JP2015132177A - Vibration suppression device and turbine - Google Patents

Vibration suppression device and turbine Download PDF

Info

Publication number
JP2015132177A
JP2015132177A JP2014002654A JP2014002654A JP2015132177A JP 2015132177 A JP2015132177 A JP 2015132177A JP 2014002654 A JP2014002654 A JP 2014002654A JP 2014002654 A JP2014002654 A JP 2014002654A JP 2015132177 A JP2015132177 A JP 2015132177A
Authority
JP
Japan
Prior art keywords
moving blade
blade
viscoelastic member
vibration
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014002654A
Other languages
Japanese (ja)
Other versions
JP6177142B2 (en
Inventor
直樹 小野里
Naoki Onozato
直樹 小野里
大山 宏治
Koji Oyama
宏治 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014002654A priority Critical patent/JP6177142B2/en
Publication of JP2015132177A publication Critical patent/JP2015132177A/en
Application granted granted Critical
Publication of JP6177142B2 publication Critical patent/JP6177142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration suppression device that can sufficiently suppress vibrations of blades.SOLUTION: A vibration suppression device comprises: a viscoelastic member arranged between a first blade and a second blade arranged adjacently to the first blade so as to be in contact with the first blade and the second blade; and a supporting member arranged between the first blade and the second blade so as to hold the viscoelastic member among the first blade, the second blade, and the supporting member.

Description

本発明は、振動抑制装置及びタービンに関する。   The present invention relates to a vibration suppression device and a turbine.

タービンは、動翼を有するロータと、ロータの周囲に配置される静翼を有するステータとを備えている。動翼を有するガスタービンに関する技術の一例が特許文献1に開示されている。   The turbine includes a rotor having moving blades and a stator having stationary blades arranged around the rotor. An example of a technique related to a gas turbine having moving blades is disclosed in Patent Document 1.

特開2005−233141号公報JP 2005-233141 A

ロータの回転により動翼と静翼とが相対移動すると、例えば気体の圧力変動に起因して動翼及び静翼の少なくとも一方が共振する可能性がある。その結果、動翼及び静翼の少なくとも一部が疲労し、タービンの性能が低下する可能性がある。   When the moving blade and the stationary blade move relative to each other due to the rotation of the rotor, there is a possibility that at least one of the moving blade and the stationary blade will resonate due to, for example, pressure fluctuation of the gas. As a result, at least a part of the moving blades and the stationary blades may be fatigued, and the performance of the turbine may be deteriorated.

本発明は、翼の振動を抑制できる振動抑制装置を提供することを目的とする。また、本発明は、性能の低下が抑制されるタービンを提供することを目的とする。   An object of this invention is to provide the vibration suppression apparatus which can suppress the vibration of a wing | blade. Moreover, an object of this invention is to provide the turbine by which the fall of performance is suppressed.

本発明の第1の態様は、第1翼と前記第1翼の隣に配置される第2翼との間において前記第1翼及び前記第2翼と接触するように配置される粘弾性部材と、前記第1翼及び前記第2翼との間で前記粘弾性部材を挟むように前記第1翼と前記第2翼との間に配置される支持部材と、を備える振動抑制装置を提供する。   A first aspect of the present invention is a viscoelastic member disposed so as to be in contact with the first wing and the second wing between the first wing and the second wing disposed next to the first wing. And a support member disposed between the first wing and the second wing so as to sandwich the viscoelastic member between the first wing and the second wing. To do.

本発明によれば、粘弾性部材は、第1翼と支持部材との間に挟まれるとともに、第2翼と支持部材との間に挟まれるため、第1翼及び第2翼と十分に接触する。そのため、振動により第1翼及び第2翼の少なくとも一方が変形すると、その変形に合わせて粘弾性部材も変形して、粘弾性部材の内部減衰が得られる。これにより、第1翼及び第2翼の少なくとも一方の振動(運動エネルギー)は粘弾性部材により熱(散逸エネルギー)に変換される。したがって、翼の振動が十分に抑制(減衰)される。   According to the present invention, since the viscoelastic member is sandwiched between the first wing and the support member and is sandwiched between the second wing and the support member, the viscoelastic member is sufficiently in contact with the first wing and the second wing. To do. Therefore, when at least one of the first wing and the second wing is deformed by vibration, the viscoelastic member is also deformed in accordance with the deformation, and internal damping of the viscoelastic member is obtained. Thereby, vibration (kinetic energy) of at least one of the first blade and the second blade is converted into heat (dissipated energy) by the viscoelastic member. Therefore, the vibration of the blade is sufficiently suppressed (damped).

本発明に係る振動抑制装置において、前記支持部材の熱膨張係数は、前記第1翼の熱膨張係数及び前記第2翼の熱膨張係数よりも大きくてもよい。   In the vibration suppressing device according to the present invention, a thermal expansion coefficient of the support member may be larger than a thermal expansion coefficient of the first blade and a thermal expansion coefficient of the second blade.

従って、温度が上昇すると支持部材は第1翼と第2翼との間において大きく膨張する。これにより、支持部材は第1翼及び第2翼のそれぞれとの間で粘弾性部材を強固に挟み付けることができる。   Therefore, when the temperature rises, the support member expands greatly between the first blade and the second blade. Thereby, a support member can clamp a viscoelastic member firmly between each of a 1st wing | blade and a 2nd wing | blade.

本発明に係る振動抑制装置において、前記粘弾性部材は、300度以上2000度以下の高温環境で物性が変化しない耐熱性を有してもよい。   In the vibration suppressing device according to the present invention, the viscoelastic member may have heat resistance that does not change physical properties in a high temperature environment of 300 degrees or more and 2000 degrees or less.

従って、粘弾性部材が蒸気タービン又はガスタービンに使用されても、所期の振動減衰機能を維持することができる。   Therefore, even when the viscoelastic member is used for a steam turbine or a gas turbine, an intended vibration damping function can be maintained.

本発明に係る振動抑制装置において、前記粘弾性部材は、繊維の積層体を含んでもよい。   In the vibration suppressing device according to the present invention, the viscoelastic member may include a fiber laminate.

従って、粘弾性部材が高温環境で使用されても、所期の振動減衰機能を維持することができる。   Therefore, even if the viscoelastic member is used in a high temperature environment, the intended vibration damping function can be maintained.

本発明に係る振動抑制装置において、前記粘弾性部材は、前記第1翼及び前記第2翼と接触する第1面と、前記第1面の反対方向を向く第2面と、を有し、前記支持部材は、前記粘弾性部材の前記第2面と接触する接触面と、内部に設けられた空洞部と、を有してもよい。   In the vibration suppressing device according to the present invention, the viscoelastic member includes a first surface that contacts the first wing and the second wing, and a second surface facing in a direction opposite to the first surface, The support member may include a contact surface that comes into contact with the second surface of the viscoelastic member, and a hollow portion provided inside.

従って、支持部材は、接触面と粘弾性部材の第2面とを接触させた状態で、接触面と第1翼及び第2翼のそれぞれとの間で粘弾性部材を強固に挟むことができる。また、支持部材は空洞部を有するので、振動抑制装置の軽量化が図られる。   Therefore, the support member can firmly sandwich the viscoelastic member between the contact surface and each of the first wing and the second wing in a state where the contact surface and the second surface of the viscoelastic member are in contact with each other. . Further, since the support member has the hollow portion, the vibration suppressing device can be reduced in weight.

本発明の第2の態様は、動翼を有するロータと、前記ロータの周囲に配置される静翼を有するステータと、を備え、前記動翼は、第1動翼と前記第1動翼の隣に配置される第2動翼と、を含み、上記の振動抑制装置が前記第1動翼と前記第2動翼との間に配置されるタービンを提供する。   A second aspect of the present invention includes a rotor having a moving blade and a stator having a stationary blade disposed around the rotor, and the moving blade includes a first moving blade and a first moving blade. And a second moving blade disposed adjacent thereto, wherein the vibration suppressing device described above is provided between the first moving blade and the second moving blade.

本発明によれば、振動が抑制される動翼を有するため、タービンの性能の低下が抑制される。   According to the present invention, since the moving blade is suppressed in vibration, deterioration in the performance of the turbine is suppressed.

本発明に係る振動抑制装置によれば、翼の振動が十分に抑制される。また、本発明に係るタービンによれば、性能の低下が抑制される。   According to the vibration suppressing device of the present invention, the vibration of the blade is sufficiently suppressed. In addition, according to the turbine of the present invention, performance degradation is suppressed.

図1は、第1実施形態に係るガスタービンシステムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a gas turbine system according to the first embodiment. 図2は、第1実施形態に係る動翼の一例を示す側面図である。FIG. 2 is a side view showing an example of a moving blade according to the first embodiment. 図3は、第1実施形態に係る動翼及び振動抑制装置の一例を示す図である。FIG. 3 is a diagram illustrating an example of the moving blade and the vibration suppressing device according to the first embodiment. 図4は、図3の一部を拡大した図である。FIG. 4 is an enlarged view of a part of FIG. 図5は、第1実施形態に係る振動抑制装置の一例を示す斜視図である。FIG. 5 is a perspective view illustrating an example of a vibration suppressing device according to the first embodiment. 図6は、第1実施形態に係る振動抑制装置の一例を示す断面図である。FIG. 6 is a cross-sectional view illustrating an example of the vibration suppressing device according to the first embodiment. 図7は、第1実施形態に係る振動抑制装置の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically illustrating an example of the vibration suppressing device according to the first embodiment. 図8は、第1実施形態に係る振動抑制装置の作用の一例を説明するための図である。FIG. 8 is a diagram for explaining an example of the operation of the vibration suppressing device according to the first embodiment. 図9は、第1実施形態に係るタービンの製造方法の一例を説明するための図である。FIG. 9 is a diagram for explaining an example of the turbine manufacturing method according to the first embodiment. 図10は、第1実施形態に係るタービンの製造方法の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of the method for manufacturing the turbine according to the first embodiment. 図11は、第2実施形態に係る振動抑制装置の一例を示す図である。FIG. 11 is a diagram illustrating an example of a vibration suppressing device according to the second embodiment. 図12は、第3実施形態に係る振動抑制装置の一例を示す図である。FIG. 12 is a diagram illustrating an example of a vibration suppressing device according to the third embodiment.

以下、本発明に係る実施形態について図面を参照しながら説明する。なお、本実施形態により本発明が限定されるものではない。また、以下で説明する実施形態における構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, the constituent elements in the embodiments described below can be combined as appropriate. Some components may not be used.

<第1実施形態>
第1実施形態について説明する。図1は、本実施形態に係るガスタービンシステム1の一例を示す図である。ガスタービンシステム1は、燃焼用空気を圧縮する圧縮機2と、圧縮機2から供給された圧縮空気に燃料を噴射して燃焼させ、燃焼ガスを生成する燃焼器3と、燃焼器3から供給された燃焼ガスにより駆動するタービン4とを備えている。タービン4は、動翼5を有するロータ6と、ロータ6の周囲に配置される静翼7を有するステータ8とを備えている。ロータ6は、回転軸AXを中心に回転する。以下の説明において、回転軸AXと平行な方向を適宜、軸方向、と称し、回転軸AXを中心とした回転方向を適宜、周方向、と称する。
<First Embodiment>
A first embodiment will be described. FIG. 1 is a diagram illustrating an example of a gas turbine system 1 according to the present embodiment. The gas turbine system 1 includes a compressor 2 that compresses combustion air, a combustor 3 that generates fuel gas by injecting fuel into the compressed air supplied from the compressor 2, and a combustion gas that is supplied from the combustor 3. And a turbine 4 driven by the generated combustion gas. The turbine 4 includes a rotor 6 having moving blades 5 and a stator 8 having stationary blades 7 disposed around the rotor 6. The rotor 6 rotates about the rotation axis AX. In the following description, a direction parallel to the rotation axis AX is appropriately referred to as an axial direction, and a rotation direction around the rotation axis AX is appropriately referred to as a circumferential direction.

動翼5は、タービン4のロータ軸に設けられる。動翼5は、軸方向に複数段配置される。静翼7は、ステータ8のケーシングに設けられる。静翼7は、軸方向に複数段配置される。軸方向に関して、動翼5(動翼列)と静翼7(静翼列)とは、交互に配置される。   The moving blade 5 is provided on the rotor shaft of the turbine 4. The moving blades 5 are arranged in a plurality of stages in the axial direction. The stationary blade 7 is provided in the casing of the stator 8. The stationary blades 7 are arranged in a plurality of stages in the axial direction. With respect to the axial direction, the moving blades 5 (moving blade rows) and the stationary blades 7 (static blade rows) are alternately arranged.

図2は、本実施形態に係る動翼5の一例を示す側面図である。図2に示すように、動翼5は、燃焼ガスが接触する翼本体10と、ロータ軸に保持される翼根11とを有する。また、動翼5は、翼本体10を支持するプラットホーム12と、プラットホーム12と翼根11とを連結するシャンク13とを有する。動翼5は、冷却用ガスが流れる内部流路を有する。内部流路は、翼根11からシャンク13を通り、さらにプラットホーム12を通って翼本体10まで貫通するように設けられる。なお、翼根、プラットホーム、及びシャンクを有する動翼の一例が特開2005−233141号公報に開示されている。   FIG. 2 is a side view showing an example of the moving blade 5 according to the present embodiment. As shown in FIG. 2, the moving blade 5 has a blade body 10 that is in contact with combustion gas, and a blade root 11 that is held by a rotor shaft. The moving blade 5 includes a platform 12 that supports the blade body 10, and a shank 13 that connects the platform 12 and the blade root 11. The moving blade 5 has an internal flow path through which a cooling gas flows. The internal flow path is provided from the blade root 11 through the shank 13 and further through the platform 12 to the blade body 10. An example of a moving blade having a blade root, a platform, and a shank is disclosed in JP-A-2005-233141.

動翼5は、軸方向に複数段配置されるとともに、周方向に複数配置される。図3は、周方向に配置される複数の動翼5の一部を模式的に示す図である。図4は、図3の一部を拡大した図である。以下の説明においては、周方向に配置される複数の動翼5のうち、隣り合う2つの動翼5について説明する。一方の動翼5を適宜、第1動翼51、と称し、周方向に関して第1動翼51の隣に配置される動翼5を適宜、第2動翼52、と称する。第1動翼51と第2動翼52とは、実質的に同一の構造である。以下、主に第1動翼51の構造について説明し、第2動翼52の構造の説明は省略する。   The moving blades 5 are arranged in a plurality of stages in the axial direction and are arranged in a plurality in the circumferential direction. FIG. 3 is a diagram schematically showing a part of the plurality of moving blades 5 arranged in the circumferential direction. FIG. 4 is an enlarged view of a part of FIG. In the following description, two adjacent blades 5 among the plurality of blades 5 arranged in the circumferential direction will be described. One rotor blade 5 is appropriately referred to as a first rotor blade 51, and the rotor blade 5 disposed adjacent to the first rotor blade 51 in the circumferential direction is appropriately referred to as a second rotor blade 52. The first moving blade 51 and the second moving blade 52 have substantially the same structure. Hereinafter, the structure of the first moving blade 51 will be mainly described, and the description of the structure of the second moving blade 52 will be omitted.

動翼5(第1動翼51及び第2動翼52)は、例えばニッケル基合金又はチタンのような金属製である。動翼5は、例えば、Cr、Co等を含む柱状晶Ni基耐熱合金で形成されてもよい。動翼5は、間隙Gを介して周方向に複数配置される。すなわち、複数の動翼5は、隣り合う動翼5と非接触状態で、周方向に複数配置される。   The moving blade 5 (the first moving blade 51 and the second moving blade 52) is made of a metal such as a nickel base alloy or titanium, for example. The rotor blade 5 may be formed of a columnar crystal Ni-base heat-resistant alloy containing, for example, Cr, Co and the like. A plurality of the moving blades 5 are arranged in the circumferential direction via the gap G. That is, a plurality of moving blades 5 are arranged in the circumferential direction in a non-contact state with adjacent moving blades 5.

図3及び図4に示すように、第1動翼51と第2動翼52との間に間隙Gが形成される。第1動翼51と第2動翼52との間隙Gにおいて寸法が最も小さい部分は、第1動翼51のプラットホーム12の側面12Aと、その側面12Aと対向する第2動翼52のプラットホーム12の側面12Bとの間の間隙である。   As shown in FIGS. 3 and 4, a gap G is formed between the first moving blade 51 and the second moving blade 52. The smallest dimension in the gap G between the first moving blade 51 and the second moving blade 52 is the side surface 12A of the platform 12 of the first moving blade 51 and the platform 12 of the second moving blade 52 facing the side surface 12A. It is a gap between the side surface 12B of the.

第1動翼51は、第2動翼52と対向する側面12Aに設けられた溝(凹部)14を有する。溝14は、プラットホーム12に設けられる。溝14は、軸方向に延在する。溝14の内面は、曲面14Aを含む。   The first moving blade 51 has a groove (concave portion) 14 provided in the side surface 12 </ b> A facing the second moving blade 52. The groove 14 is provided in the platform 12. The groove 14 extends in the axial direction. The inner surface of the groove 14 includes a curved surface 14A.

本実施形態において、タービン4は、第1動翼51と第2動翼52との間に配置される振動抑制装置60を備えている。振動抑制装置60は、第1動翼51及び第2動翼52の少なくとも一方の振動を抑制(減衰)する。振動抑制装置60の少なくとも一部は、溝14に配置される。振動抑制装置60は、第1動翼51及び第2動翼52のそれぞれと接触するように配置される。本実施形態において、振動抑制装置60の一部は、第1動翼51の溝14の内面と接触する。振動抑制装置60の一部は、第2動翼52のプラットホーム12の側面12Bと接触する。第1動翼51と第2動翼52との間に振動抑制装置60が配置された状態で、第1動翼51と第2動翼52とは接触せず、第1動翼51と第2動翼52とに間隙Gが設けられる。振動抑制装置60は、第1動翼51と第2動翼52との非接触状態を維持するように、第1動翼51と第2動翼52との間に配置される。   In the present embodiment, the turbine 4 includes a vibration suppressing device 60 disposed between the first moving blade 51 and the second moving blade 52. The vibration suppressing device 60 suppresses (attenuates) vibration of at least one of the first moving blade 51 and the second moving blade 52. At least a part of the vibration suppressing device 60 is disposed in the groove 14. The vibration suppressing device 60 is disposed so as to come into contact with each of the first moving blade 51 and the second moving blade 52. In the present embodiment, a part of the vibration suppressing device 60 is in contact with the inner surface of the groove 14 of the first moving blade 51. A part of the vibration suppressing device 60 is in contact with the side surface 12B of the platform 12 of the second moving blade 52. In a state where the vibration suppressing device 60 is disposed between the first moving blade 51 and the second moving blade 52, the first moving blade 51 and the second moving blade 52 do not contact each other, and the first moving blade 51 and the second moving blade 52 are not in contact with each other. A gap G is provided between the two rotor blades 52. The vibration suppressing device 60 is disposed between the first moving blade 51 and the second moving blade 52 so as to maintain a non-contact state between the first moving blade 51 and the second moving blade 52.

図5は、本実施形態に係る振動抑制装置60の一例を示す斜視図である。図6は、本実施形態に係る振動抑制装置60の一例を示す断面図である。図4、図5、及び図6に示すように、振動抑制装置60は、粘弾性部材30と、粘弾性部材30を支持する支持部材40とを備えている。なお、振動抑制装置60を、振動減衰装置60、と称してもよいし、振動抑制部材60又は振動減衰部材60、と称してもよい。   FIG. 5 is a perspective view showing an example of the vibration suppressing device 60 according to the present embodiment. FIG. 6 is a cross-sectional view illustrating an example of the vibration suppressing device 60 according to the present embodiment. As shown in FIGS. 4, 5, and 6, the vibration suppressing device 60 includes a viscoelastic member 30 and a support member 40 that supports the viscoelastic member 30. The vibration suppressing device 60 may be referred to as a vibration damping device 60, or may be referred to as a vibration suppressing member 60 or a vibration damping member 60.

粘弾性部材30は、第1動翼51と第2動翼52との間に配置される。粘弾性部材30は、第1動翼51及び第2動翼52のそれぞれと接触するように配置される。すなわち、粘弾性部材30は、粘弾性部材30の一部が第1動翼51と接触し、粘弾性部材30の一部が第2動翼52と接触するように、第1動翼51と第2動翼52との間に配置される。本実施形態において、粘弾性部材30の一部は、第1動翼51の溝14の内面と接触する。粘弾性部材30の一部は、第2動翼52のプラットホーム12の側面12Bと接触する。   The viscoelastic member 30 is disposed between the first moving blade 51 and the second moving blade 52. The viscoelastic member 30 is disposed so as to contact each of the first moving blade 51 and the second moving blade 52. That is, the viscoelastic member 30 includes the first moving blade 51 so that a part of the viscoelastic member 30 is in contact with the first moving blade 51 and a part of the viscoelastic member 30 is in contact with the second moving blade 52. It arrange | positions between the 2nd moving blades 52. FIG. In the present embodiment, a part of the viscoelastic member 30 is in contact with the inner surface of the groove 14 of the first moving blade 51. A part of the viscoelastic member 30 is in contact with the side surface 12B of the platform 12 of the second moving blade 52.

粘弾性部材30は、粘性と弾性との両方を合わせた性質(物性)を有する。粘弾性部材30は、動翼5及び支持部材40よりも、高い粘性、弾性、及び可撓性を有する。粘弾性部材30は、動翼5及び支持部材40よりも、大きな構造減衰を有する。粘弾性部材30の剛性は、動翼5の剛性及び支持部材40の剛性よりも低い。本実施形態において、粘弾性部材30は、耐熱性を有する。粘弾性部材30の物性は、例えば300度以上2000度以下の高温環境でも変化せず、振動減衰効果を保持する。   The viscoelastic member 30 has properties (physical properties) that combine both viscosity and elasticity. The viscoelastic member 30 has higher viscosity, elasticity, and flexibility than the moving blade 5 and the support member 40. The viscoelastic member 30 has a greater structural damping than the rotor blade 5 and the support member 40. The rigidity of the viscoelastic member 30 is lower than the rigidity of the rotor blade 5 and the rigidity of the support member 40. In this embodiment, the viscoelastic member 30 has heat resistance. The physical properties of the viscoelastic member 30 do not change even in a high temperature environment of, for example, 300 degrees or more and 2000 degrees or less, and retain the vibration damping effect.

本実施形態において、粘弾性部材30は、繊維の積層体を含む。繊維の積層体は、繊維の織物体を含んでもよいし、繊維の編物体を含んでもよい。繊維はニッケルのような金属繊維でもよいし、炭素繊維でもよい。繊維の集合体の粘弾性部材30は、十分な粘性及び弾性を有する。   In the present embodiment, the viscoelastic member 30 includes a fiber laminate. The fiber laminate may include a fiber woven body or a fiber knitted body. The fiber may be a metal fiber such as nickel or a carbon fiber. The viscoelastic member 30 of the fiber aggregate has sufficient viscosity and elasticity.

本実施形態において、粘弾性部材30は、筒状の部材である。粘弾性部材30は、第1動翼51及び第2動翼52のそれぞれと接触する外面30Sと、外面30Sの反対方向を向く内面30Uとを有する。   In the present embodiment, the viscoelastic member 30 is a cylindrical member. The viscoelastic member 30 has an outer surface 30S that contacts each of the first moving blade 51 and the second moving blade 52, and an inner surface 30U that faces in the opposite direction of the outer surface 30S.

支持部材40は、第1動翼51と第2動翼52との間に配置される。支持部材40は、第1動翼51及び第2動翼52のそれぞれとの間で粘弾性部材30を挟むように、第1動翼51と第2動翼52との間に配置される。支持部材40は、第1動翼51の溝14の内面との間で、粘弾性部材30の少なくとも一部を挟む。支持部材40は、第2動翼52のプラットホーム12の側面12Bとの間で、粘弾性部材30の少なくとも一部を挟む。   The support member 40 is disposed between the first moving blade 51 and the second moving blade 52. The support member 40 is disposed between the first moving blade 51 and the second moving blade 52 so that the viscoelastic member 30 is sandwiched between the first moving blade 51 and the second moving blade 52. The support member 40 sandwiches at least a part of the viscoelastic member 30 between the inner surface of the groove 14 of the first rotor blade 51. The support member 40 sandwiches at least a part of the viscoelastic member 30 with the side surface 12B of the platform 12 of the second moving blade 52.

支持部材40は、第1動翼51の熱膨張係数(線膨張係数)及び第2動翼52の熱膨張係数よりも大きい熱膨張係数を有する金属製である。したがって、動翼5(第1動翼51及び第2動翼52)と支持部材40とが同一の環境に配置された状態でその環境の温度が上昇すると、支持部材40の膨張量は動翼5の膨張量よりも大きい。   The support member 40 is made of metal having a thermal expansion coefficient larger than the thermal expansion coefficient (linear expansion coefficient) of the first moving blade 51 and the thermal expansion coefficient of the second moving blade 52. Accordingly, when the temperature of the moving blade 5 (the first moving blade 51 and the second moving blade 52) and the support member 40 are arranged in the same environment and the temperature of the environment rises, the expansion amount of the support member 40 is increased. The expansion amount is larger than 5.

支持部材40は、粘弾性部材30の内側に配置され、第1動翼51及び第2動翼52のそれぞれとの間で粘弾性部材30を挟み込む。支持部材40は、粘弾性部材30の内面30Uのほぼ全域と接触する。支持部材40は、粘弾性部材30の内面30Uと接触する外面40Sと、外面40Sの反対方向を向く内面40Uとを有する。支持部材40は、内部に設けられた空洞部41を有する。支持部材40の内面40Uによって空洞部41が規定される。   The support member 40 is disposed inside the viscoelastic member 30 and sandwiches the viscoelastic member 30 between each of the first moving blade 51 and the second moving blade 52. The support member 40 is in contact with almost the entire area of the inner surface 30U of the viscoelastic member 30. The support member 40 has an outer surface 40S that contacts the inner surface 30U of the viscoelastic member 30, and an inner surface 40U that faces in the opposite direction of the outer surface 40S. The support member 40 has a hollow portion 41 provided inside. The cavity 41 is defined by the inner surface 40U of the support member 40.

本実施形態において、支持部材40は、筒状の部材である。粘弾性部材30は、支持部材40に支持される。粘弾性部材30は、支持部材40の外面40Uを覆うように配置される。   In the present embodiment, the support member 40 is a cylindrical member. The viscoelastic member 30 is supported by the support member 40. The viscoelastic member 30 is disposed so as to cover the outer surface 40U of the support member 40.

本実施形態において、溝14の曲面14Aは、粘弾性部材30の外形に沿うように曲がっている。溝14の内面と粘弾性部材30の外面30Sとの接触面積は大きい。   In the present embodiment, the curved surface 14 </ b> A of the groove 14 is bent along the outer shape of the viscoelastic member 30. The contact area between the inner surface of the groove 14 and the outer surface 30S of the viscoelastic member 30 is large.

図7は、本実施形態に係る動翼5、粘弾性部材30、及び支持部材40の一部を模式的に示す断面図である。図7に示すように、粘弾性部材30が動翼5と支持部材40との間に挟まれて固定される。動翼5の表面(本実施形態においては溝14の内面又は側面12B)と粘弾性部材30の外面30Sとが十分に接触する。粘弾性部材30の内面30Uと支持部材40の外面40Sとが十分に接触する。   FIG. 7 is a cross-sectional view schematically showing a part of the moving blade 5, the viscoelastic member 30, and the support member 40 according to the present embodiment. As shown in FIG. 7, the viscoelastic member 30 is sandwiched and fixed between the moving blade 5 and the support member 40. The surface of the moving blade 5 (in this embodiment, the inner surface or the side surface 12B of the groove 14) and the outer surface 30S of the viscoelastic member 30 are in sufficient contact. The inner surface 30U of the viscoelastic member 30 and the outer surface 40S of the support member 40 are in sufficient contact.

図8は、粘弾性部材30の動作の一例を示す図である。例えば動翼5が振動すると、図8に示すように、動翼5が変形したり、動翼5と支持部材40との相対位置が変化したりする。本実施形態において、粘弾性部材30は、動翼5と支持部材40との間に挟まれて、動翼5の表面と十分に接触する。そのため、振動により動翼5が変形したり、支持部材40に対して動翼5が変位したりすると、その動翼5の変形又は変位に合わせて粘弾性部材30も変形する。図8に示す例では、粘弾性部材30は、専らせん断変形する。粘弾性部材30の剛性は、動翼5の剛性及び支持部材40の剛性よりも低く、粘弾性部材30は、動翼5の変形又は変位に十分に追従することができる。   FIG. 8 is a diagram illustrating an example of the operation of the viscoelastic member 30. For example, when the moving blade 5 vibrates, as shown in FIG. 8, the moving blade 5 is deformed or the relative position between the moving blade 5 and the support member 40 is changed. In the present embodiment, the viscoelastic member 30 is sandwiched between the moving blade 5 and the support member 40 and sufficiently contacts the surface of the moving blade 5. Therefore, when the moving blade 5 is deformed by vibration or the moving blade 5 is displaced with respect to the support member 40, the viscoelastic member 30 is also deformed in accordance with the deformation or displacement of the moving blade 5. In the example shown in FIG. 8, the viscoelastic member 30 exclusively undergoes shear deformation. The rigidity of the viscoelastic member 30 is lower than the rigidity of the moving blade 5 and the rigidity of the support member 40, and the viscoelastic member 30 can sufficiently follow the deformation or displacement of the moving blade 5.

動翼5の変形又は変位に合わせて粘弾性部材30が変形(せん断変形)することにより、粘弾性部材30の内部減衰が得られ、動翼5の振動(運動エネルギー)が粘弾性部材30により熱(散逸エネルギー)に変換される。これにより、動翼5の振動が十分に抑制される。例えば、動翼5の共振及び自励振動が粘弾性部材30及び支持部材40を含む振動抑制装置60によって抑制される。   When the viscoelastic member 30 is deformed (sheared) in accordance with the deformation or displacement of the moving blade 5, internal damping of the viscoelastic member 30 is obtained, and vibration (kinetic energy) of the moving blade 5 is caused by the viscoelastic member 30. Converted to heat (dissipated energy). Thereby, the vibration of the moving blade 5 is sufficiently suppressed. For example, resonance and self-excited vibration of the moving blade 5 are suppressed by the vibration suppressing device 60 including the viscoelastic member 30 and the support member 40.

また、本実施形態において、振動抑制装置60は、第1動翼51と第2動翼52との非接触状態を維持する。第1動翼51と第2動翼52とは接触しないので、第1動翼51の振動が直接的に第2動翼52に伝搬したり、第2動翼52の振動が直接的に第1動翼51に伝搬したりすることが抑制される。   In the present embodiment, the vibration suppressing device 60 maintains the non-contact state between the first moving blade 51 and the second moving blade 52. Since the first moving blade 51 and the second moving blade 52 do not come into contact with each other, the vibration of the first moving blade 51 directly propagates to the second moving blade 52 or the vibration of the second moving blade 52 directly Propagation to one moving blade 51 is suppressed.

本実施形態において、振動抑制装置60は、シール装置として機能する。第1動翼51と第2動翼52との間に配置された振動抑制装置60によって、第1動翼51の翼本体10及び第2動翼52の翼本体10の周囲の気体(高温の燃焼ガス)が、第1動翼51のシャンク13及び第2動翼52のシャンク13の周囲の空間に流入することが抑制される。また、第1動翼51と第2動翼52との間に配置された振動抑制装置60によって、第1動翼51のシャンク13及び第2動翼52のシャンク13の周囲の気体(低温の冷却用ガス)が、第1動翼51の翼本体10及び第2動翼52の翼本体10の周囲の空間に流入することが抑制される。   In the present embodiment, the vibration suppressing device 60 functions as a sealing device. The vibration suppression device 60 disposed between the first moving blade 51 and the second moving blade 52 causes a gas (high temperature) around the blade body 10 of the first moving blade 51 and the blade body 10 of the second moving blade 52. Combustion gas) is suppressed from flowing into the space around the shank 13 of the first rotor blade 51 and the shank 13 of the second rotor blade 52. In addition, the vibration suppression device 60 disposed between the first moving blade 51 and the second moving blade 52 causes a gas (low temperature) around the shank 13 of the first moving blade 51 and the shank 13 of the second moving blade 52. The cooling gas is suppressed from flowing into the space around the blade body 10 of the first blade 51 and the blade body 10 of the second blade 52.

次に、本実施形態に係るタービン4の製造方法の一例について説明する。図9及び図10のそれぞれは、本実施形態に係るタービン4の製造方法の一例を説明するための模式図である。   Next, an example of a method for manufacturing the turbine 4 according to the present embodiment will be described. Each of FIG. 9 and FIG. 10 is a schematic diagram for explaining an example of a method for manufacturing the turbine 4 according to the present embodiment.

第1動翼51及び第2動翼52がタービン軸に取付けられる。第1動翼51及び第2動翼52は、間隙Gを介して隣り合うように配置される。図9に示すように、振動抑制装置60が、第1動翼51の溝14と第2動翼52との間に配置される。第1動翼51と第2動翼52との間に振動抑制装置60を配置する作業は、常温環境で行われる。常温環境において第1動翼51と第2動翼52との間に振動抑制装置60が配置された状態で、第1動翼51の溝14の内面及び第2動翼52の側面12Bの少なくとも一方と振動抑制装置60の外面(粘弾性部材30の外面30S)との間に間隙が形成される。   The first moving blade 51 and the second moving blade 52 are attached to the turbine shaft. The first moving blade 51 and the second moving blade 52 are arranged so as to be adjacent to each other with the gap G interposed therebetween. As shown in FIG. 9, the vibration suppressing device 60 is disposed between the groove 14 of the first moving blade 51 and the second moving blade 52. The operation of disposing the vibration suppressing device 60 between the first moving blade 51 and the second moving blade 52 is performed in a normal temperature environment. In a state in which the vibration suppressing device 60 is disposed between the first moving blade 51 and the second moving blade 52 in a normal temperature environment, at least the inner surface of the groove 14 of the first moving blade 51 and the side surface 12B of the second moving blade 52. A gap is formed between one side and the outer surface of the vibration suppressing device 60 (the outer surface 30S of the viscoelastic member 30).

すなわち、本実施形態においては、常温環境において、振動抑制装置60の外形が第1動翼51(溝14の内面)と第2動翼52(側面12B)との間の間隙の寸法よりも僅かに小さくなるように、振動抑制装置60が製造される。これにより、振動抑制装置60を第1動翼51と第2動翼52との間に挿入する作業を円滑に行うことができる。   That is, in the present embodiment, in a normal temperature environment, the outer shape of the vibration suppression device 60 is slightly smaller than the dimension of the gap between the first moving blade 51 (the inner surface of the groove 14) and the second moving blade 52 (the side surface 12B). The vibration suppressing device 60 is manufactured to be smaller. Thereby, the operation | work which inserts the vibration suppression apparatus 60 between the 1st moving blade 51 and the 2nd moving blade 52 can be performed smoothly.

図10は、第1動翼51及び第2動翼52が高温環境で作動している状態の一例を示す。第1動翼51、第2動翼52、及び振動抑制装置60が常温環境から高温環境に配置されることにより、第1動翼51、第2動翼52、及び支持部材40のそれぞれは膨張する。本実施形態において、支持部材40の熱膨張係数は、動翼5の熱膨張係数よりも大きく、支持部材40が常温環境から高温環境に配置されたとき、支持部材40は大きく膨張する。粘弾性部材30の内側に配置されている支持部材40が大きく膨張することにより、動翼5と支持部材40との間に配置されている粘弾性部材30は、動翼5と支持部材40との間において圧迫される。また、動翼5も、常温環境から高温環境に配置されたとき、膨張する。動翼5の膨張によっても、動翼5と支持部材40との間に配置されている粘弾性部材30は、動翼5と支持部材40との間において圧迫される。したがって、動翼5の表面と粘弾性部材30の外面30Sとが十分に密着する。また、粘弾性部材30の内面30Uと支持部材40の外面40Sとが十分に密着する。   FIG. 10 shows an example of a state in which the first moving blade 51 and the second moving blade 52 are operating in a high temperature environment. By arranging the first moving blade 51, the second moving blade 52, and the vibration suppressing device 60 from the normal temperature environment to the high temperature environment, each of the first moving blade 51, the second moving blade 52, and the support member 40 expands. To do. In this embodiment, the thermal expansion coefficient of the support member 40 is larger than the thermal expansion coefficient of the moving blade 5, and when the support member 40 is disposed from a normal temperature environment to a high temperature environment, the support member 40 expands greatly. The viscoelastic member 30 arranged between the moving blade 5 and the supporting member 40 is expanded by the support member 40 arranged inside the viscoelastic member 30 greatly expanding. Squeezed between. Further, the moving blade 5 also expands when it is arranged from a normal temperature environment to a high temperature environment. The viscoelastic member 30 disposed between the moving blade 5 and the support member 40 is also pressed between the moving blade 5 and the support member 40 by the expansion of the moving blade 5. Therefore, the surface of the moving blade 5 and the outer surface 30S of the viscoelastic member 30 are sufficiently adhered. Further, the inner surface 30U of the viscoelastic member 30 and the outer surface 40S of the support member 40 are sufficiently adhered.

例えばタービン4のメンテナンスにおいて、振動抑制装置60を第1動翼51と第2動翼52との間から取り外すとき、第1動翼51、第2動翼52、及び振動抑制装置50が常温環境に配置される。これにより、支持部材40及び動翼5が収縮し、図9を参照して説明したように、振動抑制装置60の外面(粘弾性部材30の外面30S)と動翼5の表面との間に間隙が形成される。したがって、振動抑制装置60を第1動翼51と第2動翼52との間から取り出す作業を円滑に行うことができる。   For example, when the vibration suppressing device 60 is removed from between the first moving blade 51 and the second moving blade 52 in the maintenance of the turbine 4, the first moving blade 51, the second moving blade 52, and the vibration suppressing device 50 are in a normal temperature environment. Placed in. Thereby, the support member 40 and the moving blade 5 contract, and as described with reference to FIG. 9, between the outer surface of the vibration suppressing device 60 (the outer surface 30S of the viscoelastic member 30) and the surface of the moving blade 5. A gap is formed. Therefore, the operation of taking out the vibration suppressing device 60 from between the first moving blade 51 and the second moving blade 52 can be performed smoothly.

なお、本実施形態においては、振動抑制装置60(粘弾性部材30、支持部材40)が円筒状であることとした。振動抑制装置60は、その外形が三角形、四角形、又は五角形以上の任意の多角形の筒状でもよいし、楕円形の筒状でもよい。   In the present embodiment, the vibration suppressing device 60 (the viscoelastic member 30 and the support member 40) is cylindrical. The vibration suppression device 60 may have an outer shape that is triangular, quadrangular, or an arbitrary polygonal cylinder of pentagon or more, or an elliptical cylindrical shape.

以上説明したように、本実施形態によれば、動翼5と支持部材40との間に挟まれた粘弾性部材30によって、動翼5の振動を抑制することができる。したがって、動翼5の性能の低下及びタービン4の性能の低下が抑制される。   As described above, according to the present embodiment, the vibration of the moving blade 5 can be suppressed by the viscoelastic member 30 sandwiched between the moving blade 5 and the support member 40. Therefore, a decrease in the performance of the moving blade 5 and a decrease in the performance of the turbine 4 are suppressed.

また、本実施形態において、粘弾性部材30は、動翼5と支持部材40との間に挟まれて動翼5の表面と十分に接触する。そのため、動翼5が高温環境で作動しているときの動翼5の振動特性は安定する。したがって、動翼5にどのような振動が生じるかを予測(振動予測)することが容易となり、振動抑制のための適切な措置を講ずることができる。   In the present embodiment, the viscoelastic member 30 is sandwiched between the moving blade 5 and the support member 40 and sufficiently contacts the surface of the moving blade 5. Therefore, the vibration characteristics of the moving blade 5 when the moving blade 5 is operating in a high temperature environment are stabilized. Therefore, it becomes easy to predict (vibration prediction) what kind of vibration will occur in the rotor blade 5, and appropriate measures for vibration suppression can be taken.

また、本実施形態によれば、粘弾性部材30は、動翼5との間において摩擦をほぼ発生させず、動翼5と粘弾性部材30との接触状態(接触面積及び接触力)は長期間維持される。したがって、振動抑制装置60の継時的劣化が抑制され、減衰効果を長期間維持することができる。   In addition, according to the present embodiment, the viscoelastic member 30 hardly generates friction between the moving blade 5 and the contact state (contact area and contact force) between the moving blade 5 and the viscoelastic member 30 is long. The period is maintained. Therefore, the deterioration over time of the vibration suppressing device 60 is suppressed, and the damping effect can be maintained for a long time.

また、本実施形態によれば、支持部材40の熱膨張係数は十分に大きい。したがって、常温環境において、振動抑制装置60を第1動翼51と第2動翼52との間に挿入する作業、及び振動抑制装置60を第1動翼51と第2動翼52との間から取り出す作業を円滑に行うことができ、メンテナンス性を向上することができる。また、高温環境においては支持部材40の熱変形(熱膨張)により、動翼5と粘弾性部材30とを十分に密着させることができる。したがって、高温環境において動翼5が振動により変形したり変位したりしても、粘弾性部材30は、動翼5の変形又は変位に十分に追従して振動を低減することができる。   Further, according to the present embodiment, the thermal expansion coefficient of the support member 40 is sufficiently large. Therefore, in a normal temperature environment, the operation of inserting the vibration suppressing device 60 between the first moving blade 51 and the second moving blade 52 and the vibration suppressing device 60 between the first moving blade 51 and the second moving blade 52 are performed. The work to be taken out from the container can be performed smoothly, and the maintainability can be improved. Further, in a high temperature environment, the moving blade 5 and the viscoelastic member 30 can be sufficiently brought into close contact by thermal deformation (thermal expansion) of the support member 40. Therefore, even if the moving blade 5 is deformed or displaced by vibration in a high temperature environment, the viscoelastic member 30 can sufficiently follow the deformation or displacement of the moving blade 5 to reduce the vibration.

また、メンテナンス性が向上するため、使用により粘弾性部材30が劣化した場合でも、新たな粘弾性部材30(振動抑制装置60)と円滑に交換することができる。   Moreover, since maintainability improves, even if the viscoelastic member 30 deteriorates by use, it can be smoothly exchanged for a new viscoelastic member 30 (vibration suppressing device 60).

また、振動抑制装置60が容易に交換可能であるため、目的に応じた振動抑制装置60を動翼5に簡単に取り付けることができる。例えば、第1の振動(第1の振動数又は第1の振動モード)を抑制するのに適した減衰特性を有する第1の振動抑制装置60が動翼5に取り付けられている状態において、第2の振動(第2の振動数又は第2の振動モード)を抑制するのに適した減衰特性を有する第2の振動抑制装置60を動翼5に取り付けたい場合、第1の振動抑制装置60と第2の振動抑制装置60とを簡単に交換することができる。第1の振動抑制装置60と第2の振動抑制装置60とで、粘弾性部材30の厚みが異なってもよいし、粘弾性部材30の種類(物性)が異なってもよい。このように、減衰したい振動に応じて、振動抑制装置60を容易に交換することができる。   Further, since the vibration suppression device 60 can be easily replaced, the vibration suppression device 60 according to the purpose can be easily attached to the moving blade 5. For example, in the state where the first vibration suppression device 60 having a damping characteristic suitable for suppressing the first vibration (the first frequency or the first vibration mode) is attached to the moving blade 5, When the second vibration suppression device 60 having a damping characteristic suitable for suppressing the second vibration (second frequency or second vibration mode) is to be attached to the moving blade 5, the first vibration suppression device 60 is provided. And the second vibration suppressing device 60 can be easily exchanged. The thickness of the viscoelastic member 30 may be different between the first vibration suppressing device 60 and the second vibration suppressing device 60, and the type (physical properties) of the viscoelastic member 30 may be different. Thus, the vibration suppressing device 60 can be easily replaced according to the vibration to be damped.

また、本実施形態において、支持部材40は、粘弾性部材30の内面30Uのほぼ全域と接触する外面40Sを有する。これにより、支持部材40は、外面40Sと動翼5の表面との間で粘弾性部材30を強固に挟むことができる。   In the present embodiment, the support member 40 has an outer surface 40 </ b> S that is in contact with substantially the entire area of the inner surface 30 </ b> U of the viscoelastic member 30. Accordingly, the support member 40 can firmly sandwich the viscoelastic member 30 between the outer surface 40S and the surface of the rotor blade 5.

また、本実施形態において、支持部材40は、内部に空洞部41を有する筒状の部材である。これにより、振動抑制装置60の軽量化が図られる。   In the present embodiment, the support member 40 is a cylindrical member having a hollow portion 41 inside. Thereby, weight reduction of the vibration suppression apparatus 60 is achieved.

<第2実施形態>
第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。
Second Embodiment
A second embodiment will be described. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.

図11は、本実施形態に係る振動抑制装置60Bの一例を示す図である。上述の実施形態においては、振動抑制装置60は円筒状であり、振動抑制装置60の外面が曲面を含むこととした。また、振動抑制装置60の外面(粘弾性部材30の外面30S)と溝14の内面との接触面積が大きくなるように、溝14の内面が曲面を含むこととした。本実施形態において、振動抑制装置60Bの外面は、平面を含む。   FIG. 11 is a diagram illustrating an example of a vibration suppressing device 60B according to the present embodiment. In the above-described embodiment, the vibration suppression device 60 is cylindrical, and the outer surface of the vibration suppression device 60 includes a curved surface. Further, the inner surface of the groove 14 includes a curved surface so that the contact area between the outer surface of the vibration suppressing device 60 (the outer surface 30S of the viscoelastic member 30) and the inner surface of the groove 14 is increased. In the present embodiment, the outer surface of the vibration suppressing device 60B includes a flat surface.

振動抑制装置60Bは、粘弾性部材30Bと支持部材40Bとを有する。第1動翼51は、溝140を有する。溝140の内面は、第1内面140Aと、第1内面140Aの下方に配置された第2内面140Bと、第2内面140Bの下方に配置された第3内面140Cとを含む。第1内面140Aは、周方向に関する第1動翼51の中心に向かって下方に傾斜する。第2内面140Bは、プラットホーム12の側面12Aとほぼ平行である。第3内面140Cは、水平面とほぼ平行である。   The vibration suppression device 60B includes a viscoelastic member 30B and a support member 40B. The first moving blade 51 has a groove 140. The inner surface of the groove 140 includes a first inner surface 140A, a second inner surface 140B disposed below the first inner surface 140A, and a third inner surface 140C disposed below the second inner surface 140B. 140A of 1st inner surfaces incline below toward the center of the 1st moving blade 51 regarding the circumferential direction. The second inner surface 140B is substantially parallel to the side surface 12A of the platform 12. The third inner surface 140C is substantially parallel to the horizontal plane.

図11に示すように、振動抑制装置60Bは、その外面と溝140の内面のほぼ全部とが密着するように、溝140の内面に沿った外形を有してもよい。すなわち、振動抑制装置60Bの外面と溝140の内面とが面接触するように、振動抑制装置60Bの外面の少なくとも一部が平面(平坦面)を含んでもよい。また、振動抑制装置60Bの外面と側面12Bとが面接触するように、振動抑制装置60Bの外面の少なくとも一部が平面(平坦面)を含んでもよい。   As shown in FIG. 11, the vibration suppressing device 60 </ b> B may have an outer shape along the inner surface of the groove 140 so that the outer surface thereof and the substantially entire inner surface of the groove 140 are in close contact with each other. That is, at least a part of the outer surface of the vibration suppression device 60B may include a flat surface (flat surface) so that the outer surface of the vibration suppression device 60B and the inner surface of the groove 140 are in surface contact. Further, at least a part of the outer surface of the vibration suppression device 60B may include a flat surface (flat surface) so that the outer surface of the vibration suppression device 60B and the side surface 12B are in surface contact.

<第3実施形態>
第3実施形態について説明する。図12は、本実施形態に係る振動抑制装置60Cの一例を示す図である。上述の各実施形態においては、粘弾性部材30が筒状の部材であることとした。本実施形態においては、粘弾性部材30Cが、支持部材40Cの周囲の一部に配置される。
<Third Embodiment>
A third embodiment will be described. FIG. 12 is a diagram illustrating an example of a vibration suppressing device 60C according to the present embodiment. In the above-described embodiments, the viscoelastic member 30 is a cylindrical member. In the present embodiment, the viscoelastic member 30C is disposed at a part of the periphery of the support member 40C.

図12に示すように、粘弾性部材30Cは、第1動翼51と支持部材40Cとの間に配置される第1粘弾性部材31と、第2動翼52と支持部材40Cとの間に配置される第2粘弾性部材32とを含む。図12に示す例において、第1粘弾性部材31と第2粘弾性部材32とは離れている。なお、支持部材40Cは、円筒状でもよいし、図12に示すように、その外形が四角形の筒状でもよいし、その外形が三角形の筒状でもよいし、五角形以上の任意の多角形の筒状でもよいし、楕円形の筒状でもよい。本実施形態においても、第1粘弾性部材31及び第2粘弾性部材32の内部減衰の作用により、第1動翼51及び第2動翼52の振動を抑制(減衰)することができる。   As shown in FIG. 12, the viscoelastic member 30C includes a first viscoelastic member 31 disposed between the first moving blade 51 and the support member 40C, and a second moving blade 52 and the support member 40C. 2nd viscoelastic member 32 arrange | positioned. In the example shown in FIG. 12, the first viscoelastic member 31 and the second viscoelastic member 32 are separated. The support member 40C may be cylindrical, or as shown in FIG. 12, the outer shape may be a rectangular tube, the outer shape may be a triangular tube, or an arbitrary polygon more than a pentagon. A cylindrical shape may be sufficient and an elliptical cylindrical shape may be sufficient. Also in this embodiment, the vibration of the first moving blade 51 and the second moving blade 52 can be suppressed (damped) by the action of internal damping of the first viscoelastic member 31 and the second viscoelastic member 32.

なお、上述の第1実施形態から第3実施形態において、支持部材(40など)は、空洞部41を有していなくてもよい。   In the first to third embodiments described above, the support member (40, etc.) may not have the cavity 41.

なお、上述の各実施形態において、振動抑制装置(60など)は、第1動翼51のシャンク13と第2動翼52のシャンク13との間に配置されてもよい。   In each of the above-described embodiments, the vibration suppressing device (60 or the like) may be disposed between the shank 13 of the first moving blade 51 and the shank 13 of the second moving blade 52.

なお、本実施形態においては、隣り合う動翼5の間に振動抑制装置(60など)が配置されることとした。隣り合う静翼7の間に振動抑制装置(60など)が配置されてもよい。   In the present embodiment, a vibration suppressing device (60 or the like) is disposed between the adjacent moving blades 5. A vibration suppressing device (60 or the like) may be disposed between the adjacent stationary blades 7.

なお、本実施形態において、振動抑制装置(60など)は、ガスタービンの翼(動翼又は静翼)の間に配置されてもよいし、蒸気タービンの翼(動翼又は静翼)の間に配置されてもよい。   In the present embodiment, the vibration suppressing device (60 or the like) may be disposed between the blades (moving blades or stationary blades) of the gas turbine, or between the blades (moving blades or stationary blades) of the steam turbine. May be arranged.

1 ガスタービンシステム
2 圧縮機
3 燃焼器
4 タービン
5 動翼
6 ロータ
7 静翼
8 ステータ
10 翼本体
11 翼根
12 プラットホーム
12A 側面
12B 側面
13 シャンク
14 溝
14A 曲面
30 粘弾性部材
30S 外面
30U 内面
40 支持部材
40S 外面
40U 内面
41 空洞部
51 第1動翼
52 第2動翼
60 振動減衰部材
140 溝
AX 回転軸
G 間隙
DESCRIPTION OF SYMBOLS 1 Gas turbine system 2 Compressor 3 Combustor 4 Turbine 5 Rotor blade 6 Rotor 7 Stator blade 8 Stator 10 Blade body 11 Blade root 12 Platform 12A Side surface 12B Side surface 13 Shank 14 Groove 14A Curved surface 30 Viscoelastic member 30S Outer surface 30U Inner surface 40U Support Member 40S Outer surface 40U Inner surface 41 Cavity 51 First moving blade 52 Second moving blade 60 Vibration damping member 140 Groove AX Rotating shaft G Gap

Claims (6)

第1翼と前記第1翼の隣に配置される第2翼との間において前記第1翼及び前記第2翼と接触するように配置される粘弾性部材と、
前記第1翼及び前記第2翼との間で前記粘弾性部材を挟むように前記第1翼と前記第2翼との間に配置される支持部材と、
を備える振動抑制装置。
A viscoelastic member disposed so as to be in contact with the first wing and the second wing between the first wing and the second wing disposed adjacent to the first wing;
A support member disposed between the first wing and the second wing so as to sandwich the viscoelastic member between the first wing and the second wing;
A vibration suppression device comprising:
前記支持部材の熱膨張係数は、前記第1翼の熱膨張係数及び前記第2翼の熱膨張係数よりも大きい請求項1に記載の振動抑制装置。   2. The vibration suppression device according to claim 1, wherein a thermal expansion coefficient of the support member is larger than a thermal expansion coefficient of the first blade and a thermal expansion coefficient of the second blade. 前記粘弾性部材は、300度以上2000度以下の高温環境で物性が変化しない耐熱性を有する請求項1又は請求項2に記載の振動抑制装置。   The vibration suppressing device according to claim 1 or 2, wherein the viscoelastic member has heat resistance that does not change physical properties in a high temperature environment of 300 degrees or more and 2000 degrees or less. 前記粘弾性部材は、繊維の積層体を含む請求項1から請求項3のいずれか一項に記載の振動抑制装置。   The vibration suppressing device according to any one of claims 1 to 3, wherein the viscoelastic member includes a laminated body of fibers. 前記粘弾性部材は、前記第1翼及び前記第2翼と接触する第1面と、前記第1面の反対方向を向く第2面と、を有し、
前記支持部材は、前記粘弾性部材の前記第2面と接触する接触面と、内部に設けられた空洞部と、を有する請求項1から請求項4のいずれか一項に記載の振動抑制装置。
The viscoelastic member has a first surface in contact with the first wing and the second wing, and a second surface facing the opposite direction of the first surface,
The vibration suppressing device according to any one of claims 1 to 4, wherein the support member includes a contact surface that contacts the second surface of the viscoelastic member, and a hollow portion provided inside. .
動翼を有するロータと、
前記ロータの周囲に配置される静翼を有するステータと、
を備え、
前記動翼は、第1動翼と前記第1動翼の隣に配置される第2動翼と、を含み、
請求項1から請求項5のいずれか一項に記載の振動抑制装置が前記第1動翼と前記第2動翼との間に配置されるタービン。
A rotor having moving blades;
A stator having stator vanes disposed around the rotor;
With
The moving blade includes a first moving blade and a second moving blade disposed adjacent to the first moving blade,
A turbine in which the vibration suppression device according to any one of claims 1 to 5 is arranged between the first moving blade and the second moving blade.
JP2014002654A 2014-01-09 2014-01-09 Vibration suppression device and turbine Expired - Fee Related JP6177142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002654A JP6177142B2 (en) 2014-01-09 2014-01-09 Vibration suppression device and turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002654A JP6177142B2 (en) 2014-01-09 2014-01-09 Vibration suppression device and turbine

Publications (2)

Publication Number Publication Date
JP2015132177A true JP2015132177A (en) 2015-07-23
JP6177142B2 JP6177142B2 (en) 2017-08-09

Family

ID=53899588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002654A Expired - Fee Related JP6177142B2 (en) 2014-01-09 2014-01-09 Vibration suppression device and turbine

Country Status (1)

Country Link
JP (1) JP6177142B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048791A (en) * 2015-09-03 2017-03-09 ゼネラル・エレクトリック・カンパニイ Damper pin for damping adjacent turbine blades
JP2019173650A (en) * 2018-03-28 2019-10-10 三菱重工業株式会社 Rotary machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451654A (en) * 1967-08-25 1969-06-24 Gen Motors Corp Blade vibration damping
JPH0893403A (en) * 1994-09-27 1996-04-09 Ishikawajima Harima Heavy Ind Co Ltd Cushioning material for turbine rotor blade
JPH1162502A (en) * 1997-08-21 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Seal damper of turbine moving blade
JP2006214367A (en) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd Moving blade member
JP2010112276A (en) * 2008-11-07 2010-05-20 Hitachi Ltd Turbine moving blade structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451654A (en) * 1967-08-25 1969-06-24 Gen Motors Corp Blade vibration damping
JPH0893403A (en) * 1994-09-27 1996-04-09 Ishikawajima Harima Heavy Ind Co Ltd Cushioning material for turbine rotor blade
JPH1162502A (en) * 1997-08-21 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Seal damper of turbine moving blade
JP2006214367A (en) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd Moving blade member
JP2010112276A (en) * 2008-11-07 2010-05-20 Hitachi Ltd Turbine moving blade structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048791A (en) * 2015-09-03 2017-03-09 ゼネラル・エレクトリック・カンパニイ Damper pin for damping adjacent turbine blades
JP2019173650A (en) * 2018-03-28 2019-10-10 三菱重工業株式会社 Rotary machine

Also Published As

Publication number Publication date
JP6177142B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
EP3090148B1 (en) Gas turbine engine having energy dissipating gap and containment layer
US8708641B2 (en) Turbine blade and gas turbine
JP2011530038A (en) Vibration damping device for turbomachine blade attachment, related turbomachine, and related engines
JP4990686B2 (en) Compressor guide vane assembly sector or turbomachine nozzle assembly sector
US8087881B1 (en) Damped stator assembly
EP3392515B1 (en) Bearing arrangement
JP2017201171A (en) Bearing damper with external support spring systems and methods
US8113772B2 (en) Damping device for a shaft of a turbomachine
US20150176413A1 (en) Snubber configurations for turbine rotor blades
JP6177142B2 (en) Vibration suppression device and turbine
JP2013536366A (en) Method for mounting a shield on a turbine casing and mounting assembly for performing this method
KR20170089740A (en) Blade assembly
JP6278448B2 (en) Liquid damper and rotary machine blade provided with the same
JP2015135076A (en) Seal structure for moving blades, moving blades, and rotary machine
JP6278447B2 (en) Liquid damper and rotary machine blade provided with the same
JP6151932B2 (en) Damping member for rotating machinery
JP2012246785A (en) Gas turbine stator vane
JP2008031871A (en) Strut structure and gas turbine
JP6167043B2 (en) Blades and turbines
JP2017227240A (en) Foil bearing
JP2010031864A (en) Turbomachine component damping structure and method of damping vibration of turbomachine component
JP2014163369A (en) Turbine rotor blade row assembly and steam turbine equipment
KR20080089838A (en) Air foil bearing
JP2017180684A (en) Foil bearing and turbo machine
KR101187893B1 (en) Air foil bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees