイト相は加工により安定化するため、オーステナイト相域での圧延加工は、安定な残留オーステナイト相を得るためには有効である。またオーステナイト相域での圧延をより低温で行うことで、通常ではフェライト相に変態しにくくマルテンサイト相分率が著しく高くなってしまう鋼種においても、フェライト相分率を高め、強度と延性の積の関係を向上できると考えられる。
図1は、C:0.24mass%、Mn:2.30mass%、Si:1.51%、Al:0.02mass%を含有する鋼スラブ(後述する実施例の鋼A)と、C:0.24mass%、Mn:2.25mass%、Si:0.50、Al:1.02mass%を含有する鋼スラブ(後述する実施例の鋼C)を、仕上圧延終了温度を変化させて熱間圧延し、350℃から450℃の温度範囲で180秒滞留させて、巻き取った。熱延板の強度と延性の積(TS×El)に対する仕上げ圧延温度の影響を図1に示す。なお、仕上げ最終3パスの圧延率は35%、仕上げ板厚は3.5mmとした。仕上圧延終了温度を変化させた場合のミクロ組織を図2に示す。平衡変態温度A3は鋼Aが808℃、鋼Cが941℃である。
図1より、仕上圧延終了温度が805℃での圧延では、鋼Aは、硬質相のみとなり、TSが24,582MPaと低く、強度と延性の積も従来鋼程度である(後述する実施例の表2中のNo.1)。仕上圧延終了温度が低くなると、強度と延性の積が向上し、仕上圧延終了温度が502℃では、強度と延性の積が30,058MPa・%と非常に高い値が得られている(後述する実施例の表2中のNo.6)。仕上圧延終了温度が(A3点−X−85)℃以上(A3点−X+85)℃以下の範囲内において、強度と延性の積が28,000MPa・%以上の値が得られていることがわかる。
一方、鋼Cは、仕上圧延終了温度が800℃では、強度と延性の積が30,870MPa・%と非常に高い値が得られている(後述する実施例の表2中のNo.11)。仕上圧延終了温度が低くなると、強度と延性の積が低下し、仕上圧延終了温度が512℃では、強度と延性の積が26,581MPa・%と低い値となっている(後述する実施例の表2中のNo.16)。仕上圧延終了温度が(A3点−X−85)℃以上(A3点−X+85)℃以下の範囲内において、強度と延性の積が28,000MPa・%以上の値が得られている。
図2に鋼Aおよび鋼Cにおいて仕上圧延終了温度を変化させた場合のミクロ組織の一例を示す。鋼Aにおいては、仕上圧延終了温度が805℃では、硬質相が多く、前述したように強度と延性の積は低い。また、鋼Cにおいては、仕上圧延終了温度が512℃と低温側の仕上げ圧延条件では、伸展して加工されたフェライト相が多く観察されており、前述したように強度と延性の積は低い。
鋼Cは、仕上圧延終了温度が800℃近辺で、強度と延性の積が非常に高い値が得られている。この800℃近辺は、平衡変態点より約140℃低い温度である。一方、鋼Aは、仕上圧延終了温度が500℃近辺で、強度と延性の積が非常に高い値が得られている。この500℃近辺は、平衡変態点より約300℃低い温度である。これらの結果より、強度と延性の積が非常に高い値が得られる仕上圧延終了温度は、Al含有量によって異なり、Al含有量が低い鋼の方が上記仕上圧延終了温度と平衡変態点との差が大きくなっていることがわかる。これはAlが非常にフェライト相を安定化する効果が大きいためと考えられる。Al添加量に応じて、適切な仕上圧延終了温度を決める必要があることがわかる。
このように、成分組成を後述する本発明範囲とした鋼素材を、仕上圧延終了温度を(A3点−X−85)℃以上(A3点−X+85)℃以下で行うことで強度と延性の積に優れた熱延鋼板の製造が可能であることがわかる。
本発明は、上記のように、従来にはない全く新規な知見に基くものである。
次に、本発明の高強度鋼板が有すべき成分組成について説明する。
C:0.15〜0.30mass%
Cは、γ相に分配し、Ms点を低下させて、残留オーステナイト相を形成させるために必要な元素であり、斯かる効果を得るためには0.15mass%以上の添加が必要である。しかし、Cが0.30mass%を超えると、溶接部の強度が上昇して割れが生じ易くなるため好ましくない。よって、Cは0.15〜0.30mass%の範囲とする。好ましくは0.18〜0.25mass%の範囲である。
Si:0.5〜2.0mass%
