JP2015144202A - semiconductor device - Google Patents

semiconductor device Download PDF

Info

Publication number
JP2015144202A
JP2015144202A JP2014017063A JP2014017063A JP2015144202A JP 2015144202 A JP2015144202 A JP 2015144202A JP 2014017063 A JP2014017063 A JP 2014017063A JP 2014017063 A JP2014017063 A JP 2014017063A JP 2015144202 A JP2015144202 A JP 2015144202A
Authority
JP
Japan
Prior art keywords
circuit board
negative electrode
pattern
positive electrode
electrode pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014017063A
Other languages
Japanese (ja)
Inventor
尚能 松本
Naonori Matsumoto
尚能 松本
一善 紺谷
Kazuyoshi Konya
一善 紺谷
山上 智弘
Toshihiro Yamagami
智弘 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014017063A priority Critical patent/JP2015144202A/en
Priority to PCT/JP2015/050156 priority patent/WO2015115130A1/en
Publication of JP2015144202A publication Critical patent/JP2015144202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10015Non-printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10242Metallic cylinders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1025Metallic discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of making a heavy current flow to a substrate without thickening a metal foil forming a circuit pattern.SOLUTION: An inverter device 1 includes: a lower circuit board 11 in which a plurality of switching elements 15 are packaged; and an upper circuit board 13 which is disposed proximately on the lower circuit board, and in which a plurality of capacitors 9 are packaged. On a surface of the upper circuit board 13, a positive electrode pattern and a negative electrode pattern are formed. A positive electrode terminal 4 is connected to the positive electrode pattern and fixed, and a negative electrode terminal 5 is connected to the negative electrode pattern and fixed. A plurality of block-shaped conducting members 25 are bonded to the negative electrode pattern by soldering. The conducting members 25 are disposed in a portion where a current is easily concentrated when the current is made flow to the negative electrode pattern (current concentration part), namely, in the vicinity of an electrode part such as the positive electrode terminal 4 or the negative electrode terminal 5.

Description

本発明は、例えば3相インバータ等の半導体装置に関するものである。   The present invention relates to a semiconductor device such as a three-phase inverter.

従来の半導体装置としては、例えば特許文献1に記載されているものが知られている。特許文献1に記載の半導体装置は、電源調整用基板の回路パターン上にコンデンサが実装された電源調整モジュールと、電源調整モジュールの下方に配置され、絶縁金属基板の銅パターン上に半導体素子が実装された半導体モジュールと、直流電源に接続されると共に、電源調整用基板の回路パターン及び絶縁金属基板の銅パターンと電気的に接続された正極用電極部材及び負極用電極部材とを備えている。電源調整用基板の回路パターンは、銅で形成されている。   As a conventional semiconductor device, for example, one described in Patent Document 1 is known. The semiconductor device described in Patent Document 1 includes a power supply adjustment module in which a capacitor is mounted on a circuit pattern of a power supply adjustment board, and a semiconductor element mounted on a copper pattern of an insulated metal substrate, which is disposed below the power supply adjustment module. And a positive electrode member and a negative electrode member electrically connected to the circuit pattern of the power supply adjusting substrate and the copper pattern of the insulating metal substrate. The circuit pattern of the power supply adjustment substrate is made of copper.

特開2012−195374号公報JP 2012-195374 A

上記従来技術の電源調整用基板(回路基板)では、基板上に外部電源に接続された一対の入力電極及び複数のコンデンサが搭載されており、基板内を大きな電流が流れる構成となっている。このように回路基板に大電流を流す場合には、コンデンサ等が接続される回路パターンを例えば厚い銅箔より形成されたベタパターンとすることで、十分な電流経路を確保するようにしている。   In the above-described conventional power supply adjustment board (circuit board), a pair of input electrodes connected to an external power supply and a plurality of capacitors are mounted on the board, and a large current flows through the board. In this way, when a large current flows through the circuit board, a sufficient current path is ensured by making the circuit pattern to which a capacitor or the like is connected a solid pattern formed of, for example, a thick copper foil.

一方で、近年の半導体装置の更なる小型化の要求に伴い、電極端子やコンデンサ等のようにベタパターンに接続される電子部品と、マイコンや制御IC等のように微細配線パターンに接続される電子部品とを同じ1つの基板上に搭載することで、基板を小型化することが考えられている。このとき、大電流を流す電子部品に合わせて、回路パターンを形成する銅箔を厚くすると、マイコンや制御IC等の電子部品を実装するための微細配線パターンを形成することが困難となってしまうという問題が発生する。また、微細配線パターンの形成が容易となるように回路パターンを形成する銅箔を薄くすると、ベタパターンに大電流を流すことが困難となり、電流を流した際の基板の発熱も大きくなってしまうという問題が発生する。   On the other hand, with recent demands for further downsizing of semiconductor devices, electronic components connected to solid patterns such as electrode terminals and capacitors, and fine wiring patterns such as microcomputers and control ICs are connected. It is considered to reduce the size of the substrate by mounting the electronic component on the same substrate. At this time, if the copper foil that forms the circuit pattern is made thicker in accordance with the electronic component through which a large current flows, it becomes difficult to form a fine wiring pattern for mounting the electronic component such as a microcomputer or a control IC. The problem occurs. In addition, if the copper foil forming the circuit pattern is made thin so that the fine wiring pattern can be easily formed, it becomes difficult to flow a large current through the solid pattern, and the heat generation of the substrate when the current flows is increased. The problem occurs.

本発明の目的は、回路パターンを形成する金属箔を厚くすること無く、基板に大電流を流すことができる半導体装置を提供することである。   An object of the present invention is to provide a semiconductor device capable of flowing a large current through a substrate without increasing the thickness of a metal foil forming a circuit pattern.

本発明の半導体装置は、主回路を構成する複数の半導体素子が搭載される第1回路基板と、第1回路基板に対して上下方向に近接配置され、複数の電子部品が搭載される第2回路基板と、第2回路基板上に設けられ、主回路に電圧を供給するための複数の電極部と、第2回路基板上に設けられ、電極部と電気的に接続された複数の電極パターンとを備え、電極パターンにおける電流が集中する電流集中部には、導電部材が接合されていることを特徴とするものである。   A semiconductor device according to the present invention includes a first circuit board on which a plurality of semiconductor elements constituting a main circuit are mounted, and a second circuit on which a plurality of electronic components are mounted in proximity to the first circuit board in the vertical direction. A circuit board, a plurality of electrode parts provided on the second circuit board for supplying a voltage to the main circuit, and a plurality of electrode patterns provided on the second circuit board and electrically connected to the electrode parts And a conductive member is bonded to the current concentration portion where the current in the electrode pattern is concentrated.

このように第2回路基板上に複数の電極部が設けられた半導体装置では、第2回路基板の電極パターン(回路パターン)に電流を流した時に電流が集中する部分(電流集中部)が存在する。電流集中部では発熱量が多くなるため、結果的に第2回路基板の温度が上昇する。そこで、本発明においては、電極パターンにおける電流が集中する電流集中部に導電部材を接合することにより、電流集中部の電気抵抗が下がるため、電流集中部での発熱量の増大が抑えられ、結果的に第2回路基板の温度上昇を抑えることができる。このように電極パターンにおける電流集中部のみに導電部材を接合するようにしたので、特に電極パターンを形成する金属箔を厚くしなくても、第2回路基板に大電流を流すことができる。   Thus, in a semiconductor device in which a plurality of electrode portions are provided on the second circuit board, there is a portion (current concentration portion) where the current concentrates when a current is applied to the electrode pattern (circuit pattern) of the second circuit substrate. To do. Since the heat generation amount increases in the current concentration portion, the temperature of the second circuit board increases as a result. Therefore, in the present invention, since the electrical resistance of the current concentrated portion is reduced by joining the conductive member to the current concentrated portion where the current in the electrode pattern is concentrated, the increase in the amount of heat generated in the current concentrated portion is suppressed, and as a result Therefore, the temperature rise of the second circuit board can be suppressed. As described above, since the conductive member is bonded only to the current concentration portion in the electrode pattern, a large current can be passed through the second circuit board without particularly increasing the thickness of the metal foil forming the electrode pattern.

導電部材は、電極パターンにおける電極部の近傍の部位に接合されていると良い。電極パターンにおける電極部の近傍は、特に電流が集中しやすい部位である。従って、電極パターンにおける電極部の近傍に導電部材を接合するのが良い。   The conductive member may be bonded to a portion near the electrode portion in the electrode pattern. The vicinity of the electrode portion in the electrode pattern is a portion where current tends to concentrate. Therefore, it is preferable to join the conductive member in the vicinity of the electrode portion in the electrode pattern.

導電部材は、ブロック状または板状をなしていると良い。この場合には、第1回路基板と第2回路基板との間の間隔が小さくても、基板の表面及び裏面にそれぞれ導電部材を簡単に固定することができる。   The conductive member may have a block shape or a plate shape. In this case, even if the distance between the first circuit board and the second circuit board is small, the conductive members can be easily fixed to the front surface and the back surface of the substrate, respectively.

導電部材は、衝立状をなしていても良い。この場合には、導電部材の断面積を大きくすることができる。従って、電流集中部の電気抵抗を十分に低下させて、電流集中部での発熱量の増大を一層抑えることができる。   The conductive member may have a screen shape. In this case, the cross-sectional area of the conductive member can be increased. Therefore, it is possible to sufficiently reduce the electric resistance of the current concentration portion and further suppress an increase in the amount of heat generated in the current concentration portion.

本発明によれば、回路パターンを形成する金属箔を厚くすること無く、基板に大電流を流すことができる。   According to the present invention, a large current can be passed through the substrate without increasing the thickness of the metal foil forming the circuit pattern.

本発明に係る半導体装置の第1実施形態としてインバータ装置を示す分解斜視図である。1 is an exploded perspective view showing an inverter device as a first embodiment of a semiconductor device according to the present invention. 図1に示したインバータ装置の回路図である。It is a circuit diagram of the inverter apparatus shown in FIG. 図1に示した上回路基板に部品が実装された状態の平面図及び裏面図である。FIG. 2 is a plan view and a back view of a state in which components are mounted on the upper circuit board shown in FIG. 図3のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 本発明に係る半導体装置の第2実施形態としてインバータ装置の上回路基板に部品が実装された状態を示す平面図及び裏面図である。It is the top view and back view which show the state by which components were mounted in the upper circuit board of the inverter apparatus as 2nd Embodiment of the semiconductor device which concerns on this invention. 図5のVI−VI線断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5.

以下、本発明に係る半導体装置の好適な実施形態について、図面を参照して詳細に説明する。なお、各図における寸法比率は、実際のものと異なる場合がある。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a semiconductor device according to the invention will be described in detail with reference to the drawings. In addition, the dimension ratio in each figure may differ from an actual thing.

まず、本発明に係る半導体装置の第1実施形態を図1〜図4により説明する。図1は、本発明に係る半導体装置の第1実施形態としてインバータ装置を示す分解斜視図である。本実施形態のインバータ装置1は、例えば3相交流モータを駆動する3相インバータ装置である。   First, a first embodiment of a semiconductor device according to the present invention will be described with reference to FIGS. FIG. 1 is an exploded perspective view showing an inverter device as a first embodiment of a semiconductor device according to the present invention. The inverter device 1 of the present embodiment is a three-phase inverter device that drives a three-phase AC motor, for example.

図2は、インバータ装置1の回路図である。図2において、インバータ装置1は、主回路2と、この主回路2を制御する制御回路3と、主回路2及びバッテリ等の外部電源(図示せず)と接続され、主回路2に外部電源の電圧を供給するための入力端子としての正極電極端子4及び負極電極端子5とを有している。   FIG. 2 is a circuit diagram of the inverter device 1. In FIG. 2, an inverter device 1 is connected to a main circuit 2, a control circuit 3 that controls the main circuit 2, and an external power source (not shown) such as a main circuit 2 and a battery. The positive electrode terminal 4 and the negative electrode terminal 5 are provided as input terminals for supplying a negative voltage.

主回路2は、3相ブリッジ接続された6つのスイッチング素子Q1〜Q6と、各スイッチング素子Q1〜Q6に並列に接続されたフライホイールダイオードD1〜D6とを有している。スイッチング素子Q1〜Q6としては、例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(InsulatedGate Bipolar Transistor)が用いられる。スイッチング素子Q1〜Q6は、並列接続された複数(例えば4つ)のスイッチング素子15からなるスイッチング素子群16(図1参照)を等価的に表したものである。なお、スイッチング素子Q1,Q3,Q5及びフライホイールダイオードD1,D3,D5を含む群は、上アームとして構成され、スイッチング素子Q2,Q4,Q6及びフライホイールダイオードD2,D4,D6を含む群は、下アームとして構成されている。   The main circuit 2 has six switching elements Q1 to Q6 connected in a three-phase bridge, and flywheel diodes D1 to D6 connected in parallel to the switching elements Q1 to Q6. As the switching elements Q1 to Q6, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is used. The switching elements Q1 to Q6 equivalently represent a switching element group 16 (see FIG. 1) including a plurality (for example, four) of switching elements 15 connected in parallel. The group including switching elements Q1, Q3, Q5 and flywheel diodes D1, D3, D5 is configured as an upper arm, and the group including switching elements Q2, Q4, Q6 and flywheel diodes D2, D4, D6 is It is configured as a lower arm.

なお、スイッチング素子Q1〜Q6としてMOSFETを用いる場合には、MOSFETが寄生ダイオードを備えるため、必ずしもフライホイールダイオードD1〜D6を接続しなくても良い。   When MOSFETs are used as the switching elements Q1 to Q6, the flywheel diodes D1 to D6 are not necessarily connected because the MOSFET includes a parasitic diode.

スイッチング素子Q1,Q2は、正極電極端子4と負極電極端子5との間に直列接続されている。スイッチング素子Q1,Q2の接続点には、U相出力端子6が接続されている。スイッチング素子Q3,Q4は、正極電極端子4と負極電極端子5との間に直列接続されている。スイッチング素子Q3,Q4の接続点には、V相出力端子7が接続されている。スイッチング素子Q5,Q6は、正極電極端子4と負極電極端子5との間に直列接続されている。スイッチング素子Q5,Q6の接続点には、W相出力端子8が接続されている。U相出力端子6、V相出力端子7及びW相出力端子8(以下、単に出力端子6〜8という)は、3相の交流出力を外部のモータ等の負荷に供給するための端子である。   The switching elements Q1 and Q2 are connected in series between the positive electrode terminal 4 and the negative electrode terminal 5. A U-phase output terminal 6 is connected to a connection point between the switching elements Q1, Q2. The switching elements Q3 and Q4 are connected in series between the positive electrode terminal 4 and the negative electrode terminal 5. A V-phase output terminal 7 is connected to a connection point between the switching elements Q3 and Q4. The switching elements Q5 and Q6 are connected in series between the positive electrode terminal 4 and the negative electrode terminal 5. A W-phase output terminal 8 is connected to a connection point between the switching elements Q5 and Q6. The U-phase output terminal 6, the V-phase output terminal 7, and the W-phase output terminal 8 (hereinafter simply referred to as output terminals 6 to 8) are terminals for supplying a three-phase AC output to a load such as an external motor. .

また、正極電極端子4と負極電極端子5との間には、主回路2の他の電子部品を構成するコンデンサ9が接続されている。なお、図1では、主回路2に接続される複数のコンデンサ9を模式的に示している。   Further, a capacitor 9 constituting another electronic component of the main circuit 2 is connected between the positive electrode terminal 4 and the negative electrode terminal 5. In FIG. 1, a plurality of capacitors 9 connected to the main circuit 2 are schematically shown.

制御回路3は、各スイッチング素子Q1〜Q6のスイッチング(ON/OFF)を制御する回路である。制御回路3は、電子制御ユニット(ECU)の一部として構成することができ、例えば負荷状態や操作者の要求値に応じて各スイッチング素子Q1〜Q6を適宜スイッチングする。   The control circuit 3 is a circuit that controls switching (ON / OFF) of the switching elements Q1 to Q6. The control circuit 3 can be configured as a part of an electronic control unit (ECU), and appropriately switches each of the switching elements Q1 to Q6 according to, for example, a load state or an operator request value.

図1に戻り、インバータ装置1は、ヒートシンク10上に配置された下回路基板11と、この下回路基板11の上にスペーサブラケット12を介して近接配置された上回路基板13と、上記の正極電極端子4及び負極電極端子5と、上記の出力端子6〜8とを有している。下回路基板11及び上回路基板13は、図示しないケースに覆われる。下回路基板11は、例えば絶縁金属基板(IMS)である。上回路基板13は、例えばプリント基板である。   Returning to FIG. 1, the inverter device 1 includes a lower circuit board 11 disposed on the heat sink 10, an upper circuit board 13 disposed in proximity to the lower circuit board 11 via a spacer bracket 12, and the positive electrode described above. It has the electrode terminal 4 and the negative electrode terminal 5, and said output terminals 6-8. The lower circuit board 11 and the upper circuit board 13 are covered with a case (not shown). The lower circuit board 11 is an insulating metal substrate (IMS), for example. The upper circuit board 13 is, for example, a printed board.

下回路基板11の表面には、複数(ここでは4つ)のスイッチング素子15からなるスイッチング素子群16が下回路基板11の長手方向に6列に並んで実装(搭載)されている。これらのスイッチング素子群16は、上記のスイッチング素子Q1〜Q6を構成している。上アームのスイッチング素子群16と下アームのスイッチング素子群16とは、互いに隣り合うように配置されている。   On the surface of the lower circuit board 11, a switching element group 16 composed of a plurality (four in this case) of switching elements 15 is mounted (mounted) in six rows in the longitudinal direction of the lower circuit board 11. These switching element groups 16 constitute the switching elements Q1 to Q6 described above. The upper arm switching element group 16 and the lower arm switching element group 16 are disposed adjacent to each other.

また、下回路基板11の表面には、矩形状の正極中継電極17及び負極中継電極18が2つずつ交互に並んで実装されている。下回路基板11の表面における正極中継電極17と負極中継電極18との間には、円柱状の出力端子6〜8がそれぞれ突設されている。   Further, two rectangular positive electrode relay electrodes 17 and two negative electrode relay electrodes 18 are alternately mounted on the surface of the lower circuit board 11. Between the positive electrode relay electrode 17 and the negative electrode relay electrode 18 on the surface of the lower circuit board 11, cylindrical output terminals 6 to 8 are respectively provided so as to project.

上回路基板13には、複数のコンデンサ9が実装されるコンデンサ実装領域13aと、制御回路3を構成するマイコンや制御IC等の電子部品19が実装される制御回路実装領域13bとが設けられている。制御回路実装領域13bには、制御回路3を構成する電子部品19を実装するための微細配線パターン(不図示)が形成されている。   The upper circuit board 13 is provided with a capacitor mounting area 13a on which a plurality of capacitors 9 are mounted, and a control circuit mounting area 13b on which electronic components 19 such as a microcomputer and a control IC constituting the control circuit 3 are mounted. Yes. A fine wiring pattern (not shown) for mounting the electronic component 19 constituting the control circuit 3 is formed in the control circuit mounting region 13b.

上回路基板13の表面におけるコンデンサ実装領域13aと制御回路実装領域13bとの間の領域の両端部には、図1及び図3に示すように、円柱状の正極電極端子4及び負極電極端子5が突設されている。また、上回路基板13における正極電極端子4と負極電極端子5との間には、出力端子6〜8を貫通させる3つの貫通孔20が形成されている。   At both ends of the area between the capacitor mounting area 13a and the control circuit mounting area 13b on the surface of the upper circuit board 13, as shown in FIGS. 1 and 3, cylindrical positive electrode terminals 4 and negative electrode terminals 5 are provided. Is protruding. In addition, between the positive electrode terminal 4 and the negative electrode terminal 5 in the upper circuit board 13, three through holes 20 through which the output terminals 6 to 8 are formed are formed.

上回路基板13の表面には、図3(a)及び図4に示すように、2つの正極電極パターン21と負極電極パターン22とが形成されている。なお、図3(a)は、上回路基板13に部品が実装された状態の平面図である。図4は、図3のIV−IV線断面図である。   As shown in FIGS. 3A and 4, two positive electrode patterns 21 and a negative electrode pattern 22 are formed on the surface of the upper circuit board 13. FIG. 3A is a plan view of a state in which components are mounted on the upper circuit board 13. 4 is a cross-sectional view taken along line IV-IV in FIG.

正極電極パターン21は、略四角形状をなしている。負極電極パターン22は、コンデンサ実装領域13aの大部分にわたって形成されたベタパターンである。負極電極パターン22は、制御回路実装領域13b側に突出した2つの略四角形状のパターン突出部22aを有している。正極電極パターン21及びパターン突出部22aは、貫通孔20を挟んで交互に上回路基板13の長手方向に沿って配置されている。上回路基板13の一端側に位置する正極電極パターン21には、正極電極端子4が接続固定されている。上回路基板13の他端側に位置するパターン突出部22aには、負極電極端子5が接続固定されている。   The positive electrode pattern 21 has a substantially square shape. The negative electrode pattern 22 is a solid pattern formed over most of the capacitor mounting region 13a. The negative electrode pattern 22 has two substantially square pattern protrusions 22a protruding toward the control circuit mounting region 13b. The positive electrode patterns 21 and the pattern protrusions 22a are alternately arranged along the longitudinal direction of the upper circuit board 13 with the through holes 20 therebetween. The positive electrode terminal 4 is connected and fixed to the positive electrode pattern 21 located on one end side of the upper circuit board 13. The negative electrode terminal 5 is connected and fixed to the pattern protrusion 22 a located on the other end side of the upper circuit board 13.

上回路基板13の裏面には、図3(b)及び図4に示すように、正極電極パターン23と2つの負極電極パターン24とが形成されている。なお、図3(b)は、上回路基板13に部品が実装された状態の裏面図である。   As shown in FIGS. 3B and 4, a positive electrode pattern 23 and two negative electrode patterns 24 are formed on the back surface of the upper circuit board 13. FIG. 3B is a back view of a state in which components are mounted on the upper circuit board 13.

正極電極パターン23は、コンデンサ実装領域3aの大部分にわたって形成されたベタパターンである。正極電極パターン23は、制御回路実装領域13b側に突出した2つの略四角形状のパターン突出部23aを有している。負極電極パターン24は、略四角形状をなしている。パターン突出部23a及び負極電極パターン24は、貫通孔20を挟んで交互に上回路基板13の長手方向に沿って配置されている。正極電極パターン23は、正極中継電極17と電気的に接続される。負極電極パターン24は、負極中継電極18と電気的に接続される。   The positive electrode pattern 23 is a solid pattern formed over most of the capacitor mounting region 3a. The positive electrode pattern 23 has two substantially square pattern protrusions 23a protruding toward the control circuit mounting region 13b. The negative electrode pattern 24 has a substantially square shape. The pattern protrusions 23 a and the negative electrode patterns 24 are alternately arranged along the longitudinal direction of the upper circuit board 13 with the through holes 20 interposed therebetween. The positive electrode pattern 23 is electrically connected to the positive electrode relay electrode 17. The negative electrode pattern 24 is electrically connected to the negative relay electrode 18.

正極電極パターン21,23及び負極電極パターン22,24は、薄い銅箔で形成されている。銅箔の厚みは、例えば70μm程度である。正極電極パターン23は正極電極パターン21と電気的に接続され、負極電極パターン24は負極電極パターン22と電気的に接続されている。なお、正極電極パターン21,23及び負極電極パターン22,24を銅箔以外の金属箔で形成しても良い。   The positive electrode patterns 21 and 23 and the negative electrode patterns 22 and 24 are formed of thin copper foil. The thickness of the copper foil is, for example, about 70 μm. The positive electrode pattern 23 is electrically connected to the positive electrode pattern 21, and the negative electrode pattern 24 is electrically connected to the negative electrode pattern 22. In addition, you may form the positive electrode patterns 21 and 23 and the negative electrode patterns 22 and 24 with metal foils other than copper foil.

上回路基板13の表面に形成された負極電極パターン22には、複数(ここでは3つ)のブロック状の導電部材25が半田付けにより接合されている。導電部材25は、負極電極パターン22に電流を流した時に電流が集中しやすい部位(電流集中部)、つまり正極電極端子4、負極電極端子5、正極中継電極17及び負極中継電極18といった電極部の近傍に配置されている。このとき、導電部材25は、コンデンサ9に干渉しないようにスペースの空いた部位に効率的に配置されている。導電部材25は、負極電極パターン22の金属材料と同じ銅で形成されている。   A plurality (three in this case) of block-shaped conductive members 25 are joined to the negative electrode pattern 22 formed on the surface of the upper circuit board 13 by soldering. The conductive member 25 is a portion where current tends to concentrate when a current flows through the negative electrode pattern 22 (current concentration portion), that is, electrode portions such as the positive electrode terminal 4, the negative electrode terminal 5, the positive electrode relay electrode 17, and the negative electrode relay electrode 18. It is arranged in the vicinity. At this time, the conductive member 25 is efficiently disposed in a space-free portion so as not to interfere with the capacitor 9. The conductive member 25 is formed of the same copper as the metal material of the negative electrode pattern 22.

上回路基板13の裏面に形成された正極電極パターン23には、複数(ここでは3つ)のブロック状の導電部材26が半田付けにより接合されている。導電部材26は、導電部材25と同様に、正極電極パターン23に電流を流した時に電流が集中しやすい電極部の近傍に配置されている。このとき、導電部材26は、コンデンサ9の端子に干渉しないようにスペースの空いた部位に導電部材25よりも大きな寸法を持って効率的に配置されている。導電部材26も、導電部材25と同様に銅で形成されている。   A plurality (three in this case) of block-shaped conductive members 26 are joined to the positive electrode pattern 23 formed on the back surface of the upper circuit board 13 by soldering. Similar to the conductive member 25, the conductive member 26 is disposed in the vicinity of the electrode portion where current tends to concentrate when a current is passed through the positive electrode pattern 23. At this time, the conductive member 26 is efficiently arranged with a larger dimension than the conductive member 25 in a space-free portion so as not to interfere with the terminals of the capacitor 9. The conductive member 26 is also formed of copper like the conductive member 25.

導電部材25,26をブロック状とすることにより、導電部材25,26を負極電極パターン22及び正極電極パターン23にそれぞれ簡単に接合することができる。また、上回路基板13と下回路基板11との間のスペースが狭くても、上回路基板13の裏面に導電部材26を設けることができる。なお、導電部材25,26は、板状であっても良い。   By making the conductive members 25 and 26 into a block shape, the conductive members 25 and 26 can be easily joined to the negative electrode pattern 22 and the positive electrode pattern 23, respectively. Even if the space between the upper circuit board 13 and the lower circuit board 11 is narrow, the conductive member 26 can be provided on the back surface of the upper circuit board 13. The conductive members 25 and 26 may be plate-shaped.

ところで、上回路基板13に大電流を流すためには、正極電極パターン21,23及び負極電極パターン22,24を形成する銅箔を厚くすることが考えられる。しかし、上回路基板13には、ベタパターンに接続されるコンデンサ9だけでなく、微細配線パターンに接続される電子部品19も実装されるため、銅箔を厚くし過ぎると、エッチング加工技術の限界によって上回路基板13に微細配線パターンを精度良く形成することができないという問題が発生する。   By the way, in order to flow a large current through the upper circuit board 13, it is conceivable to increase the thickness of the copper foil for forming the positive electrode patterns 21, 23 and the negative electrode patterns 22, 24. However, since not only the capacitor 9 connected to the solid pattern but also the electronic component 19 connected to the fine wiring pattern is mounted on the upper circuit board 13, if the copper foil is made too thick, the limit of the etching processing technology This causes a problem that a fine wiring pattern cannot be accurately formed on the upper circuit board 13.

これに対し本実施形態では、正極電極パターン21,23及び負極電極パターン22,24を形成する銅箔を厚くすること無く、負極電極パターン22及び正極電極パターン23において電流が集中しやすい電極部の近傍に導電部材25,26をそれぞれ接合している。そのような構成とすることにより、負極電極パターン22及び正極電極パターン23において導電部材25,26が接合された部分の電気抵抗値が下がり、当該部分における発熱量の増大が抑えられるため、上回路基板13の温度上昇を抑制することができる。また、導電部材25,26を、上回路基板13に発生する熱を貯める熱マスとして利用することもできる。   On the other hand, in the present embodiment, without thickening the copper foils forming the positive electrode patterns 21 and 23 and the negative electrode patterns 22 and 24, the electrode portions where the current tends to concentrate in the negative electrode pattern 22 and the positive electrode pattern 23 are reduced. Conductive members 25 and 26 are joined in the vicinity. By adopting such a configuration, the electrical resistance value of the portion where the conductive members 25 and 26 are joined in the negative electrode pattern 22 and the positive electrode pattern 23 is lowered, and an increase in the amount of heat generated in the portion can be suppressed. An increase in temperature of the substrate 13 can be suppressed. Further, the conductive members 25 and 26 can be used as a heat mass for storing heat generated in the upper circuit board 13.

従って、本実施形態によれば、正極電極パターン21,23及び負極電極パターン22,24を形成する銅箔を厚くしなくても、上回路基板13に大電流を流すことが可能となる。また、銅箔を厚くする必要が無いため、上回路基板13に微細配線パターンを精度良く加工してマイコン等を実装することができる。   Therefore, according to the present embodiment, a large current can be passed through the upper circuit board 13 without increasing the thickness of the copper foil that forms the positive electrode patterns 21 and 23 and the negative electrode patterns 22 and 24. Further, since it is not necessary to increase the thickness of the copper foil, it is possible to mount a microcomputer or the like by processing a fine wiring pattern on the upper circuit board 13 with high accuracy.

本発明に係る半導体装置の第2実施形態を図5及び図6により説明する。図中、上記第1実施形態と同一または同等の要素には同じ符号を付し、その説明を省略する。なお、図5及び図6は、上記第1実施形態における図3及び図4に対応する図である。   A second embodiment of the semiconductor device according to the present invention will be described with reference to FIGS. In the figure, the same or equivalent elements as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. 5 and 6 correspond to FIGS. 3 and 4 in the first embodiment.

各図において、本実施形態のインバータ装置1は、上記第1実施形態における導電部材25,26に代えて、上回路基板13の長手方向に延びる衝立状の導電部材31,32を備えている。導電部材31,32は、導電部材25,26と同様に銅で形成されている。   In each drawing, the inverter device 1 of the present embodiment includes screen-shaped conductive members 31 and 32 extending in the longitudinal direction of the upper circuit board 13 instead of the conductive members 25 and 26 in the first embodiment. The conductive members 31 and 32 are made of copper like the conductive members 25 and 26.

導電部材31は、上回路基板13の表面に形成された負極電極パターン22に半田付けにより直接接合されている。導電部材31は、負極電極パターン22に電流を流した時に電流が集中しやすい部位(電流集中部)、つまり正極電極端子4、負極電極端子5、正極中継電極17及び負極中継電極18といった電極部の近傍に配置されている。   The conductive member 31 is directly joined to the negative electrode pattern 22 formed on the surface of the upper circuit board 13 by soldering. The conductive member 31 is a portion where current tends to concentrate when a current flows through the negative electrode pattern 22 (current concentration portion), that is, electrode portions such as the positive electrode terminal 4, the negative electrode terminal 5, the positive electrode relay electrode 17, and the negative electrode relay electrode 18. It is arranged in the vicinity.

導電部材32は、上回路基板13の表面に形成された各正極電極パターン21に導電層33を介して半田付けにより接合されている。導電部材32は、各正極電極パターン21をつなぐように配置されている。このとき、導電部材32は導電層33を介して各正極電極パターン21に接合されているため、導電部材32が負極電極パターン22のパターン突出部22aに接触することは無い。なお、上回路基板13の裏面には、導電部材が設けられていない。   The conductive member 32 is joined to each positive electrode pattern 21 formed on the surface of the upper circuit board 13 by soldering via a conductive layer 33. The conductive member 32 is disposed so as to connect the positive electrode patterns 21. At this time, since the conductive member 32 is bonded to each positive electrode pattern 21 via the conductive layer 33, the conductive member 32 does not contact the pattern protrusion 22 a of the negative electrode pattern 22. Note that a conductive member is not provided on the back surface of the upper circuit board 13.

このように本実施形態においては、上回路基板13の表面に導電部材31,32を設けたので、上記第1実施形態と同様に、正極電極パターン21,23及び負極電極パターン22,24を形成する銅箔を厚くしなくても、上回路基板13に大電流を流すことが可能となる。   Thus, in this embodiment, since the conductive members 31 and 32 are provided on the surface of the upper circuit board 13, the positive electrode patterns 21 and 23 and the negative electrode patterns 22 and 24 are formed as in the first embodiment. A large current can be passed through the upper circuit board 13 without increasing the thickness of the copper foil.

また、本実施形態では、導電部材31,32を衝立状としたので、導電部材31,32の断面積が大きくなり、正極電極パターン21及び負極電極パターン22において導電部材31,32が接合された部分の電気抵抗値が十分に下がるようになる。従って、当該部分の発熱量の増大が十分に抑えられるため、正極電極パターン21及び負極電極パターン22を冷却することができる。その結果、熱設計的な余裕を得ることが可能となる。   Further, in the present embodiment, since the conductive members 31 and 32 are in the form of a screen, the cross-sectional area of the conductive members 31 and 32 is increased, and the conductive members 31 and 32 are joined in the positive electrode pattern 21 and the negative electrode pattern 22. The electric resistance value of the part is sufficiently lowered. Therefore, since the increase in the amount of heat generated in the portion is sufficiently suppressed, the positive electrode pattern 21 and the negative electrode pattern 22 can be cooled. As a result, it is possible to obtain a thermal design margin.

なお、本実施形態では、上回路基板13の表面のみに衝立状の導電部材31,32を設けたが、上回路基板13と下回路基板11との間に配置スペースがあれば、上回路基板13の裏面にも衝立状の導電部材31,32を設けても良い。   In this embodiment, the screen-like conductive members 31 and 32 are provided only on the surface of the upper circuit board 13. However, if there is a space between the upper circuit board 13 and the lower circuit board 11, the upper circuit board is provided. Screen-shaped conductive members 31 and 32 may also be provided on the back surface of 13.

以上、本発明に係る半導体装置の好適な実施形態について幾つか説明してきたが、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、上記実施形態では、導電部材を銅で形成したが、導電部材を形成する金属材料としては、銅の他に、鉄やアルミニウム等を用いても良い。この場合、導電部材を正極電極パターン及び負極電極パターンに接合する手段としては、特に上記の半田付けには限られず、導電性接着剤等を用いても良い。   Although several preferred embodiments of the semiconductor device according to the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the said embodiment, although the electrically-conductive member was formed with copper in the said embodiment, as a metal material which forms a electrically-conductive member, you may use iron, aluminum, etc. other than copper. In this case, the means for joining the conductive member to the positive electrode pattern and the negative electrode pattern is not particularly limited to the above soldering, and a conductive adhesive or the like may be used.

また、上記実施形態は、3相のインバータ装置1についてであるが、本発明の半導体装置は、そのようなインバータ装置1に限られず、例えばDC−DCコンバータ等にも適用可能である。   Moreover, although the said embodiment is about the three-phase inverter apparatus 1, the semiconductor device of this invention is not restricted to such an inverter apparatus 1, For example, it can apply also to a DC-DC converter etc.

1…インバータ装置(半導体装置)、2…主回路、4…正極電極端子(電極部)、5…負極電極端子(電極部)、9…コンデンサ(電子部品)、11…下回路基板(第1回路基板)、13…上回路基板(第2回路基板)、15…スイッチング素子(半導体素子)、17…正極中継電極(電極部)、18…負極中継電極(電極部)、21…正極電極パターン、22…負極電極パターン、23…正極電極パターン、24…負極電極パターン、25,26…導電部材、31,32…導電部材。   DESCRIPTION OF SYMBOLS 1 ... Inverter device (semiconductor device), 2 ... Main circuit, 4 ... Positive electrode terminal (electrode part), 5 ... Negative electrode terminal (electrode part), 9 ... Capacitor (electronic component), 11 ... Lower circuit board (1st) Circuit board), 13 ... Upper circuit board (second circuit board), 15 ... Switching element (semiconductor element), 17 ... Positive relay electrode (electrode part), 18 ... Negative relay electrode (electrode part), 21 ... Positive electrode pattern , 22 ... negative electrode pattern, 23 ... positive electrode pattern, 24 ... negative electrode pattern, 25, 26 ... conductive member, 31, 32 ... conductive member.

Claims (4)

主回路を構成する複数の半導体素子が搭載される第1回路基板と、
前記第1回路基板に対して上下方向に近接配置され、複数の電子部品が搭載される第2回路基板と、
前記第2回路基板上に設けられ、前記主回路に電圧を供給するための複数の電極部と、
前記第2回路基板上に設けられ、前記電極部と電気的に接続された複数の電極パターンとを備え、
前記電極パターンにおける電流が集中する電流集中部には、導電部材が接合されていることを特徴とする半導体装置。
A first circuit board on which a plurality of semiconductor elements constituting a main circuit are mounted;
A second circuit board that is disposed close to the first circuit board in the vertical direction and on which a plurality of electronic components are mounted;
A plurality of electrode portions provided on the second circuit board for supplying a voltage to the main circuit;
A plurality of electrode patterns provided on the second circuit board and electrically connected to the electrode portion;
A semiconductor device, wherein a conductive member is bonded to a current concentration portion where current in the electrode pattern is concentrated.
前記導電部材は、前記電極パターンにおける前記電極部の近傍の部位に接合されていることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductive member is bonded to a portion of the electrode pattern near the electrode portion. 前記導電部材は、ブロック状または板状をなしていることを特徴とする請求項1または2記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductive member has a block shape or a plate shape. 前記導電部材は、衝立状をなしていることを特徴とする請求項1または2記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductive member has a partition shape.
JP2014017063A 2014-01-31 2014-01-31 semiconductor device Pending JP2015144202A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014017063A JP2015144202A (en) 2014-01-31 2014-01-31 semiconductor device
PCT/JP2015/050156 WO2015115130A1 (en) 2014-01-31 2015-01-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017063A JP2015144202A (en) 2014-01-31 2014-01-31 semiconductor device

Publications (1)

Publication Number Publication Date
JP2015144202A true JP2015144202A (en) 2015-08-06

Family

ID=53756708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017063A Pending JP2015144202A (en) 2014-01-31 2014-01-31 semiconductor device

Country Status (2)

Country Link
JP (1) JP2015144202A (en)
WO (1) WO2015115130A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138363U (en) * 1982-03-11 1983-09-17 オリジン電気株式会社 Printed wiring board for power
JPS60257191A (en) * 1984-06-02 1985-12-18 株式会社日立製作所 Printed circuit board
JP5241177B2 (en) * 2007-09-05 2013-07-17 株式会社オクテック Semiconductor device and manufacturing method of semiconductor device
JP5644440B2 (en) * 2010-12-03 2014-12-24 富士電機株式会社 Power semiconductor module
JP2013058727A (en) * 2011-08-12 2013-03-28 Sanyo Electric Co Ltd Mounting substrate and circuit device using the same

Also Published As

Publication number Publication date
WO2015115130A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP6160780B2 (en) 3-level power converter
JP6169250B2 (en) Power semiconductor device
JP2010119300A5 (en)
JP6288769B2 (en) Semiconductor power module, power conversion device, and moving body using the same
JP6206338B2 (en) Switching module
JP2019029457A (en) Semiconductor module
JP5884775B2 (en) Inverter device
WO2018016162A1 (en) Semiconductor device
JP2006210500A (en) Semiconductor device for electric power
JP5338830B2 (en) Semiconductor device
JP4349364B2 (en) Semiconductor device
JPWO2017060944A1 (en) Electronic control unit
JP3173511U (en) Semiconductor device
US11817794B2 (en) Electronic circuit module
JP2020010561A (en) Power conversion device
WO2013105456A1 (en) Circuit board and electronic device
JP5062029B2 (en) Semiconductor device
JP6362959B2 (en) Power conversion circuit, manufacturing method thereof, and power conditioner
JP2018009863A (en) Current measuring device
JP2015144202A (en) semiconductor device
JP5846929B2 (en) Power semiconductor module
JP6493751B2 (en) Power converter
JP6383614B2 (en) Capacitor module and power unit
JP2016101071A (en) Semiconductor device
JP6539998B2 (en) Semiconductor power converter