JP2015138013A - Fault location system and method - Google Patents

Fault location system and method Download PDF

Info

Publication number
JP2015138013A
JP2015138013A JP2014011736A JP2014011736A JP2015138013A JP 2015138013 A JP2015138013 A JP 2015138013A JP 2014011736 A JP2014011736 A JP 2014011736A JP 2014011736 A JP2014011736 A JP 2014011736A JP 2015138013 A JP2015138013 A JP 2015138013A
Authority
JP
Japan
Prior art keywords
value
zero
information
phase current
difference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014011736A
Other languages
Japanese (ja)
Other versions
JP6263034B2 (en
Inventor
和彦 米倉
Kazuhiko Yonekura
和彦 米倉
一義 赤塚
Kazuyoshi Akatsuka
一義 赤塚
敏昭 吉浦
Toshiaki Yoshiura
敏昭 吉浦
高明 武末
Takaaki Takesue
高明 武末
晃平 大谷
Kohei Otani
晃平 大谷
玄治 野田
Genji Noda
玄治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Kyuden Technosystems Corp
Original Assignee
Kyushu Electric Power Co Inc
Kyuden Technosystems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Kyuden Technosystems Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP2014011736A priority Critical patent/JP6263034B2/en
Publication of JP2015138013A publication Critical patent/JP2015138013A/en
Application granted granted Critical
Publication of JP6263034B2 publication Critical patent/JP6263034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow pin-point fault location, and suppress equipment cost of a fault location system itself.SOLUTION: Plural slave stations 1 record a difference value between zero-phase current detection values at a current time point and a time point before predetermined time, with time information in zero-phase current difference value recording means 15 for every predetermined time, record an accumulation value of the difference values in a period in which positive or negative difference values are continuously recorded in the zero-phase current difference value recording means 15, and when the accumulation value becomes equal to or more than a positive predetermined value or equal to or less than a negative predetermined value, extract a specific inflection point in the period in which the accumulation value is acquired, transmit the detection value and time information at the specific inflection point as surge detection value information and surge arrival time information. At a master station, based on transmission information from the plural slave stations 1, two pieces of surge arrival time information used for fault location are selected, and a position of the fault is calculated.

Description

この発明は、複数の子局で検出したサージ到達時刻に基づいて、屋外や地下埋設管内の送配電線路上又は屋内の配電線路上における故障点の位置を高精度で標定できるシステム及び方法に関するものである。   The present invention relates to a system and a method capable of highly accurately locating a failure point on a transmission / distribution line in an outdoor or underground buried pipe or on an indoor distribution line based on surge arrival times detected by a plurality of slave stations. It is.

送配電系統には様々なノイズがあり、かつ、サージ波形は系統ごとに個性があるとともに、故障の種類によっても変化することから、サージ到達時刻を正確に特定することは困難であるとされてきた。
そのため、サージ到達時刻特定手法は、従来、サージ波形データに対するサージ認定レベルやサージ波形開始レベルを適切に設定する方法の提案が主であり、サージ到達時刻の算出には、サージ到達時刻を補正するための二電位法等の方法が用いられてきた。
また、サージ波形の相似性に着目し、到達時刻差を判定している方法もある。
従来の故障点標定システム及び故障点標定方法を開示する文献としては、例えば、特許文献1(特開平8−184635号公報)、特許文献2(特許第5036603号公報)、特許文献3(特許第5085111号公報)、特許文献4(特開2001−133504号公報)がある。
There are various types of noise in power transmission and distribution systems, and surge waveforms have individuality for each system, and also vary depending on the type of failure. Therefore, it is difficult to accurately identify the surge arrival time. It was.
For this reason, the surge arrival time identification method has been mainly proposed to appropriately set the surge authorization level and surge waveform start level for surge waveform data, and the surge arrival time is corrected to calculate the surge arrival time. Methods such as the two-potential method have been used.
There is also a method of determining the arrival time difference by paying attention to the similarity of surge waveforms.
References disclosing conventional failure point location systems and failure point location methods include, for example, Patent Literature 1 (Japanese Patent Laid-Open No. 8-184635), Patent Literature 2 (Japanese Patent No. 5036603), and Patent Literature 3 (Patent No. 1). No. 5085111) and Japanese Patent Laid-Open No. 2001-133504.

特開平8−184635号公報JP-A-8-184635 特許第5036603号公報Japanese Patent No. 5036603 特許第5085111号公報Japanese Patent No. 5085111 特開2001−133504号公報JP 2001-133504 A

しかし、これら従来の故障点標定システム及び故障点標定方法は、2つの子局の間に故障点があることを検出することはできるものの、測定誤差が大きく、故障点のある箇所をおおよその範囲内でしか特定できなかった。
そのため、故障原因を除去する際には、現地を巡視し目視で発見できる場合を除けば、他の原理に基づく故障点判定機器を設置したり、故障点のある可能性がある範囲以上にわたる送電線や配電線全部を交換したりする必要があって、時間と費用がかさむ要因となっていた。
本発明は、このような従来の故障点標定システム及び故障点標定方法の欠点を解消し、ピンポイントで故障点標定できるようにするとともに、故障点標定システム自体の設備コストが高くならないようにすることを目的とする。
However, although these conventional fault location systems and fault location methods can detect that there is a fault point between two slave stations, the measurement error is large and the location of the fault point is within an approximate range. It was possible to identify only within.
For this reason, when removing the cause of failure, unless you can visit the site and find it visually, you can install failure point determination equipment based on other principles or send it over a range where there is a possibility of failure. It was necessary to replace all the electric wires and distribution lines, which was a factor of increasing time and cost.
The present invention eliminates the disadvantages of the conventional failure point locating system and the failure point locating method as described above, and makes it possible to pinpoint the failure point and prevent the equipment cost of the failure point locating system itself from increasing. For the purpose.

請求項1に係る発明は、送配電線路に設置され、零相電流検出手段によって一定時間毎に検出された零相電流検出値を、基準時計手段に同期させることが可能な計時手段から得た時刻情報とともに記録する零相電流検出値記録手段と、親局に対して情報を送信する送信手段を少なくとも備える複数の子局と、該複数の子局から送信された前記情報を受信する受信手段と、該受信手段によって受信した前記情報に基づいて故障点の標定を行う故障点標定手段を少なくとも備える前記親局を有する故障点標定システムであって、
前記複数の子局又は前記親局は、前記零相電流検出値記録手段に記録された一定時間毎の零相電流検出値と時刻情報に基づいて、所定時間毎の一時点における零相電流検出値から前記一時点の所定時間前における零相電流検出値を引いた差分値を前記一時点の時刻情報とともに記録する零相電流差分値記録手段と、前記零相電流差分値記録手段に正の差分値が記録された後、零若しくは負の差分値が記録されるまでの期間における差分値の累積値を記録する正の差分値累積手段と、前記零相電流差分値記録手段に負の差分値が記録された後、零若しくは正の差分値が記録されるまでの期間における差分値の累積値を記録する負の差分値累積手段と、前記正の差分値累積手段に記録された累積値が正の所定値以上となった場合又は前記負の差分値累積手段に記録された累積値が負の所定値以下となった場合に、その累積値を得た期間内で特定変局点を抽出する特定変局点抽出手段と、前記特定変局点における零相電流検出値及び時刻情報をサージ検出値情報及びサージ到達時刻情報として記録する特定変局点情報記録手段を備えており、
前記親局は、前記特定変局点情報記録手段に記録された前記複数の子局におけるサージ検出値情報及びサージ到達時刻情報に基づいて、故障点の標定に用いる2つのサージ到達時刻情報を選択するサージ到達時刻情報選択手段と、前記サージ到達時刻情報選択手段によって選択された前記2つのサージ到達時刻情報、該2つのサージ到達時刻情報に対応する2つの子局間の距離情報、及び前記2つの子局間におけるサージ電流伝搬速度に基づいて故障点の位置を計算する故障点位置計算手段と、該故障点位置計算手段による計算結果に基づいて故障点情報の表示処理を行う表示処理手段と、前記故障点情報を表示する表示手段を備えていることを特徴とする。
The invention according to claim 1 is obtained from the time measuring means which is installed in the transmission / distribution electric line and detected by the zero phase current detecting means every predetermined time and which can be synchronized with the reference clock means. Zero phase current detection value recording means for recording together with time information, a plurality of slave stations having at least transmission means for transmitting information to the master station, and receiving means for receiving the information transmitted from the slave stations And a failure point locating system having the master station including at least a failure point locating unit for locating a failure point based on the information received by the receiving unit,
The plurality of slave stations or the master station is configured to detect zero-phase current at a predetermined time point based on a zero-phase current detection value and time information recorded every predetermined time recorded in the zero-phase current detection value recording unit. A zero-phase current difference value recording unit that records a difference value obtained by subtracting a zero-phase current detection value at a predetermined time before the temporary point from the value together with time information of the temporary point; and a positive value in the zero-phase current difference value recording unit A positive difference value accumulating unit that records an accumulated value of difference values in a period from when the difference value is recorded until a zero or negative difference value is recorded, and a negative difference in the zero-phase current difference value recording unit A negative difference value accumulating means for recording a cumulative value of difference values in a period from when a value is recorded until a zero or positive difference value is recorded, and an accumulated value recorded in the positive difference value accumulating means Is greater than a predetermined positive value or the negative difference A specific inflection point extracting means for extracting a specific inflection point within a period of obtaining the accumulated value when the accumulated value recorded in the accumulating means is equal to or less than a predetermined negative value; It has a specific inflection point information recording means for recording the zero-phase current detection value and time information as surge detection value information and surge arrival time information,
The master station selects two surge arrival time information used for fault location based on surge detection value information and surge arrival time information in the plurality of slave stations recorded in the specific inflection point information recording means Surge arrival time information selection means, the two surge arrival time information selected by the surge arrival time information selection means, distance information between two slave stations corresponding to the two surge arrival time information, and the 2 Fault point position calculating means for calculating the position of the fault point based on the surge current propagation speed between the two slave stations, and display processing means for performing display processing of the fault point information based on the calculation result by the fault point position calculating means; And a display means for displaying the failure point information.

請求項2に係る発明は、請求項1に記載の故障点標定システムにおいて、前記子局間におけるサージ電流伝搬速度を、予め計測された線路間における分布情報に基づいて決定する手段を備えていることを特徴とする。   According to a second aspect of the present invention, there is provided the failure point locating system according to the first aspect, further comprising means for determining a surge current propagation speed between the slave stations based on distribution information between the lines measured in advance. It is characterized by that.

請求項3に係る発明は、送配電線路に設置された複数の子局において零相電流検出手段によって一定時間毎に検出された零相電流検出値を、基準時計手段に同期させることが可能な計時手段から得た時刻情報とともに零相電流検出値記録手段に記録し、親局に対して情報を送信し、前記親局において前記複数の子局から送信された前記情報を受信し、受信した前記情報に基づいて故障点の標定を行う故障点標定方法であって、
前記複数の子局又は前記親局においては、前記零相電流検出値記録手段に記録された一定時間毎の零相電流検出値と時刻情報に基づいて、所定時間毎の一時点における零相電流検出値から前記一時点の所定時間前における零相電流検出値を引いた差分値を前記一時点の時刻情報とともに零相電流差分値記録手段に記録し、該零相電流差分値記録手段に正の差分値が記録された後、零若しくは負の差分値が記録されるまでの期間における差分値の累積値を正の差分値累積手段に記録し、前記零相電流差分値記録手段に負の差分値が記録された後、零若しくは正の差分値が記録されるまでの期間における差分値の累積値を負の差分値累積手段に記録し、前記正の差分値累積手段に記録された累積値が正の所定値以上となった場合又は前記負の差分値累積手段に記録された累積値が負の所定値以下となった場合に、その累積値を得た期間内で特定変局点を抽出し、該特定変局点における零相電流検出値及び時刻情報をサージ検出値情報及びサージ到達時刻情報として特定変局点情報記録手段に記録し、
前記親局においては、前記特定変局点情報記録手段に記録された前記複数の子局におけるサージ検出値情報及びサージ到達時刻情報に基づいて、故障点の標定に用いる2つのサージ到達時刻情報を選択し、選択された前記2つのサージ到達時刻情報、該2つのサージ到達時刻情報に対応する2つの子局間の距離情報、及び前記2つの子局間におけるサージ電流伝搬速度に基づいて故障点の位置を計算し、計算された故障点の位置に基づいて故障点情報の表示処理を行い、前記故障点情報を表示手段に表示することを特徴とする。
The invention according to claim 3 can synchronize the zero-phase current detection values detected by the zero-phase current detection means at regular intervals in a plurality of slave stations installed in the transmission and distribution line with the reference clock means. Recorded in the zero-phase current detection value recording means together with time information obtained from the time measuring means, transmitted information to the master station, and received and received the information transmitted from the plurality of slave stations in the master station A failure point locating method for locating a failure point based on the information,
In the plurality of slave stations or the master station, the zero-phase current at a certain point in time for each predetermined time based on the zero-phase current detection value and the time information for each predetermined time recorded in the zero-phase current detection value recording means. A difference value obtained by subtracting the zero-phase current detection value at a predetermined time before the temporary point from the detection value is recorded in the zero-phase current difference value recording unit together with the time information of the temporary point, and is stored in the zero-phase current difference value recording unit. After the difference value is recorded, the accumulated difference value in the period until the zero or negative difference value is recorded is recorded in the positive difference value accumulation means, and the zero-phase current difference value recording means is negative. After the difference value is recorded, the cumulative value of the difference value in the period from when the zero or positive difference value is recorded is recorded in the negative difference value accumulating unit, and the accumulated value recorded in the positive difference value accumulating unit When the value is greater than or equal to a predetermined positive value or the negative difference When the accumulated value recorded in the accumulating means is less than or equal to a negative predetermined value, a specific inflection point is extracted within the period during which the accumulated value is obtained, and the zero-phase current detection value and time at the specific inflection point are extracted. Information is recorded in specific inflection point information recording means as surge detection value information and surge arrival time information,
In the master station, based on surge detection value information and surge arrival time information in the plurality of slave stations recorded in the specific inflection point information recording means, two surge arrival time information used for fault location The failure point based on the selected two surge arrival time information, the distance information between the two slave stations corresponding to the two surge arrival time information, and the surge current propagation speed between the two slave stations. The failure point information is displayed based on the calculated failure point position, and the failure point information is displayed on the display means.

請求項4に係る発明の故障点標定方法は、前記子局間におけるサージ電流伝搬速度を、予め計測された線路間における分布情報に基づいて決定することを特徴とする。   The failure point locating method of the invention according to claim 4 is characterized in that the surge current propagation speed between the slave stations is determined based on distribution information between the lines measured in advance.

請求項1に係る発明の故障点標定システム又は請求項3に係る発明の故障点標定方法によれば、サージ到達時刻に基づいて故障点位置を標定する従来の装置と基本的な構成は同様であるにもかかわらず、高い精度で故障点のある箇所を特定することができる。
そのため、短時間かつ低いコストで故障原因を除去できる。
According to the failure point locating system of the invention according to claim 1 or the failure point locating method of the invention according to claim 3, the basic configuration is the same as that of a conventional apparatus for locating the failure point position based on the surge arrival time. In spite of being there, it is possible to identify a location with a failure point with high accuracy.
Therefore, the cause of the failure can be removed in a short time and at a low cost.

請求項2に係る発明の故障点標定システム及び請求項4に係る発明の故障点標定方法によれば、請求項1又は3に係る発明よりさらに高い精度で故障点のある箇所を特定することができる。
そのため、より短時間かつ低いコストで故障原因を除去することが可能となる。
According to the failure point locating system of the invention according to claim 2 and the failure point locating method of the invention according to claim 4, it is possible to identify a location with a failure point with higher accuracy than the invention according to claim 1 or 3. it can.
Therefore, the cause of the failure can be removed in a shorter time and at a lower cost.

故障点標定システムの概略図。Schematic of a fault location system. 故障点標定システムにおける子局のブロック図。The block diagram of the slave station in a fault location system. 故障点標定システムにおける親局のブロック図。The block diagram of the master station in a fault location system. 子局における処理フロー。Processing flow in the slave station. ケース1における零相電流検出値及び差分値のグラフ。The graph of the zero phase electric current detected value in Case 1, and a difference value. ケース2における零相電流検出値及び差分値のグラフ。The graph of the zero phase current detection value in Case 2, and a difference value.

以下、実施例によって本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described by way of examples.

実施例の故障点標定システムは、図1にその概略を示すとおり、送配電線路3の適宜の箇所に設置された複数の子局1と、各子局1から送信された情報を受信して、故障点のある区間を決定し、その区間の両側にある子局から送信されたサージ到達時刻情報等に基づいて故障点位置を標定する親局2によって構成されている。
複数の子局1を設置する適宜の箇所としては、送電線路においては発電所付近、開閉所付近、変電所付近、空中送電鉄塔付近、地下埋設管の点検設備付近が挙げられ、屋外配電線路においては、変圧器付近、区分開閉器付近が挙げられ、屋内配電線路においては、配電盤付近、大型設備の受電部付近が挙げられる。
The fault location system of the embodiment receives a plurality of slave stations 1 installed at appropriate locations on the transmission and distribution line 3 and information transmitted from each slave station 1 as schematically shown in FIG. The master station 2 is configured to determine a section having a fault point and determine a fault point position based on surge arrival time information transmitted from slave stations on both sides of the section.
Appropriate locations for installing multiple slave stations 1 include the vicinity of power stations, switch stations, substations, aerial transmission towers, and underground pipe inspection facilities in the transmission lines. Includes the vicinity of a transformer and the vicinity of a section switch, and in an indoor distribution line, the vicinity of a switchboard and the vicinity of a power receiving unit of a large facility.

実施例の故障点標定システムを構成する子局1は、図2に示すとおり、人工衛星、標準電波送信所、通信基地局等が有する基準時計手段4に基づいて随時時刻補正を行うための時刻同期補正回路5を有する計時手段6と、子局1が設置されている箇所の送配電線路3における零相電流を検出する零相電流検出手段7と、零相電流検出値に基づいてサージ到達時刻を特定し、その時点における零相電流検出値及び時刻情報をサージ検出値情報及びサージ到達時刻情報(以下「サージ情報」という。)に決定する処理を行う子局CPU11と、決定したサージ情報を送信する送信手段12と、送信手段12から出力された情報を適宜の通信線路20に送り出すための通信インターフェイス13を備えている。
そして、通信線路20に送り出されたサージ情報は、親局2で受信できるようになっている。
As shown in FIG. 2, the slave station 1 constituting the failure point locating system of the embodiment has a time for timely correction based on the reference clock means 4 possessed by an artificial satellite, a standard radio wave transmitting station, a communication base station, or the like. Timekeeping means 6 having a synchronization correction circuit 5, zero-phase current detection means 7 for detecting a zero-phase current in the transmission / distribution line 3 where the slave station 1 is installed, and a surge arrival based on the zero-phase current detection value The slave CPU 11 that performs processing for specifying the time and determining the zero-phase current detection value and the time information at that time as surge detection value information and surge arrival time information (hereinafter referred to as “surge information”), and the determined surge information And a communication interface 13 for sending information output from the transmission unit 12 to an appropriate communication line 20.
The surge information sent to the communication line 20 can be received by the master station 2.

ここで、計時手段6は、いわゆる標準時に準拠した時間を出力する時計であっても良いし、基準時計手段4によって特定される基準時点に同期させてリセットでき一定時間毎にカウントアップ又はカウントダウンするカウンタであっても良い。
計時手段6が時計である場合には標準時に準拠した時間情報が時刻情報となり、計時手段6がカウンタである場合にはそのカウント値が時刻情報となる。
Here, the time measuring means 6 may be a clock that outputs a time compliant with the so-called standard time, and can be reset in synchronization with the reference time specified by the reference clock means 4 and counts up or down at regular intervals. It may be a counter.
When the clock means 6 is a clock, time information based on the standard time is time information, and when the clock means 6 is a counter, the count value is time information.

また、子局CPU11は、0.1マイクロ秒(以下「μs」と記載する。)毎に零相電流検出手段7による零相電流検出値を計時手段6から得た時刻情報とともに記録する零相電流検出値記録手段14と、0.1μs(所定時間)毎に現時点における零相電流検出値と所定時間前における零相電流検出値との差分値を計時手段から得た時刻情報とともに記録する零相電流差分値記録手段15と、零相電流差分値記録手段15に正の差分値が連続して記録されている期間における差分値の累積値を記録する正の差分値累積手段16と、零相電流差分値記録手段15に負の差分値が連続して記録されている期間における差分値の累積値を記録する負の差分値累積手段17と、いずれかの累積値が正の所定値以上又は負の所定値以下となった場合に、その累積値を得た期間内で特定変局点を抽出する特定変局点抽出手段18と、特定変局点における零相電流検出値及び時刻情報を記録する特定変局点情報記録手段19とを備え、子局1におけるサージ到達時刻を特定するとともに、サージ情報を決定し、送信手段12に出力する処理を行うものである。   In addition, the slave station CPU 11 records the zero-phase current detection value by the zero-phase current detection means 7 together with the time information obtained from the time measuring means 6 every 0.1 microsecond (hereinafter referred to as “μs”). The current detection value recording means 14 records a difference value between the current zero-phase current detection value and the zero-phase current detection value before the predetermined time every 0.1 μs (predetermined time) together with time information obtained from the time measuring means. Phase current difference value recording means 15, positive difference value accumulation means 16 for recording a cumulative value of difference values during a period in which positive difference values are continuously recorded in zero phase current difference value recording means 15, and zero Negative difference value accumulating means 17 for recording the accumulated value of the difference values during the period in which the negative difference values are continuously recorded in the phase current difference value recording means 15, and any of the accumulated values is a predetermined positive value or more Or when it becomes less than the negative predetermined value, A specific inflection point extracting means 18 for extracting a specific inflection point within a period in which the accumulated value is obtained; a specific inflection point information recording means 19 for recording a zero-phase current detection value and time information at the specific inflection point; The surge arrival time at the slave station 1 is specified, surge information is determined, and processing for outputting to the transmission means 12 is performed.

実施例の故障点標定システムを構成する親局2は、図3に示すとおり、適宜の通信線路20から情報を取り込むための通信インターフェイス21と、複数の子局1から送信されたサージ情報を受信する受信手段22と、受信した複数の子局からのサージ情報等に基づいて、故障点の位置を計算する処理を行う親局CPU23と、計算された故障点の位置を表示する表示手段24を備えている。   As shown in FIG. 3, the master station 2 constituting the fault location system of the embodiment receives a communication interface 21 for taking in information from an appropriate communication line 20 and surge information transmitted from a plurality of slave stations 1. Receiving means 22, a master station CPU 23 for performing processing for calculating the position of the failure point based on the received surge information from a plurality of slave stations, and a display means 24 for displaying the position of the calculated failure point. I have.

親局2が備える親局CPU23は、受信した複数の子局1からのサージ情報に基づいて、故障点の標定に用いる2つのサージ到達時刻情報を選択するサージ到達時刻情報選択手段25と、選択された2つのサージ到達時刻情報、2つのサージ到達時刻情報を送信した子局間の距離情報、それら子局間におけるサージ電流伝搬速度に基づいて故障点の位置を計算する故障点位置計算手段26及び計算された故障点の位置を表示処理する故障点表示処理手段27を備え、表示指示情報を表示手段24に出力するものである。
なお、子局間の距離情報及び子局間におけるサージ電流伝搬速度は、子局情報記憶手段28に記憶されている。
The master station CPU 23 provided in the master station 2 includes a surge arrival time information selection means 25 that selects two surge arrival time information used for fault location based on the received surge information from the plurality of slave stations 1, and a selection Failure point position calculation means 26 for calculating the position of the failure point based on the two surge arrival time information, the distance information between the slave stations that transmitted the two surge arrival time information, and the surge current propagation speed between those slave stations And a failure point display processing means 27 for displaying the calculated position of the failure point, and outputting display instruction information to the display means 24.
The distance information between slave stations and the surge current propagation speed between slave stations are stored in the slave station information storage means 28.

実施例の故障点標定システムを使用して、故障点の位置を計算するに先立って、子局1からサージ情報を送信するための処理フローを図4に示す。
以下、図4に示す処理フローの各ステップについて、それぞれ説明する。
FIG. 4 shows a processing flow for transmitting surge information from the slave station 1 prior to calculating the position of the failure point using the failure point locating system of the embodiment.
Hereinafter, each step of the processing flow shown in FIG. 4 will be described.

S01:子局CPU11には、零相電流検出手段からの零相電流検出値と計時手段からの時刻情報が入力されており、0.1μs(一定時間)毎に零相電流検出値と時刻情報を零相電流検出値記録手段14に記録する。
なお、記録開始時点においては、正の差分値累積手段16及び負の差分値累積手段17はリセットされている。
S02:0.1μs(所定時間)毎に現時点における零相電流検出値と0.1μs(所定時間)前における零相電流検出値との差分値及び現時点の時刻情報を零相電流差分値記録手段15に記録する。
S03:零相電流差分値記録手段15に正の差分値が記録されたか否か判定する。
S04:正の差分値が記録された場合(S03:Yes)、記録された差分値を正の差分値累積手段16に加算し、S01に戻る。
S05:正の差分値が記録されなかった場合(S03:No)、正の差分値累積手段16に記録されている累積値が100mAを超えているか否か判定する。
S06:累積値が100mAを超えていない場合(S05:No)、正の差分値累積手段16をリセットし、S10にスキップする。
S07:累積値が100mAを超えている場合(S05:Yes)、最後に正の差分値が記録された時点から遡って最初に零又は負の差分値が記録されるまでの差分値群から極大点と極小点を検出する。
S08:S07で検出した各極大点の差分値から直前の極小点の差分値を引いた値が最大となっている極小点から極大点までの期間で変局点を検出する。
変局点は、急激に立上る零相電流において、直線的な近似を示す点であり、通常は零相電流が急激増加から緩増加に変化する点又は零相電流が緩増加から急激増加に変化する点に現れる。
検出手法には、変局点を検出する期間の差分値群において、1μs毎の決定係数が1になる時点を変局点とする方法を採用した。
なお、決定係数が1になる時点が連続する場合、それらの中間時点を変局点とする。
S09:S08で検出した各変局点の差分値から直前の変局点の差分値を引いた値が最大となっている変局点を特定変局点とし、特定変局点における零相電流検出値と時刻をサージ情報として送信する。
S10:零相電流差分値記録手段15に負の差分値が記録されたか否か判定する。
S11:負の差分値が記録された場合(S10:Yes)、記録された差分値を負の差分値累積手段17に加算し、S01に戻る。
S12:負の差分値が記録されなかった場合(S10:No)、負の差分値累積手段17に記録されている累積値が−100mA以下か否か判定する。
S13:累積値が−100mA以下でない場合(S12:No)、負の差分値累積手段17をリセットし、S01に戻る。
S14:累積値が−100mA以下の場合(S12:Yes)、最後に負の差分値が記録された時点から遡って最初に零又は正の差分値が記録されるまでの差分値群から極大点と極小点を検出する。
S15:S14で検出した各極小点の差分値から直前の極大点の差分値を引いた値が最小となっている極大点から極小点までの期間で変局点を検出する。
変局点及びその検出手法はS08に記載したとおりである。
S16:S15で検出した各変局点の差分値から直前の変局点の差分値を引いた値が最小となっている変局点を特定変局点とし、特定変局点における零相電流検出値と時刻をサージ情報として送信する。
S01: The slave station CPU 11 receives the zero-phase current detection value from the zero-phase current detection means and the time information from the time measuring means, and the zero-phase current detection value and the time information every 0.1 μs (constant time). Is recorded in the zero-phase current detection value recording means 14.
At the start of recording, the positive difference value accumulating unit 16 and the negative difference value accumulating unit 17 are reset.
S02: Zero-phase current difference value recording means that records the difference value between the zero-phase current detection value at the present time and the zero-phase current detection value before 0.1 μs (predetermined time) and the current time information every 0.1 μs (predetermined time) Record in 15.
S03: It is determined whether or not a positive difference value is recorded in the zero-phase current difference value recording means 15.
S04: When a positive difference value is recorded (S03: Yes), the recorded difference value is added to the positive difference value accumulating means 16, and the process returns to S01.
S05: When a positive difference value is not recorded (S03: No), it is determined whether or not the accumulated value recorded in the positive difference value accumulating means 16 exceeds 100 mA.
S06: If the accumulated value does not exceed 100 mA (S05: No), the positive difference value accumulating means 16 is reset and skipped to S10.
S07: When the accumulated value exceeds 100 mA (S05: Yes), it is maximum from the difference value group until the first zero or negative difference value is recorded retroactively from the time when the positive difference value was recorded last. Detect points and local minimum points.
S08: The inflection point is detected in the period from the minimum point to the maximum point where the value obtained by subtracting the difference value of the immediately previous minimum point from the difference value of each maximum point detected in S07 is maximum.
The inflection point is a point that shows a linear approximation in the suddenly rising zero-phase current, and usually the point where the zero-phase current changes from a sudden increase to a slow increase or the zero-phase current changes from a slow increase to a sudden increase. Appears at changing points.
As a detection method, a method was adopted in which a point in time at which the determination coefficient for each 1 μs becomes 1 in the difference value group in the period for detecting the inflection point is used as the inflection point.
In addition, when the time when a determination coefficient becomes 1 continues, those intermediate time points are used as inflection points.
S09: The zero point current at the specific inflection point is defined as the inflection point in which the difference value of each inflection point detected in S08 is the maximum obtained by subtracting the difference value of the immediately preceding inflection point. The detected value and time are transmitted as surge information.
S10: It is determined whether or not a negative difference value is recorded in the zero-phase current difference value recording means 15.
S11: When a negative difference value is recorded (S10: Yes), the recorded difference value is added to the negative difference value accumulating unit 17, and the process returns to S01.
S12: When a negative difference value is not recorded (S10: No), it is determined whether or not the accumulated value recorded in the negative difference value accumulating unit 17 is −100 mA or less.
S13: If the accumulated value is not −100 mA or less (S12: No), the negative difference value accumulating means 17 is reset, and the process returns to S01.
S14: When the accumulated value is -100 mA or less (S12: Yes), the maximum point from the difference value group until the first zero or positive difference value is recorded retroactively from the time when the negative difference value was recorded last. And the minimum point is detected.
S15: The inflection point is detected in the period from the maximum point to the minimum point where the value obtained by subtracting the difference value of the previous maximum point from the difference value of each minimum point detected in S14 is minimum.
The inflection point and its detection method are as described in S08.
S16: The zero point current at the specific inflection point is defined as the inflection point at which the value obtained by subtracting the difference value of the previous inflection point from the difference value of each inflection point detected in S15 is the minimum. The detected value and time are transmitted as surge information.

次に、実施例の故障点標定システムを使用して、親局において故障点の位置を計算するための処理フローについて説明する。   Next, a processing flow for calculating the position of the failure point in the master station using the failure point locating system of the embodiment will be described.

S21:複数の子局からのサージ情報を受信する。
S22:受信した複数のサージ情報から故障点の標定に用いる2つのサージ情報を選択する。
その選択手法については、本発明の特徴ではないため詳しい説明を省略するが、例えば、特許文献1(特開平8−184635号公報)や特許第3191274号公報に記載されている手法を採用することができる。
S23:S22において選択した2つのサージ情報中のサージ到達時刻情報と、子局情報記憶手段28に記憶されている子局間の距離情報及び子局間におけるサージ電流伝搬速度に基づいて故障点の位置を計算する。
2つのサージ情報を送信した子局のうち電源側の子局を子局A、負荷側の子局を子局Bとし、子局Aから送信されたサージ到達時刻情報をta、子局Bから送信されたサージ到達時刻情報をtb、子局A子局B間の距離情報をLab、子局A子局B間におけるサージ電流伝搬速度をvとした時、故障点の子局Aからの距離Lxを計算する式は以下のとおりである。
Lx={v×(ta−tb)+Lab}÷2
S21: Receive surge information from a plurality of slave stations.
S22: Two pieces of surge information used for fault location are selected from a plurality of received surge information.
The selection method is not a feature of the present invention and will not be described in detail. For example, the method described in Patent Document 1 (Japanese Patent Laid-Open No. 8-184635) or Japanese Patent No. 3191274 is adopted. Can do.
S23: Based on the surge arrival time information in the two surge information selected in S22, the distance information between the slave stations stored in the slave station information storage means 28, and the surge current propagation speed between the slave stations, Calculate the position.
Of the slave stations that transmitted the two surge information, the slave station on the power source side is the slave station A, the slave station on the load side is the slave station B, the surge arrival time information transmitted from the slave station A is ta, and the slave station B When the transmitted surge arrival time information is tb, the distance information between slave station A and slave station B is Lab, and the surge current propagation speed between slave station A and slave station B is v, the distance from the slave station A at the failure point The formula for calculating Lx is as follows.
Lx = {v × (ta−tb) + Lab} ÷ 2

このうち、Labと子局A子局B間における平均サージ電流伝搬速度をvabは、予め測定したデータが子局情報記憶手段28に記憶されているので、v=vabと仮定すればLxを容易に計算することができる。
しかし、サージ電流伝搬速度vは均一ではないことが多いため、前記子局間におけるサージ電流伝搬速度を、予め計測された線路間における分布情報に基づいて決定するとより精度の高い計算ができる。
一例としては、子局Aに隣接する電源側の子局Gと子局Aとの間の平均サージ電流伝搬速度vga、子局Bに隣接する負荷側の子局Lと子局Bとの間の平均サージ電流伝搬速度vblを利用して、子局A地点でのサージ電流伝搬速度を(vga+vab)÷2=va、子局B地点でのサージ電流伝搬速度を(vab+vbl)÷2=vbと仮定し、子局A子局B間においてはサージ電流伝搬速度が直線的に傾斜分布していると仮定して計算する。
そう仮定した場合、故障点の子局Aからの距離Lxを計算する式は以下のとおりとなる。
Lx=[{va+va+(vb−va)×ta÷(ta+tb)}×ta÷2
−{va+(vb−va)×ta÷(ta+tb)+vb}×tb÷2+Lab]÷2
そして、これを変形すると次の式が導かれる。
Lx=[(va+vb)×(ta−tb)÷2+(va−vb)×ta×tb÷(ta+tb)+Lab]÷2
Of these, the average surge current propagation speed between Lab and slave station A slave station vab is pre-measured data stored in slave station information storage means 28. Therefore, assuming that v = vab, Lx is easy. Can be calculated.
However, since the surge current propagation speed v is often not uniform, more accurate calculation can be performed if the surge current propagation speed between the slave stations is determined based on distribution information between lines measured in advance.
As an example, the average surge current propagation speed vga between the slave station G on the power supply side adjacent to the slave station A and the slave station A, and between the slave station L on the load side adjacent to the slave station B and the slave station B The surge current propagation speed at the slave station A point is (vga + vab) ÷ 2 = va and the surge current propagation speed at the slave station B point is (vab + vbl) ÷ 2 = vb. Assuming that the surge current propagation velocity is linearly distributed between the slave stations A and B, the calculation is performed.
Assuming that, the formula for calculating the distance Lx from the slave station A at the failure point is as follows.
Lx = [{va + va + (vb−va) × ta ÷ (ta + tb)} × ta ÷ 2
-{Va + (vb-va) * ta / (ta + tb) + vb} * tb / 2 + lab] / 2
And when this is transformed, the following equation is derived.
Lx = [(va + vb) × (ta−tb) ÷ 2 + (va−vb) × ta × tb ÷ (ta + tb) + Lab] ÷ 2

次に図5、図6に示す事故のケース1及び2について、各子局でサージ情報をどのようにして決定し、計算で求められた故障点の子局Aからの距離Lxと実際の距離との差がどうであったか説明する。   Next, for the accident cases 1 and 2 shown in FIG. 5 and FIG. 6, how the surge information is determined at each slave station, and the distance Lx from the slave station A of the failure point obtained by calculation and the actual distance Explain how the difference was.

図5(a)はI線事故時における零相電流波形を示すグラフであり、図5(b)は同事故時における1μs毎の零相電流差分値の変化を示すグラフである。
そして、細い実線は10区間にある子局において検出された零相電流波形及び差分値の変化、点線は76区間にある子局において検出された零相電流波形及び差分値の変化、太い実線は87区間にある子局において検出された零相電流波形及び差分値の変化を示している。
FIG. 5A is a graph showing the zero-phase current waveform at the time of the I-line accident, and FIG. 5B is a graph showing the change in the zero-phase current difference value every 1 μs at the time of the accident.
The thin solid line is the change in the zero phase current waveform and the difference value detected in the slave station in the 10 section, the dotted line is the change in the zero phase current waveform and the difference value detected in the slave station in the 76 section, and the thick solid line is The change of the zero phase current waveform and the difference value detected in the slave station in the 87th section is shown.

このような零相電流検出値に実施例の故障点標定方法を適用した場合、差分値の累積値が100mA以上となるのは、図5(b)の87区間にある子局におけるイ−エの期間であり、特定変局点は477.1μs時点と決定された。
また、差分値の累積値が−100mA以下となるのは、図5(b)の10区間にある子局におけるウ−カの期間と、76区間にある子局におけるア−オの期間であり、特定変局点は10区間においては493.0μs時点、76区間においては479.1μs時点と決定された。
さらに、2つのサージ到達時刻情報として、87区間の477.1μsと76区間の479.1μsが選択され、Lxは411mと計算された。
そして、実事故点は87区間にある子局から417m地点であったので、その誤差は6mと小さいものであった。
When the failure point locating method of the embodiment is applied to such a zero-phase current detection value, the cumulative value of the difference value is 100 mA or more because the element in the slave station in the 87 section of FIG. The specific inflection point was determined to be 477.1 μs.
Further, the cumulative value of the difference values is −100 mA or less in the walker period in the slave station in the 10 section of FIG. 5B and the audio period in the slave station in the 76 section. The specific inflection point was determined to be 493.0 μs for 10 sections and 479.1 μs for 76 sections.
Furthermore, 477.1 μs for 87 sections and 479.1 μs for 76 sections were selected as two surge arrival time information, and Lx was calculated to be 411 m.
And since the actual accident point was 417m from the slave station in the 87th section, the error was as small as 6m.

図6(a)はM線事故時における零相電流波形を示すグラフであり、図6(b)は同事故時における1μs毎の零相電流差分値の変化を示すグラフである。
そして、太い実線は10区間にある子局において検出された零相電流波形及び差分値の変化、点線は31区間にある子局において検出された零相電流波形及び差分値の変化、中太の実線は50区間にある子局において検出された零相電流波形及び差分値の変化、細い実線は65区間にある子局において検出された零相電流波形及び差分値の変化を示している。
FIG. 6A is a graph showing a zero-phase current waveform at the time of an M-line accident, and FIG. 6B is a graph showing a change in the zero-phase current difference value every 1 μs at the time of the accident.
The thick solid line is the change in the zero-phase current waveform and the difference value detected in the slave station in the 10 section, the dotted line is the change in the zero-phase current waveform and the difference value detected in the slave station in the 31 section, The solid line indicates the change in the zero-phase current waveform and the difference value detected in the slave station in the 50 section, and the thin solid line indicates the change in the zero-phase current waveform and the difference value detected in the slave station in the 65 section.

このような零相電流検出値に実施例の故障点標定方法を適用した場合、差分値の累積値が100mA以上となるのは、図6(b)の10区間にある子局におけるセ−チの期間であり、特定変局点は23.2μs時点と決定された。
また、差分値の累積値が−100mA以下となるのは、図6(b)の31区間にある子局におけるシ−スの期間と、50区間にある子局におけるサ−ソの期間と、65区間にある子局におけるタ−ツの期間であり、特定変局点は31区間においては6.9μs時点、50区間においては12.0μs時点、65区間においては32.6μs時点と決定された。
さらに、2つのサージ到達時刻情報は、10区間の23.2μsと31区間の6.9μsが選択され、Lxは1685mと計算された。
そして、実事故点は10区間にある子局から1683m地点であったので、その誤差は2mと非常に小さいものであった。
When the failure point locating method of the embodiment is applied to such a zero-phase current detection value, the accumulated value of the difference value becomes 100 mA or more in the slave station in the 10 section of FIG. 6B. The specific inflection point was determined to be 23.2 μs.
Also, the cumulative value of the difference values is −100 mA or less because the period of the slave station in the 31 section of FIG. 6B and the period of the source in the slave station in the 50 section are as follows: It is the period of the subject in the slave station in 65 sections, and the specific inflection point was determined at 6.9 μs at 31 sections, 12.0 μs at 50 sections, and 32.6 μs at 65 sections.
Further, two surge arrival time information was selected as 23.2 μs for 10 sections and 6.9 μs for 31 sections, and Lx was calculated to be 1685 m.
Since the actual accident point was 1683m from the slave station in 10 sections, the error was very small at 2m.

実施例の故障点標定システムに関する変形例を列記する。
(1)実施例の親局は子局を兼ねていても良い。
(2)実施例の零相電流検出値記録手段は、0.1μs毎に零相電流検出値や時刻情報を記録しているが、標定精度に応じて変更することができる。
0.1μs毎の場合、標定精度は5m程度であるから、標定精度が10m程度で良ければ0.2μs毎で良く、標定精度を1m程度にしたければ0.02μs毎に記録することが必要となる。
(3)実施例の零相電流差分値記録手段は、0.1μs毎にその間の零相電流の差分値と時刻情報を記録しているが、もっと長い間隔(例えば、0.5μs間隔)で零相電流の差分値と時刻情報を記録し、累積値が正の所定値以上又は負の所定値以下となった場合にのみ、その累積値を得た期間内における0.1μs(一定時間)毎の零相電流の差分値と時刻情報を記録するようにしても良い。
そうすることによって、0.1μs(一定時間)毎の零相電流の差分値と時刻情報の記録を特定変局点の抽出に必要な期間だけに限定でき、子局CPU11の負荷を小さくすることができる。
(4)実施例の故障点標定システムにおいては、各子局で特定変局点を決定し、サージ情報を送信しているが、各子局から零相電流検出手段からの零相電流検出値と計時手段からの時刻情報又は0.1μs(一定時間)毎の零相電流の差分値と時刻情報を送信し、親局においてS01〜S16の処理又はS02〜S16の処理(サージ情報送信処理を除く)を行うようにしても良い。
また、各子局においてS01〜S07前段の処理及びS10〜S14前段の処理を行って、最後に正の差分値が記録された時点から遡って最初に零又は負の差分値が記録されるまでの差分値群又は最後に負の差分値が記録された時点から遡って最初に零又は正の差分値が記録されるまでの差分値群の情報を送信し、親局においてS07後段〜S09及びS14後段〜S16の処理(サージ情報送信処理を除く)を行うようにしても良い。
The modification regarding the fault location system of an Example is listed.
(1) The master station in the embodiment may also serve as a slave station.
(2) The zero-phase current detection value recording means of the embodiment records the zero-phase current detection value and time information every 0.1 μs, but can be changed according to the positioning accuracy.
In the case of every 0.1 μs, the orientation accuracy is about 5 m. Therefore, if the orientation accuracy is about 10 m, it may be about 0.2 μs. If the orientation accuracy is about 1 m, it is necessary to record every 0.02 μs. Become.
(3) The zero-phase current difference value recording means of the embodiment records the zero-phase current difference value and time information every 0.1 μs, but at longer intervals (for example, 0.5 μs intervals). Only when the difference value of zero-phase current and time information are recorded and the accumulated value is greater than or equal to a positive predetermined value or less than a predetermined negative value, 0.1 μs (fixed time) within the period in which the accumulated value is obtained The difference value of each zero-phase current and time information may be recorded.
By doing so, it is possible to limit the recording of the difference value of the zero-phase current and time information every 0.1 μs (fixed time) only to the period necessary for extracting the specific inflection point, and to reduce the load on the slave CPU 11. Can do.
(4) In the fault location system of the embodiment, each slave station determines a specific inflection point and transmits surge information. The zero-phase current detection value from the zero-phase current detection means is transmitted from each slave station. And the time information from the time measuring means or the difference value and time information of the zero-phase current every 0.1 μs (constant time), the process of S01 to S16 or the process of S02 to S16 (surge information transmission process) Excluding) may be performed.
In addition, each slave station performs the processes in the previous stage of S01 to S07 and the process in the previous stage of S10 to S14 until the first zero difference value is recorded retroactively from the time when the positive difference value was recorded last. The difference value group or the difference value group information from the time when the negative difference value was last recorded until the first zero or positive difference value is recorded is transmitted. You may make it perform the process (except surge information transmission process) of S14 back | latter stage-S16.

1 子局 2 親局 3 送配電線路 4 基準時計手段
5 時刻同期補正回路 6 計時手段 7 零相電流検出手段
11 子局CPU 12 送信手段 13 通信インターフェイス
14 零相電流検出値記録手段 15 零相電流差分値記録手段
16 正の差分値累積手段 17 負の差分値累積手段
18 特定変局点抽出手段 19 特定変局点情報記録手段
20 通信線路 21 通信インターフェイス
22 受信手段 23 親局CPU 24 表示手段
25 サージ到達時刻情報選択手段 26 故障点位置計算手段
27 故障点表示処理手段
DESCRIPTION OF SYMBOLS 1 Slave station 2 Master station 3 Transmission / distribution electric line 4 Reference clock means 5 Time synchronous correction circuit 6 Time measuring means 7 Zero phase current detection means 11 Slave station CPU 12 Transmission means 13 Communication interface 14 Zero phase current detection value recording means 15 Zero phase current Difference value recording means 16 Positive difference value accumulating means 17 Negative difference value accumulating means 18 Specific inflection point extracting means 19 Specific inflection point information recording means 20 Communication line 21 Communication interface 22 Receiving means 23 Master station CPU 24 Display means 25 Surge arrival time information selection means 26 Failure point position calculation means 27 Failure point display processing means

Claims (4)

送配電線路に設置され、零相電流検出手段によって一定時間毎に検出された零相電流検出値を、基準時計手段に同期させることが可能な計時手段から得た時刻情報とともに記録する零相電流検出値記録手段と、親局に対して情報を送信する送信手段を少なくとも備える複数の子局と、該複数の子局から送信された前記情報を受信する受信手段と、該受信手段によって受信した前記情報に基づいて故障点の標定を行う故障点標定手段を少なくとも備える前記親局を有する故障点標定システムであって、
前記複数の子局又は前記親局は、
前記零相電流検出値記録手段に記録された一定時間毎の零相電流検出値と時刻情報に基づいて、所定時間毎の一時点における零相電流検出値から前記一時点の所定時間前における零相電流検出値を引いた差分値を前記一時点の時刻情報とともに記録する零相電流差分値記録手段と、
前記零相電流差分値記録手段に正の差分値が記録された後、零若しくは負の差分値が記録されるまでの期間における差分値の累積値を記録する正の差分値累積手段と、
前記零相電流差分値記録手段に負の差分値が記録された後、零若しくは正の差分値が記録されるまでの期間における差分値の累積値を記録する負の差分値累積手段と、
前記正の差分値累積手段に記録された累積値が正の所定値以上となった場合又は前記負の差分値累積手段に記録された累積値が負の所定値以下となった場合に、その累積値を得た期間内で特定変局点を抽出する特定変局点抽出手段と、
前記特定変局点における零相電流検出値及び時刻情報をサージ検出値情報及びサージ到達時刻情報として記録する特定変局点情報記録手段を備えており、
前記親局は、
前記特定変局点情報記録手段に記録された前記複数の子局におけるサージ検出値情報及びサージ到達時刻情報に基づいて、故障点の標定に用いる2つのサージ到達時刻情報を選択するサージ到達時刻情報選択手段と、
前記サージ到達時刻情報選択手段によって選択された前記2つのサージ到達時刻情報、該2つのサージ到達時刻情報に対応する2つの子局間の距離情報、及び前記2つの子局間におけるサージ電流伝搬速度に基づいて故障点の位置を計算する故障点位置計算手段と、
該故障点位置計算手段による計算結果に基づいて故障点情報の表示処理を行う表示処理手段と、
前記故障点情報を表示する表示手段を備えている
ことを特徴とする故障点標定システム。
Zero-phase current that is installed in the transmission / distribution line and records the zero-phase current detection value detected by the zero-phase current detection means at regular intervals together with the time information obtained from the time measuring means that can be synchronized with the reference clock means. Detection value recording means, a plurality of slave stations having at least transmission means for transmitting information to the master station, a reception means for receiving the information transmitted from the slave stations, and received by the reception means A failure point locating system having the master station including at least failure point locating means for locating a failure point based on the information,
The plurality of slave stations or the master station is
Based on the zero-phase current detection value and the time information recorded at a predetermined time recorded in the zero-phase current detection value recording means, the zero-phase current detection value at a predetermined time from a zero-phase current detection value at a predetermined time every predetermined time. Zero-phase current difference value recording means for recording the difference value obtained by subtracting the phase current detection value together with the time information of the temporary point;
A positive difference value accumulating means for recording an accumulated value of the difference value in a period until a zero or negative difference value is recorded after a positive difference value is recorded in the zero phase current difference value recording means;
A negative difference value accumulating means for recording an accumulated value of the difference value in a period until a zero or positive difference value is recorded after a negative difference value is recorded in the zero phase current difference value recording means;
When the accumulated value recorded in the positive difference value accumulating means is greater than or equal to a predetermined positive value or when the accumulated value recorded in the negative difference value accumulating means is less than or equal to a predetermined negative value, A specific inflection point extracting means for extracting a specific inflection point within a period in which the accumulated value is obtained;
A specific inflection point information recording means for recording the zero phase current detection value and time information at the specific inflection point as surge detection value information and surge arrival time information;
The master station is
Surge arrival time information for selecting two surge arrival time information used for fault location based on surge detection value information and surge arrival time information in the plurality of slave stations recorded in the specific inflection point information recording means A selection means;
The two surge arrival time information selected by the surge arrival time information selection means, distance information between two slave stations corresponding to the two surge arrival time information, and surge current propagation speed between the two slave stations Failure point position calculating means for calculating the position of the failure point based on
Display processing means for performing display processing of failure point information based on a calculation result by the failure point position calculating means;
A failure point locating system comprising display means for displaying the failure point information.
前記子局間におけるサージ電流伝搬速度を、予め計測された線路間における分布情報に基づいて決定する手段を備えている
ことを特徴とする請求項1に記載の故障点標定システム。
The failure point locating system according to claim 1, further comprising means for determining a surge current propagation speed between the slave stations based on distribution information between lines measured in advance.
送配電線路に設置された複数の子局において零相電流検出手段によって一定時間毎に検出された零相電流検出値を、基準時計手段に同期させることが可能な計時手段から得た時刻情報とともに零相電流検出値記録手段に記録し、親局に対して情報を送信し、前記親局において前記複数の子局から送信された前記情報を受信し、受信した前記情報に基づいて故障点の標定を行う故障点標定方法であって、
前記複数の子局又は前記親局においては、
前記零相電流検出値記録手段に記録された一定時間毎の零相電流検出値と時刻情報に基づいて、所定時間毎の一時点における零相電流検出値から前記一時点の所定時間前における零相電流検出値を引いた差分値を前記一時点の時刻情報とともに零相電流差分値記録手段に記録し、
該零相電流差分値記録手段に正の差分値が記録された後、零若しくは負の差分値が記録されるまでの期間における差分値の累積値を正の差分値累積手段に記録し、
前記零相電流差分値記録手段に負の差分値が記録された後、零若しくは正の差分値が記録されるまでの期間における差分値の累積値を負の差分値累積手段に記録し、
前記正の差分値累積手段に記録された累積値が正の所定値以上となった場合又は前記負の差分値累積手段に記録された累積値が負の所定値以下となった場合に、その累積値を得た期間内で特定変局点を抽出し、
該特定変局点における零相電流検出値及び時刻情報をサージ検出値情報及びサージ到達時刻情報として特定変局点情報記録手段に記録し、
前記親局においては、
前記特定変局点情報記録手段に記録された前記複数の子局におけるサージ検出値情報及びサージ到達時刻情報に基づいて、故障点の標定に用いる2つのサージ到達時刻情報を選択し、
選択された前記2つのサージ到達時刻情報、該2つのサージ到達時刻情報に対応する2つの子局間の距離情報、及び前記2つの子局間におけるサージ電流伝搬速度に基づいて故障点の位置を計算し、
計算された故障点の位置に基づいて故障点情報の表示処理を行い、
前記故障点情報を表示手段に表示する
ことを特徴とする故障点標定方法。
Along with time information obtained from time measuring means that can synchronize the zero phase current detection value detected by the zero phase current detection means at a predetermined time in a plurality of slave stations installed in the transmission and distribution line with the reference clock means. Recording in the zero-phase current detection value recording means, transmitting information to the master station, receiving the information transmitted from the plurality of slave stations in the master station, and based on the received information of the failure point A fault location method for performing orientation,
In the plurality of slave stations or the master station,
Based on the zero-phase current detection value and the time information recorded at a predetermined time recorded in the zero-phase current detection value recording means, the zero-phase current detection value at a predetermined time from a zero-phase current detection value at a predetermined time every predetermined time. The difference value obtained by subtracting the phase current detection value is recorded in the zero phase current difference value recording means together with the time information of the temporary point,
After the positive difference value is recorded in the zero phase current difference value recording means, the cumulative value of the difference value in the period until the zero or negative difference value is recorded is recorded in the positive difference value accumulation means,
After the negative difference value is recorded in the zero phase current difference value recording means, the cumulative value of the difference value in the period until the zero or positive difference value is recorded is recorded in the negative difference value accumulation means,
When the accumulated value recorded in the positive difference value accumulating means is greater than or equal to a predetermined positive value or when the accumulated value recorded in the negative difference value accumulating means is less than or equal to a predetermined negative value, Extract a specific inflection point within the period when the accumulated value was obtained,
The zero phase current detection value and time information at the specific inflection point are recorded in the specific inflection point information recording means as surge detection value information and surge arrival time information,
In the master station,
Based on surge detection value information and surge arrival time information in the plurality of slave stations recorded in the specific inflection point information recording means, select two surge arrival time information used for fault location,
Based on the selected two surge arrival time information, distance information between two slave stations corresponding to the two surge arrival time information, and a surge current propagation speed between the two slave stations, the position of the failure point is determined. Calculate
Based on the calculated location of the failure point, display the failure point information,
The failure point locating method, wherein the failure point information is displayed on a display means.
前記子局間におけるサージ電流伝搬速度を、予め計測された線路間における分布情報に基づいて決定する
ことを特徴とする請求項3に記載の故障点標定方法。
The failure point locating method according to claim 3, wherein a surge current propagation speed between the slave stations is determined based on distribution information between lines measured in advance.
JP2014011736A 2014-01-24 2014-01-24 Fault location system and fault location method Active JP6263034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011736A JP6263034B2 (en) 2014-01-24 2014-01-24 Fault location system and fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011736A JP6263034B2 (en) 2014-01-24 2014-01-24 Fault location system and fault location method

Publications (2)

Publication Number Publication Date
JP2015138013A true JP2015138013A (en) 2015-07-30
JP6263034B2 JP6263034B2 (en) 2018-01-17

Family

ID=53769090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011736A Active JP6263034B2 (en) 2014-01-24 2014-01-24 Fault location system and fault location method

Country Status (1)

Country Link
JP (1) JP6263034B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327411B1 (en) * 2017-11-10 2018-05-23 中国電力株式会社 Ground fault location system, ground fault location method
CN108321929A (en) * 2018-01-15 2018-07-24 国电南瑞科技股份有限公司 A kind of extra-high voltage direct-current boss station collaboration alarm method based on substation diagnosis
JP2021110661A (en) * 2020-01-10 2021-08-02 株式会社日立製作所 Ground fault point locating system and method therefor
CN113589107A (en) * 2021-08-17 2021-11-02 国网安徽省电力有限公司淮南市潘集区供电公司 High-voltage cable fault positioning method, system and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184635A (en) * 1994-12-28 1996-07-16 Tohoku Electric Power Co Inc System and method for locating surge
JP2001133504A (en) * 1999-11-04 2001-05-18 Nippon Kouatsu Electric Co Method of calculating surge propagation velocity, and locating system for trouble point using same
JP2005121434A (en) * 2003-10-15 2005-05-12 Nishimu Electronics Industries Co Ltd Transmission cable fault location system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184635A (en) * 1994-12-28 1996-07-16 Tohoku Electric Power Co Inc System and method for locating surge
JP2001133504A (en) * 1999-11-04 2001-05-18 Nippon Kouatsu Electric Co Method of calculating surge propagation velocity, and locating system for trouble point using same
JP2005121434A (en) * 2003-10-15 2005-05-12 Nishimu Electronics Industries Co Ltd Transmission cable fault location system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327411B1 (en) * 2017-11-10 2018-05-23 中国電力株式会社 Ground fault location system, ground fault location method
WO2019092850A1 (en) * 2017-11-10 2019-05-16 中国電力株式会社 Ground fault point locating system and ground fault point locating method
CN108321929A (en) * 2018-01-15 2018-07-24 国电南瑞科技股份有限公司 A kind of extra-high voltage direct-current boss station collaboration alarm method based on substation diagnosis
JP2021110661A (en) * 2020-01-10 2021-08-02 株式会社日立製作所 Ground fault point locating system and method therefor
JP7341070B2 (en) 2020-01-10 2023-09-08 株式会社日立製作所 Ground fault location system and method
CN113589107A (en) * 2021-08-17 2021-11-02 国网安徽省电力有限公司淮南市潘集区供电公司 High-voltage cable fault positioning method, system and device

Also Published As

Publication number Publication date
JP6263034B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
US10228409B2 (en) Fault location using traveling waves
JP6263034B2 (en) Fault location system and fault location method
EP2558874B1 (en) Fault wave arrival determination
EP2728693A1 (en) Current differential protection
CN109283864B (en) Time synchronization and calibration method and system for data sampling
JP5373260B2 (en) Accident point location method and system for transmission and distribution systems
US10585133B2 (en) Electric power fault protection device using single-ended traveling wave fault location estimation
US20210003625A1 (en) Traveling Wave Based Fault Location Using Unsynchronized Measurements for Transmission Lines
WO2016194814A1 (en) Power distribution system monitoring system, power distribution system monitoring device, power distribution system monitoring method, and program
US20220074984A1 (en) Method and device for identifying the location of a fault in an electrical power distribution network
JP6310334B2 (en) Insulation degradation diagnosis device and method for power cable or electrical equipment
CN111433617B (en) Method and device for positioning fault point in regional network based on traveling wave
Zhang et al. Synchrophasor time skew: Formulation, detection and correction
CN111512168B (en) System and method for analyzing fault data of a power transmission network
JP5030683B2 (en) Ground fault accident prediction system and ground fault accident prediction method
JP6449663B2 (en) Fault location method and fault location system
KR101452979B1 (en) Fault recorder having fault localization function using accident data of both ends in power system line, fault localization system comprising the same and method for controlling the same
Chen et al. Fault location technology for high-voltage overhead lines combined with underground power cables based on travelling wave principle
US20230400499A1 (en) Method and System for Detecting Location of Fault in a Cable
Peretto et al. Fault location in underground power networks: A case study
WO2017002020A1 (en) System and method for detecting a fault in an overhead power line
JP2007188299A (en) System and method for multipoint measurement
CN108369254B (en) Method of locating a fault in a power transmission medium
KR20150043788A (en) Fault information output apparatus of transmission line
JP4039576B2 (en) Calculation method of surge propagation speed in fault location system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171215

R150 Certificate of patent or registration of utility model

Ref document number: 6263034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250