Siは、鋼の固溶強化能に優れるとともに、延性の低下が小さい優れた強化元素である。また、後述のAlと同様、残留オーステナイト相の形成を促進する元素である。さらに、Siは、仕上圧延後の冷却過程での炭化物の生成を抑制して、オーステナイト相への炭素の濃化を促進することで、残留γを形成し易くする。これらの効果を得るためには、Siは0.5mass%以上添加する。しかし、Siを、2.0mass%を超えて添加すると、熱延板が硬質化し、冷間圧延性を低下することや、化成処理性など表面の品質が劣化するため好ましくない。よって、Siの含有量は2.0mass%以下とする。好ましくは0.5〜1.5mass%の範囲である。
Mn:1.8〜3.5mass%
Mnは、鋼の高強度化に寄与するだけでなく、オーステナイト相を安定化する効果がある。そのため、Mnは1.8mass%以上添加する必要がある。しかし、3.5mass%を超えると、オーステナイト相低温域で変態点に合わせて圧延したとしても、十分なフェライト相が得られず、強度と延性の積が低下するようになる。よって、Mnは1.8〜3.5mass%の範囲とする。好ましくは1.8〜2.8mass%の範囲である。
P:0.080mass%以下
Pは、固溶強化能に優れかつ、伸びの低下が小さい元素である。しかし、0.080mass%を超える添加は、溶接継手の強度を低下させるとともに、溶融亜鉛めっき時の合金化を阻害するようになるので好ましくない。よって、Pは0.080mass%以下とする。好ましくは0.030mass%以下である。より好ましくは0.015mass%以下である。
S:0.03mass%以下
Sは、熱間延性の低下や、表面品質の低下を招く有害元素であり、できる限り低減するのが望ましい。よって、Sは0.03mass%以下に制限する。好ましくは0.01mass%以下である。より好ましくは0.003mass%以下である。
Al:0.01〜2.0mass%
Alは、Siと同様、残留オーステナイト相を形成させる元素であると同時に脱酸材として必要な元素である。後者の効果を得るためには、0.01mass%以上の添加が必要である。しかし、2.0mass%を超える添加は、変態温度が高くなり、オーステナイト相の低温域での圧延が難しくなる。さらに介在物起因の表面欠陥を引き起こしたり、合金コストの上昇を招く。よって、Alは0.01〜2.0mass%の範囲で添加する。好ましくは0.02〜1.0mass%の範囲である。
N:0.005mass%以下
Nは、鋼の時効を引き起こす有害元素であり、極力低減することが望ましいが、0.005mass%以下であれば許容できる。好ましくは0.003mass%以下である。
上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲内で、必要に応じて適宜、以下の元素を添加することができる。
本発明の高強度鋼板は、上記成分組成に加えてさらに、Nb:0.4mass%以下およびTi:0.4mass%以下のうちから選ばれる1種または2種を含有することができる。
NbおよびTiは、いずれもCやNと結合し、微細析出物を形成して析出強化に寄与する。また、結晶粒の微細化効果や、焼鈍時における結晶粒の粗大化防止効果を有している。上記効果を得るためには、Nb、Tiは単独または合計で0.01mass%以上含有することが好ましい。しかし、それぞれの元素を、0.4mass%を超えて添加すると、延性の低下を招くだけでなく、合金コストの上昇を招く場合がある。よって、Nb、Tiは、それぞれ0.4mass%以下の範囲で添加することが好ましい。
次に、本発明の高強度鋼板の鋼組織および強度特性について説明する。
本発明の鋼板は、高い強度と延性の積を有するためには、上記成分組成を満たすことに加えてさらに、その鋼組織が、体積分率で8%以上20%以下のフェライト相を有することが必要である。C量やMn量が高くなると、通常の圧延条件で圧延する場合、硬質相の分率が高くなり、軟質なフェライト相の分率が8%未満となって、強度と延性の積が低下する。20%を超えると本発明で意図する高い強度と延性の積が得られなくなる。
なお、上記したフェライト相以外の残部組織は、マルテンサイト相、ベイナイト相、残留オーステナイト相からなる。上記した相以外の残部として、不可避的に生成されるパーライト相などが認められることがあるが、このような不可避的に生成される相の合計が体積分率で3%未満であれば、本発明の効果に影響はない。
フェライト相の体積分率は、例えば、鋼板断面を研磨した後、ナイタール液などで腐食して、鋼組織を現出させた後、光学顕微鏡等で撮影した組織写真等から、ポイントカウント法や画像解析処理等で求めることができる。
また、オーステナイト相の体積分率は、X線回折法、飽和磁化法等で求めることができる。
上記成分組成と鋼組織を有する本発明の高強度鋼板は、引張強さTSが980MPa以上で、かつ、上記した引張強さTSと全伸びElの積(強度と延性の積)で定義される強度−延性バランスが28,000MPa・%以上の優れた特性を有する。
次に、本発明の高強度鋼板の製造方法について説明する。
本発明の高強度鋼板は、前述した本発明に適合する成分組成に調整した鋼スラブ(鋼素材)とする工程と、その鋼スラブを熱間圧延して熱延板とする熱間圧延工程により製造することができる。特に、仕上圧延工程を本発明で規定する条件で行うことにより、所期した鋼組織と機械的特性を付与することができる。適宜、必要に応じて、前記した熱延板を圧延して最終板厚の冷延板とする冷間圧延工程と、その冷延板に再結晶させる工程を経てもよい。
<鋼スラブ(鋼素材)>
本発明の高強度鋼板の製造に用いる上記鋼スラブは、上記成分組成の鋼を転炉等を用いて溶製した後、連続鋳造法や造塊−分塊圧延法で製造するが、マクロ偏析を防止する観点からは、連続鋳造法を用いることが好ましい。また、薄スラブ鋳造法を用いてもよい。
<熱間圧延工程>
上記鋼スラブを熱間圧延するに際しては、熱間仕上圧延の終了温度を確保するため、鋼スラブを所定の温度にする必要がある。鋼スラブを一旦室温まで冷却して冷片とした後、再加熱する従来法の他に、室温まで冷却せずに温片で加熱炉に装入し、軽度の再加熱後に熱間圧延する温片装入法、連続鋳造等で鋼スラブとした後、熱片状態のまま直ちに熱間圧延する直接圧延法などの省エネルギープロセスを用いてもよい。
なお、鋼スラブを再加熱する場合の加熱温度は、1100〜1300℃の範囲とするのが好ましい。1100℃未満では、熱間圧延における圧延荷重が増大し、圧延トラブルを引き起こすおそれがある。一方、1300℃を超えると、加熱コストの上昇やスケールロスの増大を招くため好ましくない。
上記温度に再加熱した鋼スラブまたは連続鋳造直後の鋼スラブは、その後、粗圧延してシートバーとした後、仕上圧延して所定の板厚の熱延板とする。
上記粗圧延の条件は、特に制限はなく、常法に従って行えばよい。また、スラブの再加熱温度を低くしたり、熱間圧延時のトラブルを防止したりする観点から、シートバーを誘導加熱等で加熱することができるシートバーヒーターを適用してもよい。
上記仕上圧延は、仕上圧延終了温度を(A3点−X−85)℃以上(A3点−X+85)℃以下で最終3パスの合計圧下率が25%以上で行う必要がある。ここで、
X=300−135[Al] (但し、[Al]はAlの含有量(mass%)を示す。)
である。
図1にて説明したように、成分で決まる変態点(A3)に応じた温度範囲で仕上圧延を行うことにより強度と延性の積が向上する。Alは特にフェライト相を安定化させる効果があり、Al添加量に応じて、適切な仕上圧延終了温度を決める必要があることを見出した。すなわち、X=300−135[Al]となるAl量の関数であるXを用いて、(A3点−X−85)℃未満で圧延すると圧延前にフェライト変態して、展伸して延性に乏しいフェライト相が生成して強度延性バランスを低下させる。一方、(A3点−X+85)℃を超えると、圧延歪によりフェライト相を生成させる能力が不十分となり、マルテンサイト相分率が高くなり、硬質化とともに強度と延性の積が低下する。この場合、圧延歪量も重要であり、特に最終3パスの合計の圧下率を25%未満にすると、蓄積する圧延歪量が小さく、フェライト相を生成させる能力が不十分となり、マルテンサイト相分率が高くなり、硬質化とともに強度と延性の積が低下する。そのため、最終3パスの合計圧下率は25%以上とする。最終3パスの合計の圧下率のより好ましい範囲は30%以上である。最終3パスの合計圧下率の上限については特に定めないが、圧延機の圧延荷重の制約から50%以下である。
なお、上記仕上圧延は、鋼板形状の均一化や材質の均質化したりするため、一部のパスまたは全パスを潤滑圧延としてもよい。潤滑圧延する際の摩擦係数は、0.10〜0.25の範囲とするのが好ましい。
また、上記熱間圧延は、材質の均一性向上や操業安定性の観点から、先行のシートバーと後行のシートバーとを接合し、連続的に仕上圧延する連続圧延プロセスを適用してもよい。
熱間圧延した熱延板はコイル形状に巻き取るが、この鋼板の冷却中に350〜450℃の温度域を100秒以上滞留させて、オーステナイト相をより安定化させることで、高い強度と延性の積の(強度延性バランスに優れた)残留オーステナイト相を十分に確保することができる。巻取温度(CT)は、上記滞留が確保できれば特に制限はない。
上記熱延板は、その後、必要に応じて、適宜、酸洗して脱スケールし、最終製品板とする。
なお、上記焼鈍処理あるいはめっき処理をする場合、それらの処理後で形状矯正や表面粗度調整、機械的特性改善等の目的で、調質圧延またはレベラー加工を施してもよい。この際の調質圧延やレベラー加工における伸び率は、合計で0.2〜3.0%の範囲内とするのが好ましい。0.2%未満では、形状矯正等の所期の目的が達成できず、一方、3.0%を超えると、顕著な延性低下を招くようになるからである。
表1に示す成分組成を有する鋼を、溶製し、鋼スラブとした後、当該鋼スラブを1250℃に加熱し、粗圧延を行い、表2に示す仕上圧延終了温度と最終3パスの合計の圧下率により仕上圧延し、350℃から450℃の滞留時間を表2に示すように行って冷却し、熱延板コイルとし、板厚2.6mmの熱延板とした。
斯くして得た熱延板について、鋼板組織および引張特性を下記の要領で調査した。
<鋼板組織>
フェライト相:上記熱延板から試験片を採取し、圧延方向に平行な板厚断面(L断面)を研磨し、ナイタール液で腐食し、鋼組織を現出させた後、光学顕微鏡を用いて400倍で鋼組織を撮像し、画像処理して白色部の面積率を求め、その面積率をフェライト相の体積分率とした。
<引張特性>
上記熱延板から、圧延方向に対して直角方向(C方向)を引張方向とするJIS5号試験片を採取し、JIS Z2241に準拠し、クロスヘッド速度10mm/minで引張試験を行い、引張強さ(TS)および全伸び(El)を測定し、強度と延性の積(TS×El)で表される強度−延性バランスを求めた。上記測定の結果を表2中に併記した。
表1および表2から、本発明に適合する発明例の鋼板は、いずれも引張強さTSが980MPa以上でかつ強度と延性の積(TS×El)が28,000MPa・%以上の優れた強度と延性のバランスを有していることがわかる。
これに対して、本発明の範囲を外れる条件で製造した比較例の鋼板は、引張強さTSは980MPa以上ではあるが、全伸びElが極端に低く、その結果、強度と延性の積(TS×El)が28,000MPa・%未満でしかない。
本発明の鋼板は、TSが980MPa以上で、強度と延性の積(TS×El)が28,000MPa・%以上の優れた強度−延性バランスを有しているので、自動車車体用に限らず、同様の特性が求められるパイプ素材等としても用いることができる。

Claims (3)

  1. C:0.15〜0.30mass%、Si:0.5〜2.0mass%、Mn:1.8〜3.5mass%、P:0.080mass%以下、S:0.03mass%以下、Al:0.01〜2.0mass%、N:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    体積分率で8%以上20%以下のフェライト相を含み、更にマルテンサイト相、ベイナイト相、残留オーステナイト相からなる金属組織を有し、
    かつ、引張強さ(TS)と全伸び(El)の積(TS×El)が28,000MPa・%以上であることを特徴とする高強度熱延鋼板。
  2. 前記成分組成に加えて、さらに、Nb:0.4mass%以下、Ti:0.4mass%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項1に記載の高強度熱延鋼板。
  3. 請求項1または2に記載の高強度熱延鋼板の製造方法であって、
    鋼素材を、仕上圧延終了温度が(A3点−X−85)℃以上(A3点−X+85)℃以下、最終3パスの合計圧下率が25%以上で熱間圧延し、
    350℃〜450℃の温度域で100秒以上滞留させることを特徴とする高強度熱延鋼板の製造方法。
    但し、X=300−135[Al]、([Al]はAlの含有量(mass%)を示す。)
JP2014018285A 2014-02-03 2014-02-03 高強度熱延鋼板およびその製造方法 Expired - Fee Related JP6225733B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018285A JP6225733B2 (ja) 2014-02-03 2014-02-03 高強度熱延鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018285A JP6225733B2 (ja) 2014-02-03 2014-02-03 高強度熱延鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2015145518A true JP2015145518A (ja) 2015-08-13
JP6225733B2 JP6225733B2 (ja) 2017-11-08

Family

ID=53889892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018285A Expired - Fee Related JP6225733B2 (ja) 2014-02-03 2014-02-03 高強度熱延鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP6225733B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219938A1 (zh) * 2016-06-21 2017-12-28 宝山钢铁股份有限公司 一种980MPa级热轧铁素体贝氏体双相钢及其制造方法
WO2018092735A1 (ja) * 2016-11-15 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219938A1 (zh) * 2016-06-21 2017-12-28 宝山钢铁股份有限公司 一种980MPa级热轧铁素体贝氏体双相钢及其制造方法
US11220724B2 (en) 2016-06-21 2022-01-11 Baoshan Iron & Steel Co., Ltd. 980 MPa-grade hot-rolled ferritic bainite dual-phase steel and manufacturing method therefor
WO2018092735A1 (ja) * 2016-11-15 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板
JP2018080362A (ja) * 2016-11-15 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板

Also Published As

Publication number Publication date
JP6225733B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5003785B2 (ja) 延性に優れた高張力鋼板およびその製造方法
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP6179461B2 (ja) 高強度鋼板の製造方法
JP5858174B2 (ja) 低降伏比高強度冷延鋼板およびその製造方法
JP5924332B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2018011978A1 (ja) 溶融亜鉛めっき鋼板
JP5958669B1 (ja) 高強度鋼板およびその製造方法
JPWO2013121963A1 (ja) 鋼板、めっき鋼板、及びそれらの製造方法
WO2013180180A1 (ja) 高強度冷延鋼板およびその製造方法
JP6628682B2 (ja) 加工性に優れた高強度ステンレス鋼板およびその製造方法
JP2013237923A (ja) 高強度鋼板およびその製造方法
JP5817671B2 (ja) 熱延鋼板およびその製造方法
JP6676973B2 (ja) 熱延鋼板およびその製造方法
JP2011168861A (ja) 高強度熱延鋼板およびその製造方法
JP2013181183A (ja) 降伏強度の面内異方性の小さい高強度冷延鋼板およびその製造方法
JP5811725B2 (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP5958668B1 (ja) 高強度鋼板およびその製造方法
JP6007571B2 (ja) 高強度冷延鋼板及び高強度亜鉛めっき鋼板
JP6515386B2 (ja) 熱延鋼板およびその製造方法
WO2014057519A1 (ja) 形状凍結性に優れた冷延鋼板およびその製造方法
JP6225733B2 (ja) 高強度熱延鋼板およびその製造方法
JP5310920B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP6210045B2 (ja) 高強度冷延鋼板、高強度めっき鋼板、及びそれらの製造方法
JP5246283B2 (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees