JP2015143324A - Silica glass member for wavelength conversion, and production method therefor - Google Patents

Silica glass member for wavelength conversion, and production method therefor Download PDF

Info

Publication number
JP2015143324A
JP2015143324A JP2014184093A JP2014184093A JP2015143324A JP 2015143324 A JP2015143324 A JP 2015143324A JP 2014184093 A JP2014184093 A JP 2014184093A JP 2014184093 A JP2014184093 A JP 2014184093A JP 2015143324 A JP2015143324 A JP 2015143324A
Authority
JP
Japan
Prior art keywords
quartz glass
polysilazane
wavelength conversion
surface layer
layer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184093A
Other languages
Japanese (ja)
Inventor
竜也 森
Tatsuya Mori
竜也 森
佐藤 龍弘
Tatsuhiro Sato
龍弘 佐藤
藤ノ木 朗
Akira Fujinoki
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2014184093A priority Critical patent/JP2015143324A/en
Priority to US14/764,879 priority patent/US20150353417A1/en
Priority to PCT/JP2014/084398 priority patent/WO2015099084A1/en
Priority to EP14873492.4A priority patent/EP2944620A1/en
Priority to KR1020157017265A priority patent/KR20150092213A/en
Priority to CN201480004250.0A priority patent/CN104903266A/en
Priority to TW103145808A priority patent/TW201532999A/en
Publication of JP2015143324A publication Critical patent/JP2015143324A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silica glass member for wavelength conversion, for which environmental tolerance, heat resistance, durability and color rendering properties are high, which can be produced using a low-heat process, and which can efficiently convert wavelengths; and to provide a production method therefor.SOLUTION: A silica glass member for wavelength conversion is formed by a silica glass substrate and a silica glass surface layer film formed on the surface of the substrate. The silica glass surface layer film is obtained by: coating the surface of the silica glass substrate with a polysilazane-containing solution which contains phosphor particles the average particle diameter of which is 0.1-20 μm and spherical silica fine particles which are hydrophobic and have an average particle size of 1nm-100 nm; drying the coated substrate in the air; and carrying out heating in a water-vapor atmosphere. In the polysilazane-containing solution, the ratio of phosphor particles to the total amount of the polysilazane and phosphor particles is 10:3-7 parts by mass, and the NH group concentration of the silica glass surface layer film is no more than 1,000 ppm.

Description

本発明は、発光の一部を吸収し、波長変換して発光させるための波長変換用石英ガラス部材及びその製造方法に関する。   The present invention relates to a wavelength-converting quartz glass member for absorbing a part of emitted light, converting the wavelength to emit light, and a method for manufacturing the same.

波長変換材料は、ある波長の光を波長変換し、利用用途に応じて、その波長より長波長の光を取り出し、効率を向上させるものである。   The wavelength conversion material converts the wavelength of light of a certain wavelength, takes out light having a wavelength longer than that wavelength, and improves efficiency according to the intended use.

近年、一般的な太陽電池では、シリコン結晶に太陽光を直接照射して励起を引き起こし、電気エネルギーを発生させているが、太陽光に含まれる紫外波長の光は熱に変化し、エネルギーロスとなっている。また、利用される太陽光エネルギーは大量に集約される為、集約部分の発熱度が非常に増大し、高温に耐えうる材料が求められている。このため、太陽光の紫外波長成分を、効率よく長波長に変換し、太陽電池の発電効率を向上させることができるとともに、高温でも耐えうる石英ガラス製の波長変換材料が求められている。   In recent years, in general solar cells, silicon crystals are directly irradiated with sunlight to cause excitation and generate electrical energy. However, ultraviolet light contained in sunlight changes into heat, resulting in energy loss. It has become. Moreover, since the solar energy utilized is concentrated in large quantities, the heat generation degree of the aggregated portion is greatly increased, and a material that can withstand high temperatures is demanded. For this reason, there is a need for a wavelength conversion material made of quartz glass that can efficiently convert the ultraviolet wavelength component of sunlight into a long wavelength, improve the power generation efficiency of the solar cell, and can withstand high temperatures.

次に、レーザー発信技術分野での技術例を説明する。大出力Nd:YAGレーザーの励起に
は、通常キセノンフラッシュランプが用いられている。その発光は200nm〜1000nmに渡る
ブロード発光であるが、Nd:YAGレーザー励起に必要な波長は、530nm〜550nm、580nm〜600nmであるため、紫外域の光はエネルギーロスとなる。従って、この紫外線を波長変換し、Nd:YAGレーザーに有効な波長として利用できれば、レーザーの発光効率を向上することができる。この分野でも同様に、高温、紫外線に耐えうる材料として、石英を利用した材料が求められている。
Next, a technical example in the laser transmission technology field will be described. A xenon flash lamp is usually used to excite a high-power Nd: YAG laser. The emission is broad emission over 200 nm to 1000 nm, but the wavelengths necessary for Nd: YAG laser excitation are 530 nm to 550 nm and 580 nm to 600 nm, so that light in the ultraviolet region is energy loss. Therefore, if the wavelength of this ultraviolet light is converted and used as an effective wavelength for the Nd: YAG laser, the light emission efficiency of the laser can be improved. Similarly in this field, a material using quartz is required as a material that can withstand high temperatures and ultraviolet rays.

また、化合物半導体による青色、或いは、紫外線を放射するLEDチップが開発されつつあるが、このLEDチップと、種々の蛍光体とを組み合わせることにより、白色を含め、チップの光を波長変換した発光装置の開発が試みられている。この発光装置は、小型、軽量、省電力といった長所がある。この分野でも同様に、高温、紫外線に耐えうる材料として、石英を利用した材料が求められている。   In addition, LED chips that emit blue or ultraviolet light using compound semiconductors are being developed. By combining this LED chip and various phosphors, a light emitting device that converts the wavelength of the chip light, including white, into a wavelength. The development of is being attempted. This light emitting device has advantages such as small size, light weight, and power saving. Similarly in this field, a material using quartz is required as a material that can withstand high temperatures and ultraviolet rays.

一つの例として、植物工場用の照明が、蛍光灯に代わりLED化している。植物の成長には、植物種や成長段階によって様々な波長の光が必要であり、一般的には可視光が適している。この分野でも、波長変換効率に優れ、耐水性、耐薬品性に優れた材料として、石英を利用した材料が求められている。   As one example, the lighting for plant factories is converted to LEDs instead of fluorescent lamps. Plant growth requires light of various wavelengths depending on the plant species and growth stage, and generally visible light is suitable. In this field as well, a material using quartz is demanded as a material excellent in wavelength conversion efficiency, water resistance and chemical resistance.

[従来技術の問題点]
従来の太陽電池の波長変換材料には、紫外光を吸収して、可視領域で発光する有機金属錯体を樹脂中に配合して、太陽電池の変換効率が向上するとした、封止材、太陽電池が開示されている(特許文献1及び特許文献2)。
[Problems of conventional technology]
The conventional solar cell wavelength conversion material contains an organometallic complex that absorbs ultraviolet light and emits light in the visible region in the resin to improve the conversion efficiency of the solar cell. Are disclosed (Patent Document 1 and Patent Document 2).

しかし、特許文献1及び特許文献2に利用されている有機金属錯体は、耐光性に乏しく、光の連続照射によって有機金属錯体が劣化して変換効率が低下し、さらに封止材料に樹脂が利用されているため、この樹脂が黄変するといった問題があった。   However, the organometallic complexes used in Patent Document 1 and Patent Document 2 have poor light resistance, the organometallic complex deteriorates due to continuous light irradiation, and the conversion efficiency is lowered. Further, a resin is used as a sealing material. Therefore, there is a problem that this resin turns yellow.

Nd:YAGレーザーの励起に利用するキセノンフラッシュランプの波長変換材料として、シリカガラス中に銅をドープし、紫外線を可視光に変換する材料について開示されている(特許文献3)。   As a wavelength conversion material for a xenon flash lamp used for excitation of an Nd: YAG laser, a material that converts ultraviolet light into visible light by doping copper into silica glass is disclosed (Patent Document 3).

しかし、特許文献3で開示されている方法は、製造工程が高温プロセスであり、高価な製造設備が必要であり、コストや環境負荷の低減の観点から、問題があった。   However, the method disclosed in Patent Document 3 has a problem in that the manufacturing process is a high-temperature process, expensive manufacturing equipment is required, and cost and environmental load are reduced.

従来の青色、紫外LED発光置としては、蛍光体を含有する保護樹脂でLEDチップを包囲し、更に全体を封止樹脂で包囲するものがある。   As a conventional blue and ultraviolet LED light emitting device, there is one in which an LED chip is surrounded by a protective resin containing a phosphor and the whole is further surrounded by a sealing resin.

しかし、蛍光体を含有した樹脂を用いた従来の方法では、LEDチップから発生する紫外線によって、被覆樹脂(保護樹脂、封止樹脂)が劣化する。一般に、炭素、水素、酸素、窒素等の元素がネットワーク状に結合した有機高分子化合物によって構成される保護樹脂及び封止樹脂は、紫外線が照射されると、有機高分子のネットワーク構造が切断され、各種の光学的特性及び化学的特性が劣化することが知られている。   However, in the conventional method using a resin containing a phosphor, the coating resin (protective resin, sealing resin) is deteriorated by ultraviolet rays generated from the LED chip. In general, a protective resin and a sealing resin composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a network form, the organic polymer network structure is cut when irradiated with ultraviolet rays. It is known that various optical properties and chemical properties deteriorate.

さらに、ポリシロキサン組成物前駆体を含有する溶液に蛍光体を混合し、塗布、加熱することで蛍光体をシリカガラス中に封止する方法が知られている(特許文献4)。しかしながら、ポリシロキサン組成物前駆体は、その多くが有機官能基を有しており、加熱を行うとその有機官能基が分解される際、ガス、クラックなどが発生しやすい。また、ポリシロキサン組成物前駆体からシリカガラスを作製する際は、加水分解、重縮合、乾燥、焼結と、複雑な工程を経なければならないため、量産化が難しいという問題があった。   Furthermore, a method is known in which a phosphor is mixed in a solution containing a polysiloxane composition precursor, and the phosphor is sealed in silica glass by coating and heating (Patent Document 4). However, many of the polysiloxane composition precursors have an organic functional group, and when the organic functional group is decomposed when heated, gas, cracks, etc. are likely to occur. Moreover, when producing a silica glass from a polysiloxane composition precursor, there has been a problem that mass production is difficult because complicated steps such as hydrolysis, polycondensation, drying and sintering are required.

植物工場では、水や肥料が多用される。そのため、上記記載のような蛍光体を封止した樹脂を利用したLED照明では、水蒸気透過性が高く、耐薬品性が低いため、このような用途に適していない。   In plant factories, water and fertilizer are often used. Therefore, LED lighting using a resin encapsulating a phosphor as described above is not suitable for such a use because it has high water vapor permeability and low chemical resistance.

国際公開第2008/047427号公報International Publication No. 2008/047427 特開2010−258293公報JP 2010-258293 A 特開2005−272243号公報JP 2005-272243 A 国際公開第2010/110204号公報International Publication No. 2010/110204

本発明は、上記した従来技術の問題点に鑑みなされたもので、環境耐性、耐熱性、耐久性、及び、演色性が高く、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has high environmental resistance, heat resistance, durability, and color rendering properties, can be manufactured in a low-temperature process, and can be efficiently wavelength-converted. An object of the present invention is to provide a quartz glass member for conversion and a method for producing the same.

上記課題を解決するため、本発明者らは、環境耐性、耐熱性及び耐久性に優れた石英ガラス表層膜と蛍光体粒子を使用し、低温プロセスで製造できる波長変換用石英ガラス部材を作製するための方法に関し鋭意検討を行った結果、本発明の上記目的は、以下の構成により達成されることを見出した。   In order to solve the above problems, the present inventors use a quartz glass surface layer film and phosphor particles having excellent environmental resistance, heat resistance, and durability, and produce a quartz glass member for wavelength conversion that can be manufactured by a low-temperature process. As a result of intensive studies on the method for achieving the above, it has been found that the above object of the present invention is achieved by the following configuration.

本発明の波長変換用石英ガラス部材は、石英ガラス基材とその表面に石英ガラス表層膜が形成されてなる波長変換用石英ガラス部材であり、前記石英ガラス表層膜は、平均粒径が0.1μm〜20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm〜100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材表面上に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより得られ、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3〜7質量部であり、前記石英ガラス表層膜のNH基濃度が1000ppm以下である、ことを特徴とする。   The quartz glass member for wavelength conversion of the present invention is a quartz glass member for wavelength conversion in which a quartz glass base material and a quartz glass surface layer film are formed on the surface thereof, and the silica glass surface layer film has an average particle size of 0.00. After applying a polysilazane-containing solution containing phosphor particles having a size of 1 μm to 20 μm and spherical silica fine particles having a spherical, hydrophobic and average particle diameter of 1 nm to 100 nm on the surface of the quartz glass substrate, The ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass. The NH group concentration of the quartz glass surface layer film is 1000 ppm or less.

本発明の波長変換用石英ガラス部材は、前記石英ガラス表層膜の厚さが1μm〜500μmであるのが好ましい。   In the quartz glass member for wavelength conversion of the present invention, the thickness of the quartz glass surface layer film is preferably 1 μm to 500 μm.

石英ガラス基材に用いられる石英ガラスが、合成石英ガラスであるのが好ましい。石英ガラス基材が、四塩化珪素化合物の火炎加水分解により生成され、前記石英ガラス基材のOH基濃度が10ppm〜1000ppmの合成石英であるのがさらに好ましい。   The quartz glass used for the quartz glass substrate is preferably synthetic quartz glass. More preferably, the quartz glass substrate is synthetic quartz produced by flame hydrolysis of a silicon tetrachloride compound, and the quartz glass substrate has an OH group concentration of 10 ppm to 1000 ppm.

本発明の波長変換用石英ガラス部材の製造方法は、石英ガラス基材の表面に、平均粒径が0.1μm〜20μmである蛍光体粒子及び球状で疎水性且つ平均粒径が1nm〜100nmであり0.1〜10質量%のシリカ微粒子を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布し、水蒸気雰囲気下で加熱して、石英ガラス表層膜を形成する波長変換用石英ガラス部材の製造方法であり、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3〜7質量部であることを特徴とする。   The method for producing a wavelength-converting quartz glass member of the present invention includes a phosphor particle having an average particle diameter of 0.1 μm to 20 μm and a spherical, hydrophobic and average particle diameter of 1 nm to 100 nm on the surface of a quartz glass substrate. Production of a quartz glass member for wavelength conversion for forming a quartz glass surface film by applying a polysilazane-containing solution containing 0.1 to 10% by mass of silica fine particles to the quartz glass substrate and heating in a water vapor atmosphere The ratio of phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass.

前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100〜600℃に加熱せしめ、厚さ0.1μm〜10μmの石英ガラス表層膜を形成し、前記石英ガラス表層膜の形成処理を複数回繰り返すことで、厚さ1〜500μmの石英ガラス表層膜の積層構造を形成するのが好適である。   The polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. in a water vapor atmosphere to form a quartz glass surface film having a thickness of 0.1 μm to 10 μm. It is preferable to form a laminated structure of the quartz glass surface layer film having a thickness of 1 to 500 μm by repeating the formation process of the quartz glass surface layer film a plurality of times.

本発明によれば、環境耐性、耐熱性、耐久性、及び、演色性が高く、低温プロセスで製造でき、効率よく波長変換することが可能な波長変換用石英ガラス部材及びその製造方法を提供することができるという著大な効果を奏する。   According to the present invention, a quartz glass member for wavelength conversion that has high environmental resistance, heat resistance, durability, and color rendering properties, can be manufactured by a low-temperature process, and can efficiently perform wavelength conversion, and a manufacturing method thereof are provided. There is a great effect that you can.

本発明の波長変換用石英ガラス部材の一つの実施の形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one embodiment of the quartz glass member for wavelength conversion of this invention. 実施例1と実施例2で作製された波長変換用石英ガラス部材の色度を簡易分光器で測定した結果を示す色度表である。It is a chromaticity table | surface which shows the result of having measured the chromaticity of the quartz glass member for wavelength conversion produced in Example 1 and Example 2 with the simple spectrometer.

以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the illustrated examples are illustrative only, and various modifications can be made without departing from the technical idea of the present invention. .

図1において、符号10は、本発明の波長変換用石英ガラス部材を示す。波長変換用石英ガラス部材10は、石英ガラス基材12とその表面に石英ガラス表層膜14が形成されてなる波長変換用石英ガラス部材である。前記石英ガラス表層膜14は、蛍光体粒子16とシリカ微粒子と、を含有する。   In FIG. 1, the code | symbol 10 shows the quartz glass member for wavelength conversion of this invention. The quartz glass member for wavelength conversion 10 is a quartz glass member for wavelength conversion in which a quartz glass substrate 12 and a quartz glass surface layer film 14 are formed on the surface thereof. The quartz glass surface layer film 14 contains phosphor particles 16 and silica fine particles.

[石英ガラス表層膜]
前記石英ガラス表層膜に含有される蛍光体粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3〜7質量部であるのが好ましい。すなわち、ポリシラザン及び蛍光体粒子の合計量を10質量部とした場合、蛍光体粒子の量が3〜7質量部であるのが好ましい。また、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:5〜7質量部であるのがさらに好ましい。
[Quartz glass surface layer]
The concentration of the phosphor particles contained in the quartz glass surface film is such that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass. . That is, when the total amount of polysilazane and phosphor particles is 10 parts by mass, the amount of phosphor particles is preferably 3 to 7 parts by mass. The ratio of the phosphor particles to the total amount of polysilazane and phosphor particles is more preferably 10: 5 to 7 parts by mass.

前記蛍光体粒子の濃度が少ないと、その分積層回数を増やさなくてはならないため、操作手順が増えてしまう。濃度が高すぎると、光源からの光が内部まで入りづらくなり、発光効率が低下する。前記石英ガラス表層膜に残留するNH基の濃度は1000ppm以下であり、好ましくは100ppm以下である。この濃度以下であれば、紫外線を長時間照射した場合や、高温にさらされた場合でも着色やクラックは発生しない。   If the concentration of the phosphor particles is small, the number of laminations must be increased accordingly, and the operation procedure increases. If the concentration is too high, it becomes difficult for light from the light source to enter the interior, resulting in a decrease in luminous efficiency. The concentration of NH groups remaining in the quartz glass surface film is 1000 ppm or less, preferably 100 ppm or less. If it is below this concentration, coloring and cracking will not occur even when irradiated with ultraviolet rays for a long time or when exposed to high temperatures.

前記石英ガラス表層膜の膜厚は、1μm〜500μmであることが好ましい。更に好ましくは10μm〜100μm以下である。1μm未満の膜厚では、光源の光が透過し、波長変換効率が低下するだけでなく、紫外線を光源としている場合は有害な紫外線が放射されてしまう。一方、500μmを超える膜厚では、積層回数が増えて製造コストの増加につながる。   The thickness of the quartz glass surface layer film is preferably 1 μm to 500 μm. More preferably, it is 10 micrometers-100 micrometers or less. When the film thickness is less than 1 μm, not only the light from the light source is transmitted and the wavelength conversion efficiency is lowered, but also harmful ultraviolet rays are emitted when ultraviolet rays are used as the light source. On the other hand, when the film thickness exceeds 500 μm, the number of laminations increases, leading to an increase in manufacturing cost.

〔石英ガラス基材〕
本発明に用いられる前記石英ガラス基材は、合成石英ガラスが好ましく、特に四塩化珪素を火炎加水分解して作製した合成石英ガラスであることが好ましい。この方法で作製した合成石英ガラスは、金属不純物などの不純物が少なく、紫外線を長時間照射しても着色などの劣化が起こらない。また、熱膨張係数が極めて小さく、熱処理によるクラックの発生を抑制することができる。さらに、紫外線の透過率も高く、光源の紫外線を減衰させないため、蛍光体を効率的に発光させることができる。この方法で作製した合成石英ガラスのOH基は、10ppm〜1000ppmとなる。
[Quartz glass substrate]
The quartz glass substrate used in the present invention is preferably synthetic quartz glass, particularly synthetic quartz glass produced by flame hydrolysis of silicon tetrachloride. The synthetic quartz glass produced by this method has few impurities such as metal impurities, and does not deteriorate such as coloring even when irradiated with ultraviolet rays for a long time. Further, the coefficient of thermal expansion is extremely small, and the generation of cracks due to heat treatment can be suppressed. Furthermore, since the transmittance of ultraviolet rays is high and the ultraviolet rays of the light source are not attenuated, the phosphor can emit light efficiently. The OH group of the synthetic quartz glass produced by this method is 10 ppm to 1000 ppm.

[石英ガラス表層膜の形成方法]
前記蛍光体粒子とシリカ微粒子とを含有する石英ガラス表層膜は、蛍光体粒子とシリカ微粒子とを含有するポリシラザン含有溶液を、乾燥、水蒸気雰囲気下で加熱することで作製したものである。
[Method of forming a quartz glass surface layer]
The quartz glass surface layer film containing the phosphor particles and the silica fine particles is produced by drying and heating a polysilazane-containing solution containing the phosphor particles and the silica fine particles in a water vapor atmosphere.

本発明では、前記石英ガラス表層膜を形成するにあたって前記水蒸気雰囲気下で加熱処理するため、前記石英ガラス表層膜のNH基濃度が低くなる。前記水蒸気雰囲気下で加熱処理するため、加熱炉などが不要であり、低温プロセスでの製造が可能となる。   In the present invention, since the heat treatment is performed in the water vapor atmosphere when forming the quartz glass surface layer film, the NH group concentration of the quartz glass surface layer film is lowered. Since the heat treatment is performed in the water vapor atmosphere, a heating furnace or the like is not necessary, and manufacturing by a low temperature process becomes possible.

本発明に用いられる前記蛍光体粒子の平均粒径は、0.1μm〜20μmである。より好ましくは1μm〜10μmである。前記蛍光体粒子の粒径が0.1μm未満となると、表面積の拡大に伴い光散乱が強くなり、発光強度が低下する。一方、20μmを超える大きさの蛍光体粒子では、形成された表層膜中の発光色度、強度のばらつきが起こる。   The average particle diameter of the phosphor particles used in the present invention is 0.1 μm to 20 μm. More preferably, it is 1 μm to 10 μm. When the particle size of the phosphor particles is less than 0.1 μm, light scattering increases with an increase in surface area, and the emission intensity decreases. On the other hand, phosphor particles having a size exceeding 20 μm cause variations in emission chromaticity and intensity in the formed surface layer film.

前記蛍光体粒子としては、好ましくは、波長200nm〜400nmの紫外線により励起し、可視光に変換可能なものであり、市販されており一般的に入手できるものであれば使用できる。具体的には、青色蛍光体では、Sr10(POCl:Eu2+、CaS:Bi、CaSrS:Bi、Ba1−aEuMgAl1017、緑色蛍光体では、ZnS:Cu,Al、BaSiO:Eu、ZnGe:Eu、赤色蛍光体では、YS:Eu3+、CaS:Eu、3.5MgO・0.5MgF・GeO:Mn、KEu2.5(WO)などが挙げられる。 The phosphor particles are preferably those that can be excited by ultraviolet rays having a wavelength of 200 nm to 400 nm and can be converted into visible light, and are commercially available and generally available. Specifically, for blue phosphors, Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ , CaS: Bi, CaSrS: Bi, Ba 1-a Eu a MgAl 10 O 17 , for green phosphors, ZnS: Cu , Al, Ba 2 SiO 4 : Eu, ZnGe 2 O 4 : Eu, red phosphor, Y 2 O 2 S: Eu 3+ , CaS: Eu, 3.5 MgO · 0.5MgF 2 · GeO 2 : Mn, K 5 Eu 2.5 (WO 4 ) and the like.

本発明に用いられる前記シリカ微粒子の組成は、合成石英ガラス粒子であることが好ましい。前記合成石英ガラス表層膜は、加熱処理後、緻密なシリカ膜となるため、屈折率、熱膨張係数の相性から、無機酸化物粒子に合成石英ガラス粒子を利用することで色ばらつきやクラック発生を抑制することができる。   The composition of the silica fine particles used in the present invention is preferably synthetic quartz glass particles. Since the synthetic silica glass surface layer film becomes a dense silica film after heat treatment, due to the compatibility of the refractive index and the thermal expansion coefficient, the use of synthetic silica glass particles as inorganic oxide particles causes color variations and cracks. Can be suppressed.

このようなシリカ微粒子を石英ガラス表層膜に含有させることで、シリカ微粒子が骨材として働き、石英ガラス表層膜を積層させる際、クラックが生じることなく一度で厚い膜を形成させることができる。   By including such silica fine particles in the quartz glass surface layer film, the silica fine particles function as an aggregate, and when the quartz glass surface layer film is laminated, a thick film can be formed at one time without causing cracks.

本発明に用いられる前記シリカ微粒子の平均粒径は1nm〜100nmである。好ましくは3.0nm〜80nm、さらに好ましくは5.0nm〜50nmである。1nm未満のシリカ微粒子では、そのものを得ること自体が難しく、得られても大きい表面エネルギーをもつことからすぐに凝集が起こってしまう。一方、100nmを超える粒径を持つシリカ微粒子では、光散乱が大きくなり、LEDの光利用効率が低下してしまう。   The average particle diameter of the silica fine particles used in the present invention is 1 nm to 100 nm. Preferably they are 3.0 nm-80 nm, More preferably, they are 5.0 nm-50 nm. In the case of silica fine particles of less than 1 nm, it is difficult to obtain the particles themselves, and even if they are obtained, they have a large surface energy, so that aggregation occurs immediately. On the other hand, silica fine particles having a particle diameter exceeding 100 nm increase light scattering and reduce the light utilization efficiency of the LED.

本発明に用いられる前記シリカ微粒子は球状で疎水性である。前記石英ガラス基材上にシリカ微粒子を含む液体をコートする際、その液体に流動性がある必要があるが、球状でないシリカ微粒子を使用すると液体の流動性が失われ、均一なコートができない。また、疎水性であることにより、前記ポリシラザン含有溶液によく分散し、シリカ微粒子が均一に分散した膜を得ることができる。   The silica fine particles used in the present invention are spherical and hydrophobic. When the silica glass substrate is coated with a liquid containing silica fine particles, the liquid needs to have fluidity, but when non-spherical silica fine particles are used, the fluidity of the liquid is lost and uniform coating cannot be performed. Moreover, since it is hydrophobic, it can be dispersed well in the polysilazane-containing solution, and a film in which silica fine particles are uniformly dispersed can be obtained.

前記シリカ微粒子の濃度は、前記ポリシラザン含有溶液における、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.01〜1質量部が好ましい。すなわち、ポリシラザンと蛍光体粒子とシリカ微粒子との合計量を10質量部とした場合、シリカ微粒子の量が0.01〜1質量部であるのが好ましい。ポリシラザンと蛍光体粒子とシリカ微粒子との合計量に対するシリカ微粒子の比が、10:0.05〜0.5質量部がより好ましい。シリカ微粒子が少なすぎると、骨材としての働きが失われ、多すぎると乱反射の原因となり、光取り出し効率が低下してしまう。   As for the concentration of the silica fine particles, the ratio of the silica fine particles to the total amount of the polysilazane, the phosphor particles and the silica fine particles in the polysilazane-containing solution is preferably 10: 0.01 to 1 part by mass. That is, when the total amount of polysilazane, phosphor particles and silica fine particles is 10 parts by mass, the amount of silica fine particles is preferably 0.01 to 1 part by mass. The ratio of silica fine particles to the total amount of polysilazane, phosphor particles and silica fine particles is more preferably 10: 0.05 to 0.5 parts by mass. When there are too few silica fine particles, the function as an aggregate will be lost, and when too large, it will cause irregular reflection and light extraction efficiency will fall.

前記石英ガラス表層膜の作製には、ポリシラザン含有溶液として、パーヒドロポリシラザン溶液を用いるのが好ましい。他のシラザン化合物やアルコキシシランを利用すると、有機官能基の存在により、水蒸気雰囲気での加熱時に有機官能基が分解する際、クラックが発生する。さらに、パーヒドロポリシラザンは有機官能基を有していないため、有機物を燃焼させるエネルギーを与えなくてもシリカに転化し、低温での水蒸気焼成が可能となる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することで、Si、N、Hのみから構成されるパーヒドロポリシラザンが、SiとOから構成される石英ガラスへ変化する。   For the production of the quartz glass surface film, it is preferable to use a perhydropolysilazane solution as the polysilazane-containing solution. When other silazane compounds or alkoxysilanes are used, cracks occur when the organic functional group decomposes during heating in a water vapor atmosphere due to the presence of the organic functional group. Furthermore, since perhydropolysilazane does not have an organic functional group, it can be converted to silica without giving energy for burning organic substances, and can be fired at low temperature by steam. By baking perhydropolysilazane in a water vapor atmosphere, perhydropolysilazane composed only of Si, N, and H changes to quartz glass composed of Si and O.

前記石英ガラス表層膜を作製する際、ポリシラザン含有溶液とシリカ微粒子、蛍光体粒子を含む塗布液を例えば100〜200℃で乾燥させ、有機溶媒の大部分を蒸発させ、その後、水蒸気雰囲気下で焼成するのが好ましい。焼成時間は、石英ガラス表層膜の厚さにもよるが、10秒〜30分程度の焼成時間で作製可能である。例えば1μmの石英ガラス表層膜ならば水蒸気雰囲気下600℃で10秒で作製可能である。   When preparing the quartz glass surface layer film, the polysilazane-containing solution, the silica fine particles, and the coating solution containing the phosphor particles are dried, for example, at 100 to 200 ° C. to evaporate most of the organic solvent, and then fired in a water vapor atmosphere It is preferable to do this. Although the firing time depends on the thickness of the quartz glass surface layer film, it can be produced in a firing time of about 10 seconds to 30 minutes. For example, a 1 μm quartz glass surface film can be produced in a water vapor atmosphere at 600 ° C. in 10 seconds.

ポリシラザン含有溶液としては、パーヒドロポリシラザン溶液があるが、パーヒドロポリシラザンは、以下の反応を起こす。
(SiH2NH)+2H2O → SiO2+NH3+2H2
水が存在することにより、この反応は右に進行するため、水蒸気下で加熱することにより短時間、低温でもシリカに転化できる。パーヒドロポリシラザンを水蒸気雰囲気下で焼成することにより、骨格中のSi-N結合が、Si-O結合に変わっていく。その際、基本構成単位の分子量が増加するため、より緻密で硬い膜を得ることができる。
As a polysilazane-containing solution, there is a perhydropolysilazane solution. Perhydropolysilazane causes the following reaction.
(SiH 2 NH) + 2H 2 O → SiO 2 + NH 3 + 2H 2
Since this reaction proceeds to the right due to the presence of water, it can be converted to silica at a low temperature for a short time by heating under water vapor. By baking perhydropolysilazane in a water vapor atmosphere, the Si—N bonds in the skeleton change to Si—O bonds. At that time, since the molecular weight of the basic structural unit increases, a denser and harder film can be obtained.

水蒸気下で、石英ガラス表層膜を形成する焼成温度は100〜600℃であることが好ましい。高温過ぎると蛍光体の熱失活が起こり、発光強度が低下する。低温すぎると、水蒸気が内部へ拡散せず、且つ、反応が十分に起きない。   The firing temperature for forming the quartz glass surface film under water vapor is preferably 100 to 600 ° C. When the temperature is too high, the phosphor is thermally deactivated, and the emission intensity is reduced. If the temperature is too low, water vapor does not diffuse into the interior and the reaction does not occur sufficiently.

ここで、積層する場合には、一層あたりの膜厚は0.1μm〜10μmであることが好ましく、0.5μm〜10μmがより好ましく、更に好ましくは0.5μm〜5μmである。一層あたりの膜厚が0.1μm未満であると、石英ガラス表層膜を形成するのに時間がかかり、製造コストの増加につながる。一方、一層あたり10μmを超える膜を一度に形成すると、反応時のガス発生により、焼成時にクラックが生じる。この積層処理を繰り返すことにより、所望の蛍光体量を含有する膜厚まで、石英ガラス表層膜を形成し、1〜500μmの石英ガラス表層膜の積層構造を形成することができる。   Here, when laminating, the film thickness per layer is preferably 0.1 μm to 10 μm, more preferably 0.5 μm to 10 μm, and still more preferably 0.5 μm to 5 μm. If the film thickness per layer is less than 0.1 μm, it takes time to form the quartz glass surface film, leading to an increase in manufacturing cost. On the other hand, when a film exceeding 10 μm per layer is formed at a time, cracks occur during firing due to gas generation during the reaction. By repeating this lamination process, the quartz glass surface layer film can be formed to a film thickness containing a desired amount of phosphor, and a laminated structure of the quartz glass surface layer film of 1 to 500 μm can be formed.

前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100〜600℃以下に加熱せしめ、厚さ0.1μm〜10μmの石英ガラス表層膜を形成し、前記石英ガラス表層膜の形成処理を複数回繰り返すことで、厚さ1〜500μmまでの石英ガラス表層膜の積層構造とすることができる。パーヒドロポリシラザンは、他の材料より、回数を減少させることができ、操作が単純化でき、製造コストを削減することが可能となる。前記石英ガラス表層膜の形成には、スプレー法、スピンコート法、ディップコート法、ロールコート法などの湿式塗布方法を用いることができる。   The polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. or less in a water vapor atmosphere to form a quartz glass surface film having a thickness of 0.1 μm to 10 μm. And the formation process of the quartz glass surface layer film is repeated a plurality of times to obtain a laminated structure of the quartz glass surface layer film having a thickness of 1 to 500 μm. Perhydropolysilazane can be reduced in the number of times than other materials, can be simplified in operation, and can reduce manufacturing costs. For the formation of the quartz glass surface layer film, a wet coating method such as a spray method, a spin coating method, a dip coating method, or a roll coating method can be used.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.

(実施例1)
500mlジルコニア容器に、球状の深紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:QKL65E/S-C1 平均粒径30μm(測定装置:マイクロトラックMT3000 日機装株式会社製))5g、2-メトキシエタノール(粘度20℃で1.71mPa・s、20℃で蒸気圧0.83kP)10g、ジルコニアボール大(直径5mm)30g、ジルコニアボール小(直径0.3mm)15gを入れ、250rpmで30分間を6セット、遊星ボールミルで混合し、蛍光体分散液を得た。その後、2-メトキシエタノールを大気中、100℃のドライオーブン内で5時間蒸発させ、粒径1〜10μmの粉砕蛍光体-1(塊状、かさ密度0.6g/cm3、平均粒径5μm、最小粒径1μm、最大粒径10μm)を乾燥させて得た。
Example 1
In a 500 ml zirconia container, spherical deep UV-excited phosphor (product name: QKL65E / S-C1 average particle size 30 μm (measurement device: Microtrack MT3000 Nikkiso Co., Ltd.)) 5 g, 2-methoxyethanol ( Viscosity 20 ° C 1.71mPa · s, 20 ° C vapor pressure 0.83kP) 10g, zirconia ball large (diameter 5mm) 30g, zirconia ball small (diameter 0.3mm) 15g, 6 sets for 30 minutes at 250rpm, planetary ball mill To obtain a phosphor dispersion. Thereafter, 2-methoxyethanol was evaporated in a dry oven at 100 ° C. for 5 hours in the atmosphere, and pulverized phosphor-1 having a particle size of 1 to 10 μm (bulk, bulk density 0.6 g / cm 3 , average particle size 5 μm, minimum A particle size of 1 μm and a maximum particle size of 10 μm) were obtained by drying.

次に、トレスマイルANN120(触媒を含有しないポリシラザン20質量%のジブチルエーテル溶液、サンワ化学株式会社製)の中に、粉砕蛍光体-1(ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が10:5質量部)を入れ、ホモジナイザー(回転速度8000rpm)で5分間混合した。その後、疎水性の二酸化珪素(株式会社アドマテックス製 商品名:アドマナノ、球状、かさ密度0.8g/cm3、平均粒径10nm、最小粒径3nm、最大粒径15nm、ポリシラザン含有溶液中の含有量は0.5%)を0.1g混合し、分散液-1を得た。 Next, in Tresmile ANN120 (polysilazane 20% by mass dibutyl ether solution containing no catalyst, manufactured by Sanwa Chemical Co., Ltd.), the ratio of phosphor particles to the total amount of pulverized phosphor-1 (polysilazane and phosphor particles) Was mixed with a homogenizer (rotation speed: 8000 rpm) for 5 minutes. Hydrophobic silicon dioxide (trade name: Admanano, spherical, bulk density 0.8 g / cm 3 , average particle size 10 nm, minimum particle size 3 nm, maximum particle size 15 nm, content in polysilazane-containing solution 0.5%) was mixed to obtain dispersion-1.

分散液-1をスプレー容器に入れ、大気中室温20℃、湿度50%の環境下で、合成石英ガラス基盤-1(厚さ3mm、縦20mm×横20mm、OH濃度300ppm、表面粗さRa=0.05μm)上に、膜厚が5μm以下になるようにスプレーコートした。スプレー圧は0.1MPa、吹き付け時間は1秒間、使用ガスは空気、液体粒子の大きさ1.0μm、基材とスプレーの距離は10cm、角度は基板に対し、60°とした。   Place dispersion-1 in a spray container, and at room temperature in the atmosphere at 20 ° C and humidity of 50%, synthetic quartz glass substrate-1 (thickness 3 mm, length 20 mm × width 20 mm, OH concentration 300 ppm, surface roughness Ra = 0.05 μm) was spray-coated so that the film thickness was 5 μm or less. The spray pressure was 0.1 MPa, the spraying time was 1 second, the gas used was air, the liquid particle size was 1.0 μm, the distance between the substrate and the spray was 10 cm, and the angle was 60 ° with respect to the substrate.

得られた膜を、100℃のホットプレート上で10分間乾燥させ、その後、大気中で水蒸気(空気流量20l/min、水蒸気流量0.7ml/min)存在下で500℃のセラミックホットプレート上で30分間熱処理を行い、その後室温まで冷却し、1.5μmの膜厚の塗布膜(残留NH基濃度100ppm以下、470nm付近の光透過率60%〜80%)を得た。   The obtained film was dried on a hot plate at 100 ° C. for 10 minutes, and then 30 minutes on a ceramic hot plate at 500 ° C. in the presence of water vapor (air flow rate 20 l / min, water vapor flow rate 0.7 ml / min) in the atmosphere. Heat treatment was performed for 1 minute, and then cooled to room temperature to obtain a coating film having a film thickness of 1.5 μm (residual NH group concentration of 100 ppm or less, light transmittance around 470 nm 60% to 80%).

上記と同様の条件で上記スプレーコートを10回繰り返し、実施例1(膜厚12μm、470nm付近の光透過率5%、残留NH基濃度100ppm以下)の波長変換用石英ガラス部材を得た。   The above spray coating was repeated 10 times under the same conditions as above to obtain a quartz glass member for wavelength conversion of Example 1 (film thickness 12 μm, light transmittance 5% near 470 nm, residual NH group concentration 100 ppm or less).

(実施例2)
実施例1で使用した粉砕蛍光体-1に代えて下記粉砕蛍光体-2を用いた以外は同様にして、実施例2の波長変換用石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
上記粉砕蛍光体-1の調整において、紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:QKL65E/S-C1)に代えて、近紫外光励起蛍光体(ユーヴィックス株式会社製 商品名:UVW365)を用いた以外は同様にして、粉砕蛍光体-2(平均粒径10μm)を得た。
(Example 2)
A quartz glass member for wavelength conversion of Example 2 (thickness 15 μm, light transmittance around 470 nm), except that the following pulverized phosphor-2 was used instead of the pulverized phosphor-1 used in Example 1. 4%, residual NH group concentration of 100 ppm or less).
In the adjustment of the pulverized phosphor-1, the ultraviolet light excitation phosphor (trade name: QKL65E / S-C1 manufactured by Uvix Corporation) is used instead of the near ultraviolet light excitation phosphor (trade name: UVW365 manufactured by Uvix Corporation). A pulverized phosphor-2 (average particle size 10 μm) was obtained in the same manner except that it was used.

(実施例3)
実施例1で使用した合成石英ガラス基板-1に代えて天然石英ガラス基板を用いた以外は実施例1と同様にして、実施例3の波長変換用石英ガラス部材を作製した。
(Example 3)
A quartz glass member for wavelength conversion of Example 3 was produced in the same manner as in Example 1 except that a natural quartz glass substrate was used instead of the synthetic quartz glass substrate-1 used in Example 1.

(実施例4)
実施例1で使用した粉砕蛍光体-1に代えて下記粉砕蛍光体-3を用いた以外は実施例1と同様にして、実施例4の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
上記粉砕蛍光体-1の蛍光体粉砕工程において、250rpmで30分間を12セット、遊星ボールミルで混合する以外は実施例1と同様にして、粉砕蛍光体-3(平均粒径1μm)を得た。
Example 4
The wavelength-converted quartz glass member of Example 4 (thickness of 15 μm, around 470 nm) was obtained in the same manner as in Example 1 except that the following pulverized phosphor-3 was used instead of the pulverized phosphor-1 used in Example 1. 4% light transmittance and residual NH group concentration of 100 ppm or less).
In the phosphor pulverization step of the pulverized phosphor-1, pulverized phosphor-3 (average particle size 1 μm) was obtained in the same manner as in Example 1 except that 12 sets were mixed at 250 rpm for 30 minutes and mixed with a planetary ball mill. .

(実施例5)
実施例1で使用した粉砕蛍光体-1に代えて下記粉砕蛍光体-4を用いた以外は実施例1と同様にして、実施例5の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
上記粉砕蛍光体-1の蛍光体粉砕工程において、250rpmで30分間を1セット、遊星ボールミルで混合する以外は実施例1と同様にして、粉砕蛍光体-4(平均粒径15μm)を得た。
(Example 5)
The wavelength-converted quartz glass member of Example 5 (thickness of 15 μm, around 470 nm) was obtained in the same manner as in Example 1 except that the following pulverized phosphor-4 was used instead of the pulverized phosphor-1 used in Example 1. 4% light transmittance and residual NH group concentration of 100 ppm or less).
In the phosphor pulverization step of the above-mentioned pulverized phosphor-1, a pulverized phosphor-4 (average particle size of 15 μm) was obtained in the same manner as in Example 1 except that one set was mixed at 250 rpm for 30 minutes and mixed with a planetary ball mill. .

(実施例6)
実施例1で使用したアドマナノに代えて疎水性の平均粒径10nmの球状シリカ微粒子を用いた以外は実施例1と同様にして、実施例6の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(Example 6)
The wavelength-converted quartz glass member of Example 6 (thickness 15 μm, around 470 nm) in the same manner as in Example 1 except that spherical silica fine particles having a hydrophobic average particle diameter of 10 nm were used instead of the Admanano used in Example 1. Light transmittance of 4% and residual NH group concentration of 100 ppm or less).

(実施例7)
実施例1で使用したアドマナノに代えて疎水性の平均粒径80nmの球状シリカ微粒子を用いた以外は実施例1と同様にして、実施例7の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(Example 7)
The wavelength-converted quartz glass member of Example 7 (thickness 15 μm, around 470 nm) in the same manner as in Example 1 except that spherical silica fine particles having a hydrophobic average particle diameter of 80 nm were used instead of the Admanano used in Example 1. Light transmittance of 4% and residual NH group concentration of 100 ppm or less).

(実施例8)
実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:4質量部にすること以外は実施例1と同様にして、実施例8の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
(Example 8)
Wavelength conversion of Example 8 in the same manner as in Example 1 except that the ratio of phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 is 10: 4 parts by mass. A quartz glass member (film thickness 15 μm, light transmittance around 470 nm 4%, residual NH group concentration 100 ppm or less) was prepared.

(実施例9)
実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:6質量部にすること以外は実施例1と同様にして、実施例9の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度100ppm以下)を作製した。
Example 9
Wavelength conversion of Example 9 in the same manner as in Example 1 except that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 is 10: 6 parts by mass. A quartz glass member (film thickness 15 μm, light transmittance around 470 nm 4%, residual NH group concentration 100 ppm or less) was prepared.

(実施例10)
実施例1で、水蒸気中での加熱温度を300℃として積層を繰り返すこと以外は実施例1と同様にして、実施例10の波長変換石英ガラス部材(膜厚15μm、470nm付近の光透過率4%、残留NH基濃度700ppm)を作製した。
(Example 10)
In Example 1, the wavelength conversion quartz glass member of Example 10 (thickness 15 μm, light transmittance around 470 nm 4) was used in the same manner as Example 1 except that the heating was repeated in water vapor at 300 ° C. and the lamination was repeated. %, Residual NH group concentration 700 ppm).

(比較例1)
実施例1で、100℃乾燥後、水蒸気中で500℃に加熱する熱処理工程において、水蒸気を利用しないで、500℃で加熱すること以外は実施例1と同様にして、比較例1の波長変換用石英ガラス部材を作製した。
(Comparative Example 1)
In Example 1, after drying at 100 ° C., in the heat treatment step of heating to 500 ° C. in water vapor, the wavelength conversion of Comparative Example 1 was performed in the same manner as in Example 1 except that heating was performed at 500 ° C. without using water vapor. A quartz glass member was prepared.

(比較例2)
実施例1で使用したトレスマイルANN120に代えてトレスマイルANP310(末端メチル化シラザン)を用いた以外は実施例1と同様にして、比較例2の波長変換用石英ガラス部材を作製した。
(Comparative Example 2)
A quartz glass member for wavelength conversion of Comparative Example 2 was produced in the same manner as in Example 1 except that Tresmile ANP310 (terminal methylated silazane) was used in place of the Tresmile ANN120 used in Example 1.

(比較例3)
実施例1で使用した深紫外光励起蛍光体(平均粒径30μm)を、湿式粉砕しないで用いること以外は実施例1と同様にして、比較例3の波長変換石英ガラス部材を作製した。
(Comparative Example 3)
A wavelength-converted quartz glass member of Comparative Example 3 was produced in the same manner as in Example 1 except that the deep ultraviolet light-excited phosphor (average particle size 30 μm) used in Example 1 was used without wet pulverization.

(比較例4)
実施例1で使用したアドマナノに代えて、球状で親水性の二酸化珪素(商品名:SOE5 平均粒径300μm)を用いた以外は実施例1と同様にして、比較例4の波長変換石英ガラス部材を作製した。
(Comparative Example 4)
A wavelength-converted quartz glass member of Comparative Example 4 in the same manner as in Example 1 except that spherical and hydrophilic silicon dioxide (trade name: SOE5 average particle size 300 μm) was used instead of Admanano used in Example 1. Was made.

(比較例5)
実施例1で使用したアドマナノに代えて、網目状の二酸化珪素(商品名:アエロジル380 比表面積380cm2/g)を用いた以外は実施例1と同様にして、比較例5の波長変換石英ガラス部材を作製した。
(Comparative Example 5)
The wavelength-converted quartz glass of Comparative Example 5 was used in the same manner as in Example 1 except that network-like silicon dioxide (trade name: Aerosil 380, specific surface area 380 cm 2 / g) was used instead of Admanano used in Example 1. A member was prepared.

(比較例6)
実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:2質量部にすること以外は実施例1と同様にして、比較例6の波長変換石英ガラス部材を作製した。
(Comparative Example 6)
The wavelength conversion of Comparative Example 6 was performed in the same manner as in Example 1 except that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 was 10: 2 parts by mass. A quartz glass member was produced.

(比較例7)
実施例1で使用した粉砕蛍光体の、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比を10:8質量部にすること以外は実施例1と同様にして、比較例7の波長変換石英ガラス部材を作製した。
(Comparative Example 7)
The wavelength conversion of Comparative Example 7 was performed in the same manner as in Example 1 except that the ratio of the phosphor particles to the total amount of polysilazane and phosphor particles in the pulverized phosphor used in Example 1 was 10: 8 parts by mass. A quartz glass member was produced.

(比較例8)
実施例1で、アドマナノを使用しないこと以外は実施例1と同様にして、比較例8の波長変換石英ガラス部材を作製した。
(Comparative Example 8)
In Example 1, a wavelength-converted quartz glass member of Comparative Example 8 was produced in the same manner as Example 1 except that no Admanano was used.

(評価)
実施例、比較例の全てにおいて、以下の評価を行った。
・ 目視観察
・ 254nm紫外線照射時の目視観察
・ 蛍光X線分光分析測定でのNH濃度
・ 分散性観察
目視観察で、クラックや粒子ありの場合、判定を×とした。254nm紫外線照射時の目視観察で、強度弱の場合、判定を×とした。蛍光X線分光分析は、NH基の存在を調べる目的で測定を行った。分散性観察はEDS測定にて、EDS測定画面の70μm×50μmのうち、蛍光体に含有される元素、またはSi元素の凝集体が5μm以内であれば可とした。生産性は、コート繰り返し回数が100回以下である場合、可とした。蛍光X線、分散性観察、生産性のうち、どれか一つでも不可である場合、判定を×とした。
実施例1、3〜10で作製した石英ガラス部材を、254nmに発光ピークを持つUVランプ(0.6mW/cm2)に当て、実施例2で作製した石英ガラス部材を365nmに発光ピークを持つUVランプに当て、簡易分光器で色度の評価を行った。以下、評価結果を示す。
(Evaluation)
The following evaluation was performed in all of the Examples and Comparative Examples.
-Visual observation-Visual observation at the time of 254 nm UV irradiation-NH concentration in fluorescent X-ray spectroscopic analysis measurement-Dispersibility observation In visual observation, if there were cracks or particles, the judgment was x. In visual observation at the time of 254 nm ultraviolet irradiation, when the strength was weak, the judgment was x. X-ray fluorescence spectrometry was performed for the purpose of examining the presence of NH groups. The dispersibility observation was acceptable when the element contained in the phosphor or the aggregate of the Si element within 70 μm × 50 μm of the EDS measurement screen was within 5 μm by EDS measurement. Productivity was acceptable when the number of coat repetitions was 100 or less. When any one of fluorescent X-rays, dispersibility observation, and productivity was not possible, the determination was x.
The quartz glass member produced in Examples 1 and 3 to 10 was applied to a UV lamp (0.6 mW / cm 2 ) having an emission peak at 254 nm, and the quartz glass member produced in Example 2 was UV having an emission peak at 365 nm. The chromaticity was evaluated with a simple spectroscope. The evaluation results are shown below.

表1の結果より、実施例以外では、すべての例で判定×であった。実施例3は、基材自体の発光が確認されたため、△とした。   From the results in Table 1, all examples were judged as “poor” except for the examples. In Example 3, since the light emission of the base material itself was confirmed, it was set as Δ.

表2に記載の結果より、本発明の実施例1〜10では、膜の状態も良好であり、可視光を発することがわかった(図2)。   From the results shown in Table 2, it was found that in Examples 1 to 10 of the present invention, the film was in good condition and emitted visible light (FIG. 2).

10:本発明の波長変換用石英ガラス部材、12:石英ガラス基材、14:石英ガラス表層膜、16:蛍光体粒子、18:シリカ微粒子。 10: quartz glass member for wavelength conversion of the present invention, 12: quartz glass substrate, 14: quartz glass surface layer film, 16: phosphor particles, 18: silica particles.

Claims (4)

石英ガラス基材とその表面に石英ガラス表層膜が形成されてなる波長変換用石英ガラス部材であり、
前記石英ガラス表層膜は、平均粒径が0.1μm〜20μmである蛍光体粒子と、球状で疎水性且つ平均粒径が1nm〜100nmである球状のシリカ微粒子と、を含有するポリシラザン含有溶液を前記石英ガラス基材表面上に塗布した後、大気中で乾燥し、その後水蒸気雰囲気下で加熱処理することにより得られ、
前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3〜7質量部であり、
前記石英ガラス表層膜のNH基濃度が1000ppm以下である、
ことを特徴とする波長変換用石英ガラス部材。
It is a quartz glass member for wavelength conversion in which a quartz glass surface layer film is formed on a quartz glass substrate and its surface,
The quartz glass surface layer film comprises a polysilazane-containing solution containing phosphor particles having an average particle diameter of 0.1 μm to 20 μm and spherical silica particles having a spherical and hydrophobic average particle diameter of 1 nm to 100 nm. After being applied on the surface of the quartz glass substrate, it is obtained by drying in the air and then heat-treating in a water vapor atmosphere.
In the polysilazane-containing solution, the ratio of phosphor particles to the total amount of polysilazane and phosphor particles is 10: 3 to 7 parts by mass,
NH group concentration of the quartz glass surface layer film is 1000 ppm or less,
A quartz glass member for wavelength conversion characterized by the above.
石英ガラス基材に用いられる石英ガラスが、合成石英ガラスであることを特徴とする請求項1記載の波長変換用石英ガラス部材。   The quartz glass member for wavelength conversion according to claim 1, wherein the quartz glass used for the quartz glass substrate is a synthetic quartz glass. 石英ガラス基材の表面に、
平均粒径が0.1μm〜20μmである蛍光体粒子及び球状で疎水性且つ平均粒径が1nm〜100nmであり0.1〜10質量%のシリカ微粒子を含有するポリシラザン含有溶液を前記石英ガラス基材に塗布し、水蒸気雰囲気下で加熱して、石英ガラス表層膜を形成する波長変換用石英ガラス部材の製造方法であり、
前記ポリシラザン含有溶液における、ポリシラザン及び蛍光体粒子の合計量に対する蛍光体粒子の比が、10:3〜7質量部である
ことを特徴とする波長変換用石英ガラス部材の製造方法。
On the surface of the quartz glass substrate,
A polysilazane-containing solution containing phosphor particles having an average particle diameter of 0.1 μm to 20 μm and spherical, hydrophobic, and silica particles having an average particle diameter of 1 nm to 100 nm and 0.1 to 10% by mass is used as the quartz glass substrate. It is a method for producing a wavelength conversion quartz glass member that is applied to a material and heated in a water vapor atmosphere to form a quartz glass surface layer film,
The method for producing a quartz glass member for wavelength conversion, wherein the ratio of phosphor particles to the total amount of polysilazane and phosphor particles in the polysilazane-containing solution is 10: 3 to 7 parts by mass.
前記ポリシラザン含有溶液を、前記石英ガラス基材上に塗布した後、大気中で乾燥し、その後、水蒸気雰囲気下で100〜600℃に加熱せしめ、厚さ0.1μm〜10μmの石英ガラス表層膜を形成し、前記石英ガラス表層膜の形成処理を複数回繰り返すことで、厚さ1〜500μmの石英ガラス表層膜の積層構造を形成することを特徴とする請求項3記載の波長変換用石英ガラス部材の製造方法。   The polysilazane-containing solution is applied on the quartz glass substrate, dried in the air, and then heated to 100 to 600 ° C. in a water vapor atmosphere to form a quartz glass surface film having a thickness of 0.1 μm to 10 μm. 4. A quartz glass member for wavelength conversion according to claim 3, wherein a laminated structure of a quartz glass surface layer film having a thickness of 1 to 500 μm is formed by repeating the formation process of the quartz glass surface layer film a plurality of times. Manufacturing method.
JP2014184093A 2013-12-26 2014-09-10 Silica glass member for wavelength conversion, and production method therefor Pending JP2015143324A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014184093A JP2015143324A (en) 2013-12-26 2014-09-10 Silica glass member for wavelength conversion, and production method therefor
US14/764,879 US20150353417A1 (en) 2013-12-26 2014-12-25 Quartz glass member for wavelength conversion and method of manufacturing the same
PCT/JP2014/084398 WO2015099084A1 (en) 2013-12-26 2014-12-25 Silica glass member for wavelength conversion, and production method therefor
EP14873492.4A EP2944620A1 (en) 2013-12-26 2014-12-25 Silica glass member for wavelength conversion, and production method therefor
KR1020157017265A KR20150092213A (en) 2013-12-26 2014-12-25 Quartz glass for wavelength conversion and producing method therefor
CN201480004250.0A CN104903266A (en) 2013-12-26 2014-12-25 Silica glass member for wavelength conversion, and production method therefor
TW103145808A TW201532999A (en) 2013-12-26 2014-12-26 Silica glass member for wavelength conversion, and production method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013268645 2013-12-26
JP2013268645 2013-12-26
JP2014184093A JP2015143324A (en) 2013-12-26 2014-09-10 Silica glass member for wavelength conversion, and production method therefor

Publications (1)

Publication Number Publication Date
JP2015143324A true JP2015143324A (en) 2015-08-06

Family

ID=53888583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184093A Pending JP2015143324A (en) 2013-12-26 2014-09-10 Silica glass member for wavelength conversion, and production method therefor

Country Status (1)

Country Link
JP (1) JP2015143324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043845A1 (en) * 2017-08-30 2019-03-07 日本碍子株式会社 Transparent sealing member
JP2020083674A (en) * 2018-11-19 2020-06-04 信越化学工業株式会社 Transparent silica glass composition, transparent silica glass and method for manufacturing the same
US11562989B2 (en) 2018-09-25 2023-01-24 Nichia Corporation Light-emitting device and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223867A (en) * 1993-12-17 1995-08-22 Tonen Corp Ceramic formation at low temperature
JPH0948951A (en) * 1995-08-08 1997-02-18 Tonen Corp Colored coating composition, and colored glass and its production using the same
WO2010110204A1 (en) * 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 Phosphor member, method for producing phosphor member, and lighting device
WO2011077548A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223867A (en) * 1993-12-17 1995-08-22 Tonen Corp Ceramic formation at low temperature
JPH0948951A (en) * 1995-08-08 1997-02-18 Tonen Corp Colored coating composition, and colored glass and its production using the same
WO2010110204A1 (en) * 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 Phosphor member, method for producing phosphor member, and lighting device
WO2011077548A1 (en) * 2009-12-25 2011-06-30 コニカミノルタオプト株式会社 Light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043845A1 (en) * 2017-08-30 2019-03-07 日本碍子株式会社 Transparent sealing member
JPWO2019043845A1 (en) * 2017-08-30 2020-08-06 日本碍子株式会社 Transparent sealing member
US10988400B2 (en) 2017-08-30 2021-04-27 Ngk Insulators, Ltd. Transparent sealing member
JP7028879B2 (en) 2017-08-30 2022-03-02 日本碍子株式会社 Transparent sealing member
US11562989B2 (en) 2018-09-25 2023-01-24 Nichia Corporation Light-emitting device and method for manufacturing same
JP2020083674A (en) * 2018-11-19 2020-06-04 信越化学工業株式会社 Transparent silica glass composition, transparent silica glass and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2015099084A1 (en) Silica glass member for wavelength conversion, and production method therefor
TWI685132B (en) Light emitting device
JP6552269B2 (en) Quartz glass member for wavelength conversion and manufacturing method thereof
JP6185928B2 (en) Phosphors in water glass for LED
US9741908B2 (en) Wavelength converting member, light-emitting device, and method for producing wavelength converting member
CN101831295A (en) Silica-based nitride red fluorescent powder and preparation method thereof
WO2017126440A1 (en) Wavelength conversion member and light-emitting device
Trung et al. Single-composition Al 3+-singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications
TW201742270A (en) Wavelength conversion member, production method therefor, and light emitting device
JP2015143324A (en) Silica glass member for wavelength conversion, and production method therefor
JP6560534B2 (en) Quartz glass member for wavelength conversion and manufacturing method thereof
CN106753327A (en) A kind of Surface heat-treatent method of modifying of fluorescent material and the COB light source being made from it
CN110291430B (en) Wavelength conversion member
KR20100002649A (en) Phosphor and method of manufacturing the same
JP6489543B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
Sivakami et al. The effect of citric acid on morphology and photoluminescence properties of white light emitting ZnO–SiO2 nanocomposites
JP6934316B2 (en) Wavelength conversion member
WO2015064046A1 (en) Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device
WO2023162445A1 (en) Wavelength conversion member and light emitting device
JP7010476B2 (en) A method for manufacturing a wavelength conversion member, a light emitting device, and a wavelength conversion member.
JP2010283045A (en) Phosphor dispersed member and method of manufacturing the same
JP6902373B2 (en) Wavelength conversion member and its manufacturing method
Lee et al. Effect of Lu 3 Al 5 O 12: Ce 3+ and (Sr, Ca) AlSiN 3: Eu 2+ Phosphor Content on Glass Conversion Lens for High-Power White LED
JP2022150528A (en) Wavelength conversion member and manufacturing method thereof, and light emitting device
JP2021099415A (en) Wavelength conversion member and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030